FANUC AC SERVO MOTOR $\mathfrak{@}$ is series FANUC AC SERVO MOTOR $@_{i F}$ series FANUC AC SERVO MOTOR ßiS series

PARAMETER MANUAL

- No part of this manual may be reproduced in any form.
- All specifications and designs are subject to change without notice.

The products in this manual are controlled based on Japan's "Foreign Exchange and Foreign Trade Law". The export from Japan may be subject to an export license by the government of Japan.
Further, re-export to another country may be subject to the license of the government of the country from where the product is re-exported. Furthermore, the product may also be controlled by re-export regulations of the United States government.
Should you wish to export or re-export these products, please contact FANUC for advice.

In this manual we have tried as much as possible to describe all the various matters.
However, we cannot describe all the matters which must not be done, or which cannot be done, because there are so many possibilities.
Therefore, matters which are not especially described as possible in this manual should be regarded as "impossible".

This manual contains the program names or device names of other companies, some of which are registered trademarks of respective owners. However, these names are not followed by ${ }^{\circledR}$ or ${ }^{\mathrm{TM}}$ in the main body.

The parameters described in this manual must be set correctly according to the relevant descriptions. If the parameters are not set correctly, vibrations and unpredictable motions can occur. When setting and updating the parameters, place top priority on safety in operation by taking actions, such as lowering the torque limit value, excessive error level, and operation speed, and performing an operation so that an emergency stop can be initiated immediately, until the settings are confirmed to be appropriate.

DEFINITION OF WARNING, CAUTION, AND NOTE

This manual includes safety precautions for protecting the user and preventing damage to the machine. Precautions are classified into Warning and Caution according to their bearing on safety. Also, supplementary information is described as a Note. Read the Warning, Caution, and Note thoroughly before attempting to use the machine.

. 1 WARNING

Applied when there is a danger of the user being injured or when there is a damage of both the user being injured and the equipment being damaged if the approved procedure is not observed.

CAUTION

Applied when there is a danger of the equipment being damaged, if the approved procedure is not observed.

NOTE

The Note is used to indicate supplementary information other than Warning and Caution.

- Read this manual carefully, and store it in a safe place.

TABLE OF CONTENTS

DEFINITION OF WARNING, CAUTION, AND NOTE s-1
1 OVERVIEW 1
1.1 SERVO SOFTWARE AND SERVO CARDS SUPPORTED BY EACH NC MODEL 2
1.2 ABBREVIATIONS OF THE NC MODELS COVERED BY THIS MANUAL 4
1.3 RELATED MANUALS 5
2 SETTING α iS/ $\alpha i F / \beta i S$ SERIES SERVO PARAMETERS 7
2.1 INITIALIZING SERVO PARAMETERS 8
2.1.1 Before Servo Parameter Initialization 8
2.1.2 Parameter Initialization Flow 9
2.1.3 Servo Parameter Initialization Procedure 10
2.1.4 Setting Servo Parameters when a Separate Detector for the Serial Interface is Used 29
2.1.5 Setting Servo Parameters when an Analog Input Separate Interface Unit is Used. 40
2.1.6 Setting Parameters when an $\alpha i C Z$ Sensor is Used 42
2.1.7 Setting Parameters when the PWM Distribution Module is Used 48
2.1.8 Actions for Illegal Servo Parameter Setting Alarms 51
3α iS/ $\alpha i F / \beta i S$ SERIES PARAMETER ADJUSTMENT 63
3.1 SERVO TUNING SCREEN. 64
3.2 ACTIONS FOR ALARMS 67
3.3 ADJUSTING PARAMETERS FOR HIGH-SPEED AND HIGH-PRECISION MACHINING 76
3.3.1 Servo HRV Control Adjustment Procedure 76
3.3.2 High-Speed Positioning Adjustment Procedure 99
3.3.3 Rapid Traverse Positioning Adjustment Procedure. 102
3.3.4 Vibration in the Stop State 107
3.3.5 Vibration during Travel 109
3.3.6 Stick Slip 111
3.3.7 Overshoot 112
4 SERVO FUNCTION DETAILS 113
4.1 SERVO HRV CONTROL 114
4.1.1 Servo HRV2 Control 117
4.2 HIGH-SPEED HRV CURRENT CONTROL 122
4.2.1 Servo HRV3 Control 122
4.2.2 Servo HRV4 Control 128
4.2.3 High-speed HRV Current Control 133
4.3 CUTTING/RAPID SWITCHING FUNCTION 134
4.4 VIBRATION SUPPRESSION IN THE STOP STATE 140
4.4.1 Velocity Loop High Cycle Management Function 140
4.4.2 Acceleration Feedback Function 142
4.4.3 Variable Proportional Gain Function in the Stop State 144
4.4.4 N Pulses Suppression Function 148
4.5 MACHINE RESONANCE ELIMINATION FUNCTION 150
4.5.1 Torque Command Filter (Middle-Frequency Resonance Elimination Filter) 150
4.5.2 Resonance Elimination Filter Function
(High-Frequency Resonance Elimination Filter) 152
4.5.3 Disturbance Elimination Filter Function (Low-Frequency Resonance Elimination Filter) 158
4.5.4 Observer Function 162
4.5.5 Current Loop 1/2 PI Control Function 166
4.5.6 Vibration Damping Control Function 168
4.5.7 Dual Position Feedback Function (Optional function). 170
4.5.8 Machine Speed Feedback Function. 176
4.6 CONTOUR ERROR SUPPRESSION FUNCTION 179
4.6.1 Feed-forward Function 179
4.6.2 Advanced Preview Feed-forward Function. 183
4.6.3 RISC Feed-forward Function 186
4.6.4 Cutting/Rapid Feed-forward Switching Function 188
4.6.5 Feed-forward Timing Adjustment Function 190
4.6.6 Backlash Acceleration Function. 193
4.6.7 Two-stage Backlash Acceleration Function 199
4.6.8 Static Friction Compensation Function 214
4.6.9 Torsion Preview Control Function 217
4.7 OVERSHOOT COMPENSATION FUNCTION 227
4.8 HIGH-SPEED POSITIONING FUNCTION 233
4.8.1 Position Gain Switching Function. 233
4.8.2 Low-speed Integral Function 237
4.8.3 Fine Acceleration/Deceleration (FAD) Function 239
4.9 SERIAL FEEDBACK DUMMY FUNCTIONS 248
4.9.1 Serial Feedback Dummy Functions. 248
4.9.2 How to Use the Dummy Feedback Functions for a Multiaxis Servo Amplifiers when an Axis is not in Use 250
4.10 BRAKE CONTROL FUNCTION 251
4.11 QUICK STOP FUNCTION 255
4.11.1 Quick Stop Type 1 at Emergency Stop 255
4.11.2 Quick Stop Type 2 at Emergency Stop 257
4.11.3 Lifting Function Against Gravity at Emergency Stop 258
4.11.4 Quick Stop Function for Hardware Disconnection of Separate Detector. 262
4.11.5 Quick Stop Function at OVL and OVC Alarm 264
4.11.6 Overall Use of the Quick Stop Functions 265
4.12 UNEXPECTED DISTURBANCE TORQUE DETECTION FUNCTION (Optional function) 266
4.12.1 Unexpected Disturbance Torque Detection Function 266
4.12.2 Cutting/Rapid Unexpected Disturbance Torque Detection Switching Function 277
4.13 FUNCTION FOR OBTAINING CURRENT OFFSETS AT EMERGENCY STOP 279
4.14 LINEAR MOTOR PARAMETER SETTING 280
4.14.1 Procedure for Setting the Initial Parameters of Linear Motors 280
4.14.2 Detection of an Overheat Alarm by Servo Software when a Linear Motor and a Synchronous Built-in Servo Motor are Used. 307
4.14.3 Smoothing Compensation for Linear Motor 310
4.15 SYNCHRONOUS BUILT-IN SERVO MOTOR PARAMETER SETTING 320
4.15.1 Procedure for Setting the Initial Parameters of Synchronous Built-in Servo Motors 320
4.15.2 Detection of an Overheat Alarm by Servo Software when a Synchronous Built-in Servo Motor are Used 346
4.15.3 Smoothing Compensation for Synchronous Built-in Servo Motor. 346
4.16 TORQUE CONTROL FUNCTION 351
4.17 TANDEM DISTURBANCE ELIMINATION CONTROL (POSITION TANDEM) (Optional function) 354
4.18 SYNCHRONOUS AXES AUTOMATIC COMPENSATION 362
4.19 TORQUE TANDEM CONTROL FUNCTION (Optional function) 366
4.19.1 Preload Function 372
4.19.2 Damping Compensation Function 375
4.19.3 Velocity Feedback Average Function 377
4.19.4 Servo Alarm 2-axis Simultaneous Monitor Function 377
4.19.5 Motor Feedback Sharing Function 379
4.19.6 Full-closed Feedback Sharing Function 380
4.19.7 Adjustment 381
4.19.8 Cautions for Controlling One Axis with Two Motors. 385
4.19.9 Block Diagrams 387
4.20 SERVO TUNING TOOL SERVO GUIDE 388
4.20.1 SERVO GUIDE 388
5 DETAILS OF PARAMETERS 400
5.1 DETAILS OF THE SERVO PARAMETERS FOR Series $30 i, 31 i, 32 i$, 15i, 16i, 18i, 21i, 0i, 20i, Power Mate i (SERIES 90D0, 90E0, 90B0, 90B1, 90B6, 90B5, AND 9096) 401
6 PARAMETER LIST 427
6.1 PARAMETERS FOR HRV1 CONTROL 428
6.2 PARAMETERS FOR HRV2 CONTROL 438
6.3 PARAMETERS FOR HRV1 CONTROL (FOR Series 0i-A) 451
APPENDIX
A ANALOG SERVO INTERFACE SETTING PROCEDURE 457
B PARAMETERS SET WITH VALUES IN DETECTION UNITS 464
B. 1 PARAMETERS FOR Series $15 i$ 465
B. 2 PARAMETERS FOR Series $16 i, 18 i$, AND $21 i$ 467
B. 3 PARAMETERS FOR THE Power Mate i 469
B. 4 PARAMETERS FOR Series $30 i$, 31i, AND $32 i$ 471
C FUNCTION-SPECIFIC SERVO PARAMETERS 473
D PARAMETERS RELATED TO HIGH-SPEED AND HIGH PRECISION OPERATIONS 481
D. 1 MODEL-SPECIFIC INFORMATION 482
D.1.1 Series $15 i-M B$ 482
D.1.2 Series $16 i / 18 i / 21 i / 0 i / 0 i$ Mate-MB, $0 i / 0 i$ Mate-MC/20i-FB 485
D.1.3 Series $30 i / 31 i / 32 i-A, 31 i-A 5$ 495
D. 2 SERVO PARAMETERS RELATED TO HIGH-SPEED AND HIGH PRECISION OPERATIONS 498
E VELOCITY LIMIT VALUES IN SERVO SOFTWARE 505
F SERVO FUNCTIONS 510
G PARAMETERS FOR α AND OTHER SERIES 513
G. 1 MOTOR ID NUMBERS OF α SERIES MOTORS 514
G. 2 MOTOR ID NUMBERS OF β SERIES MOTORS 516
G. 3 MOTOR ID NUMBERS OF CONVENTIONAL LINEAR MOTORS 517
G. 4 PARAMETERS FOR SERVO HRV2 CONTROL 518
G. 5 HRV1 CONTROL PARAMETERS FOR α SERIES, β SERIES, AND CONVENTIONAL LINEAR MOTORS 519
G. 6 HRV2 CONTROL PARAMETERS FOR β M SERIES MOTORS 528
H DETAILS OF HIGH-SPEED AND HIGH-PRECISION ADJUSTMENT 530
I SERVO CHECK BOARD OPERATING PROCEDURE 555

OVERVIEW

This manual describes the servo parameters of the CNC models using FANUC AC SERVO MOTOR $\alpha i S$, $\alpha i \mathrm{~F}$, and $\beta i \mathrm{~S}$ series. The descriptions include the servo parameter start-up and adjustment procedures. The meaning of each parameter is also explained.

1.1 SERVO SOFTWARE AND SERVO CARDS SUPPORTED BY EACH NC MODEL

NC product name	Series and edition of applicable servo software	Servo card
Series 21i-MODEL B (Note1) Series 0i-MODEL B (Note1)	Series 9096/A(01) and subsequent editions (Supporting i series CNC and SERVO HRV1 control) (Note2)	320C52 servo card
Series 0i Mate-MODEL B (Note1) Power Mate i-MODEL D (Note1) Power Mate i-MODEL H (Note1)	Series $90 B 0 / H(08)$ and subsequent editions Series 90B6/A(01) and subsequent editions (Supporting i series CNC and SERVO HRV1, 2, and 3 control)	
Series 15i-MODEL B Series 16i-MODEL B Series 18i-MODEL B	Series 90B1/A(01) and subsequent editions (Note3) (Note3)	5410 servo card
Series 0i-MODEL C Series 0i Mate-MODEL C Series 20i-MODEL B	Series 90B5/A(01) and subsequent editions (Supporting i series CNC and SERVO HRV1, 2, and 3 control) (Note4)	320 C 5410 servo card
Series 30i-MODEL A Series 31i-MODEL A	Series 90D0/A(01) and subsequent editions (Supporting i series CNC and SERVO HRV4 control) (Note5, Note6)	Servo card for FS30i servo HRV4 control
	Series 90E0/A(01) and subsequent editions (Supporting i series CNC and SERVO HRV2 and 3 control)	Servo card for FS30i servo HRV2 and 3 control
Series 32i-MODEL A	(Note6)	

NOTE

1 The servo software series of the Series 21i-MODEL B, Oi-MODEL B, $0 i$ Mate MODEL B, or Power Mate i-MODEL D/H depends on the incorporated servo card, as shown below:

Servo software	Servo card
Series 9096	320C52 servo card
Series 90B0 or Series 90B6	320C5410 servo card

Servo software series map

NOTE

1 The servo software Series 9096 is compatible with the conventional servo software Series 9090 except for the following function:

- Electric gear box (EGB) function can not be used.

2 The servo software Series 90B0 is upwardly compatible with the conventional servo software Series 90A0. Series 90B6 is a successor of Series 90B0. Series 90B1 is a special series compatible with Series 90B0 and is required when a PWM distribution module or pulse input DSA is used.
3 Servo software Series 90B5, which is a successor of Series 90B0 and supports the same functions as Series 90B6, is used in the Series 0i-MODEL C, $0 i$ Mate-MODEL C, and $20 i-M O D E L B$.
4 When using servo HRV4 control with Series 30i-MODEL A and 31i-MODEL A, use Series 90D0.
5 Servo software Series 90D0 and 90E0 is upwardly compatible with conventional servo software Series 90B0 except the following functions:

- Fine Acc./Dec. (FAD) function can not be used.
- HRV1 control can not be used.

1.2 ABBREVIATIONS OF THE NC MODELS COVERED BY THIS MANUAL

In this manual, the NC product names are abbreviated as follows.

NC product name	Abbreviations		
FANUC Series 30i-MODEL A	Series 30i-A	Series 30i	Series 30i
FANUC Series 31i-MODEL A	Series 31i-A	Series 31i	FS30i

NOTE

In this manual, Power Mate i refers to the Power Mate i-D, and Power Mate $i-\mathrm{H}$.

1.3 RELATED MANUALS

The following seven kinds of manuals are available for FANUC AC SERVO MOTOR $\alpha i S, \alpha i F$ or $\beta i S$ series.
In the table, this manual is marked with an asterisk (*).
Table 1.3 Related manuals of SERVO MOTOR $\alpha i S / \alpha i F / \beta i S$ series

Document name	Document number	Major contents	Major usage	
FANUC AC SERVO MOTOR $\alpha i S$ series FANUC AC SERVO MOTOR α iF series DESCRIPTIONS	B-65262EN	- Specification - Characteristics - External dimensions - Connections	- Selection of motor - Connection of motor	
FANUC AC SERVO MOTOR βi S series DESCRIPTIONS	B-65302EN			
FANUC LINEAR MOTOR series DESCRIPTIONS	B-65222EN			
FANUC SERVO AMPLIFIER α iSV series DESCRIPTIONS	B-65282EN	- Specifications and functions - Installation - External dimensions and maintenance area - Connections	- Selection of amplifier - Connection of amplifier	
FANUC SERVO AMPLIFIER $\beta i S V$ series DESCRIPTIONS	B-65322EN			
FANUC AC SERVO MOTOR α iS series FANUC AC SERVO MOTOR $\alpha i F$ series FANUC AC SPINDLE MOTOR αi series FANUC SERVO AMPLIFIER αi series MAINTENANCE MANUAL	B-65285EN	- Start up procedure - Troubleshooting - Maintenance of motor	- Start up the system (Hardware) - Troubleshooting - Maintenance of motor	
FANUC AC SERVO MOTOR $\beta i S$ series FANUC AC SPINDLE MOTOR βi series FANUC SERVO AMPLIFIER βi series MAINTENANCE MANUAL	B-65325EN			
FANUC AC SERVO MOTOR α is series FANUC AC SERVO MOTOR αi if series FANUC AC SERVO MOTOR β is series PARAMETER MANUAL	B-65270EN	- Initial setting - Setting parameters - Description of parameters	- Start up the system (Software) - Turning the system (Parameters)	*
FANUC AC SPINDLE MOTOR αi series FANUC AC SPINDLE MOTOR βi series PARAMETER MANUAL	B-65280EN			

Other manufactures' products referred to in this manual

* IBM is registered trademark of International Business Machines Corporation.
* MS-DOS and Windows are registered trademarks of Microsoft Corporation.
All other product names identified throughout this manual are trademarks or registered trademarks of their respective companies.

In this manual, the servo parameters are explained using the following notation:
(Example)

Series $15 i$
No.1875(FS15i) Servo parameter function name No.2021(FS30i, 16i) Series $30 i, 31 i, 32 i, 16 i$, Load inertia ratio

The following $\alpha i / \beta i$ Pulsecoders are available.

Pulsecoder name	Resolution	Type
α iA1000	$1,000,000$ pulse/rev	Absolute
α il1000	$1,000,000$ pulse/rev	Incremental
α iA16000	$16,000,000$ pulse/rev	Absolute
β iA128	131,072 pulse/rev	Absolute
β iA64	65,536 pulse/rev	Absolute

When parameters are set, these pulse coders are all assumed to have a resolution of $1,000,000$ pulses per motor revolution.

NOTE

The effect of α iA16000 can be increased when used together with AI nano contour control.

2

SETTING $\alpha i S / \alpha i F / \beta i S$ SERIES SERVO PARAMETERS

2.1 INITIALIZING SERVO PARAMETERS

2.1.1 Before Servo Parameter Initialization

Before starting servo parameter initialization, confirm the following:
$<1>\mathrm{NC}$ model
(ex.: Series 16i-B)
$<2>$ Servo motor model (ex.: $\alpha i \mathrm{~F} 8 / 3000$)
$<3>$ Pulsecoder built in a motor (ex.: $\alpha i_{\mathrm{A} 1000)}$
$<4>$ Is the separate position detector used? (ex.: Not used)
$<5>$ Distance the machine tool moves per revolution of the motor (ex.:10 mm per one revolution)
<6> Machine detection unit
(ex.: 0.001 mm)
$<7>$ NC command unit
(ex.: 0.001 mm)

2.1.2 Parameter Initialization Flow

On the servo setting and servo adjustment screens, set the following:

NOTE

1 When a separate detector of A / B phase parallel type and a serial linear scale are used, Ns indicates the number of feedback pulses per motor revolution, sent from the separate detector.
When a serial rotary scale is used, the number of pulses is calculated using following expression: $12500 \times$ (gear reduction ratio between the motor and table) See (8)-(b)-2 in Subsec. 2.1.3.

2.1.3 Servo Parameter Initialization Procedure

(1) Preparation

Switch on the NC in an emergency stop state.
Enable parameter writing (PWE $=1$).
Initialize servo parameters on the servo setting screen.
For a Power Mate i with no CRT, specify a value for an item number on the servo setting screen. See Fig. 2.1.3.
To display the servo setting screen, follow the procedure below, using the key on the NC.

- Series $15 i$

Press the \square key several times, and the servo setting screen will appear.

- Series30i,31i,32i,16i,18i,21i,20i,0i
$\underset{\substack{\theta \\ \text { SYSTEM }}}{ } \rightarrow[$ SYSTEM $] \rightarrow[\perp] \rightarrow[$ SV-PRM $]$

If no servo screen appears, set the following parameter as shown, and switch the NC off and on again.

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
3111								SVS

SVS (\#0) 1: Displays the servo screen.
When the following screen appears, move the cursor to the item you want to specify, and enter the value directly.

	01000	
Servo set	X axis	Z
	Z axis	
INITIAL SET BITS	00001010	00001010
Motor ID No.	16	16
AMR	00000000	00000000
CMR	2	2
Feed gear	N	1
(N/M)	M	100
Direction Set	111	100
Velocity Pulse No.	8192	111
Position Pulse No.	12500	8192
Ref. counter	10000	12500

Fig. 2.1.3 Servo setting screen
Correspondence of Power Mate i

(2) Initialization

Start initialization.
Do not power off the NC until step (11).

Reset initialization bit 1 to 0 .
DGPR(\#1)=0
After initialization is completed, DGPR (\#1) is set to 1 .

NOTE
 Once initialization has been completed, bit 3 (PRMC) for initialization is automatically set to 1. (Except Series $30 i$, $31 i$ and $32 i$)

(3) Motor ID No. setting

Specify the motor ID number.
Select the motor ID number of a motor to be used according to the motor model and motor specification (the middle four digits in A06B-****-B***) listed in the following tables.
When using servo HRV3 or HRV4 control, please use the motor ID number for servo HRV2 control. It is available with the series and editions listed in the table and later editions.
The mark " x " indicates a value that varies depending on the used options.
The mark "-" indicates that automatic loading of standard parameters is not supported as of December, 2005.

NOTE

- Series $30 i, 31 i$ and $32 i$

Specify the motor ID number for servo HRV2 control.

- Other than the Series $30 i, 31 i$ and $32 i$

When a pair of the values set in parameter No. 1023 (servo axis number) are consecutive odd and even numbers, set motor ID numbers for servo HRV control of the same type.
(Correct examples)
Servo axes when parameter No. $1023=1,2$: Motor ID number for servo HRV2 control
Servo axes when parameter No.1023= 3,4: Motor ID number for servo HRV1 control
(Wrong examples)
Servo axes when parameter No.1023= 1: Motor ID number for servo HRV2 control Servo axes when parameter No.1023= 2,3: Motor ID number for servo HRV1 control

Motor model	Motor specification	Motor ID No．		$\begin{aligned} & \hline \text { 90DO } \\ & \text { 90EO } \end{aligned}$	90BO	$\begin{aligned} & \hline \text { 90B5 } \\ & \text { 90B6 } \end{aligned}$	90B1	9096
		HRV1	HRV2					
人iS2／5000	0212	162	262	A	H	A	A	A
人iS2／6000	0218	－	284	G	－	B	B	－
α iS4／5000	0215	165	265	A	H	A	A	A
人iS8／4000	0235	185	285	A	H	A	A	A
人iS8／6000	0232	－	290	G	－	B	B	－
α iS12／4000	0238	188	288	A	H	A	A	A
α iS22／4000	0265	215	315	A	H	A	A	A
α iS30／4000	0268	218	318	A	H	A	A	A
α iS40／4000	0272	222	322	A	H	A	A	A
人iS50／3000	0275－Bx0x	224	324	B	V	A	A	F
α iS50／3000 FAN	0275－Bx1x	225	325	A	N	A	A	D
α iS100／2500	0285	235	335	A	T	A	A	F
人iS200／2500	0288	238	338	A	T	A	A	F
人is300／2000	0292	115	342	B	V	A	A	－
人iS500／2000	0295	245	345	A	T	A	A	F

－ $\boldsymbol{i F}$ series servo motor

Motor model	Motor specification	Motor ID No．		$\begin{aligned} & \hline \text { 90D0 } \\ & \text { 90EO } \end{aligned}$	90B0	$\begin{aligned} & \hline \text { 90B5 } \\ & \text { 90B6 } \end{aligned}$	90B1	9096
		HRV1	HRV2					
α iF1／5000	0202	152	252	A	H	A	A	A
人iF2／5000	0205	155	255	A	H	A	A	A
人iF4／4000	0223	173	273	A	H	A	A	A
α iF8／3000	0227	177	277	A	H	A	A	A
α iF12／3000	0243	193	293	A	H	A	A	A
人iF22／3000	0247	197	297	A	H	A	A	A
人iF30／3000	0253	203	303	A	H	A	A	A
人iF40／3000	0257－Bx0x	207	307	A	H	A	A	A
α iF40／3000 FAN	0257－Bx1x	208	308	A	1	A	A	C

Motor model	Motor specification	Motor ID No.		$\begin{aligned} & \text { 90DO } \\ & \text { 90EO } \end{aligned}$	90B0	$\begin{aligned} & \hline \text { 90B5 } \\ & \text { 90B6 } \end{aligned}$	90B1	9096
		HRV1	HRV2					
$\alpha{ }^{\text {a }} 2 / 5000 \mathrm{HV}$	0213	163	263	A	Q	A	A	D
$\alpha i^{2} 2 / 6000 \mathrm{HV}$	0219	-	287	G	-	B	B	-
α iS4/5000HV	0216	166	266	A	Q	A	A	D
$\alpha i S 8 / 4000 \mathrm{HV}$	0236	186	286	A	N	A	A	D
α iS8/6000HV	0233	-	292	G	-	B	B	-
α iS12/4000HV	0239	189	289	A	N	A	A	D
α iS22/4000HV	0266	216	316	A	N	A	A	D
α iS30/4000HV	0269	219	319	A	N	A	A	D
α iS40/4000HV	0273	223	323	A	N	A	A	D
α iS50/3000HV FAN	0276-Bx1x	226	326	A	N	A	A	D
α iS50/3000HV	0276-Bx0x	227	327	B	V	A	A	F
α is100/2500HV	0286	236	336	B	V	A	A	F
<iS200/2500HV	0289	239	339	B	V	A	A	F
α iS300/2000HV	0293	243	343	B	V	A	A	F
α iS500/2000HV	0296	246	346	B	V	A	A	F
α iS1000/2000HV	0298	248	348	B	V	A	A	F
α iS2000/2000HV $^{\text {(Note 1) }}$	0091	-	340	J	-	B	B	-

NOTE

1 The model needs manual setting. (See Subsection 2.1.7, "Setting Parameters when the PWM Distribution Module is used".)
When using the torque control function, contact FANUC.

- \boldsymbol{i} F series servo motor (for 400-V driving)

Motor model	Motor specification	Motor ID No.		90D0	90B0	90B5 90B6	90B1	9096
	0225	175	275	A		A		
$\alpha i \mathrm{~F} 8 / 3000 \mathrm{HV}$	0229	179	279	A	Q	A	A	E
$\alpha \mathrm{F} 12 / 3000 \mathrm{HV}$	0245	195	295	A	Q	A	A	E
$\alpha i \mathrm{~F} 22 / 3000 \mathrm{HV}$	0249	199	299	A	Q	A	A	E

$\alpha \mathrm{C} i$ series servo motor

Motor model	Motor specification	Motor ID No.		$\begin{aligned} & \hline \text { 90DO } \\ & \text { 90EO } \end{aligned}$	90B0	$\begin{aligned} & \hline \text { 90B5 } \\ & \text { 90B6 } \end{aligned}$	90B1	9096
		HRV1	HRV2					
$\alpha \mathrm{C} 4 / 3000{ }^{\text {i }}$	0221	171	271	A	H	A	A	A
$\alpha \mathrm{C} 8 / 2000{ }^{\text {i }}$	0226	176	276	A	H	A	A	A
$\alpha \mathrm{C} 12 / 2000{ }^{\text {i }}$	0241	191	291	A	H	A	A	A
$\alpha \mathrm{C} 22 / 2000{ }^{\text {i }}$	0246	196	296	A	H	A	A	A
$\alpha \mathrm{C} 30 / 1500 i$	0251	201	301	A	H	A	A	A

β iS series servo motor

Motor model	Motor specification	Amplifier driving	Motor ID No.		$\begin{aligned} & \hline \text { 90D0 } \\ & \text { 90EO } \end{aligned}$	90B0	$\begin{aligned} & 90 \mathrm{~B} 5 \\ & 90 \mathrm{~B} 6 \end{aligned}$	90B1	9096
			HRV1	HRV2					
β iS0.2/5000	$0111^{(\text {Note 1) }}$	4A	-	260	A	N	A	A	*
β iS0.3/5000	$0112^{\text {(Note 1) }}$	4A	-	261	A	N	A	A	*
β is0.4/5000	$0114{ }^{\text {(Note 1) }}$	20A	-	280	A	N	A	A	*
βi 0.5/6000	0115	20A	181	281	G	-	B	B	-
3iS1/6000	0116	20A	182	282	G	-	B	B	-
β iS2/4000	$0061{ }^{\text {(Note 2) }}$	20A	153	253	B	V	A	A	F
		40A	154	254	B	V	A	A	F
β iS4/4000	$0063{ }^{\text {(Note 2) }}$	20A	156	256	B	V	A	A	F
		40A	157	257	B	V	A	A	F
β iS8/3000	$0075{ }^{\text {(Note 2) }}$	20A	158	258	B	V	A	A	F
		40A	159	259	B	V	A	A	F
β iS12/2000	$0077{ }^{\text {(Note 2) }}$	20A	169	269	-	-	D	-	-
β iS12/3000	0078	40A	172	272	B	V	A	A	F
β iS22/2000	0085	40A	174	274	B	V	A	A	F

NOTE

1 HRV1 control cannot be used with these motors. So, these motors cannot be used with Series 9096.
2 For a motor specification suffixed with "-Bxx6", be sure to use parameters dedicated to FSO i.
β is series servo motor (for 400-V driving)

Motor model	Motor specification	Amplifier driving	Motor ID No.		$\begin{aligned} & \text { 90D0 } \\ & \text { 90E0 } \end{aligned}$	90B0	$\begin{aligned} & \text { 90B5 } \\ & \text { 90B6 } \end{aligned}$	90B1	9096
			HRV1	HRV2					
BiS2/4000HV	0062	10A	151	251	J	-	B	C	-
BiS4/4000HV	0064	10A	164	264	J	-	B	C	-
β iS8/3000HV	0076	10A	167	267	J	-	B	C	-
β iS12/3000HV	0079	20A	170	270	J	-	B	C	-
β iS22/2000HV	0086	20A	178	278	J	-	B	C	-

The mark "-" indicates that automatic loading of standard parameters is not supported as of December, 2005.
β is series servo motor (dedicated to FS0i)

Motor model	Motor specification	Amplifier driving	Motor ID No.		90B5
			HRV1	HRV2	
β iS2/4000	0061-Bxx6	20A	206	306	D
		40A	210	310	D
β iS4/4000	0063-Bxx6	20A	211	311	D
		40A	212	312	D
β iS8/3000	0075-Bxx6	20A	183	283	D
		40A	194	294	D
β iS12/2000	0077-Bxx6	20A	198	298	D
β iS22/1500	0084-Bxx6	20A	202	302	D
		40A	205	305	D

The motor models above can be driven only with Series 90B5.

Linear motor
Linear motor parameters for servo HRV2 control
Note: The following linear motors are driven by 200 V .

Motor model	Motor specification	Motor ID No.	90D0 90E0	90B0	90B5 90B6	90B1	9096
LiS300A1/4	$0441-\mathrm{B} 200$	351	G	-	B	B	-
LiS600A1/4	$0442-\mathrm{B} 200$	353	G	-	B	B	-
LiS900A1/4	$0443-\mathrm{B} 200$	355	G	-	B	B	-
LiS1500B1/4	$0444-\mathrm{B} 210$	357	G	-	B	B	-
LiS3000B2/2	$0445-\mathrm{B} 110$	360	G	-	B	B	-
LiS3000B2/4	$0445-\mathrm{B} 210$	362	G	-	B	B	-
LiS4500B2/2	$0446-\mathrm{B} 110$	364	G	-	B	B	-
LiS6000B2/2	$0447-\mathrm{B} 110$	368	G	-	B	B	-
LiS6000B2/4	$0447-\mathrm{B} 210$	370	G	-	B	B	-
LiS7500B2/2	$0448-\mathrm{B} 110$	372	G	-	B	B	-
LiS7500B2/4	$0448-\mathrm{B} 210$	374	G		B	B	-
LiS9000B2/2	$0449-\mathrm{B} 110$	376	G	-	B	B	-
LiS9000B2/4	$0449-\mathrm{B} 210$	378	G	-	B	B	
LiS3300C1/2	$0451-\mathrm{B} 110$	380	G	-	B	B	-
LiS9000C2/2	$0454-\mathrm{B} 110$	384	G	-	B	B	-
LiS11000C2/2	$0455-\mathrm{B} 110$	388	G	-	B	B	-
LiS15000C2/2	$0456-\mathrm{B} 110$	392	G	-	B	B	-
LiS15000C2/3	$0456-\mathrm{B} 210$	394	G	-	B	B	-
LiS10000C3/2	$0457-\mathrm{B} 110$	396	G	-	B	B	-
LiS17000C3/2	$0459-\mathrm{B} 110$	400	G	-	B	B	-

Note: The following linear motors are driven by 400 V .

Motor model	Motor specification	Motor ID No.	$\begin{array}{\|l\|} \hline 90 \mathrm{DO} \\ 90 \mathrm{EO} \\ \hline \end{array}$	90B0	$\begin{array}{\|l\|} \hline \text { 90B5 } \\ \text { 90B6 } \\ \hline \end{array}$	90B1	9096
Lis1500B1/4	0444-B210	358	G	-	B	B	-
Lis3000B2/2	0445-B110	361	G	-	B	B	-
LiS4500B2/2HV	0446-B010	363	G	-	B	B	-
LiS4500B2/2	0446-B110	365	G	-	B	B	-
LiS6000B2/2HV	0447-B010	367	G	-	B	B	-
LiS6000B2/2	0447-B110	369	G	-	B	B	-
LiS7500B2/2HV	0448-B010	371	G	-	B	B	-
LiS7500B2/2	0448-B110	373	G	-	B	B	-
LiS9000B2/2	0449-B110	377	G	-	B	B	-
LiS3300C1/2	0451-B110	381	G	-	B	B	-
LiS9000C2/2	0454-B110	385	G		B	B	
LiS11000C2/2HV	0455-B010	387	G	-	B	B	-
LiS11000C2/2	0455-B110	389	G	-	B	B	-
LiS15000C2/3HV	0456-B010	391	G	-	B	B	-
LiS10000C3/2	0457-B110	397	G	-	B	B	-
LiS17000C3/2	0459-B110	401	G	-	B	B	-

Linear motor parameters for servo HRV1 control

Motor model	Motor specification	Motor ID No.	$\begin{array}{\|l\|} \hline \text { 90DO } \\ \text { 90EO } \\ \hline \end{array}$	90BO	$\begin{aligned} & \hline \text { 90B5 } \\ & \text { 90B6 } \end{aligned}$	90B1	9096
LiS1500B1/4	0444-B210	90	A	A	A	A	A
LiS3000B2/2	0445-B110	91	A	A	A	A	A
LiS6000B2/2	0447-B110	92	A	A	A	A	A
LiS9000B2/2	0449-B110	93	A	A	A	A	A
LiS1500C2/2	0456-B110	94	A	A	A	A	A
LiS3000B2/4	0445-B210	120	A	A	A	A	A
LiS6000B2/4	0447-B210	121	A	A	A	A	A
LiS9000B2/4	0449-B210	122	A	A	A	A	A
LiS15000C2/3	0456-B210	123	A	A	A	A	A
LiS300A1/4	0441-B200	124	A	A	A	A	A
LiS600A1/4	0442-B200	125	A	A	A	A	A
LiS900A1/4	0443-B200	126	A	A	A	A	A
LiS6000B2/4	0412-B811	$\begin{gathered} \hline 127 \\ \text { (160-A driving) } \end{gathered}$	A	R	A	A	D
LiS9000B2/2	0413	$\begin{gathered} 128 \\ \text { (160-A driving) } \end{gathered}$	A	N	A	A	D
LiS9000B2/4	0413-B811	$\begin{gathered} 129 \\ \text { (360-A driving) } \end{gathered}$	A	Q	A	A	D
LiS15000C2/2	0414	$\begin{gathered} 130 \\ \text { (360-A driving) } \end{gathered}$	A	Q	A	A	D

(Reference)
The parameter table presented in Chapter 6 has two motor ID Nos. for the same linear motor. One of the two is for driving the α series servo amplifiers (130A and 240A). Be careful not to use the wrong ID No.

Motor model	α servo amplifier driving		α i servo amplifier driving	
	Amplifier maximum current [A]	Motor ID No.	Amplifier maximum current [A]	Motor ID No.
	240	121	160	127
LiS9000B2/2	130	93	160	128
LiS9000B2/4	240	122	360	129
LiS15000C2/2	240	94	360	130

Synchronous built-in servo motor
Synchronous built-in servo motor for servo HRV2 control
NOTE: The following synchronous built-in servo motors are driven by 200 V .

Motor model	Motor specification	Motor ID No.	90D0 90E0	90B0	90B5 90B6	90B1	9096
DiS85/400	$0483-$ B20x	423	K	-	-	-	-
DiS110/300	$0484-$ B10x	425	K	-	-	-	-
DiS260/600	$0484-$ B31x	429	K	-	-	-	-
DiS370/300	$0484-$ B40x	431	K	-	-	-	-

NOTE: The following synchronous built-in servo motors are driven by 400 V .

Motor model	Motor specification	Motor ID No.	90D0 90E0	90B0	90B5 90B6	90B1	9096
DiS85/400	$0483-$ B20x	424	K	-	-	-	-
DiS110/300	$0484-$ B10x	426	K	-	-	-	-
DiS260/600	$0484-B 31 x$	430	K	-	-	-	-
DiS370/300	$0484-$ B40x	432	K	-	-	-	-

(4) AMR setting

For AMR, set 00000000 . When using a linear motor, set AMR according to the description in Section 4.14, "LINEAR MOTOR PARAMETER SETTING". When using a synchronous built-in servo motor, set AMR according to the description in Section 4.15, "SYNCHRONOUS BUILT-IN SERVO MOTOR PARAMETER SETTING".

α iS/ $\alpha i F / \beta$ iS motor	00000000

(5) CMR setting

Set, as CMR, a specified magnification for the amount of movement from the NC to the servo system.
CMR = Command unit / Detection unit

CMR	$1 / 2$ to 48
Setting value $=C M R \times 2$	

Usually, set CMR with 2 , because command unit $=$ detection unit (CMR = 1).

(6) Flexible feed gear setting

Specify the flexible feed gear (F•FG). This function makes it easy to specify a detection unit for the leads and gear reduction ratios of various ball screws by changing the number of position feedback pulses from the Pulsecoder or separate detector. It converts the incoming number of pulses from the position detector so that it matches the commanded number of pulses. When using a linear motor, set F.FG according to the description in Section 4.14, "LINEAR MOTOR PARAMETER SETTING". When using a synchronous built-in servo motor, set F.FG according to the description in Section 4.15, "SYNCHRONOUS BUILT-IN SERVO MOTOR PARAMETER SETTING".

(a) Semi-closed feedback loop

Setting for the αi Pulsecoder
$\left.\left.\begin{array}{|cc|}\hline \downarrow(\text { Note } 1) \\ \text { F.FG numerator }(\leq 32767)\end{array}\right)=\begin{array}{c}\text { Necessary position feedback pulses } \\ \text { per motor revolution }\end{array}\right]$ (as irreducible fraction)

NOTE

1 For both F.FG numerator and denominator, the maximum setting value (after reduced) is 32767.
$2 \alpha i$ Pulsecoders assume one million pulses per motor revolution, irrespective of resolution, for the flexible feed gear setting.
3 If the calculation of the number of pulses required per motor revolution involves π, such as when a rack and pinion are used, assume π to be approximately $355 / 113$.

Example of setting

If the ball screw used in direct coupling has a lead of $5 \mathrm{~mm} / \mathrm{rev}$ and the detection unit is $1 \mu \mathrm{~m}$
The number of pulses generated per motor turn (5 mm) is:
$5 / 0.001=5000$ (pulses)
Because the αi Pulsecoder feeds back 1000000 pulses per motor turn:
$\mathrm{FFG}=5000 / 1000000=1 / 200$
Other FFG (numerator/denominator) setting examples, where the gear reduction ratio is assumed to be $1: 1$

Detection unit	Ball screw lead					
	$\mathbf{6 m m}$	$\mathbf{8 m m}$	$\mathbf{1 0 m m}$	$\mathbf{1 2 m m}$	$\mathbf{1 6 m m}$	$\mathbf{2 0 m m}$
$1 \mu \mathrm{~m}$	$6 / 1000$	$8 / 1000$	$10 / 1000$	$12 / 1000$	$16 / 1000$	$20 / 1000$
$0.5 \mu \mathrm{~m}$	$12 / 1000$	$16 / 1000$	$20 / 1000$	$24 / 1000$	$32 / 1000$	$40 / 1000$
$0.1 \mu \mathrm{~m}$	$60 / 1000$	$80 / 1000$	$100 / 1000$	$120 / 1000$	$160 / 1000$	$200 / 1000$

Example of setting

If the gear reduction ratio between the rotary axis motor and table is $10: 1$ and the detection unit is $1 / 1000$ degrees
The table rotates through $360 / 10$ degrees when the motor makes one turn.
The number of position pulses necessary for the motor to make one turn is:
$360 / 10 \div(1 / 1000)=36,000$ pulses
$\frac{\text { F.FG numerator }}{\text { F.FG denominator }}=\frac{36,000}{1,000,000}=\frac{36}{1,000}$
If the gear reduction ratio between the rotary axis motor and table is $300: 1$ and the detection unit is $1 / 10000$ degrees
The table rotates through 360/300 degrees when the motor makes one turn.
The number of position pulses necessary for the motor to make one turn is:
$360 / 300 \div(1 / 10000)=12,000$ pulses
$\frac{\text { F.FG numerator }}{\text { F.FG denominator }}=\frac{12,000}{1,000,000}=\frac{12}{1,000}$

(b) Full-closed feedback loop

Setting for use of a separate detector (full-closed)

$\frac{\text { F.FG numerator }(\leq 32767)}{\text { F.FG denominator }(\leq 32767)}=\frac{$| Number of position pulses corresponding |
| :---: |
| to a predetermined amount of travel |}{| Number of position pulses corresponding |
| :---: |
| to a predetermined amount of travel from |
| a separate detector |} (as irreducible fraction)

Example of setting

To detect a distance of $1-\mu \mathrm{m}$ using a $0.5-\mu \mathrm{m}$ scale, set the following: (L represents a constant distance.)

$$
\frac{\text { Numerator of } F \cdot F G}{\text { Denominator of F•FG }}=\frac{\mathrm{L} / 1}{\mathrm{~L} / 0.5}=\frac{1}{2}
$$

Other FFG (numerator/denominator) setting examples

Detection unit	Scale resolution			
	$1 \mu \mathrm{~m}$	$0.5 \mu \mathrm{~m}$	$0.1 \mu \mathrm{~m}$	$0.05 \mu \mathrm{~m}$
$1 \mu \mathrm{~m}$	$1 / 1$	$1 / 2$	$1 / 10$	$1 / 20$
$0.5 \mu \mathrm{~m}$	-	$1 / 1$	$1 / 5$	$1 / 10$
$0.1 \mu \mathrm{~m}$	-	-	$1 / 1$	$1 / 2$

NOTE

The maximum rotation speed allowable with servo software depends on the detection unit. (See Appendix E, "VELOCITY LIMIT VALUES IN SERVO SOFTWARE".) Select a detection unit that enables a requested maximum rotation speed to be realized. When a speed of up to 6000 revolutions is used as a live tool in the direct motor connection mode, in particular, use a detection unit of $2 / 1000$ deg (IS-B setting, CMR=1/2, flexible feed gear=18/100).

(7) Motor rotation direction setting

Set the direction in which the motor is to turn when a positive value is specified as a move command. For linear motors, set the parameter according to the description in Section 4.14, "LINEAR MOTOR PARAMETER SETTING". For synchronous built-in servo motors, set the parameter according to the description in Section 4.15, "SYNCHRONOUS BUILT-IN SERVO MOTOR PARAMETER SETTING".

111	Clockwise as viewed from the Pulsecoder
-111	Counterclockwise as viewed from the Pulsecoder

(8) Specify the number of velocity pulses and the number of position pulses.

Set the number of velocity pulses and the number of position pulses according to the connected detector. For linear motors, set these parameters according to the description in Section 4.14, "LINEAR MOTOR PARAMETER SETTING". For synchronous built-in servo motors, set these parameters according to the description in Section 4.15, "SYNCHRONOUS BUILT-IN SERVO MOTOR PARAMETER SETTING".

(a) Number of velocity pulses

Set the number of velocity pulses to 8192 .

(b) Number of position pulses

(b)-1 Number of position pulses for semi-closed feedback loop

Set the number of position pulses to 12500 .

Number of position pulses	12500
$(\alpha i S / \alpha i F / \beta i S$ motor, semi-closed feedback loop $)$	

(b)-2 Number of position pulses for full-closed feedback loop

(See Subsections 2.1.4 and 2.1.5)
Set the number of position pulses to the number of pulses fed back from the separate detector when the motor makes one turn. (The flexible feed gear has nothing to do with the calculation of the number of position pulses).
Number of position pulses \quad Number of pulses fed back from the separate (full-closed feedback loop) detector when the motor makes one turn

When using a serial rotary scale with a resolution of $1,000,000$ pulses per revolution, set a value assuming that 12500 is equivalent to $1,000,000$ pulses.

Number of position pulses (full-closed feedback loop) (*) $1,000,000$ pulses $/$ rev	$12,500 \times$ (motor-table gear reduction ratio)

Example 1:

Parallel type, serial linear scale
If the ball screw used in direct coupling has a lead of 10 mm and
the separate detector used has a resolution of $0.5 \mu \mathrm{~m}$ per pulse
Number of position pulses $=10 / 0.0005=20,000$
Example 2:
Serial rotary scale
If the motor-table gear reduction ratio is $10: 1$,
Number of position pulses $=12,500 \times(1 / 10)=1250$

(b)-3 If the setting for the number of position pulses is larger than 32767

Conventionally, initialization bit 0 (high resolution bit) must be changed according to the command unit. For the current i series CNC, however, there is no mutual dependence between the command unit and initialization bit 0 .
Of course, the conventional setting method is applicable, but using the conversion coefficient for the number of position feedback pulses makes the setting easier.

Series 90E0, Series 90D0, Series 90B0, Series 90B5, Series 90B6, Series 90B1:

Set the number of position pulses with a product of two parameters, using the conversion coefficient for the number of position feedback pulses.
Number of feedback pulses per motor revolution, sent from the separate detector
$=$ Number of position pulses \times Conversion coefficient for the number of position feedback pulses

Series 9096 :

No conversion coefficient for the number of position feedback pulses can be used. As usual, set the initialization bit 0 to 1 , and set the number of velocity pulses and the number of position pulses to $1 / 10$ the respective values stated earlier.
Number of feedback pulses per motor revolution, sent from the separate detector
$=$ Number of position pulses $\times 10$
\rightarrow See Supplementary 3 of Subsection 2.1.8.

(9) Reference counter setting

Specify the reference counter.
The reference counter is used in making a return to the reference position by a grid method.
(a) Semi-closed loop

| (Linear axis)
 Count on the reference
 counter
 (Rotary axis) Number of position pulses corresponding to a
 single motor revolution or the same number
 divided by an integer value
 Count on the reference
 counter Number of position pulses corresponding to a
 single motor revolution/M, or the same
 \quad number divided by an integer value |
| :--- | :--- |
| \quadWhen the motor-table gear reduction ratio is $\mathrm{M} / \mathrm{N}(\mathrm{M}$ and N are integers,
 and M / N is a fraction that is reduced to lowest terms.) |

NOTE

1 If the calculation above results in a fraction, a setting can be made with a fraction.
See (a)-1.
2 If the rotation ratio between the motor and table on the rotary axis is not an integer, the reference counter capacity needs to be set so that the point (grid point) where the reference counter equals 0 appears at the same position relative to the table. So, with the rotary axis, the number of position pulses per motor revolution needs to be multiplied by $1 / \mathrm{M}$.

Example of setting

αi Pulsecoder and semi-closed loop (1- $\mu \mathrm{m}$ detection)

Ball screw lead (mm/revolution)	Necessary number of position pulses (pulse/revolution)	Reference counter	Grid width $(\mathbf{m m})$
10	10000	10000	10
20	20000	20000	20
30	30000	30000	30

When the number of position pulses corresponding to a single motor revolution does not agree with the reference counter setting, the position of the zero point depends on the start point.
In such a case, set the reference counter capacity with a fraction to change the detection unit and eliminate the error in the reference counter. (Except Series 9096)

Example of setting

System using a detection unit of $1 \mu \mathrm{~m}$, a ball screw lead of 20 $\mathrm{mm} /$ revolution, and a gear reduction ratio of $1 / 17$

(a)-1 Method of specifying the reference counter capacity with a fraction (except Series 9096)

The number of position pulses necessary for the motor to make one turn is: 20000/17
Set the following parameter as stated below.

[Valid data range]
0 to 32767
A value up to around 100 is assumed to be set as the denominator of the reference counter capacity. Note that if a larger value is set, the grid width becomes too small, which makes it difficult to perform reference position return by grid method.
The denominator parameter is not indicated in the servo setting screen, so it must be set in the parameter screen.
In this example, set the numerator and denominator, respectively, to 20000 and 17.

NOTE

Even if a setting is made with a fraction, set the number of position pulses per motor revolution/M for a semi-closed loop rotary axis when the reduction ratio is M / N.
Reference counter = Number of position pulses per motor revolution/M, or The same number divided by an integer
(a)-2 Method of changing the detection unit

The number of position pulses necessary for the motor to make one turn is: 20000/17
In this case, increase all the following parameter values by a factor of 17 , and set the detection unit to $1 / 17 \mu \mathrm{~m}$.

Parameter modification	Series $\mathbf{3 0 i , 1 5 i , 1 6 i , 0 i}$, Power Mate i, and so on
FFG	Servo screen
CMR	Servo screen
Reference counter	Servo screen
Effective area	Nos. 1826, 1827
Position error limit in traveling	No. 1828
Position error limit in the stop state	No. 1829
Backlash	Nos. 1851, 1852

Changing the detection unit from $1 \mu \mathrm{~m}$ to $1 / 17 \mu \mathrm{~m}$ requires multiplying each of the parameter settings made for the detection unit by 17 .

CAUTION

In addition to the above parameters, there are some parameters that are to be set in detection units. For details, see Appendix B.

Making these modifications eliminates the difference between the number of position pulses corresponding to a single motor revolution and the reference counter setting.
Number of position pulses corresponding to a single motor revolution $=20000$
Reference counter setting $=20000$
(b) Full-closed loop (See Subsections 2.1.4 and 2.1.5)

| Reference
 counter setting$=$Z-phase (reference-position) interval divided by the
 detection unit, or this value sub-divided by an integer
 value |
| :--- | :--- |

NOTE

If the separate detector-table rotation ratio for the rotary axis is not an integer, it is necessary to set the reference counter capacity in such a way that points where reference counter $=0$ (grid points) appear always at the same position for the table.

Example of setting

Example 1) When the Z-phase interval is 50 mm and the detection unit is $1 \mu \mathrm{~m}$:
Reference counter setting $=50,000 / 1=50,000$
Example 2) When a rotary axis is used and the detection unit is 0.001° :
Reference counter setting $=360 / 0.001=360,000$
Example 3) When a linear scale is used and a single Z phase exists: Set the reference counter to 10000,50000 , or another round number.

If the calculated value of the reference counter capacity is not an integer, the reference counter capacity can be set as a fraction as in the case of a semi-closed loop. For details of parameters, see (a)-1.

NOTE

The following value can be set as a reference counter capacity:
(For linear axis)
Number of position pulses corresponding to the Z-phase interval of a separate detector (or the same number divided by an integer)
(For rotary axis)
Number of position pulses per revolution of a separate detector/M (or the same number divided by an integer)
$\left(^{*}\right)$ When the rotation ratio between the table and separate detector is M / N (M and N are integers, and M / N is a fraction that is reduced to lowest terms.)
(10) Full-closed system setting (go to (11) if a semi-closed system is in use)

For a full-closed system, it is necessary to set the following function bit.
(a) Series15i only

CAUTION
Specify this parameter only for the Series $15 i$.
(b) Series $30 i, 15 i, 16 i, 0 i$,Power Mate i, and so on

1815

| \#7 | \#6 | \#5 | \#4 | \#3 | \#2 | \#1 | \#0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| | | | | | | OPTX | |

\uparrow To be specified for every NC.
OPTX(\#1) The separate position detector is:
0 : Not to be used
1: To be used

NOTE

For the Series 30i, 16i, 0i, Power Mate i, and so on, specifying this parameter automatically sets bit 3 of parameter No. 2002 to 1.

(11) NC restart

Switch the NC off and on again.
This completes servo parameter initialization.
If an invalid servo parameter setting alarm occurs, go to Subsec. 2.1.8. If a servo alarm related to Pulsecoders occurs for an axis for which a servo motor or amplifier is not connected, specify the following parameter.

DMY (\#0)
The serial feedback dummy function is: (See Section 4.9, "SERIAL FEEDBACK DUMMY FUNCTIONS" for function detail)
0 : Not used
1: Used

(12) Absolute position detector setting

When you are going to use an $\alpha i / \beta i$ Pulsecoder as an absolute Pulsecoder, use the following procedure.

Procedure

1. Specify the following parameter, then switch the NC off.

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
		APCx					

The absolute position detector is:
0 : Not used
1: Used
2. After making sure that the battery for the Pulsecoder is connected, turn off the CNC.
3. A request to return to the reference position is displayed.

These steps were added
4. Cause the servo motor to make one turn by jogging.
5. Turn off and on the CNC.
6. A request to return to the reference position is for the $\alpha i / \beta i$ Pulsecoder. displayed.
7. Do the reference position return.

2.1.4 Setting Servo Parameters when a Separate Detector for the Serial Interface is Used

(1) Overview

When a separate detector of the serial output type is used, there is a possibility that the detection unit becomes finer than the detection unit currently used. Accordingly, a few modifications are made to the setting method and values of servo parameters.
When using a separate detector of the serial output type, follow the method explained below to set parameters.

(2) Series and editions of applicable servo software

(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series $90 \mathrm{E} 0 / \mathrm{A}(01)$ and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series 90B5/A(01) and subsequent editions

(3) Classification of serial detectors and usable detector examples

Usable separate detectors for the serial interface are classified into four major types as shown below. Note that parameter settings vary with these types.
(a) Serial output type linear encoder

	Minimum resolution	Model	Backup
Mitutoyo Co., Ltd.	$0.05 \mu \mathrm{~m}$	AT353, AT553	Not required
HEIDENHAIN	$0.05 \mu \mathrm{~m} / 0.1 \mu \mathrm{~m}$	LC191F	Not required
	$0.05 \mu \mathrm{~m} / 0.1 \mu \mathrm{~m}$	LC491F	Not required

(b) Analog output type linear encoder + FANUC high-resolution serial output circuit

	Signal pitch	Model	Backup
Mitutoyo Co., Ltd.	$20 \mu \mathrm{~m}$	AT402	Required
HEIDENHAIN	$20 \mu \mathrm{~m}$	LS486, LS186	Required
Sony Precision Technology Inc.	$20 \mu \mathrm{~m}$	SH12	Required

(c) Serial output type rotary encoder

	Minimum resolution $^{\text {(Note 1) }}$	Model	Backup
FANUC	2^{20} pulse/rev	$\alpha \mathrm{A} 1000 \mathrm{~S}$	Required

(d) RCN220, RCN223, RCN723, and RCN727 manufactured by HEIDENHAIN

	Minimum resolution ${ }^{\text {(Note 1) }}$	Model	Backup
HEIDENHAIN	2^{20} pulse/rev	RCN220	Not required
	2^{23} pulse/rev	RCN223, 723	Not required
	2^{27} pulse/rev	RCN727	Not required

NOTE

1 The minimum resolution of a rotary encoder is the resolution of the encoder itself. For the FANUC systems, however:
One million pulses/rev for a minimum resolution of 2^{20} pulses/rev
Eight million pulses/rev for a minimum resolution of 2^{23} pulses/rev
Eight million pulses/rev for a minimum resolution of 2^{27} pulses $/ \mathrm{rev}$

(4) Setting parameters

Set the following parameters according to the type of the detector (described in the previous item).

(a) Parameter setting for a linear encoder of a serial output type

(Parameter setting method)

In addition to the conventional settings for a separate detector (bit 1 of parameter No. 1815 (Series30i,15i,16i,18i,21i,20i,0i, and Power Mate i), bit 3 of parameter No. 1807 (Series 15i), and if needed, FSSB), note the following parameters:
[Flexible feed gear]
Parameter Nos. 1977 and 1978 (Series 15i) or Nos. 2084 and 2085
(Series $30 i, 16 i$ and so on)
Flexible feed gear $(N / M)=$
Minimum resolution of detector $[\mu \mathrm{m}]$ / controller detection unit $[\mu \mathrm{m}]$

[Number of position pulses]

Parameter No. 1891 (Series 15i) or No. 2024 (Series 30i, 16i and so on)
Number of position pulses $=$
Amount of movement per motor revolution [mm] /
detection unit of the sensor [mm]

* If the result of the above calculation does not fall in the setting range (0 to 32767) for the number of position pulses, use "position feedback pulse conversion coefficient" to specify the number of position pulses according to the following procedure.
Number of position pulses to be set $=\mathrm{A} \times \mathrm{B}$
Select B so that A is within 32767 . Then, set the following:
A: Position pulses parameter (32767 or less)
No. 1891 (Series15i), No. 2024 (Series 30i, $16 i$ and so on)
B: Position pulses conversion coefficient parameter
No. 2628 (Series 15i), No. 2185 (Series 30i, 16i and so on)

(Example of parameter setting)

[System configuration]

- The Series $16 i$ is used.
- A linear scale with a minimum resolution of $0.1 \mu \mathrm{~m}$ is used.
- The least input increment of the controller is $1 \mu \mathrm{~m}$.
- The amount of movement per motor revolution is 16 mm .

[Parameter setting]

- To enable a separate detector, set bit 1 of parameter No. 1815 to 1.
- Calculate the parameters for the flexible feed gear.

Because flexible feed gear $(\mathrm{N} / \mathrm{M})=0.1 \mu \mathrm{~m} / 1 \mu \mathrm{~m}=1 / 10$:
No. $2084=1$ and No. $2085=10$

- Calculate the number of position pulses.

Number of position pulses $=16 \mathrm{~mm} / 0.0001 \mathrm{~mm}=160000$
Because this result does not fall in the setting range (0 to 32767), set A and B, respectively, with the "number of position pulses" and "position pulses conversion coefficient" by assuming:
$160,000=10,000 \times 16 \rightarrow \mathrm{~A}=10,000$ and $\mathrm{B}=16$
No. $2024=10,000$, No. $2185=16$

(b) Parameter setting for analog output type linear encoder + FANUC high-resolution serial output circuit

(Parameter setting method)

In addition to the conventional separate detector settings (bit 1 of parameter No. 1815 (Series15i,30i,16i,18i,21i,20i,0i, and Power Mate i), bit 3 of parameter No. 1807 (Series 15i), and, if necessary, FSSB setting), pay attention to the following parameter settings.

First check the type of the FANUC high-resolution output circuit to be coupled to the linear encoder, and then determine the settings of the following function bits.
[Function bit]

Circuit	Specification	Interpolation magnification
High-resolution serial output circuit	A860-0333-T501	512
High-resolution serial output circuit H	A860-0333-T701	2048
High-resolution serial output circuit C	A860-0333-T801	2048

2274 (FS30i, 16i)
HP2048(\#0)

The 2048-magnification interpolation circuit (high-resolution serial output circuit H or C) is:
1: To be used
0 : Not to be used

NOTE

1 When high-resolution serial output circuit H is used, set the setting pin SW3 inside the circuit to "Setting B" usually.
2 This function bit can be used with the following series and editions:
(Series 30i, 31i, 32i)
Series 90D0/A(01) and subsequent editions
Series 90E0/A(01) and subsequent editions (Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B, Power Mate i)

Series 90B0/Q(17) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series 0i-C, Oi Mate-C, 20i-B)
Series 90B5/A(01) and subsequent editions
If this bit is specified, the minimum resolution setting of the detector is assumed to be:
Encoder signal pitch/512 [$\mu \mathrm{m}$]
If the minimum resolution (signal pitch/2048 [$\mu \mathrm{m} \mathrm{m}$) is necessary as the detection unit, specify: Flexible feed gear $=4 / 1$
3 When high-resolution serial output circuit H is used, and the input frequency 750 kHz needs to be supported, set the following:

- Set the setting pin SW3 to "Setting A".
- Set HP2048=1.
- Set the minimum resolution of the detector as:

Encoder signal pitch/128 [$\mu \mathrm{m}$]
(Related report: TMS03/16)
[Minimum resolution of the detector]
In the following calculation of a flexible feed gear and the number of position pulses, the minimum detector resolution to be used is:
(Linear encoder signal pitch/512 [$\mu \mathrm{m}]$)
(Specifying the above function bit appropriately makes it unnecessary to take the difference in the interpolation magnification among the high-resolution serial output circuits into account. So always use 512 for calculations.)

[Flexible feed gear]

Parameters Nos. 1977 and 1978 (Series 15i) or Nos. 2084 and 2085
(Series 30i, 16i, and so on)
Flexible feed gear (N / M)
$=$ minimum resolution of the detector $[\mu \mathrm{m}] /$ detection unit of controller [$\mu \mathrm{m}$]

[Number of position pulses]

Parameter No. 1891 (Series 15i) or No. 2024 (Series 30i, 16i, and so on)
Number of position pulses
$=$ Amount of movement per motor revolution [mm]/ minimum resolution of the detector [mm]

* If the result of the above calculation does not fall in the setting range (0 to 32767) for the number of position pulses, use "position feedback pulse conversion coefficient" to specify the number of position pulses according to the following procedure.
Number of position pulses to be set $=\mathrm{A} \times \mathrm{B}$
Select B so that A is within 32767. Then, set the following:
A: Position pulses parameter (32767 or less)
No. 1891 (Series15i), No. 2024 (Series 30i, 16i, and so on)
B: Position pulses conversion coefficient parameter
No. 2628 (Series15i), No. 2185 (Series 30i, 16i, and so on)

(Example of parameter setting)

[System configuration]

- The Series $16 i$ is used.
- A linear encoder with a signal pitch of $20 \mu \mathrm{~m}$ is used.
- The linear encoder is coupled with high-resolution serial output circuit H .
- The least input increment of the controller is $1 \mu \mathrm{~m}$.
- The amount of movement per motor revolution is 16 mm .

[Parameter setting]

- To enable a separate detector, set bit 1 of parameter No. 1815 to 1.
- To use high-resolution serial output circuit H , set bit 0 of parameter No. 2274 to 1.
Minimum resolution of the detector $=20 \mu \mathrm{~m} / 512$
$=0.0390625 \mu \mathrm{~m}$
- Calculate the parameters for the flexible feed gear.

Because flexible feed gear $(\mathrm{N} / \mathrm{M})=(20 / 512 \mu \mathrm{~m}) / 1 \mu \mathrm{~m}=5 / 128$
No.2084=5, No.2085=128

- Calculate the number of position pulses.

Number of position pulses $=16 \mathrm{~mm} /(20 / 512 \mu \mathrm{~m})=409,600$
Because this result does not fall in the setting range (0 to 32767), set A and B, respectively, with the "number of position pulses" and "position pulses conversion coefficient" by assuming:
$409,600=25,600 \times 16 \rightarrow A=25,600, B=16$
No. $2024=25,600$, No. $2185=16$

(c) Parameter setting for the serial output type rotary encoder

* For explanations about the rotary encoders RCN220, RCN223, RCN723, and RCN727 made by HEIDENHAIN, see "Parameter setting for the rotary encoders RCN220, RCN223, RCN723, and RCN727 made by HEIDENHAIN."

(Parameter setting method)

In addition to the conventional settings for a separate detector (bit 1 of parameter No. 1815 (Series15i, 30i, 16i, 18i, 21i, 20i, 0i, and Power Mate i), bit 3 of parameter No. 1807 (Series 15i), and if needed, FSSB), note the following parameters:

[Flexible feed gear]

Parameters Nos. 1977 and 1978 (Series 15i) or Nos. 2084 and 2085 (Series 30i, $16 i$ and so on)
Flexible feed gear $(N / M)=$
(Amount of table movement [deg] per detector revolution) / (detection unit [deg]) / 1,000,000

[Number of position pulses]

Parameter No. 1891 (Series 15i) or No. 2024 (Series 30i, $16 i$ and so on)
Number of position pulses $=12500 \times($ motor-to-table deceleration ratio $)$

* If the result of the above calculation does not fall in the setting range (0 to 32767) for the number of position pulses, use "position feedback pulse conversion coefficient" to specify the number of position pulses according to the following procedure.
Number of position pulses to be set $=\mathrm{A} \times \mathrm{B}$
Select B so that A is within 32767. Then, set the following:
A: Position pulses parameter (32767 or less)
No. 1891 (Series 15i), No. 2024 (Series 30i, 16i and so on)
B: Position pulses conversion coefficient parameter
No. 2628 (Series15i), No. 2185 (Series 30i, $16 i$ and so on)

[System configuration]

- The Series $16 i$ is used.
- The least input increment of the controller is $1 / 1000$ degree.
- The amount of movement per motor revolution is 180 degrees (deceleration ratio: $1 / 2$)
- \quad Table-to-separate-encoder reduction ratio $=1 / 1$

[Parameter setting]

- To enable a separate detector, set bit 1 of parameter No. 1815 to 1.
- Calculate the parameters for the flexible feed gear. Because flexible feed gear (N / M) $=360$ degrees $/ 0.001$ degrees $/ 1,000,000=36 / 100$ No.2084=36, No.2085=100
- Calculate the number of position pulses. Because number of position pulses $=12500 \times(1 / 2)=6250$ No.2024=6250
(d) Parameter setting for the rotary encoders RCN220, RCN223, RCN723, and RCN727 made by HEIDENHAIN

(Series and editions of applicable servo software)

To use the high-resolution rotary encoders RCN220, RCN223, RCN723, and RCN727 manufactured by HEIDENHAIN as separate detectors, the following servo software is required:
[RCN220,223,723]
(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series 90E0/A(01) and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series 90B0/T(19) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series 90B5/A(01) and subsequent editions
[RCN727]
(Series 30i,31i,32i)
Series 90D0/J(10) and subsequent editions
Series 90E0/J(10) and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series 90B1/B(02) and subsequent editions

(Parameter setting method)

To specify parameters for the high-resolution rotary encoders RCN220, RCN223, RCN723, and RCN727 (supporting FANUC serial interface) made by HEIDENHAIN, use the following procedure.

In addition to the conventional separate detector settings (bit 1 of parameter No. 1815 (Series 30i, 15i, 16i, 18i, 21i, 0i, and Power Mate i), bit 3 of parameter No. 1807 (Series 15i), and, if necessary, FSSB setting), pay attention to the following parameter settings.

[Function bit]

To use the RCN220, RCN223, RCN723, or RCN727, set the following function bit to 1 .

RCNCLR (\#1) The number of revolution is:
1: To be cleared. (To use the RCN220, RCN223, RCN723, or RCN727, set the bit to 1.)
0 : Not to be cleared.
This function bit is to be set in combination with the number of data mask digits, described below.

2807 (FS15i)
2394 (FS30i, 16i)

[Settings]
8. (To use the RCN223, RCN723, or RCN727)
5. (To use the RCN220)

The value to be set in this parameter depends on the detector. At present, only the above detectors require clearing the speed data.
This parameter is to be set in combination with RCNCLR, described above.

NOTE

The speed data of the RCN220, RCN223,
RCN723, or RCN727 is maintained while the power to the separate detector interface unit is on. The data, however, is cleared when the unit is turned off. Since the speed data becomes undetermined depending on where the power is turned off, it is necessary to make a setting to clear the speed data. In addition, for this reason, the RCN220, RCN223, RCN723, and RCN727 cannot be used with a linear axis.

When using the RCN220, set the parameters for the flexible feed gear and the number of position pulses according to the setting method described in the previous item, "Parameter setting for the serial output type rotary encoder".
The following explains how to calculate the parameter values when the RCN223, RCN723, or RCN727 is used.

[Flexible feed gear]

Parameters Nos. 1977 and 1978 (Series 15i) or Nos. 2084 and 2085
(Series $30 i, 16 i$, and so on)
Flexible feed gear $(\mathrm{N} / \mathrm{M})=$
(Amount of table movement [deg] per detector revolution) / (detection unit [deg]) / 8,000,000
For the RCN223, RCN723, and RCN727, the number of pulses per detector turn is assumed to be eight million for calculation.

For the RCN727, when the detection unit is set to $1 / 8,000,000$ revolution or less, the flexible feed gear may be set to up to $8 / 1$. (If the flexible feed gear is set to $8 / 1$, the detection unit is $64,000,000$ pulses per revolution.)

[Number of position pulses]

Parameter No. 1891 (Series 15i) or No. 2024 (Series 30i, 16i, and so on)
Number of position pulses $=100,000 \times($ motor-to-table reduction ratio $)$

* If the result of the above calculation does not fall in the setting range (0 to 32767) for the number of position pulses, use "position feedback pulse conversion coefficient" to specify the number of position pulses according to the following procedure.
Number of position pulses to be set $=\mathrm{A} \times \mathrm{B}$
Select B so that A is within 32767. Then, set the following:
A: Position pulses parameter (32767 or less)
No. 1891 (Series15i), No. 2024 (Series 30i, 16i, and so on)
B: Position pulses conversion coefficient parameter
No. 2628 (Series15i), No. 2185 (Series 30i, 16i, and so on)

[Reference counter capacity]

Parameter No. 1896 (Series 15i) or No. 1821 (Series 30i, 16i, and so on)
Specify the number of feedback pulses per table turn (detection unit).

* If bit 0 of parameter No. 2688 (Series 15i) or parameter No. 2275 (Series $30 i, 16 i$, and so on) is 0 , specify the number of pulses per table turn divided by 8 as the reference counter capacity. In this case, eight grid points occur per table turn.

(Example of parameter setting)

[System configuration]

- The Series $16 i$ is used.
- The rotary encoder RCN223 made by HEIDENHAIN is used.
- The least input increment of the controller is $1 / 10,000$ degree.
- The amount of movement per motor revolution is 180 degrees (reduction ratio: $1 / 2$)
- Table-to-separate-encoder reduction ratio $=1 / 1$

[Parameter setting]

- To enable a separate detector, set bit 1 of parameter No. 1815 to 1.
- To use the detector RCN223, set bit 0 of parameter No. 2275 to 1 , bit 1 of this parameter to 1 , and parameter No. 2394 to 8.
- Calculate the parameters for the flexible feed gear.

Because flexible feed gear $(\mathrm{N} / \mathrm{M})=$
(360 degrees $/ 0.0001$ degrees) $/ 8,000,000=9 / 20$
No.2084=9, No.2085=20

- Calculate the number of position pulses.

Number of position pulses $=100,000 \times(1 / 2)=50,000$
Because this result does not fall in the setting range (0 to 32767), set A and B, respectively, with the "number of position pulses" and "position pulses conversion coefficient" by assuming:
$50,000=12,500 \times 4 \rightarrow \mathrm{~A}=12,500, \mathrm{~B}=4$
No. $2024=12,500$, No. $2185=4$

- Calculate the reference counter capacity.

Reference counter capacity $=360$ degrees $/ 0.0001$ degrees $=$ 3,600,000

(About speed limit)

When the RCN223, RCN723, or RCN727 is used as a separate detector, the maximum permissible speed that can be controlled is 937 $\min ^{-1}$. ${ }^{(*)}$ (See Appendix E.)
(*) The above maximum speed does not include hardware limitations. For the maximum permissible speed of the detector itself, refer to the specifications of the detector.

Setting the signal direction of the separate detector

When a serial type separate detector is used with its signals connected in reverse directions, the following parameter must be used:

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
1960 (FS15i)								RVRSE
2018 (FS30i, 16i)								
RVRSE (\#0)	The signal direction of the separate detector is: 1: Reversed. 0 : Not reversed.							

(5) Reference position return when a serial type separate detector is used as an absolute-position detector

When a serial type separate detector is used as an absolute-position detector, the phase-Z position must be passed once before a reference position return is performed. Then, turn the CNC off then back on to allow reference position return.
(This description does not apply if a detector that does not require battery backup is in use.)

When reference position return is performed, adjust the deceleration dog so that the grid-shifted reference position is not too near the deceleration dog.

2.1.5 Setting Servo Parameters when an Analog Input Separate Interface Unit is Used

(1) Overview

An analog input separate interface unit (analog SDU) can be connected directly to an encoder having an analog output signal of 1 Vp-p. This subsection explains parameter settings to be made when this unit is connected to a separate detector. After performing the initialization procedure (full-closed loop) described in Subsection 2.1.3, change the setting described below according to the signal pitch of the detector.

Configuration where analog SDU is used

(2) Series and editions of applicable servo software

(Series 30i,31i,32i)
Series 90D0/J(10) and subsequent editions
Series 90E0/J(10) and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series $90 \mathrm{~B} 1 / \mathrm{C}(03)$ and subsequent editions

(3) Setting parameters

After performing the initialization (full-closed loop) described in Subsection 2.1.3, change the following setting according to the signal pitch of the detector:
[Setting the flexible feed gear]

Numerator of flexible feed gear

\square

Set the flexible feed gear according to the following equation. (Equation for parameter calculation)
Flexible feed gear $(\mathrm{N} / \mathrm{M})=\frac{\text { Detector signal pitch }[\mu \mathrm{m}] / 512}{\text { Detection unit of controller }[\mu \mathrm{m}]}$
[Setting the number of position pulses]

$1891(\mathrm{FS} 15 i)$
$2024(\mathrm{FS} 30 i, 16 i)$

Number of position pulses (PPLS)

Set the number of position pulses according to the following equation: (Equation for parameter calculation)
Number of position pulses $=\frac{\text { Amount of movement per motor revolution }[\mathrm{mm}]}{\text { Detector signal pitch }[\mathrm{mm}] / 512}$
If the calculation result is greater than 32767, use the following position pulse conversion coefficient (PSMPYL) to obtain the parameter setting (PPLS).

Position pulse conversion coefficient (PSMPYL)

This parameter is used when the calculation result of the number of position pulses is greater than 32767.
(Equation for parameter calculation)
Set this parameter so that the following equation is satisfied:
Number of position pulses $=$ PPLS \times PSMPYL
(\rightarrow See Supplementary 3 in Subsection 2.1.8.)

(Example of parameter setting)

[System configuration]

- The Series $30 i$ is used.
- A linear scale with a signal pitch of $20 \mu \mathrm{~m}$ is used.
- The least input increment of the controller is $1 \mu \mathrm{~m}$.
- The amount of movement per motor revolution is 16 mm .

[Parameter setting]

- To enable a separate detector, set bit 1 of parameter No. 1815 to 1.
- Calculate the parameters for the flexible feed gear.

Because flexible feed gear $(\mathrm{N} / \mathrm{M})=(20 / 512 \mu \mathrm{~m}) / 1 \mu \mathrm{~m}=5 / 128$
No.2084=5, No.2085=128

- Calculate the number of position pulses.

Number of position pulses $=16 \mathrm{~mm} /(0.02 \mathrm{~mm} / 512=409,600$
Because this result does not fall in the setting range (0 to 32767), set A and B, respectively, with the "number of position pulses" and "position pulses conversion coefficient" by assuming: $409,600=25,600 \times 16 \rightarrow \mathrm{~A}=25,600, \mathrm{~B}=16$ No. $2024=25,600$, No. $2185=16$

2.1.6 Setting Parameters when an α iCZ Sensor is Used

(1) Overview

$\alpha i \mathrm{CZ}$ sensors may be used in the following two ways:
$<1>$ Used as a detector for a synchronous built-in servo motor
$<2>$ Used as a separate detector
This subsection explains parameter settings to be made when the sensor is used in each of these two ways.

The following three types of $\alpha i \mathrm{CZ}$ sensor are available:

	Signal interval	Number of pulses at setting
α iCZ 512S	$512 \lambda / \mathrm{rev}$	$500,000 \mathrm{pulse} / \mathrm{rev}$
α iCZ 1024S	$768 \lambda / \mathrm{rev}$	$750,000 \mathrm{pulse} / \mathrm{rev}$
α iCZ 1024S	$1024 \lambda / \mathrm{rev}$	$1,000,000 \mathrm{pulse} / \mathrm{rev}$

NOTE

1 When turning on and off the CNC, be sure to turn on and off the α lCZ 768S if it is used.
2 The absolute α ICZ 768S can be used only when the number of revolutions is finite (the integral number of revolutions is 10 or less).

(2) Series and editions of applicable servo software

- $\alpha i C Z 512 \mathrm{~S}, \alpha i \mathrm{CZ} 1024 \mathrm{~S}$
(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions Series $90 \mathrm{E} 0 / \mathrm{A}(01)$ and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series $90 \mathrm{~B} 0 / \mathrm{A}(01)$ and subsequent editions ${ }^{(*)}$
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions ${ }^{*}$)
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series $90 \mathrm{~B} 5 / \mathrm{A}(01)$ and subsequent editions ${ }^{*}{ }^{*}$
- α iCZ 768S
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series $90 \mathrm{~B} 1 / \mathrm{C}(03)$ and subsequent editions (Series 30i,31i,32i)

Series 90D0/J(10) and subsequent editions
Series 90E0/J(10) and subsequent editions
(*) With Series 90B0, 90B5, and 90B6, a $\alpha i \mathrm{CZ}$ sensor cannot be used as the detector for a synchronous built-in servo motor. (The $\alpha i \mathrm{CZ}$ sensor can be used as a separate detector.)

(3) Setting parameters

(a) Used as the detector for a synchronous built-in servo motor)
[Setting AMR]

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
1806 (FS15i)	0	AMR6	AMR5	AMR4	AMR3	AMR2	AMR1	AMRO
2001 (FS30i,16i)	Set the value listed below according to the detector.							
	Detector		AMR					
	α iCZ 512S		Set the number of poles of the synchronous built-in servo motor in binary.					
	α iCZ 768S		Set 0 .					
	α iCZ 1024S		Set a value obtained by dividing the number of poles of the synchronous built-in servo motor by 2 in binary.					

Setting example:
When an 88 -pole synchronous built-in servo motor and the $\alpha \dot{C Z}$ 1024 S are used:
Number of poles/ $2=88 / 2=44$
\rightarrow The binary representation of the above value is 00101100 . This value is set in AMR.

Set one of the following values according to the detector.

Detector	DECAMR
$\alpha \boldsymbol{i} C Z ~ 512 S$	Set 0.
$\alpha \boldsymbol{i} C Z ~ 768 S$	Set 1.
$\alpha \boldsymbol{i} C Z$ 1024S	Set 0.

$1705(\mathrm{FS} 15 i)$
2112 (FS30i,16i)

\square

1761 (FS15i)
2138 (FS30i,16i)

\square
Set one of the following values according to the detector.

Detector	AMR conversion coefficient 1	AMR conversion coefficient 2
α iCZ 512S	Set 0.	Set 0.
α iCZ 768S	Set 768.	Set half the number of poles.
α iCZ 1024S	Set 0.	Set 0.

1977 (FS15i)
2084 (FS30i,16i)

[Setting flexible feed gear]
Flexible feed gear (numerator)

$1978(\mathrm{FS} 15 i)$
$2085(\mathrm{FS} 30 i, 16 i)$

Flexible feed gear (denominator)

Set the flexible feed gear according to the equation below.
The number of pulses per detector rotation is as follows:

Detector	Number of pulses per detector rotation
${ }_{\alpha}$ iCZ 512S	Amount of movement per motor revolution [deg]/ detection unit [deg]
	500,000
${ }_{\alpha}{ }^{\text {icl }}$ 768S	Amount of movement per motor revolution [deg]/ detection unit [deg]
	750,000
α iCZ 1024S	Amount of movement per motor revolution [deg]/ detection unit [deg]
	1,000,000

(Equation for parameter calculation)
Flexible feed gear $(N / M)=\begin{gathered}\text { Amount of movement per motor revolution [deg]/ } \\ \text { detection unit [deg] }\end{gathered}$
Number of pulses per detector rotation
[Setting number of velocity pulses]

1876 (FS15i)
2023 (FS30i,16i)

Number of velocity pulses (PULCO)

Set a value listed in the following table according to the detector used.

Detector	Number of velocity pulses
α iCZ 512S	4096
α iCZ 768S	6144
α iCZ 1024S	8192

[Setting number of position pulses]

1891 (FS15i)
2024 (FS30i,16i)

Number of position pulses (PPLS)

Set a value listed in the following table according to the detector used.

Detector	Number of position pulses
α iCZ 512S	6250
α iCZ 768S	9375
α iCZ 1024S	12500

[Setting reference counter capacity]

$1896(\mathrm{FS} 15 i)$
1821 (FS30i,16i)

Reference counter capacity

Set one of the following values according to the detector.

Detector	Reference counter capacity
α iCZ 512S	Set the number of pulses per motor revolution (detection unit) or a value obtained by dividing that number by an integer.
$\alpha \boldsymbol{i C Z} 768 \mathrm{~S}$	Set the number of pulses per 120-degree motor revolution (one-third revolution) (detection unit) or a value obtained by dividing that number by an integer.
$\alpha \boldsymbol{i C Z ~ 1 0 2 4 S ~}$	Set the number of pulses per motor revolution (detection unit) or a value obtained by dividing that number by an integer.

(Example of parameter setting)

[System configuration]

- The Series $30 i$ is used.
- An 88-pole/rev, synchronous built-in servo motor is used.
- The detector used is the αi CZ512S.
- The least input increment of the controller is $1 / 1000 \mathrm{deg}$.
- Gear ratio 1:1
[Parameter setting]
AMR $=01011000$ (88 in decimal representation)
Flexible feed gear $(\mathrm{N} / \mathrm{M})=360,000 / 500,000=18 / 25$, so parameter No. $2084=18$, and parameter No. $2085=25$
Number of velocity pulses $=4096$
Number of position pulses $=6250$
Reference counter capacity $=360,000$

(b) Used as a separate detector

After performing the initialization procedure (full-closed loop) described in Subsection 2.1.3, change the settings described below according to the signal pitch of the detector.
[Setting flexible feed gear]

1977 (FS15i)
2084 (FS30i,16i)

Flexible feed gear (numerator) (N)

Set a value listed in the following table according to the detector used.

Detector	Number of pulses per detector rotation
α iCZ 512 S	Amount of movement per motor revolution [deg]/ detection unit [deg]
	500,000
α iCZ 768S	Amount of movement per motor revolution [deg]/ detection unit [deg]
	750,000
人iCZ 1024S	Amount of movement per motor revolution [deg]/ detection unit [deg]
	1,000,000

[Setting number of velocity pulses]

$1876(\mathrm{FS} 15 i)$
$2023(\mathrm{FS} 30 i, 16 i)$

Number of velocity pulses (PULCO)

Set the number of velocity pulses to 8192 .
[Setting number of position pulses]

1891 (FS15i)
2024 (FS30 $i, 16 i$)

Number of position pulses (PPLS)
Set a value listed in the following table according to the detector used.

Detector	Number of position pulses
$\alpha \boldsymbol{i} C Z 512 \mathrm{~S}$	$6250 \times$ (gear reduction ratio from the motor to table)
$\alpha \boldsymbol{i} C Z 768 \mathrm{~S}$	$9375 \times$ (gear reduction ratio from the motor to table)
$\alpha \boldsymbol{i} C Z 1024 \mathrm{~S}$	$12500 \times$ (gear reduction ratio from the motor to table)

If the calculation result is greater than 32767, use the following position pulse conversion coefficient (PSMPYL) to obtain the parameter value (PPLS).

$2628(\mathrm{FS} 15 i)$
$2185(\mathrm{FS} 30 i, 16 i)$

Conversion coefficient for the number of position feedback pulses (PSMPYL)
This parameter is used when the calculated number of position pulses is greater than 32767 .
(Equation for parameter calculation)
Set this parameter so that the following equation is satisfied:
Number of position pulses $=$ PPLS \times PSMPYL
$(\rightarrow$ See Supplementary 3 in Subsection 2.1.8.)
[Setting reference counter capacity]

1896 (FS15i)
1821 (FS30i,16i)

Reference counter capacity

Set one of the following values according to the detector.

Detector	Reference counter capacity
$\alpha \boldsymbol{i C Z ~ 5 1 2 S ~}$	Set the number of pulses per revolution of the detector installed separately (detection unit) or a value obtained by dividing that number by an integer.
$\alpha \boldsymbol{i C Z ~ 7 6 8 S}$	Set the number of pulses per 120-degree revolution (one-third revolution) of the detector installed separately (detection unit) or a value obtained by dividing that number by an integer.
$\alpha \boldsymbol{i C Z} 1024 \mathrm{~S}$	Set the number of pulses per revolution of the detector installed separately (detection unit) or a value obtained by dividing that number by an integer.

(Example of parameter setting)

[System configuration]

- The Series $30 i$ is used.
- The detector used is the αi CZ1024S
- The least input increment of the controller is $1 / 1000$ deg.
- Gear ratio $1: 1$

[Parameter setting]

Flexible feed gear $(N / M)=360,000 / 1,000,000=9 / 25$,
so parameter No. $2084=9$, and parameter No. $2085=25$
Number of position pulses $=12500$
Reference counter capacity $=360,000$

2.1.7 Setting Parameters when the PWM Distribution Module is Used

(1) Overview

The PWM distribution module (PDM) distributes a copy of a PWM command for one axis received from the CNC to more than one servo amplifier. When receiving current feedback signals from the servo amplifiers, the PDM obtains an average current value per servo amplifier and transfers it to the CNC. Since the CNC regards servo amplifiers connected to the PDM as one axis, use of the PDM allows large output by parallel driving without increasing the number of axes controlled by the CNC.

The PDM is used mainly for driving a servo motor having four or more windings (such as the $\alpha i S 2000 / 2000 \mathrm{HV}$ and α iS3000/2000HV).

Connection example:

Three slaves are recognized by the CNC.

Servo motor (α iS2000/2000HV and so on)

(2) Series and editions of applicable servo software

(Series 16i-B,18i-B,21i-B, Power Mate i)
Series 90B1/A(01) and subsequent editions
(*) When the PDM is used, it must be supported by the CNC system software. (With the system software series listed below, the PDM can be used.)

CNC model	Series and edition
Series $16 i-\mathrm{MB}$	BOHA-17 and subsequent editions
Series $18 i-\mathrm{MB}$	BDHA-17 and subsequent editions
Series $18 i-\mathrm{MB5}$	BDHE-07 and subsequent editions
Series $21 i-\mathrm{MB}$	DDHA-17 and subsequent editions
Power Mate $i-\mathrm{D}$	88E1-01 and subsequent editions
Power Mate $i-\mathrm{H}$	88F2-01 and subsequent editions

(3) Setting parameters

(a) Setting for the PDM

When the PDM is used for an axis, servo HRV3 control must be set for the axis. Set the parameter shown below.

After setting parameters with servo HRV2 control specified, set servo HRV3 control by parameter setting as follows (HR3 = 1). (For each axis)

(*) To use the PDM, set HR3 to 1. In actual control, operation equivalent to HRV2 takes place. (It is also impossible to perform switching between high-speed current control modes by G5.4.)

For the axis for which the PDM is used, set the following parameter in addition to the above HR3 setting.
2165 (FS16i)
Set 0.
If this setting is omitted, the invalid motor-amplifier combination state may occur.
When the PDM is used, this parameter needs to be set to 0 . So, note that actual current display (in amperes) on the servo adjustment screen is disabled. (Indication by $\%$ is provided.)

(b) Setting for 16-pole servo motors

For an axis for which one of the following servo motor is used, set the following parameter for 16 -pole servo motors:

Servo motor name	Motor specification
α iS2000/2000HV	0091
α iS3000/2000HV	0092

2001 (FS16i)

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
0	AMR6	AMR5	AMR4	AMR3	AMR2	AMR1	AMR0

AMR0 to 6 (\#0 to 6) Set the AMR value according to the number of motor poles.

AMR					Number of motor poles		
6	5	4	3	2	1	0	
0	0	0	1	0	0	0	16-pole servo motor α iS2000/2000HV, α iS3000/2000HV
0	0	0	0	0	0	0	Other than 16-pole servo motor (8-pole servo motor)

2.1.8 Actions for Illegal Servo Parameter Setting Alarms

(1) Overview

When a setting value is beyond an allowable range, or when an overflow occurs during internal calculation, an invalid parameter setting alarm is issued.
This section explains the procedure to output information to identify the location and the cause of an invalid parameter setting alarm.

(2) Series and editions of applicable servo software

(Series 30i,31i,32i)
Series $90 \mathrm{D} 0 / \mathrm{A}(01)$ and subsequent editions
Series90E0/A(01) and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series $9096 / \mathrm{A}(01)$ and subsequent editions
Series90B0/A(01) and subsequent editions
Series90B1/A(01) and subsequent editions
Series90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series90B5/A(01) and subsequent editions

(3) Illegal parameter setting alarms that can be displayed in parameter error detail display

Invalid parameter setting alarms detected by the servo software can be displayed. Alarms detected by the system software cannot be displayed here.
To check whether the servo software detects an alarm, check the following:

Alarm 4 on the servo screen

1: Alarm detected by the servo software (See the descriptions of detailed display provided later.)
0: Alarm detected by the system software (With Series including $16 i$, identification is possible using DGN280.)

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
DGN280		AXS		DIR	PLS	PLC		MOT

MOT(\#0) 1: As the motor number in parameter No. 2020, a value not within the specifiable range is set.

The table given below lists the valid motor ID numbers for each series.
If a number beyond the indicated range is set, an illegal parameter setting alarm is issued.
(In this case, keep PRM = 0.)

Servo software series/edition	Motor ID No.
Series $9096 / \mathrm{A}(01)$ and subsequent editions	1 to 250
Series $90 \mathrm{~B} 0 / \mathrm{H}(08)$ and subsequent editions	1 to 350
Series $90 \mathrm{~B} 1 / \mathrm{B}(02)$ and subsequent editions	1 to 550
Series $90 \mathrm{~B} 5,90 \mathrm{~B} 6 / \mathrm{B}(02)$ and subsequent editions	1 to 550
Series $90 \mathrm{D} 0,90 \mathrm{E} 0 / \mathrm{B}(02)$ and subsequent editions	1 to 550

PLC(\#2) 1: As the number of velocity feedback pulses per motor revolution in parameter No. 2023, an invalid value such as a number equal to or less than 0 is set.

PLS(\#3) 1: As the number of position feedback pulses per motor revolution in parameter No. 2024, an invalid value such as a number equal to or less than 0 is set.

DIR(\#4) 1: As the motor rotation direction in parameter No. 2022, a correct value (111 or -111) is not set.

AXS(\#6) 1: Parameter No. 1023 (servo axis number) is set incorrectly.

(4) Method

When an illegal parameter setting alarm detected by the servo software is issued, analyze the cause of the alarm by following the procedure explained below.

* When more than one alarm is issued, one of the causes of these alarms is displayed. Analyze the alarms one by one.

Procedure for displaying detail information about an illegal parameter setting alarm

(For the Series $15 i$)
On the servo alarm screen, an item indicating parameter error details is located in the lower left side. Check the number indicated here.
(For the Series 30i, 16i and so on)
On the diagnosis screen, search for No. 352. Check the number written in No. 352.

Analyzing illegal parameter setting alarms in detail

The detail alarm data basically consists of three to five digits as shown:

Location where an Cause of the alarm
alarm was caused
Upper four digits:
Indicate the location where an alarm was caused.
Table 2.1.8 lists the displayed numbers and corresponding parameter numbers.
*1 Basically, the low-order three digits of the 4-digit parameter number of the Series $16 i$ indicate the location where an alarm was caused. (When an alarm is due to more than one parameter, these digits and parameter numbers do not sometimes match.)
*2 When the digits are displayed on the servo alarm screen (Series 15i) or diagnosis screen (Series 30i, 16i, and so on), 0 s in high-order digits are not displayed.
Lowest digit:
Indicates the cause of an alarm.
The displayed numbers and their meanings are explained below:
2: The set parameter is invalid. The corresponding function does not operate.
3: The parameter value is beyond the setting range. Alternatively, the parameter is not set.
4 to 9 : An overflow occurred during internal calculation.

Table 2.1.8 Detail analysis of illegal parameter setting alarms

Alarm detail No.	Parameter No. Series $15 i$	Parameter No. Series 30i, 16i, and so on	Cause	Action
83	-	2008	Parameter settings related to learning control are illegal \rightarrow See Supplementary 1.	Change the parameter settings so that they fall in the applicable range.
233	1876	2023	When initialization bit 0 is set to 1 , the number of velocity pulses exceeds 13100.	Correct the number of velocity pulses so that it is within 13100.
243	1891	2024	When initialization bit 0 is set to 1 , the number of position pulses exceeds 13100.	Correct the number of position pulses so that it is within 13100. \rightarrow See Supplementary 3 .
$\begin{aligned} & \hline 434 \\ & 435 \\ & \hline \end{aligned}$	1855	2043	The internal value of the velocity loop integral gain overflowed.	Decrease the value of the velocity loop integral gain parameter.
$\begin{aligned} & 443 \\ & 444 \\ & 445 \end{aligned}$	1856	2044	The internal value of the velocity loop proportional gain overflowed.	Use the function for changing the internal format of the velocity loop proportional gain. Alternatively, decrease the parameter setting. \rightarrow See Supplementary 4.
$\begin{aligned} & \hline 474 \\ & 475 \\ & \hline \end{aligned}$	1859	2047	The internal value of the observer parameter (POA1) overflowed.	Correct the setting to $(-1) \times($ desired value $) / 10$.
$\begin{aligned} & 534 \\ & 535 \end{aligned}$	1865	2053	The internal value of a parameter related to dead zone compensation overflowed.	Decrease the setting to the extent that the illegal parameter setting alarm is not caused.
$\begin{aligned} & 544 \\ & 545 \end{aligned}$	1866	2054	The internal value of a parameter related to dead zone compensation overflowed.	Decrease the setting to the extent that the illegal parameter setting alarm is not caused.
$\begin{aligned} & \hline 686 \\ & 687 \\ & 688 \\ & \hline \end{aligned}$	1961	2068	The internal value of the feed-forward coefficient overflowed.	Use the position gain expansion function. \rightarrow See Supplementary 5 .
$\begin{aligned} & \hline 694 \\ & 695 \\ & 696 \\ & 699 \\ & \hline \end{aligned}$	1962	2069	The internal value of the velocity feed-forward coefficient overflowed.	Decrease the velocity feed-forward coefficient.
$\begin{aligned} & 754 \\ & 755 \end{aligned}$	1968	2075	The setting for this parameter has overflowed.	This parameter is not used at present. Set 0 .
$\begin{aligned} & 764 \\ & 765 \end{aligned}$	1969	2076	The setting for this parameter has overflowed.	This parameter is not used at present. Set 0 .
843	1977	2084	A positive value is not set as the flexible feed gear numerator. Alternatively, the numerator of the feed gear is greater than the denominator.	Set a positive value as the flexible feed gear numerator. Alternatively, correct the parameter so that the numerator of the feed gear is less than or equal to the denominator. (For other than parallel type separate detectors)
853	1978	2085	A positive value is not set as the flexible feed gear denominator.	Set a positive value as the flexible feed gear denominator.
883	1981	2088	For an axis with a serial type separate detector, a value exceeding 100 is set as the machine velocity feedback coefficient.	For an axis with a serial type separate detector, the upper limit of the machine velocity feedback coefficient is 100. Correct the coefficient so that it does not exceed 100.

Alarm detail No.	Parameter No. Series $15 i$	Parameter No. Series 30i, 16i, and so on	Cause	Action
$\begin{aligned} & 884 \\ & 885 \\ & 886 \end{aligned}$	1981	2088	The internal value of the machine velocity feedback coefficient overflowed.	Decrease the machine velocity feedback coefficient. Alternatively, use the vibration-damping control function that has an equivalent effect.
$\begin{aligned} & 926 \\ & 927 \\ & 928 \end{aligned}$	1985	2092	The internal value of the look-ahead feed-forward coefficient overflowed.	Use the "position gain precision optimization function" or the "position gain increment function". \rightarrow See Supplementary 5 .
953	$\begin{aligned} & 1988 \\ & 1763 \\ & 2808 \end{aligned}$	$\begin{aligned} & 2095 \\ & 2140 \\ & 2395 \end{aligned}$	The internally set value of the feed-forward timing adjustment coefficient is ± 12800 or over.	This error can be avoided by setting bit 4 of parameter No. 2612 (for the Series $15 i$) or bit 5 of parameter No. 2224 (for the Series $16 i$ and so on) to 1 if not nano-interpolation is used.
$\begin{aligned} & 994 \\ & 995 \\ & 996 \end{aligned}$	1992	2099	The internal value for N pulse suppression overflowed.	Disable the N pulse suppression function. (Series $15 i$: No.1808\#4=0, Series 30i, 16i, and so on : No.2003\#4=0) Alternatively, decrease the parameter setting so that no overflow will occur.
1033	1996	2103	There is a difference in retract distance under unexpected disturbance torque between position tandem synchronous axes (if the same-axis retract function is in use).	Set the same value for position tandem synchronous axes.
1123	1705	2112	Although a linear motor is used, the AMR conversion coefficient parameter is not input.	Set the AMR conversion coefficient.
1182	$\begin{aligned} & 1729 \\ & 1971 \\ & 1972 \\ & \hline \end{aligned}$	$\begin{aligned} & 2118 \\ & 2078 \\ & 2079 \\ & \hline \end{aligned}$	The dual position feedback conversion coefficient has not been specified.	Specify the dual position feedback conversion coefficient.
$\begin{aligned} & 1284 \\ & 1285 \end{aligned}$	1736	2128	When a small value is set as the number of velocity pulses, the internal value of a parameter related to current control overflows.	Decrease the value in this parameter to the extent that the alarm is not caused.
$\begin{aligned} & 1294 \\ & 1295 \end{aligned}$	1752	2129	When a large value is set as the number of velocity pulses, the internal value of a parameter related to current control overflows.	When the value set in this parameter is resolved to the form a $\times 256+b$, set a smaller value in a again.
1393	1762	2139	The AMR offset value of a linear motor exceeds ± 45.	Keep the setting of this parameter within ± 45. Alternatively, set bit 0 of parameter No. 2683 (for the Series $15 i$) or bit 0 of parameter No. 2270 (for the Series 30i, 16i, and so on) to 1 to increase the setting range of the AMR offset, and then specify the parameter anywhere within ± 60.

Alarm detail No.	Parameter No. Series $15 i$	Parameter No. Series 30i, 16i, and so on	Cause	Action
$\begin{aligned} & \hline 1446 \\ & 1447 \\ & 1448 \\ & \hline \end{aligned}$	1767	2144	In the cutting feed/rapid traverse FAD function, the feed-forward coefficient for cutting overflowed.	Use the position gain expansion function. \rightarrow See Supplementary 5.
$\begin{aligned} & 1454 \\ & 1455 \\ & 1456 \\ & 1459 \\ & \hline \end{aligned}$	1768	2145	In the cutting feed/rapid traverse FAD function, the velocity feed-forward coefficient for cutting overflowed.	Decrease the velocity feed-forward coefficient.
1493	1772	2149	A value greater than 6 is specified in this parameter.	Only 6 or less can be specified in this parameter. Change the setting to 6 or below 6 .
1503	1773	2150	A value equal to or greater than 10 is set.	Set a value less than 10.
1793	2622	2179	A negative value or a value greater than the setting of parameter No. 1821 (Series $16 i$ and so on) or parameter No. 1896 (Series 15i) is set.	Set a positive value less than the setting of parameter No. 1821 (Series 30i, 16i, and so on) or parameter No. 1896 (Series 15i).
1853	2628	2185	A negative value or a value greater than the setting of parameter No. 2023 (Series $16 i$ and so on) or parameter No. 1876 (Series 15i) is set.	Set a positive value less than the setting of parameter No. 2023 (Series 30i, 16i, and so on) or parameter No. 1876 (Series 15i).
2243	2612\#5	2224\#5	Series 15i : No.2612\#5=1 and Series $16 i$ and so on : No.2224\#5=1 (feed-forward timing adjustment function overflow alarm ignored) were specified and a nano interpolation command was issued.	Use either one.
2713	1707\#0	2013\#0	The PDM is used, but the HRV3 function bit is off.	Set the HRV3 function bit to 1.
3423	2755	2342	A negative value or a value equal to or greater than 101 is set.	Set a positive value less than 100.
3433	2756	2343	A value not within -180 to 180 is set.	Set a value within -180 to 180.
8213	1896	1821	A positive value is not set in the reference counter capacity parameter.	Set a positive value in this parameter.
$\begin{aligned} & 8254 \\ & 8255 \\ & 8256 \end{aligned}$	1825	1825	The internal value of the position gain overflowed.	Use the "position gain precision optimization function" or the "position gain increment function". \rightarrow See Supplementary 5 .
$\begin{aligned} & 10016 \\ & 10019 \end{aligned}$	1740\#0	2200\#0	The internal value of a parameter related to runaway detection overflowed.	Do not use the runaway detection function. (Set bit 0 to 1.)
$\begin{aligned} & 10024 \\ & 10025 \end{aligned}$			An overflow occurred in internal calculation on the separate detector serial feedback extrapolation level.	When servo software Series 90B0 is used, change the software edition to edition D or a later edition. (For series other than 90B0, the software edition need not be changed.)

Alarm detail No.	Parameter No. Series $15 i$	Parameter No. Series 30i, 16i, and so on	Cause	Action
10033	1809	2004	Illegal control cycle setting This error occurs if automatic modification is carried out for the control cycle.	Correct this parameter related to interrupt cycle setting.
10053	1960\#0	2018\#0	When a linear motor is used, the scale reverse connection bit is set.	When the linear motor is used, the scale reverse connection bit cannot be used.
10062	1749\#4	2209\#4	The amplifier used does not support the HC alarm prevention function.	When you use the current amplifier continuously, set the function bit shown to the left to 0 . When using the HC alarm prevention function, use an appropriate amplifier that supports the function.
10072	1951\#6	2007\#6	The customer's board function and FAD were specified at the same time	The customer's board function and the FAD function cannot be used together. Turn off one of them.
10082	2601\#6	2213\#6	The NC does not support the improved version of the cutting/rapid position gain switching function.	Disable this function.
$\begin{aligned} & 10092 \\ & 10093 \end{aligned}$	$\begin{gathered} 1809 \\ 1707 \# 0 \\ 1708 \# 0 \end{gathered}$	$\begin{gathered} 2004 \\ 2013 \# 0 \\ 2014 \# 0 \end{gathered}$	This alarm is issued when an invalid control cycle is set.	Change the control cycle setting to HRV1, HRV2, HRV3 or HRV4. \rightarrow See Supplementary 2.
			Different control cycles are set within one servo CPU.	Set the same control cycle for axes controlled by one servo CPU. \rightarrow See Supplementary 2.
			When HRV4 is enabled, a detector that does not support HRV4 is used. (FS30i only)	Replace the detector with a detector supporting HRV4. Alternatively, disable HRV4. \rightarrow See Supplementary 2.
			When HRV4 is enabled, a servo amplifier that does not support HRV4 is connected. (FS30i only)	Replace the servo amplifier with a servo amplifier supporting HRV4. Alternatively, disable HRV4. \rightarrow See Supplementary 2.
			HRV1 is set. (FS30i only)	The Series 30i does not allow HRV1 setting. Set HRV2, HRV3 or HRV4. \rightarrow See Supplementary 2.
10103	$\begin{gathered} 1809 \\ 1707 \# 0 \end{gathered}$	$\begin{gathered} 2004 \\ 2013 \# 0 \end{gathered}$	If a current control cycle of $250 \mu \mathrm{~s}$ is set, this error occurs when HRV3 is specified.	Set the control cycle correctly. \rightarrow See Supplementary 2.
10113	1707\#0	2013\#0	This error occurs if the specified current cycle does not match the actual setting.	An axis for which HRV3 is specified exists on the same optical cable. Review the placement of the amplifier, or disable HRV3. \rightarrow See Supplementary 2.

Alarm detail No.	Parameter No. Series $15 i$	Parameter No. Series 30i, 16i, and so on	Cause	Action
	1707\#0	2013\#0	This alarm is issued when the axis supports HRV3 but the other axis of the pair does not support HRV3.	Eliminate the cause of the disability in setting the other axis. Alternatively, cancel the HRV3 setting. \rightarrow See Supplementary 2.
10123	$\begin{aligned} & 1707 \# 0 \\ & 1708 \# 0 \end{aligned}$	$\begin{aligned} & \text { 2013\#0 } \\ & \text { 2014\#0 } \end{aligned}$	When HRV4 is set, this alarm is issued if any of the following conditions is met. (FS3Oi only) - Servo software not supporting HRV4 is used. - The same FSSB system includes axes with HRV4 setting and axes with HRV2 or HRV3 setting. - The limitation in the number of axes is not observed. (In HRV4 control, one axis/DSP is set.)	Eliminate the causes listed on the left. Alternatively, cancel the HRV4 setting. \rightarrow See Supplementary 2.
$\begin{gathered} 10133 \\ (* 4) \end{gathered}$	$\begin{aligned} & 1707 \# 0 \\ & 1708 \# 0 \end{aligned}$	$\begin{aligned} & \text { 2013\#0 } \\ & \text { 2014\#0 } \end{aligned}$	This alarm is issued when HRV3 or HRV4 is set, but the amplifier does not support these control types.	HRV3 or HRV4 is unusable for the axis on which the error occurred. \rightarrow See Supplementary 2.

* The alarms indicated by "(FS30i only)" may be issued only when servo software Series 90D0 or 90E0 is used. When other servo software series are used, these alarms are not issued.

Supplementary 1: Details of illegal settings of learning control parameters

For the Series $16 i$ and so on, reset parameter No. 2115 to 0 , and set parameter No. 2151 to 1913, and then change the value of diagnosis information (DGN) No. 353 to binary form. If a resulting binary bit is 1 , its bit position indicates the detail cause. (For the Series 15i, no learning control is available.)

Bit position	Cause
B3	The band stop filter setting (No. 2244) is out of the valid range.
B4	The profile number setting (No. 2233) is out of the valid range.
B5	The command data cycle setting (Nos. 2243, 2236, 2238, 2240, and 2266) is out of the valid range.
B6	The total of the profiles (No. 2264) is out of the valid range.
B7	G05 was started during memory clear processing.
B8	The profile number (No. 2233) was 0 when the total of profiles (No. 2264) is nonzero.
B9	An automatically set value for thinning-out shift was out of the valid range because of a long command data cycle.

Supplementary 2: Control cycle setting

There are four different types of control cycle setting (HRV1, HRV2, HRV3 and HRV4). Their settings are explained below.

For Series $15 i$
HRV1: No 1809=0X000110
HRV2: No1809=0X000011, No1707\#0=0
HRV3: No1809=0X000011, No1707\#0=1
For Series $16 i$ and so on
HRV1: No2004=0X000110
HRV2: No2004=0X000011, No2013\#0=0
HRV3: No2004=0X000011, No2013\#0=1
For Series $30 i$
HRV2: No2004 $=0 \times 000011$, No2013 $\# 0=0$, No2014\#0 $=0$
HRV3: No2004=0X000011, No2013\#0 $=1$, No2014\#0=0
HRV4: No2004 $=0 \times 000011$, No2013 $\# 0=0$, No2014\#0 $=1$
When an invalid value is set in control cycle related parameters, the following alarm messages are indicated on the CNC:

Alarm detail No.	Alarm number	Message
10092 10093	456	Invalid current control cycle setting
10103	457	Invalid High-speed HRV setting
10113	458	Invalid current control cycle setting
10123	459	High-speed HRV setting not allowed
10133	468	High-speed HRV setting not allowed (amplifier)

Supplementary 3: Setting the number of position pulses

If the resolution of the separate detector is high and the number of position feedback pulses becomes greater than 32767, take the following measure.

(a) For other than servo software Series 9096

Use "position feedback pulse conversion coefficient" to make settings.
Number of position feedback pulses $=\mathrm{A} \times \mathrm{B}$
Select B so that A is within 32767.
A: Number of position feedback pulses set in the parameter (less than or equal to 32767)
B: Conversion coefficient for the number of position feedback pulses

(Example of setting)
If the linear scale used has a minimum resolution of $0.1 \mu \mathrm{~m}$ and the distance to move per motor turn is 16 mm
Set A and B, respectively, to 10000 and 16 , because:
Ns $=$ distance to move per motor turn (mm)/detector minimum resolution $(\mathrm{mm})=16 \mathrm{~mm} / 0.0001 \mathrm{~mm}=160000(>32767)=10000 \times 16$

NOTE

If the detector on the motor is an αi Pulsecoder (number of velocity pulses = 8192), select a value raised to the second power $(2,4,8, \ldots)$ as the conversion coefficient as much as possible (so the position gain used within the software becomes more accurate).

If the setting of the number of position pulses becomes very large, a subtle difference in response may occur between two axes submitted to interpolation, because of position gain canceling. To avoid this problem, make the following setting.

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
1749 (FS15i)		pgat						

PGAT(\#6) The position gain precision optimization function is:
1: Enabled
0: Disabled (conventional method)

NOTE

1 Specify this function for all the simultaneous contouring axes.
2 In servo software Series 90D0 and 90E0, automatic format change for position gain is enabled by default regardless of the PGAT setting. So, PGAT need not be set.

(b) For servo software Series 9096

Because the "position feedback pulse conversion coefficient" is unusable, change the parameters as stated below.
(i) If the number of position pulses is in a range from 32,768 to 131,000
Change the parameters according to the following table.

Parameter number		Method for changing parameters
Series 15i	Series $\mathbf{3 0} \boldsymbol{i}, \mathbf{1 6} \boldsymbol{i}$, and so on	
$1804 \# 0$	$2000 \# 0$	1
1876	2023	$($ Setting target)/10
1891	2024	$($ Setting target $) / 10$

(ii) If the number of position pulses is larger than 131,000

Change the parameters according to the following table.
In this table, letter E satisfies:
Number of position feedback pulses/10/E <13100

Parameter number		Method for changing parameters
Series 15i	Series 30i, 16i, and so on	
1804\#0	2000\#0	1
1876	2023	(Setting target)/10/E
1891	2024	(Setting target)/10/E
1855	2043	(Setting target)/E
1856	2044	(Setting target)/E
1859	2047	(Setting target) \times E
1865	2053	(Setting target) $\times \mathrm{E}$
1866	2054	(Setting target)/E
1871	2059	(Setting target) \times E
1969	2076	(Setting target)/E
1736	2128	(Setting target)/E
1752	2129	(Quotient of setting target/256) $\times \mathrm{E} \times 256$ + (remainder of setting target/256)

Supplementary 4: Function for changing the internal format of the velocity loop proportional gain

An overflow may occur in the velocity loop proportional gain during internal calculation by the servo software. This can be avoided by setting the parameter shown below.
1740 (FS15i)

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
	P2EX						

P2EX (\#6)
1: Changes the internal format of the velocity loop proportional gain to prevent an overflow.
0 : Uses the standard internal format for the velocity loop proportional gain.

Supplementary 5: Preventing an overflow in the position gain or the feed-forward coefficient

If the position gain or feed-forward coefficient overflows, take one of the following measures depending on the servo software series in use. In servo software Series 90D0 and 90E0 for the Series $30 i / 31 i / 32 i$, automatic format change for position gain is enabled regardless of the following setting. (Setting is unnecessary.)
(a) For other than servo software Series 9096

NOTE

Specify this function for all the simultaneous contouring axes.

(b) For servo software Series 9096

| | \#7 | \#6 | \#5 | \#4 | \#3 | \#2 | \#1 | \#0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1804 (FS15 i) | | | | | | | |
| | | | | PGEX | | | | |

2000 (FS16i)
PGEX (\#4) 1: Enables the position gain setting range expansion function.
0 : Disables the position gain setting range expansion function.
The setting of the number of position pulses need not be changed.
If an overflow in the position gain cannot be prevented by this function, change the CMR.
If the CMR is multiplied by N (integer), multiply also the flexible feed gear by N . This means that the detection unit is refined to $1 / \mathrm{N}$. So, the settings of all parameters that need to be set in the detection unit need to be increased by N .
See Appendix B for a list of the parameters set in the detection unit.

$\alpha i s / \alpha i f / \beta i s$ SERIES PARAMETER ADJUSTMENT

This chapter describes parameter tuning for the FANUC AC SERVO MOTOR $\alpha i \mathrm{~S}, \alpha i \mathrm{~F}$, and $\beta i \mathrm{~S}$ series. A servo tuning tool, SERVO GUIDE, is available which lets you perform parameter tuning smoothly. See Section 4.20 for the summary of SERVO GUIDE.

3.1 SERVO TUNING SCREEN

Display the servo tuning screen, and check the position error, actual current, and actual speed on the screen.
Using the keys on the CNC, enter values according to the procedure explained below. (The Power Mate i DPL/MDI does not provide the servo tuning function.)

- Series $15 i$

Press the SYSTEm key several times to display the servo setting screen.
Then press the \square key to display the servo tuning screen.

- Series 30i, 31i, 32i, 16i, 18i, 21i, 20i, 0i, and Power Mate i

If the servo screen does not appear, set the following parameter, then switch the CNC off and on again.

Fig. 3.1(a) Tuning screen

Fig. 3.1(b) Diagnosis screen

Fig. 3.1(c) Series $15 i$ servo tuning screen

Fig. 3.1 (d) Series $15 i$ servo diagnosis screen
The items on the servo tuning screen correspond to the following parameter numbers:

Table 3.1 Correspondence between the servo tuning screen and diagnosis screen, and parameters

	Series 15i	Series 30i, 16i, and so on
<1> Function bit <2> Loop gain	No. 1808 No. 1825	No. 2003 No. 1825
$<3>$ Tuning start bit $<4>$ Setting period	Not used at present Not used at present	
<5> Velocity loop integral gain <6> Velocity loop proportional gain <7> TCMD filter	No. 1855 No. 1856 No. 1857	No. 2043 No. 2044 No. 2067
	Related to No. 1875	Related to No. 2021
<8> Velocity loop gain	The relationship with the load inertia ratio (LDINT=No.1875,No.2021) is as follows: Velocity gain $=(1+$ LDINT/256 $) \times 100$ [\%]	
<9> Alarm 1 diagnostic	Diagnostic Nos. $3014+20(\mathrm{X}-1)$	Diagnostic No. 200
<10> Alarm 2	Diagnostic Nos. $3015+20(\mathrm{X}-1)$	Diagnostic No. 201
<11> Alarm 3	Diagnostic Nos. $3016+20(\mathrm{X}-1)$	Diagnostic No. 202
<12> Alarm 4	Diagnostic Nos. $3017+20(\mathrm{X}-1)$	Diagnostic No. 203
<13> Alarm 5		Diagnostic No. 204
<19> Alarm 6		
<20> Alarm 7		Diagnostic No. 205
<21> Alarm 8		Diagnostic No. 206
<22> Alarm 9		
<14> Loop gain or actual loop gain	The actual servo loop gain is displayed.	
	Diagnostic No. 3000	Diagnostic No. 300
<15> Position error diagnostic	Position error = (feedrate) [mm/min] / (least input increment $\times 60 \times$ loop gain $\times 0.01$) [mm]	
<16> Actual current [\%]	Indicates the percentage [\%] of the current value to the continuous rated current. Indicates the current value (peak value). Indicates the actual speed or feedrate.	
<17> Actual current [Ap]		
<18> Actual speed [min^{-1}] or [mm/min]		

3.2 ACTIONS FOR ALARMS

If a servo alarm occurs, detail alarm information is displayed on the diagnosis screen (Figs. 3.1 (b) and (d)). Based on this information, check the cause of the servo alarm and take appropriate action. For alarms with no action number, refer to relevant manuals such as the maintenance manual on the amplifier.

Table 3.2 Alarm bit names

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
OVL	LVA	OVC	HCA	HVA	DCA	FBA	OFA
ALD			EXP				
	CSA	BLA	PHA	RCA	BZA	CKA	SPH
DTE	CRC	STB	PRM				
	OFS	MCC	LDM	PMS	FAN	DAL	ABF
				SFA			
OHA	LDA	BLA	PHA	CMA	BZA	PMA	SPH
DTE	CRC	STB	SPD				
	FSD			SVE	IDW	NCE	IFE

NOTE

The blank fields do not contain any alarm code.

(1) Alarms related to the amplifier and motor

Alarm 1							Alarm 5		Alarm 2		Description	Action
OVL	LVA	OVC	HCA	HVA	DCA	FBA	MCC	FAN	ALD	EXP		
			1						0	0	Overcurrent alarm (PSM)	
			1						0	1	Overcurrent alarm (SVM)	1
			1						0	1	Overcurrent alarm (software)	1
				1							Excessive voltage alarm	
					1						Excessive regenerative discharge alarm	
	1								0	0	Alarm indicating insufficient power voltage (PSM)	
	1								1	0	Insufficient DC link voltage (PSM)	
	1								0	1	Insufficient control power voltage (SVM)	
	1								1	1	Insufficient DC link voltage (SVM)	
1									0	0	Overheat (PSM)	2
1									1	0	Motor overheat	2
1									1	1	Motor overheat ${ }^{\text {(Note) }}$	2
							1				MCC fusing, precharge	
								1	0	0	Fan stopped (PSM)	
								1	0	1	Fan stopped (SVM)	
		1									OVC alarm	3

NOTE

1 For alarms with no action number indicated, refer to the Maintenance Manual.
$2 \mathrm{OVL}=1, \mathrm{ALD}=1$, and EXP = 1 indicate an overheat alarm using DI signals in a linear motor or a synchronous built-in servo motor and are set when bit 7 of parameter No. 2713 (Series 15i) or bit 7 of parameter No. 2300 (Series 30i, 16i, and so on) is set to 1 . When these alarms are issued, take the same action as for ordinary motor overheat alarms. (See the Subsection 4.14.2, "Detection of an Overheat Alarm by Servo Software when a Linear Motor and a Synchronous Built-in Servo Motor are Used".)

Action 1: Overcurrent alarms

This type of alarm occurs when an extremely large current flows through the main circuit.
When an overcurrent alarm always occurs after emergency stop is released or at the time of moderate acc./dec., the cause of the alarm is determined to be an amplifier failure, cable connection error, line disconnection, or a parameter setting error. First, check that standard values are set for the following servo parameters. If these parameter settings are correct, check the amplifier and cable status by referring to the maintenance manual on the servo amplifier.

No. 1809	No. 1852 No. 2004$\|$No. 2040

(Parameters for the Series $15 i$ are indicated on the upper side, and parameters for the Series $30 i, 16 i$, and so on are indicated on the lower side.)

If an overcurrent alarm occurs only when an strong acc./dec. is performed, the operating conditions may be too abrupt. Increase the acc./dec. time constant, and see whether the alarm occurs.

4. CAUTION

1 If an overcurrent alarm is detected, and the LED indication in the amplifier remains set to "-", the overcurrent alarm may have been detected by the servo software. The cause may be one of the following:

- The contact of the power line is poor, or the power line is disconnected or broken.
- The AMR conversion coefficient or AMR offset is not set correctly.
2 If the emergency stop state is released without connecting the power line in a test such as a test for machine start-up, the servo software may detect an overcurrent alarm. In such a case, the alarm can be avoided temporarily by setting the bit parameter indicated below to 1 . However, be sure to return the bit parameter to 0 before starting up in the normal operation state after completion of a test.
To ignore the overcurrent alarm (software), set the following:
- No2207\#0 (Series 30i, 16i, and so on)
- No1747\#0 (Series15i)

Action 2: Overheat alarms

If an overheat alarm occurs after long-time continuous operation, the alarm can be determined to have been caused by a temperature rise in the motor or amplifier. Stop operation for a while. If the alarm still occurs after the power is kept off for about 10 minutes, the hardware may be defective.
If the alarm occurs intermittently, increase the time constant, or increase the programmed stop time period to suppress temperature rise.
Motor and Pulsecoder temperature information is displayed on the diagnosis screen.

	Series $\mathbf{3 0} \boldsymbol{i}$, 16i, and so on	Series15i
Motor temperature $\left({ }^{\circ} \mathbf{C}\right)$	Diagnosis No.308	Diagnosis No.3520
Pulsecoder temperature $\left({ }^{\circ} \mathbf{C}\right)$	Diagnosis No.309	Diagnosis No.3521

Action 3: OVC alarms

When an OVC alarm occurs, check that standard values are set for the following parameters. If the parameters are correct, increase the time constant or increase the programmed stop time period to suppress temperature rise.

No. 1877	No. 1878	No. 1893
No. 2062	No. 2063	No. 2065

No. 1784	No. 1785	No. 1786	No. 1787
No. 2161	No. 2162	No. 2163	No. 2164

(Parameters for the Series $15 i$ are indicated on the upper side, and parameters for the Series $30 i, 16 i$, and so on are indicated on the lower side.)

For the Series $30 i$ and $15 i$, OVC data is displayed on the diagnosis screen. (An OVC alarm occurs when OVC data is set to 100%.)
For the Series $16 i$, the OVC status can be checked if thermal simulation data is obtained by using the waveform display function.

	Series 30 i and so on	Series $15 i$
OVC data (\%)	Diagnosis No.750	Diagnosis No.3540

(2) Alarms related to the Pulsecoder and separate serial Pulsecoder

(2-1) αi Pulsecoder
These alarms are identified from alarms $1,2,3$, and 5 . The meanings of the bits are as follows:

Alarm 3						Alarm 5		1	Alarm 2			Description	Action
CSA	BLA	PHA	RCA	BZA	CKA	SPH	LDM	PMA	FBA	ALD	EXP		
						1						Soft phase alarm	2
				1								Zero volts in battery	1
			1						1	1	0	Count error alarm	2
		1										EEPROM abnormal alarm	
	1											Voltage drop in battery (Warning)	1
								1				Pulse error alarm	
							1					LED abnormality alarm	

. CAUTION
For alarms with no action number indicated, the Pulsecoder may be defective. Replace the Pulsecoder.
(2-2) Separate serial detector coder
These alarms are identified from alarm 7. The meanings of the bits are as follows:

Alarm 7									Description		Action
OHA	LDA	BLA	PHA	CMA	BZA	PMA	SPH				
							1	Soft phase alarm	2		
						1		Pulse error alarm			
					1			Zero volts in battery	1		
				1				Count error alarm	2		
			1					Phase alarm	2		
	1						Voltage drop in battery (Warning)	1			
1	1							LED abnormality alarm			
								Separate detector alarm			

』. CAUTION

For alarms with no action number indicated, the detector may be defective. Replace the detector.

Action 1: Battery-related alarms

Check whether the battery is connected. When the power is turned on for the first time after the battery is connected, a battery zero alarm occurs. In this case, turn the power off then on again. If the alarm occurs again, check the battery voltage. If the battery voltage drop alarm occurs, check the voltage, then replace the battery.

Action 2: Alarms that may occur due to noise
When an alarm occurs intermittently or occurs after emergency stop is released, there is a high possibility that the alarm is caused by noise. Take thorough noise-preventive measures. If the alarm still occurs continuously after the measures are taken, replace the detector.

(3) Alarms related to serial communication

These alarms are identified from alarms 4 and 8.

Alarm 4				Alarm 8				Description
DTE	CRC	STB	PRM	DTE	CRC	STB	SPD	
1								Communication alarm in serial Pulsecoder
	1							
		1						
				1				Communication alarm in separate serial Pulsecoder
					1			
						1		

Action: Serial communication is not performed correctly. Check whether cable connection is correct and whether there is a line disconnection. If CRC or STB occurs, the alarm may be caused by noise. Take noise-preventive measures. If the alarm always occurs after power is turned on, the Pulsecoder, the control board of the amplifier (i series), or the separate detector interface unit (i series) may be defective.

(4) Disconnection alarms

These alarms are identified from alarms 1,2 , and 6.

Alarm 1							Alarm 2		6	Description	Action
OVL	LVA	OVC	HCA	HVA	DCA	FBA	ALD	EXP	SFA		
						1	1	1	0	Hardware disconnection (separate phase A/B disconnection)	1
						1	0	0	0	Software disconnection (closed loop)	2
						1	0	0	1	Software disconnection (α Pulsecoder)	3

Action 1: This alarm occurs when the separate phase A / B scale is used. Check whether the phase A / B detector is connected correctly.
Action 2: This alarm occurs when the change in position feedback pulses is relatively small for the change in velocity feedback pulses. Therefore, with the semi-closed loop, this alarm does not occur. Check whether the separate detector outputs position feedback pulses correctly. If the detector outputs pulses correctly, the alarm is determined to have been caused by the reverse rotation of only the motor at the start of machine operation because of a large backlash between the motor position and scale position.

TGAL (\#1)

1: The level for detecting the software disconnection alarm is set by parameter.

1892 (FS15i)
2064 (FS30 $i, 16 i$)

Standard setting
4: Alarm occurs when motor turns $1 / 8$ of a turn. Increase this value.

Action 3: This alarm occurs when the absolute position data sent from the built-in Pulsecoder cannot be synchronized with the phase data. Remove the Pulsecoder cable with the NC power switched off and wait for about 10 minutes, then connect the cable again. If this alarm occurs again, replace the Pulsecoder.
When an absolute type linear encoder is used with a linear motor or when a synchronous built-in servo motor is used, this alarm must be ignored because the detector does not have phase data. Set the following bit.

APTG(\#7)

(5) Invalid parameter setting alarm

This alarm is identified from alarm 4.

Alarm 4				Description
DTER	CRC	STB	PRM	Invalid parameter setting detected by servo software

If PRM is set to 1 , an invalid parameter setting has been detected by the servo software. Investigate the cause of the alarm according to Subsec. 2.1.5, "Actions for Illegal Servo Parameter Setting Alarms."

(6) Other alarms

Alarms are identified from alarm 5. The meanings of the bits are as follows:

Alarm 5							Description	Action	
OFS	MCC	LDM	PMS	FAN	DAL	ABF		(
						1	Feedback mismatch alarm	1	
					1		Excessive semi-closed loop error alarm	2	
1							Current offset error alarm	3	

Action 1: This alarm occurs when the move directions for the position detector and velocity detector are opposite to each other. Check the rotation direction of the separate detector. If the direction is opposite to the direction in which the motor turns, take the following action:

Phase A/B detector: Switch the A and $\overline{\mathrm{A}}$ connections.
Serial detector: Switch the signal direction setting for the separate detector.
The following servo software allows the signal directions to be reversed by setting the parameter shown below even when a detector of A / B phase parallel type is used. (Series 30i,31i,32i)

Series 90D0/A(01) and subsequent editions
Series 90E0/A(01) and subsequent editions (Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B, Power Mate i)

Series $90 \mathrm{~B} 0 / \mathrm{G}(07)$ and subsequent editions
Series $90 \mathrm{~B} 1 / \mathrm{A}(01)$ and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series 90B5/A(01) and subsequent editions

1960 (FS15i)
2018 (FS30i, 16i) RVRSE (\#0)

The signal direction for the separate detector is:
0: Not reversed.
1: Reversed.
When there is a large torsion between the motor and separate detector, this alarm may occur when an abrupt acc./dec. is performed. In such a case, change the detection level.

RNLV (\#1) Change of the feedback mismatch alarm detection level
1: To be detected at $1000 \mathrm{~min}^{-1}$ or more
0 : To be detected at $600 \mathrm{~min}^{-1}$ or more
Action 2: This alarm occurs when the difference between the motor position and the position of the separate detector becomes larger than the semi-closed loop error level. Check that the dual position feedback conversion coefficient is set correctly. If the setting is correct, increase the alarm level. If the alarm still occurs after the level is changed, check the scale connection direction.

Dual position feedback conversion coefficient (numerator)

1972 (FS15i)
Dual position feedback conversion coefficient (denominator)
2079 (FS30i, 16i)

1729 (FS15i)
Dual position feedback semi-closed loop error level
2118 (FS30i, 16i)
[Setting unit] Detection unit. When 0 is set, detection does not take place.
Action 3: The current offset (equivalent to the current value in the emergency stop state) of the current detector becomes too large. If the alarm occurs again after the power is turned on and off, the current detector may be abnormal. Replace the amplifier.

3.3 ADJUSTING PARAMETERS FOR HIGH-SPEED AND HIGH-PRECISION MACHINING

3.3.1 Servo HRV Control Adjustment Procedure

(1) Overview

For higher positioning precision, higher precision in machined surface and machining profile, shorter machining time, and other improvements in machine tools, servo adjustment is required. This subsection explains the servo adjustment procedure using servo HRV control. In the i series CNCs (such as the Series $30 i$ and $16 i$), servo adjustments can be made easily by using SERVO GUIDE, which supports adjustments.

(2) Outline of the adjustment procedure

Before servo control performance can be improved by servo adjustment, it is necessary to understand these procedures and make adjustments step by step accordingly. Servo control is implemented by the structure shown in the block diagram below. Servo HRV current control, which is located just before the motor in the regulation loop, drives the motor according to the command output by high-speed velocity control. The performance of high-speed velocity control is supported by the performance of servo HRV current control. High-speed velocity control controls the motor speed according to the velocity command output by position control. To attain the final target, which is to improve the capability to follow up position commands, a higher position gain must be set. This requires improvement of high-speed velocity control performance. Hence, this requires improvement in servo HRV current control performance.
Therefore, in servo adjustment for improving the performance of servo control, the highest priority is given to the improvement in servo HRV current control, the next highest priority is given to the improvement in high-speed velocity control, then the third priority is given to the improvement of position control. Be sure to follow this order.

Servo HRV control improves the response speed of the current loop, therefore, higher gains can be set for the velocity loop and position loop. Increased gains lead not only to improvement in command follow-up performance and disturbance suppression performance but also to simplification in servo function adjustments such as quadrant protrusion compensation. As a result, servo adjustments can be made more easily.

The figure below shows the results of a gain adjustment for each servo HRV control type. The figure indicates that improvement in response speed of the current loop by servo HRV control further improves the response speed of velocity control and position control, and therefore quadrant protrusions can be reduced without the backlash acceleration function.

This manual explains the servo adjustment procedure in the following order:

- Initialization of parameters related to high-speed and high-precision machining
Before starting the servo adjustment for high-speed and high-precision machining, set minimum required parameters.
- Servo HRV control setting

Select the servo HRV control type. Select suitable servo HRV control from servo HRV2, HRV3, and HRV4.

- Adjustment of high-speed velocity control

Adjust the velocity loop gain and filter by using SERVO GUIDE.

- Adjustment of acc./dec. in rapid traverse

Adjust the time constant for rapid traverse. In position gain setting made in the next step, the limit is confirmed by checking stability during rapid traverse.

- Position gain adjustment

Adjust the position gain while observing the TCMD and motor speed in rapid traverse and cutting feed.

- Adjustment by using an arc

Adjust the feed-forward and backlash acceleration while measuring an arc figure.

- Adjustment by using a square figure

Adjust the reduced feedrate and the acceleration for deceleration at a corner while measuring the corner figure.

- Adjustment by using a square figure with $1 / 4 \operatorname{arcs}$

Adjust the velocity in the round corners while measuring the contour error in the round corners.
(3) Initialization of parameters related to high-speed and high-precision machining

The parameter values to be set first before servo adjustments are made are listed below. Sufficient performance can be obtained just by setting these values. Furthermore, by separately adjusting the settings indicated by gray shading, much higher speed and higher precision can be obtained.
[Fundamental Parameters]

Parameter No.		Standard setting value	Description
FS15i	FS30i, 16i, and so on		
1809	2004	$0 \times 000011^{(\text {Note 1) }}$	Enables HRV2 control
1852	2040	Standard parameter ${ }^{\text {(Note 1) }}$	Current integral gain
1853	2041	Standard parameter ${ }^{\text {(Note 1) }}$	Current proportional gain
1808 \#3	2003 \#3	$1{ }^{\text {(Note 2) }}$	Enables PI function
1959 \#7	2017 \#7	$1{ }^{\text {(Note 3) }}$	Enables velocity loop high cycle management function
1884 \#4	2006 \#4	1	Enables 1-ms velocity feedback acquisition
1958 \#3	2016 \#3	1	Enables variable proportional gain in the stop state
1730	2119	2 (detection unit of $1 \mu \mathrm{~m}$) 20 (detection unit of $0.1 \mu \mathrm{~m}$)	For variable proportional gain function in the stop state : judgment level for stop state (specified in detection units)
1825	1825	5000	Servo loop gain
1875	2021	128	Load Inertia ratio (Velocity Loop Gain) ${ }^{\text {(Note 4) }}$
1742 \#1	2202 \#1	1	Cutting/rapid traverse velocity loop gain variable
1700	2107	150	Velocity loop gain override at cutting traverse

NOTE

1 Optimum parameters can be loaded automatically by setting a motor ID number for servo HRV2 control.
If there is no motor ID number for servo HRV2 control, load the standard
parameters for servo HRV1, then calculate parameter values as follows:
No. 2004 = 0X000011 (Keep X unchanged.)
No. $2040=$ Standard parameter for HRV1 $\times 0.8$
No. $2041=$ Standard parameter for HRV1 $\times 1.6$
2 To use I-P function, set 0 .
PI function and I-P function have the following features:
PI function: Provides good follow-up to a target command. This function is required for high-speed and high-precision machining.
I-P function:Requires a relatively short time to attain a target position. This function is suitable for positioning applications.
3 With some machines, a higher velocity loop gain can be set by using neither the acceleration feedback function nor auxiliary function rather than by using these functions. If it is impossible to set a high velocity loop gain (about 300\%) when the velocity loop high cycle management function is used, try to use the acceleration feedback function (See Subsection 4.4.2), and use the function that allows a higher velocity loop gain to be set.
4 There is the following relationship between the load inertia ratio and velocity loop gain (\%).
Velocity loop gain (\%) $=(1+$ load inertia ratio $/ 256) \times 100$
[Feed-forward and FAD(Fine acc./dec.)]

Parameter No.		Standard setting value	Description
FS15i	FS30i, 16i, and so on		
1951 \#6	2007 \#6	1	Enables FAD (Fine acc./dec.) ${ }^{\text {(Note 1) }}$
1749 \#2	2209 \#2	1	Enables FAD of linear type.
1702	2109	16	FAD time constant ${ }^{\text {(Note 2) }}$
1883 \#1	2005 \#1	1	Enables feed-forward
1800 \#3	1800 \#3	0	Feed-forward at rapid traverse ${ }^{\text {(Note 2) }}$
1959 \#5	2017 \#5	1	RISC feed-forward is improved
1740 \#5	2200 \#5	1	RISC feed-forward is improved
1985	2092	10000	Advanced preview feed-forward coefficient
1962	2069	50	Velocity feed-forward coefficient

NOTE

1 With the Series 30 i, Series 31 i, and Series $32 i$, which use nano interpolation as a standard function, the fine acc./dec. function is not required.
During AI nano contour control, AI contour control, and high precision contour control, the fine acc./dec. function is disabled. So, set the time constant of acc./dec. after interpolation on the CNC side.
2 As the time constant of fine acc./dec., be sure to set a multiple of 8. When using fine Acc./Dec also in rapid traverse, enable rapid traverse feed-forward, or use the cutting/rapid FAD switching function (see Subsection 4.8.3).
3 RISC feed-forward is enabled during AI contour control and high precision contour control and allows smoother feed-forward operation.
[Backlash Acceleration]

Parameter No.		Standard setting value	Description
FS15i	$\text { FS30 } i, 16 i$ and so on		
1851	1851	1 or more	Backlash compensation
1808 \#5	2003 \#5	1	Enables backlash acceleration
1884 \#0	2006 \#0	0/1	0 : Semi-close system 1 : Full-close system
1953 \#7	2009 \#7	1	Backlash acceleration stop
1953 \#6	2009 \#6	1	Backlash acceleration only at cutting feed (FF)
2611 \#7	2223 \#7	1	Backlash acceleration only at cutting feed (G01)
1957 \#6	2015 \#6	0	Two-stage backlash acceleration ${ }^{\text {(Note) }}$
1769	2146	50	Stage-2 backlash acceleration end timer
1860	2048	100	Backlash acceleration amount
1975	2082	5 (detection unit of $1 \mu \mathrm{~m}$) 50 (detection unit of $0.1 \mu \mathrm{~m}$)	Backlash acceleration stop timing
1964	2071	20	Backlash acceleration time

NOTE

The above table lists the initial values set when the conventional backlash acceleration function is used. When much higher precision is required, use the 2-stage backlash acceleration function.

Set the initial value of the time constant of acc./dec. according to the high-speed and high-precision function of the CNC used. Adjust the time constant of acc./dec. to an optimum value while checking the rapid traverse and cutting feed operations.

- AI nano contour control, AI contour control, AI advanced preview control, and advanced preview control

Parameter No.	Standard setting value	
FS16 \boldsymbol{i} and so on	Description	
1620	200	Time constant of acc./dec. in rapid traverse - linear part (ms)
1621	200	Time constant of acc./dec. in rapid traverse - bell-shaped part (ms)
1770	10000	Acc./dec. before interpolation: Maximum cutting feedrate
1771	240	Acc./dec. before interpolation: Time (ms) $\rightarrow 0.07 \mathrm{G}$
1772	64	Acc./dec. before interpolation: Bell-shaped time constant (ms) (for other than advanced preview control)
1768	24	Time constant for acc./dec. after interpolation (ms)

- AI nano high-precision contour control, AI high-precision contour control, and high-precision contour control

Parameter No.	Standard setting value	
FS16i and so on		Description
1620	200	Time constant of acc./dec. in rapid traverse - linear part (ms)
1621	200	Time constant of acc./dec. in rapid traverse - bell-shaped part (ms)
8400	10000	Acc./dec. before interpolation: Maximum cutting feedrate
19510	240	Acc./dec. before interpolation: Time (ms) $\rightarrow 0.07 \mathrm{G}$ (No. 8401 for high precision contour control)
8416	64	Acc./dec. before interpolation: Bell-shaped time constant (ms)
1768	24	Time constant for acc./dec. after interpolation (ms)

- AI contour control I and AI contour control II (Series 30i, Series $31 i$, and Series $32 i$)

Parameter No.	Standard setting value	Description
FS30i	200	Time constant of acc./dec. in rapid traverse - linear part (ms)
1620	200	Time constant of acc./dec. in rapid traverse - bell-shaped part (ms)
1621	700	Acc./dec. before interpolation: Acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \rightarrow 0.07 \mathrm{G}$
1660	64	Acc./dec. before interpolation: Bell-shaped time constant (ms)
1772	24	Time constant for Acc./dec. after interpolation (ms)
1769		

- \quad Series $15 i$

Parameter No.	Standard setting value	Description
FS15i	200	Time constant of Acc./dec. in rapid traverse - linear part (ms)
1620	200	Time constant of Acc./dec. in rapid traverse - bell-shaped part (ms)
1636	700	Acc./dec. before interpolation: Acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \rightarrow 0.07 \mathrm{G}$
1660	700	Acc./dec. before interpolation: Acceleration $\left(\mathrm{mm} / \mathrm{s}^{2}\right) \rightarrow 0.07 \mathrm{G}$
1663	64	Acc./dec. before interpolation: Bell-shaped time constant (ms)
1656	24	Time constant for acc./dec. after interpolation (ms)
1635		

(4) Servo HRV control setting

Set the type of servo HRV control. The setting of servo HRV2 is always required. So, load the standard parameters for servo HRV2 by following the description given below. Then, set HRV3 or HRV4 as necessary.
(For Series 30i)
In standard setting, servo HRV2 control is set. However, to make high-speed and high-precision adjustments, servo HRV3 is recommended. If sufficient precision cannot be obtained with servo HRV3, consider using servo HRV4. (See Subsec. 4.2.2.)
(For other than Series 30i)
In standard setting, servo HRV2 control is set. However, if sufficient precision cannot be obtained with servo HRV2, consider using servo HRV3. (See Subsec. 4.2.1.)

(a) Servo HRV2 control

By setting a motor ID number for servo HRV2 control, load the standard parameters.

NOTE

If there is no motor ID number for servo HRV2 control, load the standard parameters for servo HRV1, then calculate parameter values as follows: No. $2004=0 \times 000011$ (Keep X unchanged.) No. $2040=$ Standard parameter for HRV1 $\times 0.8$
No. $2041=$ Standard parameter for HRV1 $\times 1.6$

(b) Servo HRV3 control

After setting servo HRV2 control, set the following parameters:
[HRV3 parameters] (for FS15i, FS16i, and so on)

Parameter No.		Recommended value	Description
FS15i	FS16i		
1707\#0	2013\#0	1	Enables HRV3 current control.
1742\#1	2202\#1	1	Enables the cutting/rapid velocity loop gain switching function.
-	2283\#0	1	Enables high-speed HRV current control in cutting feed ${ }^{\text {(Note 1). }}$
2747	2334	150	Current gain magnification in HRV3 mode
2748	2335	200	Velocity gain magnification in HRV3 mode

NOTE

1 To use high-speed HRV current control, G codes need to be set. (High-speed HRV current control is enabled between G5.4Q1 and G5.4Q0.)
2 With Series 90B0, 90B1, 90B6, and 90B5, the torque command during high-speed HRV current control is limited to 70% of the maximum value.
[HRV3 parameters] (for FS30i)

Parameter No.	Recommende d value	Description
FS30 i	1	Enables HRV3 current control.
$2013 \# 0$	1	Enables the cutting/rapid velocity loop gain switching function.
$2202 \# 1$	150	Current gain magnification in HRV3 mode
2334	200	Velocity gain magnification in HRV3 mode
2335		

NOTE

1 When N2283\#0=1, no G code is needed.
2 To use high-speed HRV current control when N2283\#0=0, G codes need to be set. (High-speed HRV current control is enabled between G5.4Q1 and G5.4Q0.)
3 When servo HRV3 control is used with Series 90E0, such a restriction that the maximum allowable number of axes per servo card is reduced to 3 is imposed.

(c) Servo HRV4 control

After setting servo HRV2 control, set the parameters listed below. Servo HRV4 control and servo HRV3 control cannot be set at the same time.
[HRV4 parameters]

Parameter No.	Recommended value	Description
$2014 \# 0$	1	Enables HRV4 current control.
$2300 \# 0$	1	Enables the extended HRV function.
$2202 \# 1$	1	Enables the cutting/rapid velocity loop gain switching function.
2334	150	Current gain magnification in high-speed HRV current control
2335	200	Velocity gain magnification in high-speed HRV current control

NOTE

1 Servo HRV4 can be used with Series 90D0.
2 Use of servo HRV4 decreases the maximum number of axes per servo card and limits the maximum torque of the servo motor to 70%. For details, see Subsection 4.2.2, "Servo HRVV4 Control".
3 To use high-speed HRV current control, G codes must be set. (High-speed HRV current control is enabled between G5.4Q1 and G5.4Q0.)

(5) Adjustment of high-speed velocity control

After setting servo HRV control, adjust the velocity loop gain and the resonance elimination filter.
To obtain high servo performance, a high velocity loop gain must be set. Some machines, however, vibrate easily at a particular frequency, and setting a high velocity loop gain can cause vibration at that frequency (machine resonance). As a result, it becomes impossible to set a high velocity loop gain.
In such a case, the resonance elimination filter must be adjusted. The resonance elimination filter can lower the gain only in an area around a particular frequency, therefore allowing a high velocity loop gain to be set without the occurrence of machine resonance.

The velocity loop gain and the resonance elimination filter can be adjusted more easily by using Tuning Navigator of SERVO GUIDE.

(a) Adjusting the velocity loop gain and the resonance elimination filter (when Tuning Navigator is used)

For adjustment of the resonance elimination filter, Tuning Navigator of SERVO GUIDE can be used. On the main bar of SERVO GUIDE, press the [Navigator] button.
[Starting Tuning Navigator]

(Procedure for adjusting the velocity loop gain and the resonance elimination filter)
In the adjustment of the velocity loop gain and the resonance elimination filter, use $<1>$ through $<3>$ in the above figure. Make adjustments in order from $<1>$.
$<1>$ Initial Gain Tuning
Initial Gain Tuning determines the velocity loop gain value with a margin for the oscillation limit. By making this adjustment, a higher velocity gain than the initial value is set, so the frequency of machine resonance can be determined clearly.
First, select Initial Gain Tuning from the dialog box of Tuning Navigator.

Tuning Navigator shows bode-plot of velocity loop and you can check the performance of velocity loop.
Upper line in bode-plot shows gain characteristic and lower line shows phase characteristic. Important points of this figure that you should note are as follows. (About the details of bode-plot, please refer to several books of basic control method)

- The width of 0 dB level of gain line is important. By setting higher velocity loop gain, it becomes wide.
- Gain level of resonance frequency has to be suppressed at least under -10 dB .
- Gain level around cut-off frequency is less than 10 dB .
- Gain level near 1000 Hz has to be lower than -20 dB .
$<2>$ Filter Tuning
Next, select Filter Tuning from Tuning Navigator to adjust the resonance elimination filter to suppress machine resonance.
Following example shows that gain line at two resonance

(b) Adjusting the velocity loop gain and the resonance elimination filter (when Tuning Navigator is not used)

A) Adjustment by torque command waveform

1. Perform rapid traverse with a full stroke of the machine, and observe the torque command when the machine is stopped and when the machine moves at high speed. (The sampling cycle period should be $125 \mu \mathrm{~s}$.)

NOTE

When using the cutting/rapid velocity loop gain switching function, perform cutting feed at the maximum cutting feedrate to also check the cutting-time oscillation limit.
2. As the velocity loop gain is increased gradually, the following oscillation phenomena occur:

- Vibration occurs in the torque command waveform.
- Vibration sound is generated from the machine.
- A large variation in positional deviation is observed when the machine movement stops.

3. Perform frequency analysis (Ctrl-F) for the torque command issued when the above phenomena occur, and measure the vibration frequency.
4. Set the measured vibration frequency as the attenuation center frequency, and set the initial values of the attenuation bandwidth and damping by consulting the setting guideline.
[Setting guideline]

Resonance frequency	Attenuation bandwidth	Damping
Lower than 150 Hz	Decrease the velocity loop gain. ${ }^{\text {(Note 1) }}$	
$\mathbf{1 5 0}$ to $\mathbf{2 0 0 ~ H z}$	Decrease the velocity loop gain. ${ }^{\text {(Note 2) }}$	
$\mathbf{2 0 0}$ to $\mathbf{4 0 0 ~ H z}$	60 to 100 Hz	0 to 50%
Higher than $\mathbf{4 0 0 ~ H z}$	100 to 200 Hz	0 to 10%

[Parameter Nos.]

Series 30i, 16i	Attenuation center frequency [Hz]	Attenuation bandwidth [Hz]	Damping $[\%]$
Resonance elimination filter 2	No.2360	No.2361	No.2362
Resonance elimination filter 3	No.2363	No.2364	No. 2365
Resonance elimination filter 4	No.2366	No.2367	No.2368
Resonance elimination filter 1	No.2113	No.2177	No.2359

Series 15i	Attenuation center frequency $[\mathrm{Hz}]$	Attenuation bandwidth $[\mathrm{Hz}]$	Damping $[\%]$
Resonance elimination filter 2	No.2773	No.2774	No.2775
Resonance elimination filter 3	No.2776	No.2777	No.2778
Resonance elimination filter 4	No.2779	No.2780	No.2781
Resonance elimination filter 1	No.1706	No.2620	No.2772

NOTE
1 The disturbance elimination filter (see Section 4.5) may be effective.
2 When the resonance elimination filter is used, set a narrow attenuation bandwidth (about 50 Hz or less) and a large damping attenuation factor (about 50\% to 80\%).
3 When the center frequency becomes 200 Hz or lower, almost the same effect as when the velocity loop gain is decreased is obtained. Since the resonance elimination filter also has the effect in the change of phase, decreasing the velocity loop gain is recommended.
4 The resonance elimination filter becomes more effective as damping becomes closer to 0%. Therefore, when adjusting damping, start with a large value and decrease it gradually.

When SERVO GUIDE can be used, the resonance elimination filter can be set from the parameter window.
[Starting the parameter window]

5. After setting the resonance elimination filter in step 4, measure the torque command again. If there is still vibration left at the same frequency, decrease the damping setting. If vibration occurs at a frequency other than the set frequency, it may be adversely influenced by the setting of the resonance elimination filter. So, try to increase the setting of damping to about 80% to reduce the influence of the resonance elimination filter on velocity control. If vibration is still observed, stop setting the resonance elimination filter and decrease the velocity loop gain.
6. After determining the attenuation bandwidth and damping, increase the velocity loop gain again until vibration phenomena listed in step 2 occur. The final value of the velocity loop gain is 70% to 80% of the velocity loop gain set when the vibration phenomena occur.

B) Adjustment using the frequency characteristics

The velocity loop gain can be adjusted also by increasing the velocity loop gain while measuring the frequency characteristics. As the velocity loop gain increases, the gain at a certain frequency swells in the frequency characteristics. The frequency corresponding to the swell is the resonance frequency. So, the velocity loop gain is increased while the swell in gain is suppressed with the resonance elimination filter.
The velocity loop gain to be set is 70% to 80% of the velocity loop gain observed when the swell can no longer be suppressed by the resonance elimination filter. It is regarded as the final setting if there is no problem during rapid traverse and cutting feed at the maximum feedrate. If vibration occurs, decrease the velocity loop gain until the vibration stops.
For measurement of the frequency characteristics, see "Details".

(6) Adjustment of acc./dec. in rapid traverse

The time constant of acc./dec. in rapid traverse is adjusted. Adjusting the time constant in rapid traverse can reduce the total machining time. While observing the torque command (TCMD) at the time of acc./dec. in rapid traverse to check that the TCMD does not reach the maximum current value, decrease the time constant of acc./dec. in rapid traverse. When bell-shaped acc./dec. in rapid traverse is used, a small TCMD value can be obtained with mechanical impact suppressed.

NOTE
 Make adjustments in rapid traverse with the maximum load applied to the machine.

The following graphs show how the time constant in rapid traverse is adjusted.

[Parameter window main screen]

[Acc./dec. + normal control]

(7) Adjustment of the position gain

Observe the torque command waveform at the time of acc./dec. during rapid traverse and cutting feed at the maximum cutting feedrate. When a low frequency vibration (hunting) of about 10 to 30 Hz occurs in the torque command waveform, the corresponding position gain is regarded as the oscillation limit. The position gain to be set is about 80% of the position gain of the oscillation limit. The standard setting is within 5000 to 10000 .

(Check points)

- No vibration is allowed in the stopped state. Also check the positional deviation on the CNC. $(<1>)$
- Neither vibration nor sound must be generated during acceleration and deceleration. If the TCMD level has reached the maximum value, increase T1. ($<2>,<5>$)
- Neither vibration nor excessive overshoot must be generated at the end of acceleration and deceleration. If the TCMD level has reached the maximum value, increase $\mathrm{T} 2 .(<3>,<7>)$
- There must be no large variation in feedrate during movement at a constant feedrate. $(<4>)$

NOTE

For axes for which interpolation is performed, set the same position gain.

[Position control]

(8) Adjustment by using an arc (adjustment of the feed-forward coefficient and adjustment of the servo function)

(a) Feed-forward function

For higher precision (higher performance) with small servo follow-up delay, the feed-forward function is used. When the feed-forward coefficient is set to 100%, the positional deviation can be almost eliminated.

(Feed-forward)

By adding to a velocity command value the velocity compensation value equivalent to the position command issued from the CNC, the contour error due to position loop response delay can be reduced.
(Velocity feed-forward)
The torque compensation amount equivalent to the amount of change in velocity command (acceleration) is added to a specified torque value so that the contour error due to velocity loop response delay can be reduced.

The following figure shows the effect of the feed-forward function. The figure indicates that an arc radius error of $250 \mu \mathrm{~m}$, which was measured before the use of the feed-forward function, has been reduced to almost 0 after the use of the feed-forward function.

(b) Adjusting the feed-forward coefficient

The feed-forward coefficient can be adjusted on the screen shown below. Note that, however, setting the feed-forward coefficient to more than $10000(100 \%)$ means that the actual machine position advances ahead of commands from the CNC. So, such setting is not permitted.

[Parameter window main screen]

[Contour error suppression + feed-forward]

While checking fluctuation of radius by using an arc with about R10/F4000 or R100/F10000 set, make an adjustment so that the actual path matches the commanded path. At this time set the velocity feed-forward coefficient to about 100 .

NOTE

To fine-tune the amount of arc radius, also adjust the feed-forward timing parameter after adjusting the feed-forward coefficient. (See Subsection 4.6.5.)

(c) Adjusting backlash acceleration

To reduce quadrant protrusions (errors generated where the axis move direction is reversed), the backlash acceleration function is used.
While observing the quadrant protrusion size, change the backlash acceleration value in steps of about 10 to 20 , and ends the adjustment immediately before undercut occurs. A large quadrant protrusion or undercut may adversely affect cutting results. So, adjust the backlash acceleration so that any quadrant protrusion is not greater than $5 \mu \mathrm{~m}$.

NOTE
1 For the adjustment of the conventional backlash acceleration function, see Subsection 4.6.6.
2 When higher precision is required, use the 2-stage backlash acceleration function (see Subsection 4.6.7).
[Parameter window main screen]

[Contour error suppression + backlash acceleration]

(9) Adjustment by using a square figure (adjustment of the high-speed and high-precision function and adjustment of the servo function)
(a) Setting the corner deceleration function

When the automatic corner deceleration function is used, an error at the corner (overshoot) can be reduced. First, set the reduced corner feedrate to $400 \mathrm{~mm} / \mathrm{min}$.
[Acc./dec. + AI contour control 2 (when AI contour control II is used)]

The figure below shows the effect of the corner deceleration function. Deceleration at a corner reduces the amount of the overshoot.

NOTE

For fine-adjustment of a corner overshoot, the following parameters are also related:

- Acc./dec. before interpolation
- Velocity feed-forward coefficient

(b) Adjusting the time constant in cutting feed

In automatic corner deceleration, the feedrate at which the tool moves along a corner is reduced according to the permissible acceleration set for acc./dec. before interpolation. When the automatic corner deceleration function is used, the tangential feedrate at the corner changes in a V-shaped manner as shown below. As the permissible acceleration for acc./dec. before interpolation is decreased, deceleration at the corner becomes smoother, therefore, the contour error at the corner can be decreased.

Tangential feedrate indication

Indication of feedrate along each axis
[Acc./dec. + AI contour control 2 (when AI contour control II is used)]

If the contour error at the corner cannot be reduced even by adjusting the permissible feedrate difference, increase the time constant of acc./dec. before interpolation.
When bell-shaped Acc/Dec. before interpolation is used, contour errors not only at corners but also rounded corners may be improved. Note that, however, a larger time constant extends the total machining time.

(c) Adjusting velocity feed-forward

The velocity feed-forward function has the effect of helping the torque command start earlier at the time of acc./dec. This effect is reflected in corner figures. So, adjust the velocity feed-forward coefficient so that corner figures can be improved. When nano interpolation is not used, set the coefficient value to 400 or smaller.

[Parameter window main screen]

[Contour error suppression + feed-forward]

(10) Adjustment by using a square figure with $1 / 4$ arcs (adjustment of the high-speed and high-precision function and adjustment of the servo function)

When acceleration changes suddenly at an arc part, positional deviation occurs. To reduce this positional deviation, set the permissible acceleration. Hence, the feedrate is changed depending on whether the tool moves along a linear part or an arc part in a square figure with $1 / 4$ arcs as shown below. In this example, the feedrate decreases to F1000 in an arc part, and after the arc part is passed, the feedrate increases to restore F4000. The acc./dec. before and after an arc is determined by the time constant of acc./dec. before interpolation.

The following figure shows that this function reduces the positional deviation.

[Parameter window main screen]

[Acc./dec. + AI contour control 2 (when AI contour control II is used)]

When advanced preview control is used, the feedrate at a rounded portion is suppressed by setting the arc radius and feedrate. For example, when the arc radius is 5 mm , and the feedrate is to be decreased to F2000, set R to 5 mm , and the feedrate to F2000 $\mathrm{mm} / \mathrm{min}$.

[Parameter window main screen]

[Acc./dec. + advanced preview control (when advanced preview control is used)]

The positional deviation in an arc part can be suppressed also by adjusting the velocity feed-forward coefficient. Since the positional deviation in an arc part is caused by velocity loop delay at the start and end of the arc, velocity feed-forward, which compensates for delay, is effective in the suppression of the positional deviation in arc parts.

3.3.2 High-Speed Positioning Adjustment Procedure

(1) Overview

This section describes the adjustment procedure for high-speed positioning required with a punch press and PC board drilling machine.

(2) Adjustment procedure

Make a high-speed positioning adjustment while viewing the ERR (servo error amount) and TCMD. Set a measurement range as described below.

- ERR: Adjust the measurement range so that the precision required for positioning can be seen. When using the analog check board, measure VCMD instead of ERR. (Adjust the VCMD magnification and the measurement voltage level.) In the example below, a requested precision of $10 \mu \mathrm{~m}$ is assumed.
- TCMD: Make an adjustment to view a specified maximum current value. If an adjustment is made to reduce positioning time, TCMD saturation may occur. Make an adjustment so that the TCMD lies within a specified maximum current.
$<1>$ I-P function setting
Select I-P function for velocity loop control. In general, PI function reduces start-up time for a command, but requires a longer setting time, so that PI function is not suitable for high-speed positioning. On the other hand, I-P function reduces time required to reach a target position, so that I-P function is generally used for high-speed positioning adjustment.

Fig. 3.3.2 (a) When PI function is used

Fig. 3.3.2 (b) When I-P function is used
<2> Set a highest possible velocity loop gain according to Subsec.
3.3.1, "Servo HRV Control Adjustment Procedure."

Fig. 3.3.2(c) After velocity loop gain adjustment
$<3>$ Set a switch speed of $1500\left(15 \mathrm{~min}^{-1}\right)$ with the position gain switch function (see Subsec. 4.8.1).

Fig. 3.3.2(d) Position gain switch function
$<4>$ Set a highest possible position gain. While viewing the ERR waveform (VCMD waveform), make an adjustment so that the overshoot value lies within a requested precision. After setting a position gain, perform rapid traverse for a long distance to check that low-frequency vibration due to an excessively increased position gain does not occur. If the set position gain is too high, vibration after an overshoot exceeds a requested precision. An overshoot itself can be suppressed to some extent by adjustment of $<5>$.

Fig. 3.3.2(e) Adequate position gain

Fig. 3.3.2(f) Excessively high position gain
<5> Make a fine PK1V adjustment to eliminate an overshoot and undershoot. If a large value is set for PK1V, a large undershoot occurs.

Fig. 3.3.2(g) After PK1V adjustment

Fig. 3.3.2(h) When the value of PK1V is too large

3.3.3 Rapid Traverse Positioning Adjustment Procedure

(1) Overview

The fine acc./dec. function applies a filter to each axis in the servo software to reduce a shock associated with acc./dec. By combining the fine acc./dec. function with feed-forward, high-speed positioning can be achieved in rapid traverse. This section describes rapid traverse positioning adjustment.

NOTE

In the Series $30 i, 31 i$, and $32 i$, smooth acc./dec. is always performed by nano interpolation, so the fine acc./dec. function is unnecessary.
Please use the bell-shaped acc./dec in rapid traverse in stead of the fine acc./dec. function.

(2) High-speed positioning by a combination of fine acc./dec. and feed-forward

(Rapid traverse positioning when fine acc./dec. is not used)

A servo loop not performing feed-forward has a delay equivalent to a position loop gain. The time required for positioning after completion of distribution from the CNC is four to five times the position gain time constant (33 ms for $30[1 / \mathrm{s}]$) (133 to 165 ms for a position gain of 30). In normal rapid traverse, rapid traverse linear acc./dec. (Fig. 3.3.3 (a)) is used, so that acceleration changes to a large extent at the start and end of acceleration. However, since feed-forward is not used, acceleration change is made moderate by a position loop gain, and a shock does not occur.
If a low linear acc./dec. time constant is set for high-speed positioning, and a high position gain and feed-forward are set, the time required for positioning is reduced, but a shock occurs. In this case, a shock can be reduced by setting rapid traverse bell-shaped acc./dec. (optional function) (Fig. 3.3.3 (b)).

Fig. 3.3.3 (a) Rapid traverse linear acc./dec.

Fig. 3.3.3 (b) Rapid traverse bell-shaped acc./dec.

(Rapid traverse positioning when fine acc./dec. is used)

For further reduction in the time required for rapid traverse positioning, a delay due to position gain needs to be minimized. For this purpose, feed-forward needs to be fully utilized. When feed-forward is applied, the positional deviation decreases. Accordingly, positional deviation convergence occurs more rapidly after distribution, thus reducing the time required for positioning.
If feed-forward close to 100% is applied to normal acc./dec. (Fig. 3.3.3 (a) and (b)), a mechanical shock due to acceleration change at the start and end of acc./dec., and a torque command vibration during acc./dec. can pose a problem. To cope with this, the fine acc./dec. function is available (Fig. 3.3.3 (c) and (d)).

Fig. 3.3.3 (c) Fine acc./dec. (FAD)

Fig. 3.3.3 (d) Rapid traverse bell-shaped acc./dec. + FAD

Fine acc./dec. increases the time required for command distribution by a time constant. However, a time reduction in positioning achieved by feed-forward is greater than this increase, so the time required for positioning can be reduced in total. Thus, positioning can be speeded up using fine acc./dec. The adjustment procedure is described in (3) below.
($\mathrm{T} 1+$ positioning time based on a position gain)
$>(\mathrm{T} 1+\mathrm{Tf}+$ positioning time based on feed-forward $)$
A time constant up to 64 ms can be set for fine acc./dec. If a time constant greater than 64 ms is required, use rapid traverse bell-shaped acc./dec., and set 8 ms for linear-type fine acc./dec. (Fig. 3.3.3 (d)).

(3) Adjustment procedure

Make a rapid traverse positioning adjustment while viewing the ERR (servo error amount). Adjust the measurement range so that the time required for position deviation convergence within the in-position width can be seen. At the same time, observe the TCMD to check that the TCMD is not saturated. Before proceeding to the adjustment described below, adjust the velocity loop gain according to item (5), "Adjustment of high-speed velocity control" in the Subsec. 3.3.1, "Gain Adjustment Procedure."
The measurement data of Fig. 3.3.3 (e) has been obtained under the condition below. Fine acc./dec. and feed-forward are not used.

- Rapid traverse rate: $20000 \mathrm{~mm} / \mathrm{min}$
- Rapid traverse time constant: 150 ms
- Position gain: 30/s
- Travel distance: 100 mm

When the in-position width is 20 pulses, a time of about 180 ms is required from distribution completion to positioning. Reducing this time can speed up positioning.

Fig. 3.3.3 (e) Measurement of time before adjustment
$<1>$ Default parameter setting for fine acc./dec. and feed-forward Set the parameters according to Table 3.3.3. By setting the default parameters, the time required for positioning can be much reduced.

Table 3.3.3 Default parameters for rapid traverse positioning adjustment

Item	Default parameter		
	Series $15 i$	Series 30i, 16i, and so on	Setting
Rapid traverse feed-forward enable	No. 1800 \#3	No. 1800 \#3	1
Fine acc./dec. function enable	No. 1951 \#6	No. 2007 \#6	1
Linear-type fine acc./dec.	No. 1749, \#2	No. 2009 \#2	1
Fine acc./dec. time constant	No. 1702	No. $2109{ }^{(* 1)}$	40
Feed-forward enable	No. 1883 \#1	No. 2005 \#1	1
Feed-forward coefficient	No. 1985	No. $2092{ }^{(* 1)}$	9700
Velocity feed-forward coefficient	No. 1962	No. $2069{ }^{(* 1)}$	100

*1 When using different values for cutting and rapid traverse, use the cutting feed/rapid traverse switchable fine acc./dec. function according to Section 4.3, "CUTTING FEED/RAPID TRAVERSE SWITCHABLE FUNCTION."
$<2>$ Velocity feed-forward adjustment
When feed-forward is enabled, the time required for positioning can be reduced, but a swell may occur due to insufficient velocity loop response immediately before machining stops. A swell can be reduced by an increased velocity loop gain, but there is an upper limit on the velocity loop gain. So, adjust the velocity feed-forward coefficient to reduce a swell for positioning time reduction.
The default settings cause a swell immediately before machining stops (Fig. 3.3.3 (f)). The swell can be reduced by increasing the velocity feed-forward coefficient (Fig. 3.3.3 (g)).

$<3>$ Fine adjustment of feed-forward
Reduce the time required for positioning by making a fine adjustment of the feed-forward coefficient. If the feed-forward coefficient is not sufficiently large (Fig. 3.3.3 (h)), increase the feed-forward coefficient by about 0.5%. If the feed-forward coefficient is too large (Fig. 3.3.3 (i)), decrease the feed-forward coefficient by about 0.5%.

Fig. 3.3.3 (h) When the feed-forward coefficient is too small
FAD: 64 ms
Feed-forward: 98\%
Velocity feed-forward coefficient: 250\%

Fig. 3.3.3 (i) When the feed-forward coefficient is too high
FAD: 64 ms
Feed-forward: 99\%
Velocity feed-forward coefficient: 250\%

If an adequate feed-forward coefficient is set, the in-position width is satisfied nearly at the same as distribution command completion, and shortest-time positioning is achieved as shown in Fig. 3.3.3 (j).

Fig. 3.3.3 (j) When an adequate feed-forward coefficient is set FAD: 64 ms
Feed-forward: 98.5\%
Velocity feed-forward coefficient: 250\%

3.3.4 Vibration in the Stop State

Vibration generated only in the stop state is caused by the decreased load inertia in a backlash. Adjust the auxiliary functions for suppressing stop-time vibration. Vibration may be generated only in the stop state also when the position gain is too high.

(Reference: Parameter numbers)
For details, see Chapter 4, "SERVO FUNCTION DETAILS."
Function 1: Velocity loop proportional high-speed processing function

1: Enables the velocity loop proportional high-speed processing function.

Function 2: Acceleration feedback

$1894(\mathrm{FS} 15 i)$
2066 (FS30i, 16i)

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
PK2V25							

Acceleration feedback gain

Function 3: Function for changing the proportional gain in the stop state

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
1958 (FS15i)					PK2VDN			

2016 (FS30i, 16i)
PK2VDN (\#3)

1: Enables the function for changing the proportional gain in the stop state. In the stop state: 75%

PK2D50 (\#3)
1: Decreases the proportional gain in the stop state to 50%.

$1730($ FS15 $i)$
$2119($ FS30 $i, 16 i)$

Function for changing the proportional gain in the stop state: Arbitrary magnification in the stop state (during cutting feed only)

Function 4: N pulse suppress function

3.3.5 Vibration during Travel

Vibration is generated during travel by various causes. So, a most appropriate method must be selected after observing the vibration status carefully.

(Reference: Parameter numbers)
For details, see Chapter 4, "SERVO FUNCTION DETAILS."
Function 1: TCMD filter

Function 2: Dual position feedback function

1971 (FS15i)
$2078($ FS30 $i, 16 i)$

Dual position feedback: conversion coefficient (numerator)

1972 (FS15i)
2079 (FS30 $i, 16 i$)

Dual position feedback: conversion coefficient (denominator)

1973 (FS15i)
2080 (FS30i, 16i)

Dual position feedback: primary delay time constant

Function 3: Vibration-damping control

1718 (FS15i)
2033 (FS30i, 16i)

Vibration-damping control function: number of position feedback pulses

$1719($ FS15i)
$2034($ FS30 $i, 16 i)$

\square

Function 4: Machine velocity feedback

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
1956 (FS15i)							MSFE	
2012 (FS30i, 16i)	1: Enables machine velocity feedback.							
MSFE (\#1)								
1981 (FS15i)	Machine velocity feedback gain							
2088 (FS30i, 16i)								

Function 5: Fine acc./dec. function

$1702(\mathrm{FS} 15 i)$
2109 (FS30i, 16 i)

NOTE

In the Series $30 i, 31 i$, and $32 i$, smooth acc./dec. is always performed by nano interpolation, so the fine acc./dec. function is ignored.

3.3.6 Stick Slip

(Reference: Parameter numbers)
For details, see Chapter 4, "SERVO FUNCTION DETAILS."
Function 1: VCMD offset function

3.3.7 Overshoot

When the machine is operated at high speed or with a detection unit of $0.1 \mu \mathrm{~m}$ or less, the problem of overshoots may arises. Select a most appropriate preventive method depending on the cause of the overshoot.

(Reference: Parameter numbers)
For details, see Chapter 4, "SERVO FUNCTION DETAILS."
Function 1: Overshoot compensation function

2003 (FS30i, 16i)
OVSC (\#6) 1: Enables the overshoot compensation function.

$1970(F S 15 i)$
2077 (FS30i, 16i)

\square

1857 (FS15i)
2045 (FS30i, 16i)

\square

OVS1 (\#3)
1: Enables overshoot compensation TYPE-2.

(1) Overview

Servo HRV control is a digital servo control system based on high-speed, high-response current control and includes servo HRV1 control, servo HRV2 control, servo HRV3 control, and servo HRV4 control. Use of these control systems allows higher acceleration, higher speed, and higher precision.

Servo HRV control system

(2) Servo HRV control and Series and editions of applicable servo software

| | Series30i | | Other than the Series 30i | |
| :--- | :---: | :---: | :---: | :---: | \left\lvert\, \(\left.\begin{array}{c}Series 90D0/A(01)

and subsequent

editions

(Note 1, 2)\end{array} \quad $$
\begin{array}{c}\text { Series 90E0/A(01) } \\
\text { and subsequent } \\
\text { editions } \\
\text { (Note 2) }\end{array}
$$ \quad $$
\begin{array}{c}\text { Series 90B0/H(08) } \\
\text { and subsequent } \\
\text { editions } \\
\text { (Note 3) }\end{array}
$$ \quad $$
\begin{array}{c}\text { Series 9096/A(01) } \\
\text { and subsequent } \\
\text { editions }\end{array}
$$\right.\right]\)
\bigcirc : Supported (- is recommended)
\times : Not supported

NOTE

1 When using servo HRV4 control, use Series 90DO/J(10) and subsequent editions.
2 For Series 90D0 and 90E0, apply the same servo HRV control to all axes.
3 Series 90B1/A(01) and subsequent editions, Series 90B6/A(01) and subsequent editions, and Series 90B5/A(01) and subsequent editions are also supported.

(3) Features of servo HRV control

(a) Servo HRV2 control

Servo HRV control is a total control technology implemented by a servo motor, servo amplifier, and control systems as shown in the figure below. Servo HRV2 control has the following features:
(1) HRV filters for eliminating vibration components of the machine system can be used.
The HRV filters include the following filters to cover a wide range of vibration from low frequency vibration to high frequency vibration:
TCMD filter (a filter for eliminating middle frequency vibration) Resonance elimination filter (a filter for eliminating high frequency vibration)
Disturbance elimination filter (a filter for eliminating low frequency vibration)
(2) Use of a $\alpha i \mathrm{~S} / \alpha i \mathrm{~F} / \beta i \mathrm{~S}$ series motor and a $\alpha i / \beta i$ servo amplifier enables high-speed, high-precision, and smooth feed.
(3) Use of a precise pulse coder improves control performance.

With Series 90B0, 90B1, 90B6, and 90B5, it is recommended that servo HRV2 control be used for the current loop.

(b) Servo HRV3 control

In addition to the features of HRV2 control, servo HRV3 control has the following features:
(1) Use of high-speed DSP enables high-speed HRV current control, therefore improving the response performance of the current loop.
(2) When a linear motor or an αi S series servo motor are used, both high acceleration, high speed and high precision can be provided at the same time.

With Series 90D0 and 90E0, use of servo HRV3 control is recommended.
(c) Servo HRV4 control

In addition to the features of servo HRV2 and servo HRV3, servo HRV4 control has the following features:
(1) An improved servo HRV control system is employed. (Extended HRV function)
(2) Improved thermal resistance in the high-speed DSP and servo amplifier provides the current loop with higher response performance than the response performance provided by servo HRV3 current control.

4.1.1 Servo HRV2 Control

(1) Series and editions of applicable servo software

(Series $30 i, 31 i, 32 i$)
Series 90D0/A(01) and subsequent editions
Series $90 \mathrm{E} 0 / \mathrm{A}(01)$ and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B, Power Mate i)
Series $90 B 0 / A(01)$ and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series 90B5/A(01) and subsequent editions

(2) Setting parameters

By using a motor ID number for servo HRV2 control, load the standard parameters.
Set the motor ID number supporting servo HRV2 control, listed in the table below, and perform servo initialization.

NOTE

1 For the motor ID number, see the table below.
2 With servo software editions earlier than the editions listed in the table, automatic parameter loading cannot be performed. In such cases, enter the standard parameters listed in the parameter list in Section 6.2 in this manual.

- α is series servo motor

Motor model	Motor specification	Motor ID No.	90D0 90E0	90B0	90B5 90B6	90B1
$\alpha i S 2 / 5000$	0212	262	A	H	A	A
$\alpha i S 2 / 6000$	0218	284	G	-	B	B
$\alpha i S 4 / 5000$	0215	265	A	H	A	A
$\alpha i S 8 / 4000$	0235	285	A	H	A	A
$\alpha i S 8 / 6000$	0232	290	G	-	B	B
$\alpha i S 12 / 4000$	0238	288	A	H	A	A
$\alpha i S 22 / 4000$	0265	315	A	H	A	A
$\alpha i S 30 / 4000$	0268	318	A	H	A	A
$\alpha i S 40 / 4000$	0272	322	A	H	A	A
$\alpha i S 50 / 3000$	$0275-\mathrm{Bx} 0 \mathrm{x}$	324	B	V	A	A
$\alpha i S 50 / 3000 \mathrm{FAN}$	$0275-\mathrm{Bx} 1 \mathrm{x}$	325	A	N	A	A
$\alpha i S 100 / 2500$	0285	335	A	T	A	A
$\alpha i S 200 / 2500$	0288	338	A	T	A	A
$\alpha i S 300 / 2000$	0292	342	B	V	A	A
$\alpha i S 500 / 2000$	0295	345	A	T	A	A

Motor model	Motor specification	Motor ID No．	$\begin{aligned} & \text { 90D0 } \\ & \text { 90E0 } \end{aligned}$	90B0	$\begin{aligned} & \text { 90B5 } \\ & \text { 90B6 } \end{aligned}$	90B1
α iF1／5000	0202	252	A	H	A	A
人iF2／5000	0205	255	A	H	A	A
α iF4／4000	0223	273	A	H	A	A
α iF8／3000	0227	277	A	H	A	A
α iF12／3000	0243	293	A	H	A	A
α iF22／3000	0247	297	A	H	A	A
人iF30／3000	0253	303	A	H	A	A
α iF40／3000	0257－Bx0x	307	A	H	A	A
α iF40／3000 FAN	0257－Bx1x	308	A	1	A	A
α is series servo motor（for 400－V driving）						
Motor model	Motor specification	Motor ID No．	$\begin{aligned} & \hline \text { 90DO } \\ & \text { 90EO } \end{aligned}$	90B0	$\begin{aligned} & \hline \text { 90B5 } \\ & 90 \mathrm{~B} 6 \end{aligned}$	90B1
α iS2／5000HV	0213	263	A	Q	A	A
人iS2／6000HV	0219	287	G	－	B	B
人iS4／5000HV	0216	266	A	Q	A	A
人iS8／4000HV	0236	286	A	N	A	A
α iS8／6000HV	0233	292	G	－	B	B
α iS12／4000HV	0239	289	A	N	A	A
α iS22／4000HV	0266	316	A	N	A	A
α iS30／4000HV	0269	319	A	N	A	A
α iS40／4000HV	0273	323	A	N	A	A
α iS50／3000HV FAN	0276－Bx1x	326	A	N	A	A
α iS50／3000HV	0276－Bx0x	327	B	V	A	A
人iS100／2500HV	0286	336	B	V	A	A
人iS200／2500HV	0289	339	B	V	A	A
aiS300／2000HV	0293	343	B	V	A	A
人iS500／2000HV	0296	346	B	V	A	A
aiS1000／2000HV	0298	348	B	V	A	A
α is 2000／2000HV $V^{\text {（Note 1）}}$	0091	340	－	－	－	B

The mark＂－＂indicates that automatic loading of standard parameters is not supported as of December， 2005.

NOTE

1 The model needs manual setting．（See Subsection 2．1．7，＂Setting Parameters when the PWM Distribution Module is used＂．）
When using the torque control function，contact FANUC．

- $\alpha \mathbf{i} \mathbf{F}(\mathrm{HV})$ series servo motor (for 400-V driving)

Motor model	Motor specification	Motor ID No.	90D0 90E0	90B0	90B5 90B6	90B1
$\alpha i \mathrm{~F} 4 / 4000 \mathrm{HV}$	0225	275	A	Q	A	A
$\alpha i \mathrm{~F} 8 / 3000 \mathrm{HV}$	0229	279	A	Q	A	A
$\alpha i \mathrm{~F} 12 / 3000 \mathrm{HV}$	0245	295	A	Q	A	A
$\alpha i \mathrm{~F} 22 / 3000 \mathrm{HV}$	0249	299	A	Q	A	A

- $\alpha \mathrm{C} i$ series servo motor

Motor model	Motor specification	Motor ID No.	90D0 90E0	90B0	90B5 90B6	90B1
$\alpha \mathrm{C} 4 / 3000 i$	0221	271	A	H	A	A
$\alpha \mathrm{C} 8 / 2000 i$	0226	276	A	H	A	A
$\alpha \mathrm{C} 12 / 2000 i$	0241	291	A	H	A	A
$\alpha \mathrm{C} 22 / 2000 i$	0246	296	A	H	A	A
$\alpha \mathrm{C} 30 / 1500 i$	0251	301	A	H	A	A

β is series servo motor

Motor model	Motor specification	Amplifier driving	Motor ID No.	$\begin{aligned} & \text { 90DO } \\ & \text { 90EO } \end{aligned}$	90B0	$\begin{aligned} & \hline \text { 90B5 } \\ & \text { 90B6 } \end{aligned}$	90B1
BiS0.2/5000	0111	4A	260	A	N	A	A
3iS0.3/5000	0112	4A	261	A	N	A	A
3iS0.4/5000	0114	20A	280	A	N	A	A
β is0.5/6000	0115	20A	281	G	-	B	B
3iS1/6000	0116	20A	282	G	-	B	B
β SS2/4000	0061	20A	253	B	V	A	A
		40A	254	B	V	A	A
β iS4/4000	0063	20A	256	B	V	A	A
		40A	257	B	V	A	A
β iS8/3000	0075	20A	258	B	V	A	A
		40A	259	B	V	A	A
β iS12/2000	$0077{ }^{(\text {Note 1) }}$	20A	269	-	-	D	-
3iS12/3000	0078	40A	272	B	V	A	A
β iS22/2000	0085	40A	274	B	V	A	A

NOTE

1 For a motor specification suffixed with "-Bxx6", be sure to use parameters dedicated to FSOi.

- \quad iS series servo motor (for 400-V driving)

Motor model	Motor specification	Amplifier driving	Motor ID No.	90D0 90E0	90B0	90B5 90B6	90B1
$\beta i S 2 / 4000 \mathrm{HV}$	0062	10 A	251	-	-	B	-
$\beta i S 4 / 4000 \mathrm{HV}$	0064	10 A	264	-	-	B	-
$\beta i S 8 / 3000 \mathrm{HV}$	0076	10 A	267	-	-	B	-
$\beta i S 12 / 3000 \mathrm{HV}$	0079	20 A	270	-	-	B	-
$\beta i S 22 / 2000 \mathrm{HV}$	0086	20 A	278	-	-	B	-

The mark "-" indicates that automatic loading of standard parameters is not supported as of December, 2005.

Motor model	Motor specification	Amplifier driving	Motor ID No.	90B5
β iS2/4000	0061-Bxx6	20A	306	D
		40A	310	D
β iS4/4000	0063-Bxx6	20A	311	D
		40A	312	D
β iS8/3000	0075-Bxx6	20A	283	D
		40A	294	D
β SS12/2000	0077-Bxx6	20A	298	D
β iS22/1500	0084-Bxx6	20A	302	D
		40A	305	D

The motor models above can be driven only with Series 90B5.

Motor model	Motor specification	Motor ID No.	$\begin{array}{\|l\|} \hline \text { 90DO } \\ \text { 90EO } \end{array}$	90B0	$\begin{aligned} & \hline \text { 90B5 } \\ & 90 \mathrm{~B} 6 \end{aligned}$	90B1
LiS300A1/4	0441-B200	351	G	-	B	B
LiS600A1/4	0442-B200	353	G	-	B	B
LiS900A1/4	0443-B200	355	G	-	B	B
LiS1500B1/4	0444-B210	357	G	-	B	B
LiS3000B2/2	0445-B110	360	G	-	B	B
LiS3000B2/4	0445-B210	362	G	-	B	B
LiS4500B2/2	0446-B110	364	G	-	B	B
LiS6000B2/2	0447-B110	368	G	-	B	B
LiS6000B2/4	0447-B210	370	G	-	B	B
LiS7500B2/2	0448-B110	372	G	-	B	B
LiS7500B2/4	0448-B210	374	G		B	B
LiS9000B2/2	0449-B110	376	G	-	B	B
LiS9000B2/4	0449-B210	378	G	-	B	B
LiS3300C1/2	0451-B110	380	G	-	B	B
LiS9000C2/2	0454-B110	384	G	-	B	B
LiS11000C2/2	0455-B110	388	G	-	B	B
LiS15000C2/2	0456-B110	392	G	-	B	B
LiS15000C2/3	0456-B210	394	G	-	B	B

Motor model	Motor specification	Motor ID No.	$\begin{array}{\|l\|} \hline 90 \mathrm{DO} \\ \text { 90EO } \end{array}$	90B0	$\begin{aligned} & \text { 90B5 } \\ & 90 \mathrm{B6} \end{aligned}$	90B1
LiS10000C3/2	0457-B110	396	G	-	B	B
LiS17000C3/2	0459-B110	400	G	-	B	B

Linear motor (for 400-V driving)

Motor model	Motor specification	Motor ID No.	90D0 90E0	90B0	90B5 90B6	90B1
LiS1500B1/4	$0444-\mathrm{B} 210$	358	G	-	B	B
LiS3000B2/2	$0445-\mathrm{B} 110$	361	G	-	B	B
LiS4500B2/2HV	$0446-\mathrm{B} 010$	363	G	-	B	B
LiS4500B2/2	$0446-\mathrm{B} 110$	365	G	-	B	B
LiS6000B2/2HV	$0447-\mathrm{B} 010$	367	G	-	B	B
LiS6000B2/2	$0447-\mathrm{B} 110$	369	G	-	B	B
LiS7500B2/2HV	$0448-\mathrm{B} 010$	371	G	-	B	B
LiS7500B2/2	$0448-\mathrm{B} 110$	373	G	-	B	B
LiS9000B2/2	$0449-\mathrm{B} 110$	377	G	-	B	B
LiS3300C1/2	$0451-\mathrm{B} 110$	381	G	-	B	B
LiS9000C2/2	$0454-\mathrm{B} 110$	385	G		B	B
LiS11000C2/2HV	$0455-\mathrm{B} 010$	387	G	-	B	B
LiS11000C2/2	$0455-\mathrm{B} 110$	389	G	-	B	B
LiS15000C2/3HV	$0456-B 010$	391	G	-	B	B
LiS10000C3/2	$0457-\mathrm{B} 110$	397	G	-	B	B
LiS17000C3/2	$0459-B 110$	401	G	-	B	B

The mark "-" indicates that automatic loading of standard parameters is not supported as of December, 2005.

Synchronous built-in servo motor (for 200-V driving)

Motor model	Motor specification	Motor ID No.	90D0 90E0	90B0	90B5 90B6	90B1	9096
DiS85/400	0483-B20x	423	K	-	-	-	-
DiS110/300	$0484-$ B10x	425	K	-	-	-	-
DiS260/600	$0484-B 31 x$	429	K	-	-	-	-
DiS370/300	$0484-B 40 x$	431	K	-	-	-	-

Synchronous built-in servo motor (for 400-V driving)

Motor model	Motor specification	Motor ID No.	90D0 90E0	90B0	90B5 90B6	90B1	9096
DiS85/400	0483-B20x	424	K	-	-	-	-
DiS110/300	0484-B10x	426	K	-	-	-	-
DiS260/600	$0484-\mathrm{B} 31 \mathrm{x}$	430	K	-	-	-	-
DiS370/300	0484-B40x	432	K	-	-	-	-

4.2 HIGH-SPEED HRV CURRENT CONTROL

4.2.1 Servo HRV3 Control

(1) Series and editions of applicable servo software

(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series 90E0/A(01) and subsequent editions (Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}$)

Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series $90 B 5 / \mathrm{A}(01)$ and subsequent editions

(2) Setting parameters for servo HRV3 control

$<1>$ See Subsection 4.1.1, and make settings for servo HRV2 control.
$<2>$ Set servo HRV3 current control. (For each axis)

NOTE

1 When servo HRV3 control is used with Series 90E0, a multiple of 4 cannot be set in parameter No. 1023. Skip multiples of 4 when setting the parameter.
Example: when using eight axes with Series 90E0, set parameter No. 1023 as follows:

$$
1,2,3,5,6,7,9,10
$$

$<3>$ Set the cutting/rapid velocity loop gain switching function.

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
1742(FS15i)							VGCCR	
2202(FS30i,16i)								
VGCCR (\#1)		es th es ctio			ity 10 rapi		witchin loop	ancti

2747(FS15i)
2334(FS30i,16i)

[Unit of data]
[Recommended value] 150

2748(FS15i)
2335(FS30 $i, 16 i$)

$<4>$ Set the current loop gain magnification.
[Valid data range] 100 to 270
This parameter is valid only for cutting feed in the high-speed HRV current control mode.
$<5>$ Set the velocity loop gain magnification.
[Unit of data] \%
[Valid data range] 100 to 400
This parameter is valid only for cutting feed in the high-speed HRV current control mode.

1700(FS15i)
2107(FS30i,16i)

Velocity loop gain magnification (cutting/rapid velocity loop gain switching)
[Unit of data] $\%$
[Valid data range]
100 to 400
This parameter is valid only for cutting feed when the high-speed HRV current control mode is not set.
<6> Set the high-speed HRV current control mode.
To use servo HRV3 control with servo software Series 90D0 and
90 E 0 for the Series $30 i, 31 i$, and $32 i$, set the following bit, which
To use servo HRV3 control with servo software Series 90D0 and
90 E 0 for the Series $30 i, 31 i$, and $32 i$, set the following bit, which automatically sets the high-speed HRV current control mode during cutting feed:

NOG54(\#0)
Current loop gain magnification in high-speed HRV current control mode
\%

Velocity loop gain magnification in high-speed HRV current control mode

\%促

The high-speed HRV current control mode (servo HRV3 control) is:

0 : Set only when both G5.4Q1 and G01 are specified.
1: Set when G 01 is specified (G5.4Q1 is not monitored).

NOTE

This function cannot be used during servo HRV4 control.
$<7>$ This completes parameter setting. To actually enter the high-speed HRV current control mode, G codes must be programmed. (This is not required if NOG54 is set to 1 . See Subsection 4.2.3.)

NOTE

The velocity loop gain is changed as listed below according to whether the high-speed HRV current control mode is set or not.
[Series $30 i, 16 i$, and so on]

High-speed HRV current control mode	Feed	Velocity loop gain [\%]
$\begin{gathered} \text { Set } \\ \text { (G5.4Q1-G5.4Q0) } \end{gathered}$	Rapid traverse	($1+$ No. $2021 / 256) \times 100$
	Cutting feed	$\quad(1+$ No. $2021 / 256) \times$ No. 2335 (High-speed HRV current control: Velocity loop gain magnification)
Not set	Rapid traverse	($1+$ No. $2021 / 256) \times 100$
	Cutting feed	$(1+$ No. $2021 / 256) \times$ No. 2107 (Cutting/rapid switching: Velocity loop gain magnification)

[Series15i]

High-speed HRV current control mode	Feed	Velocity loop gain [\%]
$\begin{gathered} \text { Set } \\ (\text { G5.4Q1-G5.4Q0) } \end{gathered}$	Rapid traverse	$(1+$ No. $1875 / 256) \times 100$
	Cutting feed	$(1+\text { No. } 1875 / 256) \times \text { No. } 2748$ (High-speed HRV current control: Velocity loop gain magnification)
Not set	Rapid traverse	$(1+$ No. $1875 / 256) \times 100$
	Cutting feed	$(1+$ No1875 / 256) \times No. 1700 (Cutting/rapid switching: Velocity loop gain magnification)

(3) Limitation on servo HRV3 control

(a) Servo motor output torque

(Series 90B0, 90B1, 90B6, 90B5)
During cutting operation in high-speed HRV current control, the torque command is automatically limited to 70% of the maximum current value of the servo amplifier. As a result, the torque command is easily saturated. Therefore, when determining the time constant in cutting feed, consider the cutting load and the above limitation. Normally, the high-speed HRV current control mode is used for light cutting for finish machining, so the limitation of the torque command to 70% of the maximum current value of the servo amplifier is not regarded as critical.

Torque curve during G5.4Q1 command

(Series 90D0, 90E0)
The servo amplifiers supporting the Series $30 i$ and so on have advanced thermal resistance. So, unlike Series 90B0, 90B1, 90B6, and 90 B 5 , there is no torque command limitation.

(4) Servo HRV3 control hardware

(a) Separate detector
(Series 90B0, 90B1, 90B6, 90B5)
When a separate detector is used for servo HRV3 control, the following separate detector interface unit supporting servo HRV3 control must be specified:

Separate detector interface unit for servo HRV3 control	Specification drawing number
Basic 4 axes	A02B-0236-C205

(Series 90D0, 90E0)
When a separate detector is used with the Series $30 i$ and so on, the following separate detector interface unit supporting the Series $30 i$ and so on must be specified:

Separate detector interface unit for Series 30 i and other CNC	Specification drawing number
Basic 4 axes	A02B-0303-C205

(b) Servo axis control cards

(Series 90B0, 90B1, 90B6, 90B5)
Servo axis control cards are divided into two groups: type A and type B.

Type A card: One optical connector is provided. (The maximum number of axes is 8.)
Type B card: Two optical connectors are provided. (The maximum

Type A has one optical connector.
number of axes is 8 .)

Type B has two optical connectors.
When servo HRV3 control is used, up to four servo amplifier axes can be connected to one optical connector, and only one separate detector interface unit can be connected to one optical connector. When five or more servo amplifier axes or two separate detector interface units are to be connected, a type B card is required.

NOTE

When four servo amplifier axes and one separate interface unit are connected to one optical connector, the separate interface unit must be connected in the fifth position.
[Number of controlled axes]
When a type A card is used: Up to four servo HRV3 control axes
When a type B card is used: Up to eight servo HRV3 control axes

- When a type A card is used: Up to four axes plus one unit can be connected.

(Up to four axes)
- When a type B card is used: Up to eight axes plus two units can

(Up to eight axes)
- (Reference) When servo HRV3 control is not used: With a type

(Series 90D0, 90E0)
There are two types of servo axis cards for Series 90D0 and 90E0: type A and type B. There is a restriction on axes as follows:

- Number of units that can be connected to one FSSB optical connector

Servo HRV3 control is:	Amplifier	Separate detector interface unit
Used. (Note)	10 axes	2 units
Note used.	16 axes	2 units

- Numbers of units that can be connected to the servo cards

Servo card	Series 90E0 servo HRV2 control	Series 90E0 servo HRV3 control	Series 90D0 servo HRV2,3 control	Separate detector interface unit
Servo card B13 A02B-0303-H084 (Type-A card)	Amplifier 12 axes	Amplifier 9 axes	Amplifier 6 axes	2 units
Servo card B26 A02B-0303-H085 (Type-B card)	Amplifier 24 axes	Amplifier 18 axes	Amplifier 12 axes	4 units

NOTE

When 10 or more servo amplifier axes or three separate detector units are used with servo HRV3 control, the Type-B card is required.
When 13 or more servo amplifier axes or five separate detector interface units are used without servo HRV3 control, the Type-B card is required.

- When the Type-A card is used: Up to nine axes plus two units can be connected.

- When the Type-B card is used: Up to 18 axes plus four units can be connected.

- (Reference) When servo HRV3 control is not used:

With the Type-A card, up to 12 axes plus two units can be connected.
With the Type-B card, up to 24 axes plus four units can be connected.

4.2.2 Servo HRV4 Control

(1) Series and editions of applicable servo software
(Series 30i, 31i)
Series 90D0/J(10) and subsequent editions

(2) Setting parameters for servo HRV4 control

$<1>$ See Subsection 4.1.1, and make settings for servo HRV2 control.
$<2>$ Set servo HRV4 control. (For each axis)

HR4(\#0)

1: Uses servo HRV4 control.
0: Does not use servo HRV4 control.

NOTE

1 When the high-speed HRV current control mode is set by the G5.4Q1 command, servo HRV3 control or servo HRV4 control, whichever set in a parameter, is enabled. Therefore, both the servo HRV3 control enable bit and the servo HRV4 control enable bit cannot be set to 1 at the same time. (If these bits are both set to 1 , an alarm indicating invalid current control setting is issued.)
2 When servo HRV4 control is used with Series 90D0, multiples of 2 cannot be set in parameter No. 1023. Set values with multiples of 2 skipped. Example:When five axes are used with 90D0, values 1,3,5,7,9 are set in parameter No. 1023.

3 If servo HRV4 control is set, servo HRV3 control is performed during rapid traverse or when high-speed HRV current control is disabled.
4 In servo HRV4 control using Series 90D0, one axis is controlled with one CPU. So, functions (such as tandem vibration-damping control during synchronization control, and torque tandem control) involving two or more axes in servo software processing cannot be used.
$<3>$ Enable the extended HRV function. (For each axis)

HRVEN(\#0)
1: Uses the extended HRV function.
0: Does not use the extended HRV function.

VGCCR (\#1)

2334(FS30i, 31i)

[Unit of data] $\%$
[Valid data range] 100 to 270
[Recommended value] 150
This parameter is valid only for cutting feed in the high-speed HRV current control mode.
$<6>$ Set the velocity loop gain magnification.

Velocity loop gain magnification in high-speed HRV current control mode
[Unit of data] \%
[Valid data range] 100 to 400
This parameter is valid only for cutting feed when the high-speed HRV current control mode is set.

$$
\begin{aligned}
& \begin{array}{|l|l}
\hline \text { Velocity loop gain magnification (cutting/rapid velocity loop gain switching) } \\
\cline { 1 - 1 }
\end{array} \\
& \text { 2107(FS30i, 31i) } \\
& \text { [Unit of data] \% } \\
& \text { [Valid data range] } 100 \text { to } 400 \\
& \text { This parameter is valid only for cutting feed when the high-speed } \\
& \text { HRV current control mode is not set. }
\end{aligned}
$$

<7> This completes parameter setting. To actually enter the high-speed HRV current control mode, G codes must be programmed. (See Subsection 4.2.3.)

NOTE

The velocity loop gain is changed as listed below according to whether the high-speed HRV current control mode is set or not.
[Series $30 i$ and so on]

High-speed HRV current control mode	Feed	Velocity loop gain [\%]			
Set	Rapid traverse	$(1+$ No. 2021/256) $\times 100$			
	Cutting feed	$(1+$ No. 2021 / 256) \times No. 2335			
(High-speed HRV current control: Velocity loop gain magnification)			$	$	$(1+$ No. 2021/256) 100
:---:	:---:				

(3) Limitation on servo HRV4 control

(a) Servo motor output torque

During cutting operation in high-speed HRV current control, the torque command is automatically limited to 70% of the maximum current value of the servo amplifier. As a result, the torque command is easily saturated. Therefore, when determining the time constant in cutting feed, consider the cutting load and the above limitation. Normally, the high-speed HRV current control mode is used for light cutting for finish machining, so the limitation of the torque command to 70% of the maximum current value of the servo amplifier is not regarded as critical.

(4) Servo HRV4 control hardware

(a) Separate detector

When a separate detector is used with the Series $30 i$ and so on, the following separate detector interface unit supporting the Series $30 i$ and so on must be specified:

Separate detector interface unit for Series $30 i$ and other CNC	Specification drawing number
Basic 4 axes	A02B-0303-C205

(b) Servo amplifiers

A servo amplifier supporting servo HRV4 control must be specified.
(c) Servo axis control cards

There are two types of servo axis cards for Series 90D0 and 90E0: Type-A and Type-B. There is a restriction on axes as follows:

Type A has one optical connector.

- Number of units that can be connected to one FSSB optical connector

Servo HRV4 control is:	Amplifier	Separate detector interface unit
Used. $^{\text {(Note 1) }}$	4	1
Not used.	(Note 2)	

- Numbers of units that can be connected to the servo cards

Servo card	Series 90D0 servo HRV4 control	Separate detector interface unit
Servo card B13 A02B-0303-H084 (Type-A card)	Amplifier 3 axes	1 unit
Servo card B26 A02B-0303-H085 (Type-B card)	Amplifier 6 axes	2 units

NOTE

1 When four or more servo amplifier axes or two separate detector units are used with servo HRV4 control, the Type-B card is required.
2 See the description of the servo axis control cards for servo HRV3 control.

- When the Type-A card is used: Up to three axes plus one unit can be connected.

- When the Type-B card is used: Up to six axes plus two units can be connected.

(d) Detector

To use servo HRV4 control, a detector supporting high-speed communication needs to be used for motor feedback (as a detector on the semi-closed loop side).
The table below indicates examples of detectors that support high-speed communication.

If a setting is made to enable HRV4 when a detector not supporting high-speed communication is connected, "SV0456 INVALID CURRENT CONTROL PERIOD SETTING ALARM" is issued.

Table 4.2.2 (a) Sample configuration of a detector usable with HRV4

Manufacture	Configuration or model
FANUC	αi Pulse coder
FANUC	αi CZ sensor (512S, 768S, 1024S)
FANUC	Combination of high-resolution serial output circuit H with an incremental scale supplied by a vendor other than FANUC
FANUC	Combination of high-resolution serial output circuit C with an incremental scale supplied by a vendor other than FANUC
HEIDENHAIN	RCN727
MITSUTOYO Co., Ltd.	AT553

* The table above indicates the configurations and models whose support for high-speed communication is confirmed as of December, 2005. For details, contact the detector manufacturers.

4.2.3 High-speed HRV Current Control

(1) Starting the high-speed HRV current control mode

The high-speed HRV current control mode is turned on and off by using a G code (G5.4). The high-speed HRV current control mode is set for cutting commands specified between G5.4Q1 and G5.4Q0.

```
PROGRAM
00001 ;
G5.1 Q1 ;
G5.4 Q1 ;
G0 X100. ;
G91 G02 I-10. F4000 ; ^ High-speed HRV
G02 I-10. ; 䐈 current control mode
G0 X-100. ;
G5.4 Q0 ;
G5.1 QO ;
```


(2) Checking the high-speed HRV current control mode

Diagnosis No. 700 is used for checking the status of the high-speed HRV current control mode in servo HRV3 control and servo HRV4 control. After setting servo HRV3 or HRV4 control and turning the power off then back on, check that bit 1 (HOK) of diagnosis No. 700 is set. When servo HRV3 or HRV4 control can be used, HOK is set to 1 .

When HOK is set to 1 , specifying G5.4Q1 sets bit $0(\mathrm{HON})$ of diagnosis DGN700 to 1 during the cutting feed command. If NOG54 is set to 1 , bit 0 is set to 1 during the cutting feed command even if G5.4Q1 is not specified.
When HON is set to 1 , a high-speed current control cycle is set, and the current gain magnification for high-speed HRV current control is applied.

4.3 CUTTING/RAPID SWITCHING FUNCTION

(1) Overview

Increasing the gains of the position loop and velocity loop is effective in the improvement of cutting profiles. However, the maximum feedrate and the acceleration of acc./dec. in rapid traverse are generally higher than those in cutting feed. So, vibration in the velocity loop or hunting in the position loop may occur in rapid traverse even when stable cutting feed can be performed with the same settings. To prevent this problem, the functions below are provided with a function for switching between parameters for cutting feed and parameters for rapid traverse.

Fig. 4.3 Parameters that can be switched between parameters for cutting feed and for rapid traverse

NOTE

1 The TCMD filter and resonance elimination filter can be used at the same time by parameter setting.
2 The cutting/rapid switching function is not applied to the resonance elimination filter.

(2) Setting procedure

(a) Switching of the velocity loop gain and fine acc./dec.
[Series and editions of applicable servo software]
(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series 90E0/A(01) and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B, Power Mate i)
Series $9096 / \mathrm{A}(01)$ and subsequent editions
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series 90B5/A(01) and subsequent editions

<1> Cutting/rapid velocity loop gain switching function

When TCMD is saturated during acceleration in rapid traverse, oscillation is easily generated in the velocity loop at the end of acceleration in rapid traverse. In some machines, as the feedrate becomes higher, high-frequency oscillation easily occurs. In such cases, switching between the gain for cutting feed and the gain for rapid traverse is effective.
If the cutting/rapid velocity loop gain switching is set, the conventional velocity gain is used in rapid traverse, and the overridden value is used during cutting feed. The override value is usually set to about 150% to 200%. When vibration occurs only in the stopped state, use the variable proportional gain function in the stop state. (With Series 90D0, 90E0, 90B0, 90B1, 90B6, and 90B5, the variable proportional gain function in the stop state and the velocity loop high cycle management function can be used together.)
When servo HRV3 control or HRV4 control is used, a separate override value can be specified during high-speed HRV current control. See Section 4.2, "HIGH-SPEED HRV CURRENT CONTROL".

$1742(\mathrm{FS} 15 i)$
$2202($ FS30 $i, 16 i)$

\#7	\#6	\#5	\#4	\#3	\#2	\#1	
						VGCCR	

1: Enables the cutting/rapid velocity loop gain switching function.
0: Disables the cutting/rapid velocity loop gain switching function.

[Series30i, 16i, and so on]

Cutting/rapid velocity loop gain switching function		Velocity loop gain [\%]
No. 2202\#1=0 (disabled)	Always	$(1+$ No. 2021/256) $\times 100$
No. 2202\#1=1 (enabled)	Rapid traverse	$(1+$ No. 2021/256 $) \times 100$
	Cutting feed	$(1+$ No. $2021 / 256) \times$ No. 2107

[Series15i]

Cutting/rapid velocity loop gain switching function		Velocity loop gain [\%]
No. $1742 \# 1=0$ (disabled)	Always	$(1+$ No. $1875 / 256) \times 100$
	Rapid traverse	$(1+$ No. $1875 / 256) \times 100$
	Cutting feed	$(1+$ No. $1875 / 256) \times$ No. 1700

<2> Cutting/rapid fine acc./dec. switching function (including feed-forward switching)
Although the optimum time constant of fine acc./dec. during cutting is about 16 ms , the time constant in rapid traverse should sometimes be set to 32 to 40 ms to reduce the impact applied at the time of acc./dec. The feed-forward coefficient that minimizes cutting profile error and the feed-forward coefficient that minimizes the time for high-speed positioning in rapid traverse are not always the same. In such cases, use the cutting/rapid fine $\mathrm{acc} . / \mathrm{dec}$. switching function.

1: Enables the cutting/rapid fine acc./dec. switching function.
0 : Disables the cutting/rapid fine acc./dec. switching function.
[Series30i, 16i, and so on]

Cutting/rapid fine acc./dec. switching function		FAD time constant	Position FF	Velocity FF
No. 2202\#0=0 (disabled)	Always	No. 2109	No. 2092	No. 2069
	Rapid traverse			
	Cutting feed	No. 2143	No. 2144	No. 2145

[Series15i]

Cutting/rapid fine acc./dec. switching function		FAD time constant	Position FF	Velocity FF
No. $1742 \# 0=0$ (disabled)	Always	No. 1702	No. 1985	No. 1962
No. 1742\#0=1 (enabled)	Rapid traverse			
	Cutting feed	No. 1766	No. 1767	No. 1768

(b) Feed-forward, TCMD filter, $1 / 2$ PI current control switching

[Series and editions of applicable servo software]
(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series 90E0/A(01) and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B, Power Mate i)
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series 90B5/A(01) and subsequent editions
$<1>$ Cutting/rapid feed-forward switching function
The position feed-forward coefficient and the velocity feed-forward coefficient can also be changed without using fine acc./dec. To do this, use the cutting/rapid feed-forward switching function.

1: Enables the cutting/rapid feed-forward switching function.
0 : Disables the cutting/rapid feed-forward switching function.
[Series30i, 16i, and so on]

Cutting/rapid feed-forward switching function		Position FF	Velocity FF
No. 2214\#4=0 (disabled)	Always	No. 2092	No. 2069
	Cutting feed	No. 2144	No. 2145

[Series15i]

Cutting/rapid feed-forward switching function		Position FF	Velocity FF
No. 2602\#4=0 (disabled)	Always	No. 1985	No. 1962
	Cutting feed	No. 1767	No. 1768

$<2>$ TCMD filter switching
When high frequency vibration occurs only in rapid traverse, use of the TCMD filter, rather than the resonance elimination filter, is sometimes effective. On the other hand, in cutting feed, inserting an unnecessary TCMD filter lowers the vibration limit of the velocity loop gain because of the delay in the filter. In such a case, using the TCMD filter only for rapid traverse is effective.

[Series30i, 16i, and so on]

Cutting/rapid feed-forward switching function		TCMD filter
No. 2156=0 (disabled)	Always	No. 2067
		No. 2156
	Cutting feed	No. 2067

[Series15i]

Cutting/rapid feed-forward switching function		TCMD filter
No. $1779=0$ (disabled)	Always	No. 1895
No. $1779 \neq 0$ (enabled)	Rapid traverse	No. 1779
	Cutting feed	No. 1895

$<3>$ Switching of the current loop $1 / 2$ PI control function in cutting feed and rapid traverse
When the cutting/rapid velocity loop gain switching function is enabled, the current loop $1 / 2$ PI control function is turned off at the time of rapid traverse. Only when current loop 1/2 PI control must be used also for rapid traverse while the cutting/rapid velocity gain switching function is enabled, set the bit for always enabling the current loop $1 / 2$ PI control function.

2202 (FS30i,16i)
1: Enables the current loop $1 / 2$ PI control function for cutting only.
0 : Enables the current loop $1 / 2$ PI control function for both cutting and rapid traverse.

NOTE

This function bit has double meanings. One is above and another is the cutting/rapid velocity loop gain switching function.

$1742($ FS15i)
2202 (FS30 $i, 16 i)$

1: Always enables the current loop $1 / 2 \mathrm{PI}$ control function.
[Series30i, 16i, and so on]

No. 2203\#2=1	No. 2202\#1	No. 2202\#2
Always enables the current loop 1/2 PI control function.	0	0
	$\mathbf{1}$	$\mathbf{1}$
Enables the current loop 1/2 PI control function for cutting only.	1	0

[Series15i]

No. 1743\#2=1	No. 1742\#1	No. 1742\#2
Always enables the current loop 1/2 PI control function.	0	0
	1	$\mathbf{1}$
Enables the current loop 1/2 PI control function for cutting only.	1	0

NOTE
To disable the current loop $1 / 2 \mathrm{PI}$ control function, set bit 2 of parameter No. 1743 to 0 (Series 15i) or bit 2 of parameter No. 2203 to 0 (Series 30i, 16i, etc.).

4.4 VIBRATION SUPPRESSION IN THE STOP STATE

4.4.1 Velocity Loop High Cycle Management Function

(1) Overview

This function improves the velocity loop gain oscillation threshold. This is done by performing velocity loop proportional calculation at high speed, which determines the velocity loop oscillation threshold.
The use of this function enables the following:

- Improvement of the command follow-up characteristic of a velocity loop
- Improvement of the servo rigidity

(2) Series and editions of applicable servo software

(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series 90E0/A(01) and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B, Power Mate i)
Series 9096/A(01) and subsequent editions
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series 90B5/A(01) and subsequent editions

(3) Setting parameters

$1959(\mathrm{FS} 15 i)$
2017 (FS30i, 16 i)
PK2V25 (\#7)

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
PK2V25							

PK2V25 (\#7) 1: The velocity loop high cycle management function is used.

(4) Performance comparison with the acceleration feedback function

	Acceleration feedback function	Velocity loop high cycle management function
Control method	Acceleration feedback is performed at high speed.	Only a velocity loop proportional calculation is made at high speed.
Adjustment method	Set a value of -10 to -20.	Set the function bit.
Effect	This function may prove more effective than the velocity loop high cycle management function, depending on the machine system resonance frequency and intensity.	In general, this function is more effective than the acceleration feedback function in improving the velocity loop gain.

(5) Caution and notes on use

〔. CAUTION
 Depending on the resonance frequency and resonance strength of the machine system, the use of this function may result in machine resonance. If this occurs, do not use this function.

NOTE

1 When this function is used, the observer function is disabled. To remove high-frequency oscillations, use the torque command filter.
2 The normalization of the machine speed feedback function is disabled. If hunting cannot be eliminated by increasing the velocity loop gain, use the vibration damping control function, which provides a capability similar to the machine speed feedback function.
3 In (torque command) tandem control, velocity loop high cycle management function cannot be used with Series 9096. To use velocity loop high cycle management function with Series 9096, velocity command tandem control must be enabled before the high cycle management function is enabled.
4 When this function is used, some functions are restricted as follows:

Unavailable function	Function with restricted usage
Velocity loop gain override	Machine speed feedback; normalization not performed
Variable proportional gain function in the stop state (*)	Observer used for unexpected disturbance torque detection
Non-linear control	
Notch filter	
Acceleration feedback	
N pulses suppression function	

* With Series 9096, this function cannot be used together with the variable proportional gain function in the stop state. With other series, this function can be used together. (See Subsec. 4.4.3.)

4.4.2 Acceleration Feedback Function

(1) Overview

The acceleration feedback function is used to control velocity loop oscillation by using motor speed feedback signal multiplied by the acceleration feedback gain to compensate the torque command. This function can stabilize unstable servo :

- When motor and machine have a spring coupling.
- When the external inertia is great compared to the motor inertia.

This is effective when vibration is about 50 to 150 Hz .
Fig 4.4.2 is a velocity loop block diagram that includes acceleration feedback function.

PK1V: velocity loop integral gain
PK2V: velocity loop proportional gain
Ka : acceleration feedback gain
Fig. 4.4.2 Velocity loop block diagram that includes acceleration feedback function

(2) Series and editions of applicable servo software

(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series 90E0/A(01) and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B, Power Mate i)
Series 9096/A(01) and subsequent editions
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series 90B5/A(01) and subsequent editions

(3) Setting parameters

Specifying the following parameters as a negative value enables the acceleration feedback function.

1894 (FS15i)	Acceleration feedback gain
2066 (FS30i, 16i)	
[Valid data range]	-10 to -20

(4) Caution and note

> | 1. CAUTION |
| :--- |
| If the acceleration feedback gain is too large, |
| abnormal sound or vibration can occur during |
| acc./dec. |
| To solve this problem, reduce the gain. |

NOTE

This function is disabled when the velocity loop high cycle management function (see Subsec. 4.4.1) is used.

4.4.3 Variable Proportional Gain Function in the Stop State

(1) Overview

The velocity gain or load inertia ratio is generally increased if a large load inertia is applied to a motor, or to improve the response. An excessively large velocity gain may cause the motor to generate a high-frequency vibration when it stops. This vibration is caused by excessive proportional gain of the velocity loop (PK2V) when the motor is released within the backlash of the machine in the stop state. This function decreases the velocity loop proportional gain (PK2V) in the stop state only. The function can suppress the vibration in the stop state and also enables the setting of a high velocity gain.

(2) Series and editions of applicable servo software

(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent edition
Series 90E0/A(01) and subsequent edition
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B, Power Mate i)
Series $9096 / \mathrm{A}(01)$ and subsequent edition
Series 90B0/A(01) and subsequent edition
Series 90B1/A(01) and subsequent edition
Series 90B6/A(01) and subsequent edition
(Series 0i-C,0i Mate-C,20i-B)
Series 90B5/A(01) and subsequent edition

(3) Setting parameters

[Unit of data] Detection unit [Recommended value]

Variable proportional gain function in the stop state : Stop judgment level

2 to 10 (Detection unit: $1 \mu \mathrm{~m}$)
20 to 100 (Detection unit: $0.1 \mu \mathrm{~m}$)
With Series 90B0, 90B6, or 90B5, a function for decreasing a set proportional gain in the stop state to 50% as well as 75%, and a function for setting an arbitrary magnification only in cutting feed are available. When decreasing the velocity loop proportional gain in the stop state to 50%, set the following bit parameter in addition to the function bit for the function for changing the proportional gain in the stop state and the parameter for stop determination level.

(4) Example of parameter setting

(a) When the cutting feed/rapid traverse switchable velocity loop gain function (Sec. 4.3) is not used, and
Bit 3 of No. 1958 (Series 15i) or bit 3 of No. 2016 (Series 30i, $16 i$, and so on) $=1$
Actual velocity gain in the stop state $=($ velocity gain setting $) \times 0.75$
(b) When the cutting feed/rapid traverse switchable velocity loop gain function (Sec. 4.3) is not used,
Bit 3 of No. 1958 (Series 15i) or bit 3 of No. 2016 (Series 30i, $16 i$, and so on) $=1$, and
Bit 3 of No. 1747 (Series 15i) or bit 3 of No. 2207 (Series 30i, $16 i$, and so on) $=1$
Actual velocity gain in the stop state $=($ velocity gain setting $) \times 0.5$
(c) When the cutting feed/rapid traverse switchable velocity loop gain function (Sec. 4.3) is not used,
Bit 3 of No. 1958 (Series 15i) or bit 3 of No. 2016 (Series 30i, $16 i$, and so on) $=1$, and
No. 2373 (Series $15 i$) or No. 2324 (Series $30 i, 16 i$, and so on) $=\alpha$
Actual velocity gain in the stop state $=($ velocity gain setting $) \times \alpha / 100$
When the absolute value of an error is lower than the stop judgment level, the function changes the proportional gain of the velocity loop (PK2V) to 75% or 50% of the set value.
If the machine vibrates while in the stop state, enable this function and set a value greater than the absolute value of the error causing the vibration as the stop judgment level. The function cannot stop the vibration of a machine in the stop state when the current velocity loop proportional gain is too high. If this occurs, reduce the velocity loop proportional gain.

Fig. 4.4.3 Relationship between error and velocity loop proportional gain (PK2V)

NOTE

This function is disabled when the velocity loop high cycle management function (Subsec. 4.4.1) is used with Series 9096.
[Tip] Example of setting an arbitrary magnification in the stop state
(a) When the cutting feed/rapid traverse switchable velocity loop gain function (Sec. 4.3) is used, and
Bit 3 of No. 1958 (Series 15i) or bit 3 of No. 2016 (Series 30i, $16 i$, and so on) $=1$

- If the mode in the stop state is the cutting mode:

Actual velocity gain in the stop state $=$ (velocity gain setting for cutting) $\times 0.75$

- If the mode in the stop state is the rapid traverse mode:

Actual velocity gain in the stop state $=$ (velocity gain setting for rapid traverse) $\times 0.75$
(b) When the cutting feed/rapid traverse switchable velocity loop gain function (Sec. 4.3) is used,
Bit 3 of No. 1958 (Series 15i) or bit 3 of No. 2016 (Series 30i, $16 i$, and so on) $=1$, and
Bit 3 of No. 1747 (Series 15i) or bit 3 of No. 2207 (Series 30i, $16 i$, and so on) $=1$

- If the mode in the stop state is the cutting mode:

Actual velocity gain in the stop state $=$ (velocity gain setting for cutting) $\times 0.5$

- If the mode in the stop state is the rapid traverse mode:

Actual velocity gain in the stop state $=$ (velocity gain setting for rapid traverse) $\times 0.5$
(c) When the cutting feed/rapid traverse switchable velocity loop gain function (Sec. 4.3) is used,
Bit 3 of No. 1958 (Series 15i) or bit 3 of No. 2016 (Series 30i, $16 i$, and so on) $=1$, and
No. 2373 (Series 15i) or No. 2324 (Series 30i, 16i, and so on) $=\alpha$

- If the mode in the stop state is the cutting mode:

Actual velocity gain in the stop state $=$ (velocity gain setting for cutting) $\times \alpha / 100$

- If the mode in the stop state is the rapid traverse mode:

Actual velocity gain in the stop state $=$ (velocity gain setting for rapid traverse) $\times 0.75$
(d) When the cutting feed/rapid traverse switchable velocity loop gain function (Sec. 4.3) is used,
Bit 3 of No. 1958 (Series 15i) or bit 3 of No. 2016 (Series 30i, $16 i$, and so on) $=1$,
Bit 3 of No. 1747 (Series 15i) or bit 3 of No. 2207 (Series 30i, $16 i$, and so on) $=1$, and
No. 2373 (Series 15i) or No. 2324 (Series 30i,16i, and so on) $=\alpha$

- If the mode in the stop state is the cutting mode:

Actual velocity gain in the stop state $=$ (velocity gain setting for cutting) $\times \alpha / 100$

- If the mode in the stop state is the rapid traverse mode:

Actual velocity gain in the stop state $=$ (velocity gain setting for rapid traverse) $\times 0.5$

4.4.4 N Pulses Suppression Function

(1) Overview

Even a very small movement of the motor in the stop state may be amplified by a proportional element of the velocity loop, thus resulting in vibration. The N pulse suppression function suppresses this vibration in the stop state.
When vibration occurs as shown in Fig. 4.4.4 (a), the velocity feedback at point B generates an upward torque command to cause a return to point A. A downward torque command, generated by the velocity feedback at point A is greater than the friction of the machine, causing another return to point B . This cycle repeats itself, thus causing the vibration.

Fig.4.4.4 (a) \mathbf{N} pulse suppression function disabled (Torque due to the proportional term keeps up, leading to vibration.)

To suppress such vibration, it is necessary to exclude from the velocity loop proportional term the speed feedback pulses generated when the motor returns from point B to point A .
If the N pulse suppression function is enabled as shown in Fig. 4.4.4 (b), the feedback pulses generated when the motor returns from point B to point A are excluded from the velocity loop proportional term. The standard setting of the grid width at point A is $1 \mu \mathrm{~m}$. It can be changed by specifying the level parameter.

Fig. 4.4 .4 (b) N pulse suppression function disabled (The \mathbf{N} pulse suppression function restricts the torques due to the proportional term, thus eliminating vibration.)

(2) Series and editions of applicable servo software

(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series $90 \mathrm{E} 0 / \mathrm{A}(01)$ and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B, Power Mate i)
Series $9096 / \mathrm{A}(01)$ and subsequent editions
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series $90 \mathrm{~B} 5 / \mathrm{A}(01)$ and subsequent editions

(3) Setting parameters

NPSP (\#4)

1: To enable the N pulse suppression function

1992 (FS15i)
2099 (FS30i, 16i)

[Valid data range]
0 to 32767
[Standard setting] 400
400 means a single pulse as a detection unit.

4.5 MACHINE RESONANCE ELIMINATION FUNCTION

4.5.1 Torque Command Filter (Middle-Frequency Resonance Elimination Filter)

(1) Overview

The torque command filter applies a primary low-pass filter to the torque command.
If the machine resonates at one hundred Hz or over, this function eliminates resonance at such high frequencies.

(2) Series and editions of applicable servo software

(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series $90 \mathrm{E} 0 / \mathrm{A}(01)$ and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B, Power Mate i)
Series 9096/A(01) and subsequent editions
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions (Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)

Series 90B5/A(01) and subsequent editions
(3) Explanation

Fig. 4.5.1 shows the configuration of a velocity loop including the torque command filter.

Fig. 4.5.1 Configuration of velocity loop including torque command filter
As shown in Fig. 4.5.1, the torque command filter applies a low-pass filter to the torque command. When a mechanical system contains a high resonant frequency of more than 100 Hz , the resonant frequency component is also contained in the velocity feedback shown in Fig. 4.5.1 and may be amplified by proportional term. However, the resonance is prevented by interrupting the high-frequency component of the torque command using the filter.

(4) Proper use of the observer and torque command filter

The torque command filter is set in the forward direction. Therefore, there are fewer bad influences exerted upon the entire velocity control system than the observer that filters a feedback signal. If the resonance is very strong and it cannot be eliminated, use the observer.
Use the torque command filter first when the mechanical system resonates at high frequency. If the resonance cannot be eliminated, use the observer.

(5) Setting parameters

[Setting value]

Torque command filter (FLLTER)
$1166(200 \mathrm{~Hz})$ to $2327(90 \mathrm{~Hz})$
When changing the torque command filter setting, see Table 4.5.1.
As the cut-off frequency, select the parameter value corresponding to a half of the vibration frequency from the table below.
(Example)
In the case of $200-\mathrm{Hz}$ vibration, select a cutoff frequency of 100 Hz for the torque command filter, and set FILTER $=2185$.

CAUTION

Do not specify 2400 or a greater value. Such a high value may increase the vibration.

Table 4.5.1 Parameter setting value of torque command filter

Cutoff frequency (Hz)	Setting value of parameter	Cutoff frequency $(\mathbf{H z})$	Setting value of parameter
60	2810	140	1700
65	2723	150	1596
70	2638	160	1499
75	2557	170	1408
80	2478	180	1322
85	2401	190	1241
90	2327	200	1166
95	2255	220	1028
100	2185	240	907
110	2052	260	800
120	1927	280	705
130	1810	300	622

(6) Cutting feed/rapid traverse switchable torque command filter

With this function, the torque command filter coefficient can be switched between rapid traverse and cutting feed to improve figure precision during cutting and increase a maximum feedrate and maximum acceleration during rapid traverse at the same time.

$1779(\mathrm{FS} 15 i)$
2156 (FS30i, 16i)

[Valid data range]
$1166(200 \mathrm{~Hz})$ to $2327(90 \mathrm{~Hz})$

When 0 is set, the cutting feed/rapid traverse switchable torque command filter is disabled. The normal filter coefficient (No. 1895 for Series $15 i$ or No. 2067 for Series 30i, 16i, and so on) is used at all times.
When a value other than 0 is set, No. 1779 (Series $15 i$) or No. 2156 (Series $30 i, 16 i$, and so on) is used for stop time, rapid traverse, and jog feed, and No. 1895 (Series 15i) or No. 2067 (Series 30i, 16i, and so on) is used for cutting only.

4.5.2 Resonance Elimination Filter Function (High-Frequency Resonance Elimination Filter)

(1) Overview

A filter function for removing high-speed resonance is added. With this function, high-speed resonance can be removed to set a higher velocity loop gain.

(2) Series and editions of applicable servo software

(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series 90E0/A(01) and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B, Power Mate i)
Series $90 B 0 / P(16)$ and subsequent editions ${ }^{(*)}$
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions (Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)

Series 90B5/A(01) and subsequent editions
(*) With Series 90B0, resonance elimination filters that can be used are restricted depending on the edition.

Edition of Series 90B0	Restriction
$\mathrm{A}(01)$ to I(09)	Only resonance elimination filter 1 (conventional specification) can be used. Resonance elimination filters 2 to 4, damping setting, and active resonance elimination filter cannot be used.
$\mathrm{J}(10)$ to O(15)	Resonance elimination filters 1 to 4 (extended specification) and damping setting can be used. The active resonance elimination filter cannot be used.
$\mathrm{P}(16)$ or later	All resonance elimination filter functions can be used.

(3) Control block diagram

Fig. 4.5.2

(4) Setting parameters

CAUTION

1 If the frequency of a resonance elimination filter is set to a low frequency around 100 Hz , the control system can become unstable, resulting in a large vibration.
2 Modify parameters in the emergency stop state.

(5) Setting parameters

 <1> Setting for resonance elimination filters 2 to 4The resonance elimination filter has a function for cutting signals of a particular frequency band. Three parameters are used for this filter. They specify the center frequency of a range to be cut, a bandwidth to be cut, and damping separately.

2773 (FS15i)
2360 (FS30i, 16i)

\square
[Valid data range] 96 to 1000(HRV1 or HRV2), 96 to 2000(HRV3), 96 to 4000(HRV4) (independent of the damping setting)
[Unit of data]
Hz

2774 (FS15i)
2361 (FS30 $i, 16 i$)

RE filter 2 : Attenuation bandwidth
[Valid data range] 0 to attenuation center frequency (independent of the damping setting) [Unit of data] Hz

2775 (FS15i)
2362 (FS30i, 16i)

\square
[Valid data range] 0 to 100 (If it is 0 , the attenuation ratio is maximized.)
[Unit of data] $\%$
Resonance elimination filters 3 and 4 have the same specification as resonance elimination filter 2.
2363 (FS30i, 16i)
\square

2779 (FS15i)
2366 (FS30i, 16i)

\triangle CAUTION

1 For resonance elimination filters 2 to 4, there is no specification that supports compatibility with conventional resonance elimination filters. Even if damping $=0$, an arbitrary attenuation bandwidth can be specified for them.
2 Resonance elimination filters 2 to 4 are enabled if a nonzero value is set in the attenuation bandwidth or damping parameters for them. If you do not want use these resonance elimination filters, reset all the three parameters (attenuation center frequency, attenuation bandwidth, and damping) to 0 .

<2> Setting for resonance elimination filter 1

Only resonance elimination filter 1 has the conventional specification if the damping is 0 and the improved specification if the damping is not 0 .

1706 (FS15i)	RE filter 1 : Attenuation center frequency
2113 (FS30i, 16i)	
[Valid data range]	250 to 992 (if damping $=0$)
	96 to 1000 (HRV1 or HRV2), 96 to 2000(HRV3), 96 to 4000 (HRV4) (if damping $\neq 0$)
[Unit of data] Hz	
2620 (FS15i)	RE filter 1 : Attenuation bandwidth
2177 (FS30i, 16i)	
[Valid data range]	20, 30, 40 (if damping = 0)
	0 to attenuation center frequency (if damping $\neq 0$)
[Unit of data] Hz	
2772 (FS15i) RE filter 1 : Damping	
2359 (FS30i, 16i)	
[Valid data range]	0 (If it is 0 , the resonance elimination filer has the conventional specification.)
	1 to 100 (If it is 1 , the attenuation ratio is maximized. For resonance elimination filer 1.)
[Unit of data]	

4. CAUTION

1 If damping $=0$ for resonance elimination filter 1, this filter has the same specification as for conventional resonance elimination filters. So, its attenuation bandwidth can be set only to 20,30 , or 40 Hz (specification compatible with conventional resonance elimination filters).
2 Resonance elimination filter 1 is enabled if a nonzero value is set in the attenuation bandwidth or damping parameter for it. If you do not want use the resonance elimination filter, reset all the three parameters (attenuation center frequency, attenuation bandwidth, and damping) to 0 .
[Parameters for resonance elimination filters]
For Series $30 i$ or $16 i$

	Attenuation center frequency [Hz]	Attenuation bandwidth	Damping
Resonance elimination filter 2	No.2360	No.2361	No.2362
Resonance elimination filter 3	No.2363	No.2364	No.2365
Resonance elimination filter 4	No.2366	No.2367	No.2368
Resonance elimination filter 1	No.2113	No.2177	No.2359

For Series $15 i$

	Attenuation center frequency [Hz]	Attenuation bandwidth	Damping
Resonance elimination filter 2	No.2773	No.2774	No.2775
Resonance elimination filter 3	No.2776	No.2777	No.2778
Resonance elimination filter 4	No.2779	No.2780	No.2781
Resonance elimination filter 1	No.1706	No.2620	No.2772

<3> Setting for an active resonance elimination filter

The active resonance elimination filter is a function for setting the center frequency of a resonance elimination filter to the resonance frequency so as to maintain a high stability even when the center frequency deviates from the actual resonance frequency. It takes effect when:

- The resonance frequency shifts as the axis moves.
- The resonance frequency varies from one machine to another because of a difference among the machines.
- The resonance frequency changes with time.

$\operatorname{ACREF}(\# 3)$ The active resonance elimination filter is:
0 : Disabled
1: Enabled

```
\. CAUTION
1 The active resonance elimination filter can be used
with the conventional specification of resonance
elimination filter 1. To use the active resonance
elimination filter, specify damping =0 for resonance elimination filter 1.
2 The active resonance elimination filter performs follow-up operation over \(\pm 40 \mathrm{~Hz}\) with respect to a specified center frequency.
3 The active resonance elimination filter becomes enabled when the emergency stop is released.
4 The active resonance elimination filter does not perform follow-up operation during acc./dec.
5 When the attenuation center frequency of resonance elimination filter 1 is changed, the center frequency is re-set to the specified center frequency, and then the filter restarts follow-up operation using this newly specified center frequency as an initial value.
```

Specify ACREF $=1$, and set the center frequency of resonance elimination filter 1 to about (resonance frequency - 30 Hz). Make sure that after the emergency stop is released, resonance is eliminated immediately. If resonance cannot be eliminated immediately, set the following parameter (detection level) to about 5 to 10 to increase the detection sensitivity. If the center frequency does not settle, increase the detection level to about 20 to 100 to decrease the detection sensitivity.

2765 (FS15i)

Active resonance elimination filter : Detection level
2352 (FS30i, 16i)
[Valid data range]
0 to 500
0 is handled as a detection level of 16 inside the servo software.

(6) Example of filter characteristics

 <1> Conventional resonance elimination filter

Center frequency $=300 \mathrm{~Hz}$ Bandwidth $=30 \mathrm{~Hz}$ Damping $=0$

<2> Improved resonance elimination filter (with damping)

<3> Improved resonance elimination filter (with two stages of damping)

(First stage)
Center frequency $=300 \mathrm{~Hz}$
Bandwidth $=50 \mathrm{~Hz}$
Damping = 30\%
(Second stage)
Center frequency $=600 \mathrm{~Hz}$
Bandwidth $=100 \mathrm{~Hz}$
Damping $=50 \%$

4.5.3 Disturbance Elimination Filter Function (Low-Frequency Resonance Elimination Filter)

(1) Overview

The disturbance elimination filter function estimates a disturbance by comparing a specified torque with the actual velocity, and feeds forward the estimation to the specified torque to suppress the effect of the disturbance. In particular, this function is useful for a vibration of 50 Hz to 100 Hz .

Fig. 4.5.3 Configuration of disturbance elimination filter
(2) Series and editions of applicable servo software
(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series 90E0/A(01) and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B, Power Mate i)
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series 90B5/A(01) and subsequent editions
(3) Setting parameters

NOTE

If a gain of 0 to 100 is set, the disturbance elimination filter function does not operate.

2732 (FS15i)	Inertia ratio (Rj) (\%)
2319 (FS30i, 16i)	
[Valid data range] [Typical setting]	0 to 32767
	100
	Set an inertia ratio (= machine inertia/motor inertia) in \%. Usually, set 100%.
2733 (FS15i)	Inverse function gain (Jmo)
2320 (FS30i, 16i)	
[Valid data range] [Initial setting]	100 to 2000
	100 (Increase the setting step by step.)
	Set an inverse function gain as a conversion coefficient for acceleration-to-TCMD conversion. This parameter needs to be adjusted. As a guideline, set a value not greater than the value obtained by the following expressions:
	Linear motor (The detection unit of the scale is assumed to be $\mathrm{p} \mu \mathrm{m}$.) $\mathrm{Jmo}=466048 \times \mathrm{p} \times \mathrm{Jm} / \mathrm{Kt} / \mathrm{Imax}$
	Rotary motor
	$\mathrm{Jmo}=1396264 \times \mathrm{Jm} / \mathrm{Kt} / \mathrm{Imax}$
	Jm: Weight [kg] or inertia $\left[\mathrm{kgm}^{2}\right]$
	Kt: Torque constant [$\mathrm{N} / \mathrm{Ap}]$ or [$\mathrm{Nm} / \mathrm{Ap}$]
	Imax: Maximum amplifier current [Ap]

NOTE

If an excessively large gain value is set, an abnormal sound and vibration can occur.

2734 (FS15i)
2321 (FS30 $i, 16 i$)

Filter time constant (Tp)

- When HRV1, HRV2, or HRV3 is used:
[Valid data range] 0 to 4096
[Typical setting] 3700 (equivalent to $\mathrm{T}=10 \mathrm{~ms}$).
* Usually, this value does not need to be changed.

Set a filter time constant for determining an estimated disturbance velocity by using the following expression:
$\mathrm{Tp}=4096 \times \exp (-\mathrm{t} / \mathrm{T})$
T : Setting time constant $[\mathrm{sec}], \mathrm{t}=0.001[\mathrm{sec}]$

- When HRV4 is used:
[Valid data range] 0 to 4096
[Typical setting] 3994 (equivalent to $\mathrm{T}=10 \mathrm{~ms}$).
* Usually, this value does not need to be changed.

Set a filter time constant for determining an estimated disturbance velocity by using the following expression:
$\mathrm{Tp}=4096 \times \exp (-\mathrm{t} / \mathrm{T})$
T: Setting time constant $[\mathrm{sec}], \mathrm{t}=0.00025[\mathrm{sec}]$

Set a limiter for a feedback torque calculated from acceleration. This parameter suppresses an excessive motion at the time of adjustment.
The value 7282 represents a maximum amplifier current. When a 160 -A amplifier is used, for example, the value 1000 is equivalent to 22 A.

NOTE

In a case where a value close to the torque limit may be used, the torque is limited if the acceleration feedback limit is not increased.

(4) Procedure

(1) Make an adjustment according to the procedure below. First, disable those functions that operate only in the stop state such as the function for changing the proportional gain in the stop state. For determining the resonance frequency and adjusting the disturbance elimination filter, use frequency characteristics measurement by SERVO GUIDE.
(2) Enable the disturbance elimination filter function, set the disturbance elimination filter gain to 100 (not functioning), then measure the frequency characteristics.
With SERVO GUIDE, observe the response waveform obtained during the above measurement, and set the input amplitude (to about 500) to allow the waveform to be observed and machine sound to be heard. A sinusoidal torque command is used, so that the command does not generate a torque in one direction. The command is to be executed away from the machine stroke limits.

Fig. 4.5.3(a) Measurement example using SERVO GUIDE (before adjustment)
(3) Set the disturbance elimination filter gain to 500 , and check the frequency characteristics with SERVO GUIDE while increasing the gain for inverse model starting with 100 in steps of 100. Adjust the value so that the amplitude of the gain swell part becomes small.

Fig. 4.5.3(b) Measurement example using SERVO GUIDE (after adjustment)
(4) Note that the velocity loop gain of higher frequencies is increased and even a violent vibration may be caused simply by enabling the disturbance elimination filter function. If a vibration occurs, increase the inverse function gain gradually, and check the vibration of the torque command. If the vibration becomes greater, decrease the inverse function gain. If the vibration can not be reduced by increasing and decreasing the inverse function gain, change the filter time constant by ± 50 to eliminate the vibration.
(5) If the frequency of vibration is higher than 100 Hz , use a separate machine resonance prevention function such as the vibration suppression filter and torque command filter.

4.5.4 Observer Function

(1) Overview

The observer is used to eliminate the high-frequency component and to stabilize a velocity loop when a mechanical system resonates at high frequency of several hundred Hertz.
The observer is a status observer that estimates the controlled status variables using the software.
In a digital servo system, the speed and disturbance torque in the control system are defined as status variables. They are also estimated in the observer. An estimated speed consisting of two estimated values is used as feedback. The observer interrupts the high-frequency component of the actual speed when it estimates the speed. High-frequency vibration can thus be eliminated.

(2) Explanation

Fig. 4.5.4 (a) shows a block diagram of the velocity loop including an observer.

Fig. 4.5.4 (a) Configuration of velocity loop including observer
Fig. 4.5.4 (b) shows a block diagram of the observer.

Fig. 4.5.4 (b) Block diagram of the observer
POA1, POK1, and POK2 in Fig. 4.5.4 (b) correspond to digital servo parameters. The observer has an integrator as a motor model. POA1 is a coefficient that converts the torque command into motor acceleration and is the characteristic value of the motor. The motor model is accelerated by this value. The actual motor is also accelerated by the torque and disturbance torque that it generates.

The disturbance torque works on the actual motor. There is a time lag in the current loop. The POA1 value does not completely coincide with the actual motor. This is why the motor's actual velocity differs from the motor speed estimated by an observer. The observer is compensated by this difference. The motor model is compensated proportionally (POK1), and the observer is compensated integrally (POK2/s).
POK1 and POK2 act as a secondary low-pass filter between the actual speed and estimated speed. The cutoff frequency and damping are determined by the POK1 and POK2 values. The difference between the observer and low-pass filter lies in the existence of a POA1 term. Using POA1, the observer's motor model can output an estimated speed that has a smaller phase delay than the low-pass filter.
When an observer function is validated, the estimated speed in Fig. 4.5.4 (b) is used as velocity feedback to the velocity control loop. A high-frequency component (100 Hz or more) contained in the actual motor speed due to the disturbance torque's influence may be further amplified by the velocity loop, and make the entire system vibrate at high frequency. The high frequency contained in the motor's actual speed is eliminated by using the velocity feedback that the observer outputs. High-frequency vibration can be suppressed by feeding back a low frequency with the phase delay suppressed.
In some systems, the use of the observer function can suppress vibration during movement but makes the machine unstable while it is in the stop state. In such cases, use the function for disabling the observer in the stop state, as explained in Art. (7) of this section.

(3) Series and editions of applicable servo software

(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series 90E0/A(01) and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B, Power Mate i)
Series 9096/A(01) and subsequent editions
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions (Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)

Series 90B5/A(01) and subsequent editions

(4) Setting parameters

OBEN (\#2)

1: To enable the observer function
1859 (FS15i) Observer coefficient (POA1)

2047 (FS30i, 16i)
[Setting value]

Keep the standard setting unchanged.

- When HRV1, HRV2, or HRV3 is used:
[Setting value] Usually, use the standard setting.
- When HRV4 is used:
[Setting value] $\quad 956 \rightarrow$ To be changed to 264

1863 (FS15i)
2051 (FS30 $i, 16 i$)

- When HRV1, HRV2, or HRV3 is used:
[Setting value] Usually, use the standard setting.
- When HRV4 is used:
[Setting value] $510 \rightarrow$ To be changed to 35

(5) Note

The parameter is initially set to such a value (standard setting) that the cutoff frequency of the filter becomes 30 Hz . With this setting, the effect of filtering becomes remarkable at resonance frequencies above the range of 150 Hz to 180 Hz .
To change the cutoff frequency, set parameters POK1 and POK2 to a value listed below, while paying attention to Table 4.5.4:
Generally, the observer function does not work unless its cutoff frequency is held below $\mathrm{Fd} / 5$ or $\mathrm{Fd} / 6$, where Fd is the frequency component of an external disturbance. However, if this bandwidth is some 20 Hz or lower, the velocity loop gain also drops or becomes unstable, possibly causing a fluctuation or wavelike variation.

Table 4.5.4 Changing the observer cutoff frequency

Cutoff frequency (Hz)	HRV1, HRV2, HRV3		HRV4	
	POK1	POK2	POK1	POK2
10	348	62	90	4
20	666	237	178	16
30	956	510	264	35
40	1220	867	348	62
50	1460	1297	430	96
60	1677	1788	511	136
70	1874	2332	1874	183

(6) Setting observer parameters when the unexpected disturbance torque detection function is used

The unexpected disturbance torque detection function (see Sec. 4.12) uses the observer circuit shown in Fig. 4.5.4 (b) to calculate an estimated disturbance. In this case, to improve the speed of calculation, change the settings of observer parameters POA1, POK1, and POK2 by following the explanation given in Sec. 4.12.
When the observer function and unexpected disturbance torque detection function are used together, however, the defaults for POK1 and POK2 must be used.

(7) Stop time observer disable function

If the observer function is enabled, the machine may fluctuate and become unstable when it stops. Such a fluctuation or unstable operation can be prevented by disabling the observer function only in the stop state.

(8) Setting parameters

$<1>$ Function bit

2018 (FS30i, 16i)
MOVOBS (\#1) The function for disabling the observer in the stop state is:
0 : Disabled
1: Enabled \leftarrow Set this value
$<2>$ Level at which the observer is determined as being disabled
1730 (FS15i) Level at which the observer is determined as being disabled
2119 (FS30i, 16i)
[Unit of data] Detection unit
[Typical setting]
1 to 10
If the absolute value of the position error is less than the level at which the observer is determined as being disabled, the observer function is disabled.

NOTE

This parameter is also used for the stop determination level of the function for changing the proportional gain in the stop state.
(Usage)
Set the function bit and the level at which the observer is determined as being disabled so that it is greater than the peak absolute value of the oscillating position error.

4.5.5 Current Loop 1/2 PI Control Function

(1) Overview

To improve servo performance in high-speed and high-precision machining, high-speed positioning, ultrahigh-precision positioning, and so forth, a velocity loop gain as high as possible needs to be set stably.
To set a high velocity loop gain stably, the response of the current loop needs to be improved.
The current loop $1 / 2 \mathrm{PI}$ control function enables the response of the current loop to be improved.

(2) Series and editions of applicable servo software

(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series $90 \mathrm{E} 0 / \mathrm{A}(01)$ and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B, Power Mate i)
Series $9096 / \mathrm{A}(01)$ and subsequent editions
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions (Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)

Series $90 \mathrm{~B} 5 / \mathrm{A}(01)$ and subsequent editions

(3) Control method

As shown in Fig. 4.5.5, in the area where a small current flows, a current loop calculation is based on PI control rather than on the conventional IP control method. When a large current flows, the control method returns to IP control to suppress a current overshoot.

Fig. 4.5.7 Block diagram of current loop 1/2PI control

(4) Setting parameters

$<1>$ Enabling the current loop 1/2 PI control function at all times

2203 (FS30i, 16i)
CRPI (\#2) 1: \quad To enable the current loop $1 / 2$ PI control function
$<2>$ To enable the function for cutting only, use the following bit in addition to the previous bit:

\#7	\#6	\#5	\#4	\#3	\#2	\#1		\#0
						VGCCR		

2202 (FS30i, 16i)
VGCCR (\#1)

1: To enable the current loop $1 / 2$ PI control function for cutting only (This function is used together with the cutting feed/rapid traverse velocity loop gain switch function.)
$<3>$ To enable the function at all times while using bit 1 of parameter No. 1742 (Series $15 i$) or No. 2202 (Series $16 i$ and so on), use the following bit in addition to the settings of $<1>$ and $<2>$:

2202 (FS30i, 16i)
PIAL (\#2)

1: To enable the current loop $1 / 2$ PI control function at all times (When this function is used together with the cutting feed/rapid traverse velocity loop gain switch function)

\. CAUTION

If the motor activation sound or vibration in the stop state increases when this parameter is set, turn off this parameter (do not use this parameter).

(5) Current control PI rate modification

The current control PI rate (p in Fig. 4.5.5) is usually fixed at $1 / 2$, but can be changed freely.

* This function cannot be used with Series 9096.

2736 (FS15i)
2323 (FS30 $i, 16 i$)

[Valid data range] [Unit of data]

0 to 4096
4096 represents $\mathrm{p}=1.0$ (complete PI).
When the value 0 is specified, the specification of 2048 ($1 / 2 \mathrm{PI}$), which is equivalent to $\mathrm{p}=0.5$, is assumed.

CAUTION
If you need to increase the velocity gain, in particular, a value greater than 1/2PI may be set.
However, do not use this parameter usually.

4.5.6 Vibration Damping Control Function

(1) Overview

In a closed-loop system, the Pulsecoder on the motor is used for velocity control and a separate detector is used for position control.
During acc./dec., the connection between the motor and machine may be distorted, causing the speed transferred to the machine to slightly differ from the actual motor speed. In such a case, it is difficult to properly control the machine (reduce vibration on the machine).
The vibration damping control function feeds back the difference between the speeds on the motor and machine (speed transfer error) to the torque command, to reduce vibration on the machine.
This function has the effect of the machine velocity feedback function, but is superior to the machine velocity feedback function in that restrictions as imposed with the machine velocity feedback function are eliminated.

(2) Control method

The following figure shows the block diagram for vibration damping control:

Fig. 4.5.5 Block diagram for vibration damping control

(3) Series and editions of applicable servo software

(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series $90 \mathrm{E} 0 / \mathrm{A}(01)$ and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B, Power Mate i)
Series $9096 / \mathrm{A}(01)$ and subsequent editions
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series 90B5/A(01) and subsequent editions

(4) Setting parameters

[Valid data range]

Number of position feedback pulses for vibration damping control conversion coefficient
-32767 to 32767
When 0 is set, this function is disabled.
If a negative value is specified, it is internally read as 10 times the specified value. $(-1000=10000)$

When a flexible feed gear (F-FG) is used

(In the case of using the A/B phase separate type detector and analog SDU)
Set value = Number of feedback pulses per motor revolution, received from a separate detector/8
(Example 1)
With a $5 \mathrm{~mm} /$ rev ball screw, $0.5 \mu \mathrm{~m} /$ pulse separate detector, and a detection unit of $1 \mu \mathrm{~m}, \mathrm{~F} \cdot \mathrm{FG}=1 / 2$
Then,
Set value $=10,000 \times 1 / 8=1250$

When a flexible feed gear (F.FG) is used (In the case of using the serial separate type detector)
Set value $=$Number of feedback pulses per motor revolution, received from a separate detector (after feedback pulse)/8

(Example 2)
If a flexible feed gear is used under the conditions described in example 1 above,
Set value $=10,000 \times 1 / 2 \times 1 / 8=625$

When a flexible feed gear (F.FG) is used $($ In the case of using the analog SDU)
Set value $=($ Travel distance per motor revolution $[\mathrm{mm}]) /($ detector signal
pitch $[\mathrm{mm}]) \times 512 / 8$

(Example 3)
When travel distance per motor revolution $=10$ [mm], and detector signal pitch $=20[\mu \mathrm{~m}]$
Set value $=10 / 0.020 \times 512 / 8=32000$

CAUTION

If the above expression is indivisible, set the nearest integer.

1719 (FS15i)
2034 (FS30 $i, 16 i$)

Vibration-damping control gain
[Valid data range]
-32767 to 32767
[Standard setting]
About 500
This is the feedback gain for vibration damping control.
Adjust the value in increments of about 100, observing the actual vibration. An excessively large gain will amplify the vibration.
If setting a positive value amplifies the vibration, try setting a negative value.

4.5.7 Dual Position Feedback Function

Optional function

(1) Overview

A machine with large backlash may cause vibrations in a closed loop system even if it works steadily in a semi-closed loop system. The dual position feedback function controls the machine so that it operates as steadily as in the semi-close system.
This function is optional function.

(2) Control method

The following block diagram shows the general method of dual position feedback control:

Position feedback (from separate detector)
Fig. 4.5.7 Block diagram of dual position feedback control
As shown in Fig. 4.5.7, error counter ER1 in the semi-closed loop system and error counter ER2 in the closed loop system are used. The primary delay time constant is calculated as follows:

Primary delay time constant $=(1+\tau \mathrm{s})^{-1}$
The actual error, ER, depends on the time constant, as described below:
(1) When time constant τ is $0 \cdots \cdots(1+\tau \mathrm{s})^{-1}=1$
$\mathrm{ER}=\mathrm{ER} 1+(\mathrm{ER} 2-\mathrm{ER} 1)=\mathrm{ER} 2$ (error counter of the full-closed loop system)
(2) When time constant τ is $\infty \cdots \cdots \cdot(1+\tau \mathrm{s})^{-1}=0$
$\mathrm{ER}=\mathrm{ER} 1$ (error counter of the semi-closed loop system)
This shows that control can be changed according to the primary delay time constant. The semi-closed loop system applies control at the transitional stage and the full-closed loop system applies control in positioning.
This method allows vibrations during traveling to be controlled as in the semi-closed loop system.

(3) Series and editions of applicable servo software

(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series 90E0/A(01) and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}$, Power Mate i)
Series 9096/A(01) and subsequent editions
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series 20i-B)
Series 90B5/A(01) and subsequent editions

(4) Setting parameters

DPFB (\#7)
1: To enable dual position feedback

1861 (FS15i)
2049 (FS30 $i, 16 i$)

Dual position feedback maximum amplitude
[Setting value]
Maximum amplitude $(\mu \mathrm{m}) /($ minimum detection unit for full-closed mode $\times 64$)
This parameter should normally be set to 0 .
[Unit of data] Minimum detection unit for full-closed mode $(\mu \mathrm{m} / \mathrm{p}) \times 64$
If setting $=0$, compensation is not clamped. If the parameter is specified, and a position error larger than the specified value occurs during semi-closed and full-closed modes, compensation is clamped. So set the parameter with a value two times the sum of the backlash and pitch error compensation amounts.
If it is impossible to find the sum, set the parameter to 0 .

[Setting value] Reduce the following fraction and use the resulting irreducible fraction.

With this setting method, however, cancellation in the servo software internal coefficient may occur depending on constants such as the machine deceleration ratio, causing the motor to vibrate. In such a case, the setting must be changed.
For details, see Art. (6) in this section.
(Example)
When the αi Pulsecoder is used with a tool travel of 10 $\mathrm{mm} /$ motor revolution ($1 \mu \mathrm{~m} /$ pulse)
$\begin{aligned} & \text { Conversion } \\ & \text { coefficient }\end{aligned}\left(\frac{\text { Numerator }}{\text { Denominator }}\right)=\frac{10 \times 1000}{1,000,000}=\frac{1}{100}$

1973 (FS15i)
2080 (FS30i, 16i)

[Setting value] [Unit of data]

Dual position feedback primary delay time constant

Set to a value in a range of 10 to 300 msec or so.
msec
Normally, set a value of around 100 msec as the initial value. If hunting occurs during acc./dec., increase the value in $50-\mathrm{msec}$ steps. If a stable status is observed, decrease the value in $20-\mathrm{msec}$ steps. When 0 msec is set, the same axis movement as that in full-closed mode is performed. When 32767 msec is set, the same axis movement as that in semi-closed mode is performed.
For a system that requires simultaneous control of two axes, use the same value for both axes.

1974 (FS15i)
2081 (FS30i, 16i)

[Setting value] [Unit of data]

Zero width $(\mu \mathrm{m}) /$ minimum detection unit for full-closed mode
Minimum detection unit ($\mu \mathrm{m} / \mathrm{p}$) for full-closed mode
Positioning is performed so that the difference in the position between full-closed mode and semi-closed mode does not exceed the pulse width that corresponds to the parameter-set value.
First set the parameter to 0 . If still there is fluctuation, increase the parameter value.
If this is applied to an axis with a large backlash, a large position error may remain. For details, see Art. (5) in this section.

[Setting value]

Dual position feedback: Level on which the difference in error between the semi-closed and full-closed modes becomes too large

Level on which the difference in error is too large ($\mu \mathrm{m}$)/minimum detection unit for full-closed mode
[Unit of data] Minimum detection unit ($\mu \mathrm{m} / \mathrm{p}$) for full-closed mode
If the difference between the Pulsecoder and the separate detector is greater than or equal to the number of pulses that corresponds to the value specified by the parameter, an alarm is issued.
Set a value two to three times as large as the backlash.
When 0 is set, detection is disabled.

NOTE

The function for monitoring the difference in error between the semi-closed and full-closed modes is useful also for monitoring for a problem such as the feedback pulse missing of a separate detector.
When only the monitoring of the difference in error between the semi-closed and full-closed modes is to be performed on a machine for which dual position feedback is not required as a stabilization function, the function for monitoring the difference in error between the semi-closed and full-closed modes can be used by not only making an ordinary full-closed loop setting but also setting a conversion coefficient for dual position feedback and the parameter for the monitoring level of the difference in error between the semi-closed and full-closed modes. (No option setting and function bit setting need to be made.)

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
		HBBL	HBPE				

2010 (FS30i, 16i)
HBBL (\#5)

The backlash compensation is added to the error count of:
1: The closed loop.
0: The semi-closed loop. (Standard setting)
HBPE (\#4) The pitch error compensation is added to the error count of:
1: The semi-closed loop.
0: The closed loop. (Standard setting)

1746 (FS15i)
2206 (FS30i, 16i)
HBSF (\#4)

A backlash compensation and pitch error compensation are:
1: Added to the closed loop side and semi-closed loop side at the same time.
0: Added after selection according to the conventional parameter (No. 1954 (Series $15 i$) or No. 2010 (Series 30i, 16i, and so on)).
When this parameter is set to 1 , the settings of No. 1954 (Series 15i) and No. 2010 (Series 30i, 16i, and so on)are ignored.

NOTE

1 If a setting is made to perform the function for monitoring the difference in error between the semi-closed and full-closed modes for an axis placed in a simple full-closed loop, the specification for addition of a backlash compensation and pitch error compensation is the same as in the case of using the dual position feedback function. In this case, it is recommended to make the setting above to "Add a backlash compensation and pitch error compensation to the closed loop side and semi-closed loop side at the same time".
2 When the dual check safety function is used with Series $16 i$, $18 i$, or $21 i$, a conversion coefficient for dual position feedback is used. In this case as well, make the setting above to "Add a backlash compensation and pitch error compensation to the closed loop side and semi-closed loop side at the same time".
(5) Zero-width setting for a machine with a large backlash or twist

Dual position feedback function (or hybrid function) is used for an axis where a machine backlash of about $1 / 10$ revolution in terms of the motor shaft exists, the machine may stop with a position error remaining, which is greater than the dual position feedback zero-width parameter value. (In some cases, there may be ten or more pulses left.) To solve this problem, make the following settings:

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
			DUALOW				

2202 (FS30i, 16i)
DUAL0W (\#4)

The zero-width determination is performed with:
0 : \quad Setting $=0$ only.
1: Setting. \leftarrow Set this value.
(6) Cautions on setting of the dual position feedback conversion coefficient

CAUTION
The dual position feedback conversion coefficient is set as explained in Art. (4). With the conventional calculation method, however, cancellation may occur in the conversion coefficient of the servo software depending on constants such as the machine deceleration ratio. If cancellation in the conversion coefficient occurs, feedback errors in the semi-closed loop system are accumulated. In some cases, this may result in motor oscillation.
To prevent this problem, calculate and set the dual position feedback conversion coefficient by following the procedure given below.

For parameters set in detection units, see the list in Appendix B.

4.5.8 Machine Speed Feedback Function

(1) Overview

In many full-closed systems, the machine position is detected by a separate detector and positioning was controlled according to the detected positioning information. The speed is controlled by detecting the motor speed with the Pulsecoder on the motor. When distortion or shakiness between the motor and the machine is big, the machine speed differs from the motor speed during acceleration and deceleration. Hence, it is difficult to maintain high position loop gain. This machine speed feedback function allows adding the speed of the machine itself to the speed control in a fully closed system, making the position loop stable.

(2) Series and editions of applicable servo software

(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series 90E0/A(01) and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B, Power Mate i)
Series 9096/A(01) and subsequent editions
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series 90B5/A(01) and subsequent editions

(3) Control block diagram

Fig. 4.5.8 is a control block diagram

Fig. 4.5.1 Position loop block diagram that includes machine speed feedback function
As shown in Fig. 4.5.8, this function corrects the torque command by multiplying the machine speed by machine velocity feedback gain, α, as shown by the bold line. When $\alpha=1$, the torque command is corrected equally by the motor speed and the machine speed.

(4) Adding the normalization function

(a) Overview

If an arc is drawn with the machine speed feedback function enabled, the arc may be elongated in the direction parallel to the axis to which the machine speed feedback function is applied. To solve this problem, the machine speed feedback function was improved.
(b) Explanation

The current machine speed feedback configuration is as shown above figure. Assuming that the motor speed feedback is much the same as the speed feedback at the tip of the machine, the speed feedback for the proportional term is $(1+\alpha)$ times the motor speed feedback. This causes a conflict to the weight of the VCMD.
So, the proportional term speed feedback is divided by $(1+\alpha)$ to eliminate the conflict.

* The normalization function cannot be used when the velocity loop proportional high-speed processing function is used.

(5) Setting parameters

- When a serial output type separate detector is used or when the flexible feed gear (parameters Nos. 2084 and 2085, parameter Nos. 1977 and 1978) is set to $1 / 1$
(Setting range: 1 to 100 or -1 to -100)
(Typical setting)
When the normalization function is not used:
MCNFB $=30$ to 100
When the normalization function is used:
MCNFB $=-30$ to -100
- Other than flexible feed gear (No. 2084, 2085, 1977, 1978) $=1 / 1$
(Setting range: 101 to 10000 or -101 to -10000)
(Typical setting)
When the normalization function is not used:
$M C N F B=3000$ to 10000
When the normalization function is used: \quad MCNFB $=-3000$ to -10000

(6) Note

It the machine has a resonance frequency of 200 to 400 Hz , using this function may result in a resonance being amplified, thus leading to abnormal vibration or sound. If this happens, take either of the following actions to prevent resonance.

- Using an observer (\Rightarrow Subsec. 4.5.4)
(If the machine speed feedback function is used together with the observer function, the motor speed and machine speed are filtered out simultaneously.)
- Using a torque command filter $(\Rightarrow$ Subsec. 4.5.1)

4.6 CONTOUR ERROR SUPPRESSION FUNCTION

4.6.1 Feed-forward Function

(1) Principle

Fig. 4.6.1 (a) Feed-forward control block diagram
Adding feed-forward term α to the above servo system causes the position error to be multiplied by $(1-\alpha)$.
Position error $=\frac{\text { Feedrate }(\mathrm{mm} / \mathrm{s})}{\text { Minimum detection unit }(\mathrm{mm}) \times \text { position gain }} \times(1-\alpha)$

Adding feed-forward term α also causes figure error $\Delta \mathrm{R} 1(\mathrm{~mm})$ due to a radial delay of the servo system during circular cutting to be multiplied by $\left(1-\alpha^{2}\right)$.

$$
\Delta \mathrm{R} 1(\mathrm{~mm})=\frac{\text { Feedrate }^{2}(\mathrm{~mm} / \mathrm{s})^{2}}{2 \times \text { position gain }^{2} \times \text { radius }(\mathrm{mm})} \times\left(1-\alpha^{2}\right)
$$

(Example) If $\alpha=0.7, \Delta \mathrm{R} 1$ is reduced to about $1 / 2$.
Beside $\Delta \mathrm{R} 1$, figure error $\Delta \mathrm{R} 2$ (mm) may occur in a position command when an acc./dec. time constant is applied after interpolation for two axes.
Therefore, total radial figure error $\Delta \mathrm{R}$ during circular cutting is:
\square

This section describes the conventional feed-forward function. However, when using feed-forward for high-speed and high precision machining, be sure to use advanced preview feed-forward described in Subsec. 4.6.2 or RISC feed-forward described in Subsec. 4.6.3.
The shape error in the direction of the radius during circular cutting is as shown in Fig. 4.6.1 (b) below.

Fig. 4.6.1 (b) Path error during circular cutting

(2) Series and editions of applicable servo software

(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions ${ }^{(*)}$
Series 90E0/A(01) and subsequent editions ${ }^{(*)}$
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series 9096/A(01) and subsequent editions
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series $90 B 5 / A(01)$ and subsequent editions
(*) With Series 90D0 and 90E0, the advanced preview feed-forward function is applied unless the EGB synchronous mode is set.

(3) Setting parameters

$<1>$ Enable PI control and the feed-forward function.

$<2>$ Specify the feed-forward coefficient.

$$
\text { FALPH }=\alpha \times 100 \text { or } \alpha \times 10000
$$

When FALPH is smaller than or equal to 100 : In units of 1%
When FALPH is greater than 100 : In units of 0.01%
[Typical setting] 70 or 7000
$<3>$ Specify the velocity feed-forward coefficient.

1962 (FS15i)
2069 (FS30i, 16i)

Velocity feed-forward coefficient (VFFLT)

$$
\text { VFFLT }=50 \text { (50 to 200) }
$$

$<4>$ Run a program to move the axis for cutting feed at maximum feedrate. Under this condition, check whether the VCMD waveform observed on the Servo Guide or the servo check board overshoots and what the shock caused during acceleration /deceleration is like.
\Rightarrow If an overshoot occurs, or the shock is big, increase the acc./dec. time constant, or reduce α.
\Rightarrow If an overshoot does not occur, and the shock is small, reduce the acc./dec. time constant, or increase α.
Linear acc./dec. is more effective than exponential acc./dec.
Using acc./dec. before interpolation can further reduce the figure error.
$<5>$ By setting the parameter below, the feed-forward function can be used for cutting feed as well.

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
1800 (FS15i)					FFR			
1800 (FS30i, 16i)								
FFR (\#3)	Specifies whether feed-forward control during rapid traverse is enabled or disabled. 1: Enabled 0: Disabled							

By using the feed-forward function during rapid traverse, the positioning time can be reduced. On some machines, however, a shock may occur at the time of acc./dec. In such a case, use fine acc./dec. $(\Rightarrow$ Subsec. 4.8.3) at the same time, or make adjustments such as increasing the acc./dec. time constant. Moreover, a feed-forward coefficient can be set separately for each of cutting and rapid traverse. (See Subsection 4.6.4, "Cutting/Rapid Feed-forward Switching Function".)
$<6>$ To use the EGB function, set the following parameter:

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
1955 (FS15i)							FFAL	

2011 (FS30i, 16i)
FFAL (\#1) Feed-forward control is:
1: Always enabled regardless of the mode.

4.6.2 Advanced Preview Feed-forward Function

(1) Overview

Fig. 4.6.2 (a) Conventional feed-forward control

Fig. 4.6.2 (b) Advanced preview feed-forward control

(2) Series and editions of applicable servo software

(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series $90 \mathrm{E} 0 / \mathrm{A}(01)$ and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series $9096 / \mathrm{A}(01)$ and subsequent editions
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series $90 \mathrm{~B} / \mathrm{A}(01)$ and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C, $20 i-\mathrm{B}$)
Series 90B5/A(01) and subsequent editions

(3) Setting parameters

$<1>$ Set the following parameters in the same way as for conventional feed-forward control.

FEED (\#1) 1: The feed-forward function is enabled.

1962 (FS15i)
2069 (FS30i, 16i)

\square
[Recommended value] 50 (50 to 200)
$<2>$ Set the coefficient for advanced preview feed-forward control.

[Recommended value]
9800 to 10000
Advanced preview feed-forward coefficient (0.01% unit)
$=\alpha \times 10000(0 \leq \alpha \leq 1)$
(Example)
When α equals 98.5%, ADFF1 is 9850.
Advanced preview control is configured as shown below:
-Deceleration algorithm and function of acc./dec. before interpolation of CNC

- Acc./dec. method causing no figure errors

Advanced

- Deceleration at a point where a large impact would be expected
Advanced preview feed-forward function of digital servo
- Improving the tracking ability of the servo system
Because of this configuration, the function can improve the feed-forward coefficient up to about 1 without impact and also reduce figure error.
$<3>$ By specifying the G codes listed below, the modes related to high-speed and high precision machining such as advanced preview control can be turned on/off. In each mode, advanced preview feed-forward is enabled.

NOTE

While the fine acc./dec. (FAD) function is being used, the advanced preview feed-forward function is always used, and the advanced preview feed-forward function cannot be turned on and off by G codes.

G code		Mode
Mode ON	Mode OFF	
G08P1	G08P0	Advanced preview control mode
G05.1Q1	G05.1Q0	Acc./dec. mode before look-ahead interpolation
		Al nano-contour control mode
		Al contour control mode
		Al advanced preview control mode
G05P10000	G05P0	High-precision contour control (\Rightarrow Subsec.4.6.3)
		Al high precision contour control
		Al nano high precision contour control
		Fine HPCC
G05.1Q1	G5.1Q0	Al contour control I mode
		AI contour control II mode

* With the Series $30 i / 31 i / 32 i$ (servo software Series 90D0 and 90 E 0), the advanced preview feed-forward function is always applied regardless of G codes.
* For a CNC that supports this function, see Appendix D.
(Example)
G08P1; Advanced preview control mode on
$\left.\begin{array}{r}\ldots \\ \ldots \\ \ldots \\ \text { G08P0; }\end{array}\right\}$ Advanced preview control mode off

4.6.3 RISC Feed-forward Function

(1) Overview

The feed-forward system is used during high precision contour control based on RISC (HPCC mode) or AI contour control (AICC mode) in order to shorten the interpolation cycle, improving the performance of high-speed, high precision machining.
(This function is insignificant for AI nano-contour control complying with nano-interpolation as a distribution system, AI high-precision contour control, AI nano high-precision contour control, and fine HPCC.)
By using this function, the response of the servo side can be improved when the distribution period is $4 \mathrm{~ms}, 2 \mathrm{~ms}$, or 1 ms .

(2) Series and editions of applicable servo software

(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series $9096 / \mathrm{A}(01)$ and subsequent editions ${ }^{(*)}$
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series 90B5/A(01) and subsequent editions
(*) Series 9096 supports distribution periods of 1 ms and 2 ms only, and it does not support 4 ms .

(3) Setting parameters

$<1>$ Set the following parameters in the same way as for the advanced preview feed-forward function.
$<2>$ Set the parameters (RISCFF and RISCMC) below.

2200 (FS30i, 16i)
RISCMC (\#5)
When RISC is used:
1: Feed-forward response improves.
0: Feed-forward response remains unchanged.
$<3>$ By specifying a G code in the program, each mode is enabled, and the advanced preview feed-forward function set above is applied.

G code		Mode
Mode ON	Mode OFF	
G05.1Q1	G05.1Q0	Al contour control mode
G05P10000	G05P0	HPCC mode

* Appendix D lists the supported CNCs.

If the modes above are off, the normal feed-forward coefficient is enabled.

NOTE

1 Use this function only when very high command response is required.
2 When using this function, set a detection unit of 0.1 $\mu \mathrm{m}$ wherever possible.
(To set a detection unit of $0.1 \mu \mathrm{~m}$, the IS-C system must be used, or the CMR and flexible feed gear must be multiplied by 10 with the IS-B system.)

4.6.4 Cutting/Rapid Feed-forward Switching Function

(1) Overview

To use a separate feed-forward coefficient for each of cutting feed and rapid traverse, the use of the cutting/rapid fine acc./dec. switching function has been required conventionally. The cutting feed/rapid traverse switchable feed-forward function allows a separate coefficient to be used for each of cutting feed and rapid traverse, without using the cutting feed/rapid traverse switchable fine acc./dec. function.

(2) Series and editions of applicable servo software

(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series $90 \mathrm{E} 0 / \mathrm{A}(01)$ and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series 90B5/A(01) and subsequent editions

(3) Cautions

This function is usable with the modes below. Note that this function cannot be used with the normal mode.
[Usable modes]

- Advanced preview control mode
- AI contour control mode
- AI nano contour control mode
- High precision contour control mode
- AI high precision contour control mode
- AI nano high precision contour control mode
(*) With the Series $30 i / 31 / 32 i$, this function can be used regardless of the specified mode.

(4) Setting parameters

$<2>$ Next, set the cutting/rapid feed-forward switching function.

2214 (FS30i, 16i)

FFCHG (\#4)

1: The cutting/rapid feed-forward switching function is enabled.
$<3>$ With the setting of the parameters above, the parameters below are enabled in cutting.

1768 (FS15i)	Velocity feed-forward coefficient for cutting
2145 (FS30i, 16i)	

Advanced preview feed-forward coefficient for cutting

The parameters below are enabled in rapid traverse.

$$
\frac{1962(\text { FS15i) }}{2069(\text { FS30i, 16i) }}
$$

4.6.5 Feed-forward Timing Adjustment Function

(1) Overview

If the feed-forward function is applied with the aim of decreasing contour errors, the same feed-forward coefficient must be used for all axes. Even if a unified feed-forward coefficient is used, however, the axes may not necessarily behave in the same manner because of differences in the mechanical characteristic and velocity loop response among the axes.
The feed-forward timing adjustment function is intended to change the feed-forward timing so as to make the characteristics of each axis at high-speed movement. It does not change the feed-forward coefficient. So it can change the characteristic of a portion where the acceleration is high without affecting the operation for straight portions.
If the radius of an arc subjected to high-speed cutting differs among axes, resulting in a vertical or horizontal oval, this function is useful in improving roundness through fine adjustment.

(2) Control method

When an arc is cut at high speed, delaying the feed-forward timing causes the path to bulge. On the contrary, advancing the feed-forward timing causes the path to shrink. The feed-forward timing adjustment function lets you make fine adjustments on the characteristic of servo axes.

Let the radius, feedrate, and position gain be, respectively, R, V, and Kp. Delaying the feed-forward timing by $\tau(s)$ increases the radius of the arc by:

$$
\Delta \mathrm{R}=\tau \times \mathrm{V}^{2} /(\mathrm{Kp} \times \mathrm{R})
$$

To be specific, assume radius $R=10 \mathrm{~mm}$, feedrate $\mathrm{V}=4000 \mathrm{~mm} / \mathrm{min}$, and position gain $\mathrm{Kp}=40 / \mathrm{s}$. Shifting the timing by 1 ms corresponds to:

$$
\Delta \mathrm{R}=11 \mu \mathrm{~m}
$$

(3) Series and editions of applicable servo software

(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series 90E0/A(01) and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series 9096/A(01) and subsequent editions
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series 0i-C,0i Mate-C,20i-B)
Series 90B5/A(01) and subsequent editions

(4) Setting parameters

IAHDON(\#1)

The default value of the feed-forward timing adjustment parameter is: 0 : 0 .
1: Compatible with that of Series $16 i$. (See the table below.)

* By setting IAHDON=1 and No. 2095=0, the feed-forward timing becomes compatible with that of Series $16 i$.

The actually applied feed-forward timing is "setting of No. $2095+$ default value".
When newly setting bit 1 of No. 2415 to 1 for a system that already has a value set in No. 2095, set a value calculated from the following formula in No. 2095:

No. 2095 (new setting) $=$
No. 2095 (value determined by setting bit 1 of No. 2415 to 0) default value (table below)

	Default feed-forward timing value	
	No.2415\#1=0	No.2415\#1=1
HRV2 control	0	3900
HRV3 control	0	3900
HRV4 control	0	$3792(* 1)$

(*1) When HRV4 control is used and any of the following functions is used, the default value is -240 :

- High-speed processing
- AI contour control II
- High-speed cycle machining

Series and editions of applicable servo software
(Series 30i,31i,32i)
Series 90D0/J(10) and subsequent editions
Series $90 \mathrm{E} 0 / \mathrm{J}(10)$ and subsequent editions

1988 (FS15i)
2095 (FS30i, 16i)

Feed-forward timing adjustment coefficient ${ }^{\left({ }^{(1)}\right)}$

Specifying +4096 causes the feed-forward timing to advance by 1 ms . Specifying -4096 causes the feed-forward timing to delay by 1 ms . If you want to decrease the radius of an arc at high-speed cutting, increase the coefficient by about 300 at each step.
If you want to increase the radius of an arc at high-speed cutting, decrease the coefficient by about 300 at each step.
This parameter is valid for advanced preview feed-forward control (parameter Nos. 1985 and 1767 (Series 15i) and parameter Nos. 2092 and 2144 (Series $30 i, 16 i$, and so on). It is invalid for conventional feed-forward control type (parameter No. 1961 (Series 15i) and parameter No. 2068 (Series $16 i$ and so on)).
(*1) Old documents may refer to this function as "machine distortion compensation coefficient."

With the following servo software, the feed-forward timing slightly differs when the fine acc./dec. function is used, so a separate parameter is prepared for independent setting.

Series and editions of applicable servo software
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series $90 \mathrm{~B} 0 / \mathrm{J}(10)$ and subsequent editions
Series 90B1/A(01) and subsequent editions
Series $90 \mathrm{~B} 6 / \mathrm{A}(01)$ and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series 90B5/A(01) and subsequent editions

2808 (FS15i)
2395 (FS30i, 16i)

Feed-forward timing adjustment coefficient (to be used when fine acc./dec. is enabled)

* If fine acc./dec. is specified and is used in one of the following modes:
- Simple cutting feed (no high-precision mode)
- Advanced preview control
- AI advanced preview control (Series 21i)

This parameter can set the timing adjustment coefficient to parameter No. $1988+$ parameter No. 2808 (for the Series 15i) and
parameter No. 2095 + parameter No. 2395 (for the Series $16 i$ and so on).

In other high definition modes (modes in which fine acc./dec. is disabled, such as AI contour control), the timing adjustment coefficient is set to parameter No. 1988 (for the Series 15i) parameter No. 2095 (for the Series $16 i$ and so on).
This parameter allows setting of different timing adjustment coefficients depending on whether fine acc./dec. is enabled or disabled.

4.6.6 Backlash Acceleration Function

(1) Overview

If the influence of backlash and friction is large in the machine, a delay may be produced on reversal of motor, thus resulting in quadrant protrusion on circular cutting.
This is a backlash acceleration function to improve quadrant protrusion.

(2) Series and editions of applicable servo software

Backlash acceleration function
(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series 90E0/A(01) and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series 9096/A(01) and subsequent editions
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series 90B5/A(01) and subsequent editions
Override function
(Series 30i,31i,32i)
Series 90D0/J(10) and subsequent editions
Series 90E0/J(10) and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series 90B0/W(23) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series 0i-C,0i Mate-C,20i-B)
Series $90 B 5 / A(01)$ and subsequent editions

(3) Setting parameters

$<1>$ Set the backlash compensation.

1851 (FS15i)
1851 (FS30i, 16i)

\square
In semi-closed mode:
Set the machine backlash. (Minimum value $=1$)
In full-closed mode:
Set the minimum value of 1 . To prevent the backlash compensation from being reflected in positions, set the following:

NOTE

Always set a positive value. If a negative value or 0 is set, the backlash acceleration function is not enabled.

FCBL (\#0)

1: Do not reflect the backlash compensation in positions.
Generally, for a machine in full-closed mode, backlash compensation is not reflected in positions, so this bit is set. (This parameter is applicable also to a machine with a semi-closed loop.)
$<2>$ Enable the backlash acceleration function.

BLEN (\#5)

1: To enable backlash acceleration

1860 (FS15i)
2048 (FS30i, 16i)

[Typical setting]

20 to 600
Offset for the velocity command that is to be added immediately after a reverse.

1964 (FS15i)
2071 (FS30i, 16i)

[Typical setting]

Period during which backlash acceleration remains effective (in units of $2 \mathbf{~ m s e c}$)
20 to 100
The period during which the acceleration amount is added. At the start of adjustment, set 20 . When a long quadrant protrusion is found, gradually increase the setting in steps of 10 .
$<3>$ When the optimum backlash acceleration amount varies with the machining feedrate, use the acceleration amount override and the limit of the acceleration amount.

$1725($ FS15i $)$
$2114($ FS16i)

\square
0 to 32767

[Example] Example of setting the acceleration amount when a model such as the Series $16 i$ is used
Acceleration amount (parameter No. 2048) = 46, acceleration amount override (parameter No. 2114) $=23$, limit of acceleration amount $($ parameter No. 2338 $)=500$

$<4>$ Setting the direction-based backlash acceleration function
When the optimum acceleration amount differs between a reverse operation in the positive direction and a reverse operation in the negative direction, set the acceleration amount used for the reverse operation from the negative direction to positive direction in the following parameter:

1987(FS15i)	Backlash acceleration amount (for reverse from negative to positive direction)
2094(FS16i)	
[Typical setting]	20 to 600
2753(FS15i)	Acceleration amount override (for reverse from negative to positive direction)
2340(FS16i)	
Valid data range]	0 to 32767

2754(FS15 i)
2341(FS16 i)

[Valid data range]
Limit of acceleration amount (for reverse from negative to positive direction)

0 to 32767 (When 0 is set, the acceleration amount is not limited.)
[Parameters used for direction-based setting]
Series $30 i, 16 i$, and so on

Direction-based setting	Reverse direction	Backlash acceleration amount	Acceleration amount override	Limit of acceleration amount
None	Common	No. 2048	No. 2114	No. 2338
Present	From + to -	No. 2340	No. 2341	
	From - to +	No. 2094	No.	

Series $15 i$

Direction-based setting	Reverse direction	Backlash acceleration amount	Acceleration amount override	Limit of acceleration amount
None	Common	No. 1860	No. 1725	No .2751
Present	From + to -	No. 1987	No. 2753	
	From - to +	No.		

1975(FS15i)
2082(FS30i,16i)

\square
[Typical setting]
2 to 5 (detection unit of $1 \mu \mathrm{~m}$), 20 to 50 (detection unit of $0.1 \mu \mathrm{~m}$)
This parameter is related to the distance until backlash acceleration ends. Determine the parameter value by checking the actual profile.

This completes the general setting procedure for the backlash acceleration function.

(4) Setting parameters

There are two methods for setting the acceleration amount override as listed below. Normally, use setting method 1.

- \quad Setting method 1 (calculation not required)
$<1>$ With an assumed minimum acceleration, obtain the optimum backlash acceleration amount while observing quadrant protrusions. Set the obtained value as the backlash acceleration amount (setting).
$<2>$ Set the acceleration to a middle point between the minimum and maximum levels, and while increasing the override value, observe quadrant protrusions to determine the optimum override value.
$<3>$ Finally, set the maximum acceleration, and observe the arc figure. If an undercut is generated at the switching point of quadrants, set the acceleration amount limit to prevent the acceleration amount from increasing excessively.
- \quad Setting method 2 (strict calculation required)

Obtain an optimum backlash acceleration amount for two different accelerations (an assumed minimum acceleration and an intermediate acceleration between the minimum and maximum accelerations), and substitute the obtained value in the following equation for the backlash acceleration amount override:

Backlash
acceleration
amount
:---:
acceleration
amount (setting)

amount override\end{array} \times Acceleration}{2048}\right)\)

$$
\text { Acceleration }=\frac{(\text { Feedrate }[\mathrm{mm} / \mathrm{min}])^{2}}{\text { Radius }[\mathrm{mm}]} \times \frac{128}{\text { Detection unit }[\mu \mathrm{m}] \times 1000}
$$

Find a solution of the simultaneous equations. The results are as follows:

Finally, operate at the maximum acceleration, and adjust the limit of the acceleration amount.

(5) Ignoring the backlash acceleration function at handle feed

To disable the backlash acceleration function at handle feed, set the following:

With following series and editions of servo software, the bit shown below can also be used to enable the backlash acceleration function only during cutting.

- Series $90 \mathrm{~B} 0 / \mathrm{C}(03)$ and subsequent editions
- Series 90B6/A(01) and subsequent editions
- Series 90B5/A(01) and subsequent editions
- Series 90D0/A(01) and subsequent editions
- Series 90E0/A(01) and subsequent editions

Use of this bit enables and disables the backlash acceleration function even when bit 3 of parameter No. 1800 is set to 1. Backlash acceleration is enabled even at the hole bottom during rigid tapping.

(6) Disabling backlash acceleration after a stop

When using the function for disabling backlash acceleration after a stop, make the setting below. For details, see "(7) Adjustment of backlash acceleration" in Appendix H.

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
BLSTP2							

2283(FS30i,16i)
BLSTP2(\#7) 1: Disables backlash acceleration after a stop.

4.6.7 Two-stage Backlash Acceleration Function

(1) Overview

When the machine reverses the direction of feed, two types of delay are likely to occur; one type due to friction in the motor and the other due to friction in the machine.
The two-stage backlash acceleration function compensates for two types of delays separately, thus enabling two-stage compensation.

Two-stage compensation	First stage: The friction torque is canceled when the motor reverses.
Second stage:	The friction torque in the machine is
canceled.	

Furthermore, optimum compensation can be performed at all times for first stage against changing speed and load.
The two-stage backlash acceleration function performs compensation as shown below:

Fig. 4.6.7 (a) Backlash acceleration under control of the two-stage backlash acceleration function

(2) Series and editions of applicable servo software

Series 9096/A(01) and subsequent editions
Series 90B0/A(01) and subsequent editions
(specifying a direction-specific second stage acceleration amount and a limit value)
Series $90 B 0 / J(10)$ and subsequent editions
Series 90B6/A(01) and subsequent editions
Series 90B5/A(01) and subsequent editions

(3) Setting parameters

$<1>$ With SERVO GUIDE, make settings for measuring the motor speed and estimated disturbance value.
(See Sec. 4.20 for SERVO GUIDE.)
$<2>$ Turn on the power to the NC.
$<3>$ Specify the backlash compensation value.

1851 (FS15i)
1851 (FS30i, 16i)

Backlash compensation value

For semi-closed mode, specify the machine backlash (minimum of 1).

For full-closed mode, specify 1. To prevent backlash compensation from being reflected on positions, set the following parameters:

FCBL (\#0) Backlash compensation is not performed for the position in the full-closed mode.
1: Valid
0 : Invalid

NOTE

Be sure to set a positive value for backlash compensation. If 0 or a negative value is specified, backlash compensation is not performed.

$<4>$ Adjusting the velocity loop gain

Enable PI control, and increase the velocity loop gain (load inertia ratio) as much as possible.
(For velocity loop gain adjustment, see Subsec. 3.3.1.)

* By setting a high velocity loop gain, the response of the motor improves, and quadrant protrusions can be reduced. If the velocity loop gain is changed in the subsequent adjustments, the adjustments become complicate. So, increase the velocity loop gain sufficiently at this stage.
$<5>$ Enable the two-stage backlash acceleration function.

$<6>$ Set the observer-related parameters.
The procedure of this adjustment is the same as for an observer-related parameter adjustment made with the unexpected disturbance torque detection function (Subsec. 4.12.1). Make an adjustment according to steps <5> and <6> of the parameter adjustment procedure described in (3) in Subsec. 4.12.1 of this manual. The unexpected disturbance torque detection function is used, so that if an adjustment is already made, a readjustment need not be made.
(Related parameters)
1862 (FS15i)
(R12
Observer gain

2050 (FS30i, 16i)

- When HRV1, HRV2, or HRV3 control is used:
[Setting value] No change is required.
- When HRV4 control is used:
[Setting value] $956 \rightarrow$ To be changed to 264

1863 (FS15i)
2051 (FS30i, 16i)

- When HRV1, HRV2, or HRV3 control is used:
[Setting value] No change is required.
- When HRV4 control is used:
[Setting value] $\quad 510 \rightarrow$ To be changed to 35
* When setting an observer gain, follow the settings of other functions (observer, unexpected disturbance torque detection). When the two-stage backlash acceleration function is used, the settings need not be changed.
<7> Adjust observer parameter POA1.
The 2-stage backlash acceleration function takes the friction torque as an estimated disturbance value by using the observer circuit and determines the first stage acceleration amount. Therefore, observer parameter POA1 must be adjusted to obtain correct acceleration. While observing estimated disturbance value DTRQ, perform acc./dec. to adjust POA1 to the optimum value.

[Setting value]

Adjusted value (Make an adjustment according to steps $<5>$ and $<6>$ in (3) in Subsec. 4.12.1.)

[Setting value]

Torque offset parameter

Adjusted value (If the center of an estimated disturbance value does not become zero on an axis such as the gravity axis, make an adjustment according to step $<6>$ in (3) in Subsec. 4.12.1.)
$<8>$ Adjusting the first stage acceleration Specify the following parameters.

[Unit of data]
[Typical setting]
\% (Backlash acceleration amount necessary to reverse the torque that is equal to the friction torque in amount is assumed to be 100%.)
50 (Normally, optimum values range from 20% to 70%.)
To set a backlash acceleration amount of $0,-100$ needs to be set.

1987 (FS15i)

2094 (FS30i, 16i)
[Unit of data]

First stage acceleration amount from negative direction to positive direction
(\%)
\%
Normally, this parameter is set to 0 . If the quadrant protrusion varies with the reverse direction of the position command in the machine conditions, set an appropriate value in this parameter.

When this parameter is set, parameter No. 1860 (Series 15i) or No. 2048 (Series $30 i, 16 i$, and so on) specifies the first stage positive-to-negative backlash acceleration amount.
(Setting the first stage acceleration in the parameter window)

Fig. 4.6.7 (b) Two-stage backlash acceleration (first stage acceleration amount adjustment)

$1975($ FS15i)
$2082($ FS30 $i, 16 i)$
Second stage start position (detection unit)

2082 (FS30i, 16i)
[Unit of data] Detection unit
[Typical setting] 10 (For a detection unit of $1 \mu \mathrm{~m}$)
100 (For a detection unit of $0.1 \mu \mathrm{~m}$)

NOTE

1 As the second stage start position, the absolute value of the setting is used.
2 When setting $=0$, the specification of 100 is internally assumed.

1982 (FS15i)
 2089 (FS30i, 16i)

[Unit of data] In units of 0.1
[Valid data range] Series 90B0, 90B6, 90B5, 90D0, 90E0: 0 to 10279 (multiplication by 0 to 1027.9)
Series 9096: 0 to 642 (multiplication by 0 to 64.2)
[Typical setting] Normally, this value may be set to 0 .
When the second stage end scale factor is set to 0 , the second stage acceleration distance is assumed as follows:
If a positive value is set as the second stage start position, a value obtained by multiplying the start position by 2 is assumed.
If a negative value is set as the second stage start position, a value obtained by multiplying the start position by 3 is assumed.
By setting the second stage end scale factor, the second stage acceleration distance may be set to any value.
(Setting example)
When the second stage start position is set to 10 , and the second stage end scale factor is set to 50 (meaning multiplication by 5), second stage acceleration is performed as shown below.

Fig. 4.6.7 (c) Second stage end scale factor
(Second stage acceleration setting in the parameter window)

2-stage backlash acceleration $2 \mid 2$-stage backlash acceleration $3 \mid$ Static Friction Comp. Functio t|v|| -2nd-stage acceleration

「 Type2 enable
Acceleration
Starting position
Ending position
Acceleration offset

\sqrt{V} Format change(recommendation)
Acceleration override
Acceleration limit

$5 \div$
$800 \div$

Before start/end parameter adjustment

NOTE

Note that the two-stage backlash acceleration cannot be used together with the backlash stop function.

Second stage acceleration is not completed by nature until a distance specified by "Second stage end scale factor" is moved. For example, if only several microns are moved after the direction is reversed, second stage acceleration continues. To prevent such continued acceleration from occurring, set a maximum allowable duration of time with the parameter below.

1769 (FS15i)	
2146 (FS30i, 16 i)	
[Unit of data]	ms
[Typical setting]	50

$<9>$ Second stage acceleration adjustment
The two-stage backlash acceleration function has effect even if only first stage is used. However, a protrusion may linger because of machine friction. In such a case second stage is useful.
Adjust the second stage acceleration so that it falls in a range where no cut occurs.

100 (Too large a value could cause a cut at low feedrate.)

NOTE

When second stage acceleration is not used, set second stage acceleration amount $=0$. The setting of second stage start position $=0$ alone cannot disable second stage acceleration.

Fig. 4.6.7 (e) Two-stage backlash acceleration (second stage acceleration amount adjustment)
$<10>$ Second stage acceleration override adjustment
Second stage acceleration amounts can be overridden according to the circular acceleration.

When using the second stage acceleration override function, set the following.

$1960(F S 15 i)$
2018 (FS30i, 16i)

| \#7 | \#6 | \#5 | \#4 | \#3 | \#2 | \#1 | \#0 |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| | | | | | OVR8 | | |

OVR8 (\#2) 0: The format of the second stage acceleration override is in reference to 4096.
1: The format of the second stage acceleration override is in reference to 256 .
Normally, set it to 1 .

When the second stage acceleration override function is used, the second stage acceleration amount of two-stage backlash acceleration is found from the following formula:
(Second stage acceleration amount)=
(Second stage acceleration amount setting) $\times\left\{1+\alpha \times \frac{(\text { Second stage override setting })}{a}\right\}$

If OVR8 $=1, \mathrm{a}=256$
If OVR $8=0, \mathrm{a}=4096$
Here, let α be a circular acceleration, R be a radius (mm), F be a circular feedrate ($\mathrm{mm} / \mathrm{min}$), and P be a detection unit (mm). Then, α can be expressed as:
$\alpha=\left\{\frac{2}{R}(F / 60 \times 0.008)^{2}\right\} / P$
So, the second stage override setting and acceleration amount are related as follows:
(Second stage override setting) $=\frac{\mathrm{a}}{\alpha} \times\left\{\frac{(\text { Second stage acceleration amount })}{(\text { Second stage acceleration amount setting })}-1\right\}$
Example)
When using a second stage acceleration amount override, adjust the backlash second stage acceleration amount for two types of feedrates. Suppose that the adjusted values below are obtained.
No. 1960\#2 (Series $15 i$) $=1$, No. $2018 \# 2$ (Series $30 i, 16 i$, and so on) $=1$
i) In the case of R10, F1000 (detection unit of $1 \mu \mathrm{~m}$), the optimal second stage acceleration amount is 40 .
ii) In the case of R10, F6000 (detection unit of $1 \mu \mathrm{~m}$), the optimal second stage acceleration amount is 100 .
From the results above, the expressions below are obtained.
For i)
$\alpha=\left\{\frac{2}{10}(1000 / 60 \times 0.008)^{2}\right\} / 0.001=3.56$
Expressions $<1>$
$($ Second stage override setting $)=\frac{256}{3.56} \times\left\{\frac{40}{(\text { Second stage acceleration amount setting })}-1\right\}$
For ii)
$\alpha=\left\{\frac{2}{10}(6000 / 60 \times 0.008)^{2}\right\} / 0.001=128$
Expressions <2>
$($ Second stage override setting $)=\frac{256}{128} \times\left\{\frac{100}{(\text { Second stage acceleration amount setting })}-1\right\}$
From expressions $<1>$ and $<2>$, the following is obtained:
$\frac{256}{3.56} \times\left\{\frac{40}{(\text { Second stage acceleration amount setting })}-1\right\}$
$=\frac{256}{128} \times\left\{\frac{100}{(\text { Second stage acceleration amount setting })}-1\right\}$
Accordingly, (second stage acceleration amount setting) $=38.3 \fallingdotseq 38$ From expression $<2>$ (or from expression $<1>$), (second stage override setting) $=3.3 \fallingdotseq 3$
Set these values in No. 1724 and No. 1725 (Series 15i) or No. 2039 and No. 2114 (Series $30 i, 16 i$, and so on). This completes the setting of a second stage acceleration override.

NOTE
 Second stage override is effective for second stage offset.

$<11>$ Setting a limit to the second stage acceleration amount
Making an optimum override setting for low-speed and high-speed ranges may result in an insufficient acceleration amount in a medium-speed range. To avoid this problem, adjust overriding for low-speed and medium-speed ranges, and set an optimum value for the high-speed range in the following parameter as a limit value.

Fig. 4.6.7 (f) Override adjustment for the second stage acceleration amount of two-stage backlash acceleration
$<12>$ Direction-specific setting for second stage acceleration If the optimum second stage acceleration amount varies depending on the direction in which turn-over occurs, specify the following parameters.

[Recommended value]

Two-stage backlash second stage acceleration amount override for turn-over from the negative direction to the positive direction
100

[Valid data range]

Second stage acceleration amount override for turn-over from the negative direction to the positive direction
0 to 32767
Not used if the two-stage backlash second stage acceleration amount from the negative direction to the positive direction (parameter No. 2752 (for the Series $15 i$) and No. 2339 (for the Series $30 i, 16 i$, and so on)) is 0 .
This parameter takes effect when a reverse from the negative direction to the positive direction takes place if the two-stage backlash second stage acceleration amount from the negative direction to the positive direction (parameter No. 2752 (for the Series 15i) and No. 2339 (for the Series $30 i, 16 i$, and so on)) is not 0 .
It is not overridden if the setting is 0 .

2754 (FS15i)
2341 (FS30i, 16i)

[Valid data range]

Second stage acceleration limit value for turn-over from the negative direction to the positive direction

0 to 32767
Not used if the two-stage backlash second stage acceleration amount from the negative direction to the positive direction (parameter No. 2752 (for the Series $15 i$) and No. 2339 (for the Series $30 i, 16 i$, and so on)) is 0 . This parameter takes effect when a reverse from the negative direction to the positive direction takes place if the two-stage backlash second stage acceleration amount from the negative direction to the positive direction (parameter No. 2752 (for the Series $15 i$) and No. 2339 (for the Series $30 i, 16 i$, and so on)) is not 0 .
If the setting is 0 , the second stage acceleration amount is not limited.
[Parameters used for direction-based setting]
Series $30 i, 16 i$, and so on

Direction-based setting	Reverse direction	Second stage acceleration	Acceleration amount override	Acceleration limit value
None	Common	No.2039	No.2114	No.2338
Present	From + to -	No.2339	No.2340	No.2341
	From - to+	No.		

Series $15 i$

Direction-based setting	Reverse direction	Second stage acceleration	Acceleration amount override	Acceleration limit value
None	Common	No.1724	No.1725	No.2751
Present	From + to -	No.	No.2753	No.2753
	From - to+	No.2752	No.2753	N

(4) Neglecting backlash acceleration during feeding by the handle

By enabling the bit below, the backlash acceleration function can be enabled only during cutting feed.

1: To enable backlash acceleration only during cutting feed

NOTE

When bit 3 of No. 1800 is set to 1 , the backlash acceleration function is enabled at all times, and switching is disabled.
With following series and editions of servo software, the bit 7 of parameter No. 2752 (for the Series 15i) or bit 7 of No. 2339 (for the Series $30 i, 16 i$, and so on) can also be used to enable the backlash acceleration function only during cutting feed.

- Series 90B0/C(03) and subsequent editions
- Series 90B6/A(01) and subsequent editions
- Series 90B5/A(01) and subsequent editions
- Series 90D0/A(01) and subsequent editions
- Series 90E0/A(01) and subsequent editions

By using this bit, switching is enabled even when bit 3 of No. 1800 is set to 1. Backlash acceleration is enabled even at the hole bottom during rigid tapping.

BLCUT2(\#7) 1: The backlash acceleration function is enabled only during cutting feed.

(5) Two-stage backlash acceleration function (type 2)

When the 2 -stage backlash acceleration function is used, quadrant protrusions may be reduced more effectively by starting the second stage acceleration as early as possible. The 2 -stage backlash acceleration function type 2 enables the second stage acceleration immediately after a reverse operation takes place.

- Series and editions of applicable servo software

(Series 30i,31i,32i)
90D0/A(01) and subsequent editions $90 \mathrm{E} 0 / \mathrm{A}(01)$ and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
90B0/W(23) and subsequent editions
$90 \mathrm{~B} 1 / \mathrm{A}(01)$ and subsequent editions $90 \mathrm{~B} 6 / \mathrm{A}(01)$ and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B) $90 \mathrm{~B} 5 / \mathrm{A}(01)$ and subsequent editions

- Comparison with the conventional second stage acceleration

Normally, second stage acceleration is not output until the second stage start distance is reached. The 2 -stage backlash acceleration type 2 starts outputting the acceleration amount immediately after the reverse operation, and starts attenuation after the start distance.

- Setting parameters

1982(FS15i)
2089(FS30 $i, 16 i)$

[Valid data range] 0 to 32767
[Unit od data] Detection unit
[Typical setting] 20 to $30 \mu \mathrm{~m}$

NOTE

For the 2-stage backlash acceleration function type 2 , the second stage end position is set directly in the detection unit.

4.6.8 Static Friction Compensation Function

(1) Overview

When a machine, originally in the stop state, is activated, the increase in speed may be delayed by there being a large amount of static friction. The backlash acceleration function (see Subsec. 4.6.6 and Subsec. 4.6.7) performs compensation when the motor rotation is reversed. This function adds compensation data to a velocity command when the motor, originally in the stop state, is requested to rotate in the same direction, thus reducing the activation delay.

(2) Series and editions of applicable servo software

(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series 90E0/A(01) and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series 9096/A(01) and subsequent editions
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series 90B5/A(01) and subsequent editions

(3) Block diagram

(4) Setting parameters

$<1>$ Enable this function.

2005 (FS30i, 16i)
SFCM (\#7) 1: The static friction compensation function is enabled.
<2> Set adjustment parameters.

1964 (FS15i)
2071 (FS30i, 16i)

[Valid data range]
[Recommended value]
Time during which the static friction compensation function is enabled (in 2-ms units)

0 to 32767
10

1965 (FS15i)
2072 (FS30i, 16i)

\square
[Valid data range]
0 to 32767
[Recommended value]
100
Offset for the velocity command that is to be added at the start of travel from a stopped state

1966 (FS15i)
2073 (FS30i, 16i)

Stop state judgement parameter
[Valid data range]
1 to 32767
[Method of setting]
Stop determination time $=($ parameter setting $) \times 8 \mathrm{~ms}$
If the machine starts moving after stopping for the time set in this parameter or more, this compensation function is enabled.

NOTE

1 If a small value is set in this parameter, feed at a low feedrate is regarded by mistake as stop state, and compensation may not be performed correctly. In such a case, increase the setting of this parameter.
2 When the static friction compensation function is enabled, be sure to set a nonzero positive value in this parameter.

1990 (FS15i)
2097 (FS30i, 16i)

\square
[Valid data range] 0 to 32767
[Recommended value] 5
5
Parameter related to the distance the tool travels until the end of the static friction compensation function. Determine the setting by looking at the actual shape.

[Valid data range]

Static friction compensation (minus direction)

0 to 32767
Speed command offset applied when a movement is started from a stop in the minus (-) direction.
When No. $2347 \neq 0$, direction-by-direction static friction compensation is enabled. When a movement is made in the minus (-) direction, the value set in parameter No. 2347 is applied as a static friction compensation value. When a movement is made in the plus (+) direction, the value set in parameter No. 2072 is applied.
When No. $2347=0$, the value set in parameter No. 2072 is used as a static friction compensation value.

No.2347	Applied static friction compensation		Remarks
	Movement in + direction	Movement in -direction	
0	No.2072	direction-by-direction static friction compensation.	
Non-zero value	No.2072	No. 2347	Enables direction-by-direction static friction compensation.

Series and editions of applicable servo software (Series 30i,31i,32i)

Series 90D0/J(10) and subsequent editions
Series $90 \mathrm{E} 0 / \mathrm{J}(10)$ and subsequent editions

4.6.9 Torsion Preview Control Function

(1) Overview

For relatively large machines having torsion, torsion occurs between the motor and the machine end during acceleration and deceleration. In machines of this type, positional deviation is caused by torsion during acceleration and deceleration.
Torsion preview control compensates the speed command by estimating the amount of torsion from the position command. This reduces the amount of positional deviation during acceleration and deceleration.

Fig. 4.6.9(a) Torsion preview control structure

(2) Series and editions of applicable servo software

(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series 90B0/W(23) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series 90B5/A(01) and subsequent editions
(3) Notes

- This function works only in the nano interpolation mode.
- Because this function requires the user to observe the machine operation at the time of adjustment, a separate detector is needed.
- Enable the feed-forward function.
- The function is more effective when the time constant of acc./dec. is set so that acceleration changes smoothly. (Example: Bell-shaped acc./dec. before interpolation plus linear-shaped acc./dec. after interpolation)

(4) Setting parameters

 <1> Setting feed-forwardTorsion preview control uses feed-forward processing. Therefore, the following parameter must be set:

FEED(\#1)
The feed-forward function is:
0: Not used.
1: Used.
Set the parameter to use the feed-forward function. Since an error amount is observed to determine the compensation value during the adjustment, set 100% as the feed-forward coefficient for the feed for which torsion preview control is used.

1985(FS15i)
2092(FS16i)

Advanced preview feed-forward coefficient (ADFF1)

Position advanced preview feed-forward coefficient for cutting

When enabling torsion preview control also in rapid traverse, set FFR to 1 to enable feed-forward control during rapid traverse.

FFR(\#3) Feed-forward control during rapid traverse is:
0: Enabled.
1: Disabled.

<2> Operation measurement and time constant setting

To make adjustments, measure the velocity waveform and error amount.
The waveform may be measured using either the waveform display screen or SERVO GUIDE. When operating the machine at a feedrate of about F10 m/min, check that the following waveform is observed:

Fig. 4.6.9(b) Position error and actual speed
Torsion preview control differentiates position commands, so attention should be given to the command mode and time constant setting.
To ensure continuity of position command differential values, the bell-shaped time constant and the time constant of acc./dec. after interpolation must be set as well as the time constant of acc./dec. before interpolation. The adjustment examples presented here assume a large machine with a low resonance frequency of about 10 Hz and set a time constant that prevents the machine from shaking largely at the time of acc./dec.

Time constant of acc./dec. before interpolation
750 ms taken to reach F12000 mm/min
Acc./dec. before interpolation: bell-shaped time constant 200 ms
Time constant of acc./dec. after interpolation
100 ms
By setting the three time constants as explained above, the acceleration component of position commands form a bell shape, and the compensation value of torsion preview control also becomes smooth. The values of the time constants depend on the vibration status of the machine. So, set the time constants not to allow acc./dec. to cause large vibration.

For position command data resolution and smoothness, nano interpolation is used. When using torsion preview control, be sure to perform operation in a nano interpolation mode such as AI nano contour control or AI nano high precision contour control (when nano interpolation is disabled, torsion preview control is also disabled.)

<3> Setting the acceleration

In torsion preview control, three acceleration areas can be specified, and compensation coefficients can be set separately for these areas.
In a machine having the spring characteristic assumed by torsion preview control, there are almost proportional relationships between the acceleration and the torsion amount and position error. Therefore, setting the acceleration set for the time constant of acc./dec. before interpolation and one acceleration which is about $1 / 2$ to $3 / 4$ of the acceleration is normally sufficient.

Fig. 4.6.9(c) Acceleration dependent compensation curve

2796(FS15 i)
2383(FS16 i)

Torsion preview control: acceleration 1 (LSTAC1)

2797(FS15i)
2384(FS16i)

\square

$2798(\mathrm{FS} 15 i)$
$2385(\mathrm{FS} 16 i)$

Torsion preview control: acceleration 3 (LSTAC3)
[Unit of data] $\mathrm{D} \times 1000\left[\mathrm{~mm} / \mathrm{s}^{2}\right.$] unit (D : detection unit (mm))
[Valid data raneg] 0 to 32767

- If the detection unit is $1 \mu \mathrm{~m}$, the unit is $1 \mathrm{~mm} / \mathrm{s}^{2}$; if the detection unit is $0.1 \mu \mathrm{~m}$, the unit is $0.1 \mathrm{~mm} / \mathrm{s}^{2}$.
- If the acceleration is set to 0 , the setting is ignored.
- Set acceleration values so that acceleration 1 is smaller than acceleration 2, and acceleration 2 is smaller than acceleration 3 . If acceleration 1 is greater than acceleration 2, the setting of acceleration 2 is ignored.

In this example, set the acceleration for the time constant of acc./dec. before interpolation and another lower acceleration.

- LSTAC2

Time constant of acc./dec. before interpolation is 750 ms taken to reach F12000mm/min
\rightarrow Acceleration $=12000 / 60 / 0.75=266.7 \mathrm{~mm} / \mathrm{s}^{2}$
If the detection unit is $0.1 \mu \mathrm{~m}$, a value is set in units of 0.1 $\mathrm{mm} / \mathrm{s}^{2}$. Therefore,

$$
\text { LSTAC2 }=2667
$$

- LSTAC1

Acceleration that is $3 / 4$ of LSTAC2, 1000 ms taken to reach F12000 mm/min
\rightarrow Acceleration $=12000 / 60 / 1=200 \mathrm{~mm} / \mathrm{s}^{2}$, therefore, LSTAC1 $=2000$

- LSTAC3

LSTAC3 $=0$ because LSTAC3 is not used.

Fig. 4.6.9(d) Example of compensation curve

<4> Setting the acceleration torsion compensation value

The acceleration torsion compensation value is used to compensate the amount of torsion generated at a constant acceleration. While changing the acceleration setting, measure the position error generated at a constant acceleration.

Fig. 4.6.9(e) Position error at LSTAC2

Fig. 4.6.9(f) Position error at LSTAC1

Set the values measured in Fig. 4.6.9 (e) and Fig. 4.6.9 (f) above in the acceleration torsion compensation values shown below.
(Acceleration torsion amount)

2799(FS15 i)
2386(FS16 i)

[Unit of data]
[Valid data raneg]

Torsion preview control: Acceleration torsion compensation value K1 (LSTK1)

Detection unit
0 to 32767
Set the torsion amount generated at acceleration 1 in the detection unit. When 0 is set, compensation is disabled.

2800(FS15i)
2387(FS16i)

[Unit of data]
[Valid data raneg]

Torsion preview control: Acceleration torsion compensation value K2 (LSTK2)

Detection unit
0 to 32767
Set the torsion amount generated at acceleration 2 in the detection unit.
When 0 is set, acceleration 1 and the K1 setting are applied. (See Fig. 4.6.9(g).)

2801(FS15 i)
2388(FS16 i)

[Unit of data]
[Valid data raneg]

Torsion preview control: Acceleration torsion compensation value K3
(LSTK3)
Detection unit
0 to 32767
Set the torsion amount generated at acceleration 3 in the detection unit.
When 0 is set, acceleration 2 and the K2 setting are applied. (See Fig. 4.6.9(h).)

The compensation values are corrected automatically so that the following is satisfied: $\mathrm{K} 1 \leq \mathrm{K} 2 \leq \mathrm{K} 3$. (See Fig. 4.6.9(i).)

Fig. 4.6.9(g) Compensation curve when $\mathrm{K} 2=0$

Fig. 4.6.9(h) Compensation curve when $\mathrm{K} 3=0$

Fig. 4.6.9(i) Automatic compensation of the compensation curve
(Acceleration torsion amount for each direction)

2804(FS15i)
2391(FS16 i)

[Unit of data] [Valid data raneg]

Torsion preview control: Acceleration torsion compensation value K1N (LSTK1N)

Detection unit
0 to 32767
Set the amount of torsion generated at acceleration 1 (when the acceleration is a negative value) in the detection unit.

2805(FS15 i)
2392(FS16 i)

[Unit of data] Detection unit
[Valid data raneg]
0 to 32767
Set the amount of torsion generated at acceleration 2 (when the acceleration is a negative value) in the detection unit.

2806(FS15 i)
2393(FS16 i)

[Unit of data] [Valid data raneg]

Torsion preview control: Acceleration torsion compensation value K3N (LSTK3N)

Detection unit
0 to 32767
Set the amount of torsion generated at acceleration 3 (when the acceleration is a negative value) in the detection unit. If 4 is set, acceleration 2 and the settings up to K2 apply.

[^0]From Fig. 4.6.9 (e) and Fig. 4.6.9 (f), LSTK1 through LSTK3 and LSTK1N through LSTK3N are set as follows:
LSTK $1=60$, LSTK2 $=100$, LSTK3 $=0$ LSTK1N=45, LSTK2N=90, LSTK3N=0

<5> Setting the maximum compensation value (enabling torsion preview control)

2795(FS15i)
2382(FS16 i)

Torsion preview control: Maximum compensation value (LSTCM)
[Unit of data]
Detection unit
[Valid data raneg]
0 to 32767
Set the maximum value of the compensation value to be added to the velocity command in the detection unit. By setting the parameter to a value greater than 0 , torsion preview control is enabled. Set a value greater than the maximum position error value measured (a value obtained by multiplication by about 1.2 to 2).

LSTCM=500
The above setting enables this compensation, which reduces the position error generated at the time of acc./dec.

Fig. 4.6.9(j) Effect of acceleration torsion compensation

<6> Setting the torsion delay compensation value

Just with the acceleration torsion compensation value, the torsion amount generated at the start of acc./dec. due to delay in velocity control cannot be corrected, therefore there is a position error still left. Adjust the torsion delay compensation value while observing the waveform plotted at the time of acc./dec.

2802(FS15 i)
2389(FS16 i)

Torsion preview control: Torsion delay compensation value KD (LSTKD)

2809(FS15 i)
2396(FS16 i)

Torsion preview control: Torsion delay compensation value KDN (LSTKDN)

LSTKDN is used when there is a difference in delay between the start of acceleration and the start of deceleration.

Fig. 4.6.9(k) Compensation for torsion delay

Fig. 4.6.9(I) Effect of compensation for torsion delay - 1
When the torsion delay compensation value is set to 2000 , there is slight position error still left, so a fine adjustment is made. Then, the position error is decreased to $10 \mu \mathrm{~m}$ or less as shown in the figure below.
(Torsion delay compensation value $=3000 / 2500$)

Fig. 4.6.9(m) Effect of compensation for torsion delay - 2

<7> Setting the torsion torque compensation coefficient

Torsion torque compensation is set when an adequate velocity loop gain cannot be obtained and acceleration torsion compensation does not work efficiently. The delay in velocity control can be compensated by adding the differential of the compensation value to TCMD.

2815(FS15i)
2402(FS16i)

Torsion preview control: Torsion torque compensation coefficient LSTKT
2402(FS16i)
[Unit of data] \%
[Valid data range] 0 to 1000
Compensation coefficient used when the compensation value of VCMD is differentiated to compensate TCMD. When 100% is set as the compensation coefficient for TCMD, the acceleration amount of the motor itself is indicated.

Fig. 4.6.9(n) Torsion torque compensation

4.7
 OVERSHOOT COMPENSATION FUNCTION

(1) Setting parameters

[Valid data range] 0 to 32767
[Recommended value] 30000

* Basically, reset the parameter to 0 if you do not use the overshoot compensation function.

(2) Series and editions of applicable servo software

(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series 90E $0 / \mathrm{A}(01)$ and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series $9096 / A(01)$ and subsequent editions
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series 90B5/A(01) and subsequent editions

(3) Explanation

(a) Servo system configuration

Fig. 4.7 (a) shows the servo system configuration. Fig. 4.7 (b) shows the velocity loop configuration.

Fig. 4.7 (a) Digital servo system configuration

Fig. 4.7 (b) Velocity loop configuration

(b) When incomplete integration and overshoot compensation are not used.

First, 1-pulse motion command is issued from NC. Initially, because the Position Feedback and Velocity Feedback are "0", the 1-pulse multiplied position gain Kp value is generated as the velocity command (VCMD).
Because the motor will not move immediately due to internal friction and other factors, the value of the integrator is accumulated according to the VCMD. When the value of this integrator creates a torque command, large enough to overcome the friction in the machine system, the motor will move and VCMD will become " 0 " as the value of MCMD and the Position Feedback becomes equal.
Furthermore, the Velocity Feedback becomes " 1 " only when it is moved, and afterwards becomes " 0 ". Therefore the torque command is held fixed at that determined by the integrator.
The above situation is shown in Fig. 4.7 (c).

Fig. 4.7 (c) Response to 1 pulse movement commands
If Fig. 4.7 (c) on the previous page, the torque (TCMD1) when movement has started becomes greater than the machine static friction level. The motor will move 1 pulse, and finally stops at the TCMD2 level.
Because the moving frictional power of the machine is smaller than the maximum rest frictional power, if the final torque TCMD2 in Fig. 4.7 (c) is smaller than the moving friction level, the motor will stop at the place where it has moved 1 pulse, Fig. 4.7 (d). When the TCMD2 is greater than the moving friction level the motor cannot stop and overshoot will occur Fig. 4.7 (e).
The overshoot compensation function is a function to prevent the occurrence of this phenomenon.

(c) Response to 1 pulse movement commands

(i) Torque commands for standard settings (when there is no overshoot)

Fig. 4.7 (d) Torque commands (when there is no overshoot)
(ii) Torque commands for standard settings (during overshoot)

Fig. 4.7 (e) Torque commands (during overshoot)

Conditions to prevent further overshoot are as follows.
When
TCMD1 $>$ static friction $>$ non-static friction $>$ TCMD2 $\ldots \ldots .<1>$ and there is a relationship there to
TCMD $1>$ static friction $>$ TCMD $2>$ non-static friction...... $<2>$ regarding static and non-static friction like that of (ii), use the overshoot compensation in order to make $<2>$ into $<1>$. The torque command status at that time is shown in (iii).
(iii) Torque command when overshoot compensation is used

```
Function bit
    OVSC = 1 (Overshoot compensation is valid)
Parameter
    PK3V: around 30000 to 25000 (Incomplete integral coefficient)
```

(Example)
when PK3V=32000 time constant approx. 42 msec
when PK3V=30000 time constant approx. 11 msec
when PK3V=25000 time constant approx. 4 msec

Fig. 4.7 (f) Torque command (when overshoot is used)

If this overshoot compensation function is used, it is possible to prevent overshoot so that the relationship between machine static and non-static friction and TCMD2 satisfies $<1>$, however the torque TCMD during machine stop is TCMD2 $=0$
the servo rigidity during machine stop is insufficient and it is possible that there will be some unsteadiness at ± 1 pulse during machine stop.
There is an additional function to prevent this unsteadiness in the improved type overshoot prevention function and the status of the torque command at that time is shown in (iv).
(iv) Torque command when the improved type overshoot compensation is used

Function bit
OVSC = 1 (Overshoot compensation is valid)
Parameter
PK3V: around 32000 (Incomplete integral coefficient)
OSCTP: around 20 (Number of incomplete integral)

When overshooting with this parameter, try increasing the value of the overshoot protection counter (OSCTP) by 10. Conversely, when there is no overshooting, but unsteadiness occurs easily during machine stop, decrease the overshoot protection counter (OSCTP) value by 10 .
When overshoot protection counter $(\mathrm{OSCTP})=0$ it is the same as existing overshoot compensation.

Fig. 4.7 (g) Torque command (using improved type overshoot compensation)

If this function is used, the final torque command is TCMD3. If the parameter $\mathrm{PK} 3 \mathrm{~V}(\mathrm{t} 3)$ is fixed so that this value becomes less than the non-static friction level, overshoot is nullified. Because torque command is maintained to some degree during machine stop, it is possible to decrease unsteadiness during machine stop.

(4) Improving overshoot compensation for machines using a $0.1-\mu \mathrm{m}$ detection unit

(a) Overview

Conventional overshoot compensation performs imperfect integration only when the error is 0 .
A machine using a $0.1-\mu \mathrm{m}$ detection unit, however, has a very short period in which the error is 0 , resulting in a very short time for imperfect integration.
The new function judges whether to execute overshoot compensation when the error is within a predetermined range.
(b) Setting parameters

1994 (FS15i)
2101 (FS30i, 16i)

[Valid data range]
[Unit of data] Detection unit
[Recommended value] 1 (detection unit: $1 \mu \mathrm{~m}$)
10 (detection unit: $0.1 \mu \mathrm{~m}$)
To set an error range for which overshoot compensation is enabled, set Δ, as indicated below, as the overshoot compensation enable level.

Fig. 4.7 (h) Relationship between error and overshoot compensation

(5) Overshoot compensation type 2

(a) Overview

For a machine using, for example, $0.1-\mu \mathrm{m}$ detection units, the use of the conventional overshoot compensation function may generate minute vibrations when the machine stops, even if the parameter for the number of incomplete integration is set.
This is caused by the repeated occurrence of the following phenomena:

- While the machine is in the stopped state, the position error falls within the compensation valid level, and the integrator is rewritten. Subsequently, the motor is pushed back by a machine element such as a machine spring element, causing the position error to exceed the compensation valid level.
- While the position error is beyond the threshold, a torque command is output to decrease the position error, then it decreases to below the threshold again.
In such a case, set the bit indicated below to suppress the minute vibration.

(b) Setting parameters

Overshoot compensation (Type 2: When OVS1 = 1)

Fig. 4.7 (i) Overshoot compensation type 2

4.8 HIGH-SPEED POSITIONING FUNCTION

High-speed positioning is used in the following cases:
$<1>$ To perform point-to-point movement quickly, where the composite track of two or more simultaneous axes can be ignored such as, for example, in a punch press
$<2>$ To speed up positioning in rapid traverse while errors in the shape during cutting must be minimized (reduction of cycle time) In case $<1>$, the position gain switching function and the low-speed integral function are effective $(\Rightarrow$ See Subsec. 3.3.2, "High-Speed Positioning Adjustment Procedure"). For the application of $<2>$ above, a combination of the fine acc./dec. (FAD) function and rapid traverse feed-forward is useful. In the Series $30 i, 31 i$, and $32 i$, nano interpolation is always enabled, so the fine acc./dec. function is unnecessary. For the use in $<2>$ above, only the setting of the feed-forward function is required.

This section explains these functions.

4.8.1 Position Gain Switching Function

(1) General

An increase in the position gain is an effective means of reducing the positioning time when the machine is about to stop.
An excessively high position gain decreases the tracking ability of the velocity loop, making the position loop unstable. This results in hunting or overshoot. A position gain adjusted in high-speed response mode produces a margin in the position gain when the machine is about to stop.
Increase the position gain in low-speed mode so that both the characteristics in high-speed response mode and a short positioning time are achieved.

(2) Series and edition of applicable servo software

(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series 90E0/A(01) and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series 9096/A(01) and subsequent editions
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series 90B5/A(01) and subsequent editions

(3) Setting parameters

$<1>$ This parameter specifies whether to enable the position gain switching function as follows:

The position gain switching function is used.
1: Valid
0 : Invalid
<2> This parameter specifies whether to set the velocity at which position gain switching is to occur, as follows:

Limit speed for enabling position gain switching
The position gain is doubled with a speed lower than or equal to the speed specified above.
[Unit of data] Rotary motor: $0.01 \mathrm{~min}^{-1}$
Linear motor: $\quad 0.01 \mathrm{~mm} / \mathrm{min}$
[Valid data range] 0 to 32767
[Recommended value] 1500 to 5000

REFERENCE

Using the high-speed positioning velocity increment system magnification function $(\rightarrow$ (5) in Subsec. 4.8.1) can increase the effective velocity to ten times.

Fig. 4.8.1 (a) shows the relationships between the position error and velocity command.
(4) When the feed-forward function is used at the same time (position gain
switching function type 2) switching function type 2)

When using the position gain switching function together with the feed-forward function, make the setting below.

(a) Overview

When the conventional position gain switching function is used in conjunction with the feed-forward function, it can cause an overshoot at a relative low feed-forward coefficient, sometimes resulting in a difficulty in adjustment, because also the feed-forward term-based effect is doubled. Position gain switch function type 2 has been improved to make position gain switching independently of the feed-forward function.

(b) Setting parameters

In addition to the parameter of the position gain switching function described earlier, set the following parameter.

PGTWN2 (\#5)

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
		PGTWN2					

Specifies whether to double the feed-forward-based effect at position gain switching as follows:
1: Not to double
0 : To double

NOTE

This function is invalid when the VCMD interface is in use.
(When the VCMD interface is in use, set PGTWN2 $=0$.)

(5) High-speed positioning velocity increment system magnification function

(a) Overview

This function increases the velocity increment system for the effective velocity parameter of the high-speed positioning functions (position gain switch and low-speed integral functions) to ten times.

(b) Setting parameters

Using the following parameter can change the increment system for the effective velocity.

| \#7 | \#6 | \#5 | \#4 | \#3 | \#2 | \#1 | \#0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| | | | | | | HSTP10 | |

2204 (FS30i, 16i)
HSTP10 (\#1)

Specifies the effective velocity increment system for the high-speed positioning functions (position gain switch and low-speed integral functions) as follows:
1: $0.1 \mathrm{~min}^{-1}$ (rotary motor), $0.1 \mathrm{~mm} / \mathrm{min}$ (linear motor)
$0: 0.01 \mathrm{~min}^{-1}$ (rotary motor), $0.01 \mathrm{~mm} / \mathrm{min}$ (linear motor)

NOTE

1 The value set in this function applies to the increment system of both the "position gain switching function" and "low-speed integral function."
2 When this function is set, the error amount in constant-speed feed and the actual position gain indication on the CNC do not match the logical values.

Fig. 4.8.1 (a) Position gain switching

4.8.2 Low-speed Integral Function

(1) Overview

To ensure that the motor responds quickly, a small time constant must be set so that a command enabling quick startup is issued.
If the time constant is too small, vibration or hunting occurs because of the delayed response of the velocity loop integrator, preventing further reduction of the time constant.
With the low-speed integral function, velocity loop integrator calculation is performed in low-speed mode only. This function ensures quick response and high stability while maintaining the positioning characteristics in the low-speed and stop states.

(2) Series and edition of applicable servo software

(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series 90E0/A(01) and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series 9096/A(01) and subsequent editions
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series 90B5/A(01) and subsequent editions

(3) Setting parameters

$<1>$ Specify whether to enable the low-speed integral function.

SSG1 The low-speed integral function is used.
1: Valid
0 : Invalid
$<2>$ Specify whether to enable integration at acc./dec. time.

This function can specify whether to enable the velocity loop integration term for two velocity values, the first for acceleration and the second for deceleration. It works as shown in Fig. 4.8.1 (b).

Fig. 4.8.1 (b) Integration invalid range at low-speed integral

4.8.3 Fine Acceleration/Deceleration (FAD) Function

(1) Overview

The fine acceleration/deceleration (fine acc./dec.) function enables smooth acc./dec. This is done by using servo software to perform acc./dec. processing, which previously has been performed by the CNC. With this function, the mechanical stress and strain resulting from acc./dec. can be reduced.

(2) Features

- Acc./dec. is controlled by servo software at short intervals, allowing smooth acc./dec.
- Smooth acc./dec. can reduce the stress and strain applied to the machine.
- Because of the reduced stress and strain on the machine, a shorter time constant can be set (within the motor acceleration capability range).
- Two acc./dec. command types are supported: bell-shaped and linear acc./dec. types.
- An application of the fine acc./dec. function is found in the cutting and rapid traverse operations; for each operation, the FAD time constant, feed-forward coefficient, and velocity feed-forward coefficient can be used separately.

(3) Series and editions of applicable servo software

(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series 9096/A(01) and subsequent editions
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series 0i-C,0i Mate-C,20i-B)
Series 90B5/A(01) and subsequent editions

NOTE

In the Series $30 i, 31 i$, and $32 i$, smooth acc./dec. is always performed by nano interpolation, so the fine acc./dec. function is unnecessary. (The settings for the function are also ignored.)

(4) Setting basic parameters

(5) Setting parameters for the fine acc./dec. function, used separately for cutting and rapid traverse

As mentioned above, set the fine acc./dec. function bit and the bit for selecting the bell-shaped or linear type.
Then, set the following:

FADCH (\#0) 1: Enables the fine acc./dec. function, used separately for cutting and rapid traverse.

NOTE

To enable this bit setting, the power must be turned off then back on.

In cutting mode, the following parameters are used:

1766 (FS15i)
2143 (FS30i, 16i)

\square
[Valid data range]
8 to 64
A value that falls outside this range, if specified, is clamped to the upper or lower limit.

1767 (FS15i)
2144 (FS30i, 16i)

\square
1768 (FS15i)
2145 (FS30i, 16i)
In rapid traverse mode, the following parameters are used:

$1702($ FSS $15 i)$
$2109($ FS30i, $16 i)$
[Valid data range]

\square
[Valid data range]
8 to 64
A value that falls outside this range, if specified, is clamped to the upper or lower limit.

1985 (FS15i)
2092 (FS30i, 16i)

$$
\text { Position feed-forward coefficient for rapid traverse (in units of } 0.01 \% \text {) }
$$

$1962(\mathrm{FS} 15 i)$
$2069(\mathrm{FS} 30 i, 16 i)$

NOTE

1 When the settings above are made, both of the fine acc./dec. time constant and feed-forward coefficient can be automatically switched for cutting feed or rapid traverse. To switch the feed-forward coefficient only, use the cutting feed/rapid traverse switchable feed-forward function. (See Subsec. 4.6.4.)
2 When FAD, used separately for cutting and rapid traverse, is applied to axes under simple synchronous control, set the function bit for both the master and slave axes. When the function is enabled for the master axis only, switching between cutting and rapid traverse modes cannot be performed.

Table 4.8.3 Feed-forward coefficient and fine acc./dec. time constant parameters classified by use
Series 16i, 18i, 21i, 0i

	Parameter setting				Parameters for cutting			Parameters for rapid traverse		
	$\underset{\# 1}{\mathrm{No.} 2005}$	$\begin{gathered} \text { No. } 2007 \\ \# 6 \end{gathered}$	$\begin{gathered} \mathrm{No.} 1800 \\ \# 3 \end{gathered}$	$\left\|\begin{array}{c} N o .2202 \\ \# 0 \end{array}\right\|$	Position FF coefficient	Velocity FF coefficient	FAD time constant	$\begin{array}{\|c\|} \hline \text { Position } \\ \text { FF } \\ \text { coefficient } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Velocity } \\ \text { FF } \\ \text { coefficient } \end{array}$	FAD time constant
Cutting FF	1	0	0	0	$\begin{array}{\|l\|} \hline \hline \text { No. } 2068 \\ \text { No. } 2092 \\ \hline \end{array}$	No. 2069	-	-	-	-
Usual FF (cutting FF + rapid traverse FF)	1	0	1	0	No. 2068 No. 2092	No. 2069	-	$\begin{aligned} & \text { No. } 2068 \\ & \text { No. } 2092 \end{aligned}$	No. 2069	-
Cutting FAD	0	1	0	0	-	-	No. 2109	-	-	-
Cutting/rapid traverse-specific FAD	0	1	1	1	-	-	No. 2143	-	-	No. 2109
Cutting FAD + cutting FF	1	1	0	0	No. 2092	No. 2069	No. 2109	-	-	-
Cutting FAD + usual FF	1	1	1	0	No. 2092	No. 2069	No. 2109	No. 2092	No. 2069	-
Cutting/rapid traverse-specific FAD + cutting/rapid traverse-specific FF	1	1	1	1	No. 2144	No. 2145	No. 2143	No. 2092	No. 2069	No. 2109

Series $15 i$

NOTE

1 In the above tables, the abbreviations "FF" and "FAD" refer to the feed-forward function and fine acc./dec. function, respectively.
2 Of two parameter numbers stacked one on the other in each field of the above tables, the upper one is used in non-advance mode, and the lower one, in advance mode.

(6) Cautions for combined use of the synchronization function with the spindle axis and fine acc./dec.

The restrictions listed below are imposed on the combined use of the synchronization function between the servo axis and spindle axis and the fine acc./dec. function.
(Disable the fine acc./dec. function if the combine use is impossible.)

Function	Use of FAD for servo axis		Cautions for combined use		
	When FAD is disabled for spindle axis	When FAD is enabled for spindle axis			
Rigid tapping	Allowed	Allowed	When FAD is disabled for spindle axis: During rigid tapping, FAD and feed-forward control are disabled. For synchronization, the position gain for the servo axis must be changed. See (7). When FAD is enabled for spindle axis: The same FAD time constant, acc./dec. type, feed-forward coefficient, and position gain must be used for the servo axis (during cutting) and the spindle axis.		
Advanced preview control rigid tapping	Not allowed	Allowed	The same FAD time constant, acc./dec. type, feed-forward coefficient, and position gain must be used for the servo axis (during cutting) and the spindle axis.		
Cs axis contour control	Not allowed	Allowed	The same FAD time constant, acc./dec. type, feed-forward coefficient, and position gain must be used for the servo axis (during cutting) and the spindle axis.		
Hob function	Not allowed	Not allowed	Disable the fine acc./dec. function.		
EGB function	Not allowed	Not allowed	Disable the fine acc./dec. function. Flexible synchronization Not allowed Allowed		The same FAD time constant, acc./dec. type, feed-forward
:---					
coefficient, and position gain must be used for the servo axis					
(during cutting) and the spindle axis.					

NOTE

The spindle FAD function can be used when an αi spindle amplifier and FANUC Series 16i/18i/21i MODEL B CNC are used.
Spindle software: Series 9D50/E(05) and subsequent editions
CNC software: M series: Series $\mathrm{BOH} 1 / \mathrm{M}(13)$ and subsequent editions, Series BDH1M(13) and subsequent editions, Series DDH1/M(13) and subsequent editions, Series BDH5/C(03) and subsequent editions
T series: Series B1H1/M(13) and subsequent editions Series BEH1/M(13) and subsequent editions Series DEH1/M(13) and subsequent editions
For details of the spindle FAD function, refer to "FANUC AC SPINDLE MOTOR αi series Parameter Manual (B-65280EN)".

Function	Combined use with FAD function	Cautions for combined use
Flexible synchronization (between servo axes)	Allowed	For the axes to be synchronized with each other, the same FAD time constant, feed-forward coefficient, and position gain must be set.

(7) Rigid tapping synchronization when spindle axis FAD is disabled (a) Overview

Because using fine acc./dec. causes the servo axis delay (error) to increase by 1 ms , rigid tapping with fine acc./dec. set up results in an increase of synchronization error against the spindle. To avoid this increase, use the following procedure to change the servo axis position gain for rigid tapping.

NOTE

In advanced preview control mode, rigid tapping cannot be used together with fine acc./dec. In this case, disable fine acc./dec.

(b) Setup procedure

By setting the parameter below, the position gain can be automatically changed only for the servo axis to establish synchronization.
(Parameter)

1749 (FS15i)
2209 (FS30i, 16i)
FADPGC (\#3)

Specifies whether to perform synchronization in rigid tapping mode when FAD is set up, as follows:
1: \quad To perform \leftarrow To be set
0: Not to perform

NOTE

1 After setting this bit, switch the power off and on again.
2 If this parameter is set, the servo position gain increases by 1 ms even when rigid tapping is not used.
3 It is necessary to set this parameter for all axes that are subjected to contouring.

(Reference)

With Series $16 i$ and so on, two types of parameters are available for position gain setting. By setting the parameters as described below, a position gain match can be ensured between the servo axis and spindle.

NOTE

Do not make following setting when FADPGC = 1 is set.
a. Nos. 4065 to 4068: Spindle servo mode position gain
b. Nos. 5280 to 5284: Rigid tapping position loop gain Parameter type "a" corresponds to the spindle position loop gain for rigid tapping, and parameter type b, to the servo axis position loop gain. Usually, both parameter types take the same values. For a servo axis with fine acc./dec. specified, however, set parameter type b with the values obtained using the following calculation:

Example of parameter setting)

Position gain (1/s)	Usually set value	Newly set value
15	1500	1523
16.66	1666	1694
20	2000	2041
25	2500	2564
30	3000	3093
33.33	3333	3448
35	2500	3627
40	4000	4167
45	4500	4712
50	5000	5263

(8) Other specifications to note regarding the fine acc./dec. function

- Advanced preview control and fine acc./dec. can be used together. (The time constants before and after advanced preview interpolation, and the fine acc./dec. time constant are effective.)
- If FAD is set, then the G05 P10000 command is issued with HPCC, FAD is disabled.
- Using the FAD function increases the position error as follows:
- For FAD bell-shaped

Deviation incerase (pulses) $=$

$$
\frac{\text { Feedrate }(\mathrm{mm} / \mathrm{min})}{60 \times 1000 \times \text { Detection unit }(\mathrm{mm})} \times\left(\frac{\text { FAD time constant }(\mathrm{ms})}{2}+1\right)
$$

- For FAD linear type

Deviation incerase (pulses) $=$
$\frac{\text { Feedrate }(\mathrm{mm} / \mathrm{min})}{60 \times 1000 \times \text { Detection unit }(\mathrm{mm})} \times\left(\frac{\text { FAD time constant }(\mathrm{ms})+1}{2}+1\right)$
Example)
When feed operation is performed using F1800 with a position gain of $30(1 / \mathrm{s})$ and a detection unit of 0.001 mm , the position error is normally expressed as follows:
Normal deviation (pulses) $=$

$$
\begin{aligned}
& \frac{\text { Feedrate }(\mathrm{mm} / \mathrm{min})}{60 \times \text { Position gain }(1 / \mathrm{s}) \times \text { Detection unit }(\mathrm{mm})} \\
& =\frac{1800}{60 \times 30 \times 0.001}=1000(\text { pulses })
\end{aligned}
$$

When the FAD function (FAD bell-shaped) is used with the time constant set to 64 ms , the deviation increases as follows:
Deviation incerase (pulses) =

$$
\frac{1800}{60 \times 1000 \times 0.01} \times\left(\frac{64}{2}+1\right)=990(\text { pulses })
$$

When FAD is used, the entire deviation is then obtained as follows:
Deviation when FAD is used (pulses) $=1000+990$

$$
=1990 \text { (pulses) }
$$

The combined use of the FAD function and the feed-forward function does not increase the position error so much as expected, because the feed-forward function decreases a delay against the command. When the FAD function is used alone, however, a higher error overestimation level must be set, considering the increase in the deviation.

(9) Examples of applying the fine acc./dec. function

Conventional control in which the feed-forward function is not used

When the feed-forward and rapid traverse bell-shaped acc./dec.
(Acc./dec. by the CNC) functions are used

When the feed-forward function is used

When the feed-forward and fine acceleration/ deceleration functions are used

4.9 SERIAL FEEDBACK DUMMY FUNCTIONS

4.9.1 Serial Feedback Dummy Functions

(1) Overview

The serial feedback dummy functions ignore servo alarms of non-servo axes.

(2) Series and editions of applicable servo software

(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series $90 \mathrm{E} 0 / \mathrm{A}(01)$ and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series $90 B 0 / A(01)$ and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series 90B5/A(01) and subsequent editions
Series 9096 does not support the settings of such dummy axes.
(This series is not planed to support this function in the future. If necessary, use a series supporting this function.)

(3) Setting the built-in Pulsecoder-based feedback dummy function

Setting the function bit shown below enables ignoring of alarms related to the servo amplifier and built-in Pulsecoder for an axis not connected to a servo control circuit.

To use the serial feedback dummy functions, a non-zero value must be entered as the motor ID number.

1874 (FS15i)
2020 (FS30i, 16i)

Motor ID number

Enter an appropriate non-zero value.
Example) 15

(4) Handling of dummy axes in the i series CNC

Usually in the i series, the number of amplifiers must match that of axes. A dummy axis can be set normally if the axis to be set as the dummy axis has an amplifier. However, if an attempt is made to set an axis that does not have an amplifier as a dummy axis, an alarm may be issued, indicating that amplifiers are insufficient.
In such a case, make FSSB settings as if a series of existing amplifiers were followed by another amplifier.

Example When there are only two amplifiers for a 3-axis NC AMP1 AMP2 Dummy axis (X axis) (Z axis) (Y axis)

Let us consider how to make the Y-axis (second axis) a dummy axis in the above configuration.
Set up the parameters as follows:
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}$, and so on)
No. $1023 \quad \mathrm{X}: 1 \quad \mathbf{Y}: 2 \quad \mathrm{Z}: 3$
No. 1902 bit1 $=0, \overline{\text { bit0 }}=1$
No. 1905 bit0 X:0 Y:0 Z:0
No.1910=0
No.1911=2
No.1912=1 \leftarrow Add a dummy axis.
Nos. 1913 to $1919=40$
Nos. 1970 to $1989=40$
No. 2009 bit0 $\mathrm{Y}: 1$
No. 2165 Y:0
(Series 30i,31i,32i)
No. $1023 \quad \mathrm{X}: 1 \quad \underline{\mathbf{Y}: 2} \quad \mathrm{Z}: 3$
No. 1902 bit1 $=0$, bit0 $=1$
No. 1905 bit0 X:0 Y:0 Z:0
No. $14340=0$
No. 14341=2
No. $14342=1$
Nos. 14343 to $14375=-96$
No. 2009 bit0 $\mathrm{Y}: 1$
No. 2165 Y:0

* For detailed descriptions about FSSB-related setting, refer to the respective CNC parameter manuals.

(5) Separate detector-based dummy feedback

The separate detector-based dummy feedback function is intended to ignore alarms for an axis when the separate detector has been disconnected from the axis temporarily. Set the following bit.

Specifies whether to enable the separate detector-based dummy feedback function as follows:
1: To enable
0 : To disable

NOTE

The relationships of this function with the built-in Pulsecoder-based serial feedback dummy function are as follows:

- When only the built-in Pulsecoder-based serial feedback dummy function is enabled:
Alarms related to the built-in Pulsecoder and amplifier are ignored.
- When only the separate detector-based dummy feed-back function is enabled:
Alarms related to the separate detector are ignored.
- When both the functions are enabled:

Alarms related to the built-in Pulsecoder, separate detector, and amplifier are ignored.

4.9.2 How to Use the Dummy Feedback Functions for a Multiaxis Servo Amplifiers when an Axis is not in Use

If an axis connected to a multiaxis amplifier is not in use, it is necessary to set the dummy function bit described in Subsec. 4.9.1 and connect a dummy connector to the amplifier.

Information about dummy connector	Location
Jumper between pins 11 and 12.	JFX

4.10 BRAKE CONTROL FUNCTION

(1) Overview

This function prevents the tool from dropping vertically when a servo alarm or emergency stop occurs. The function prevents the motor from being immediately deactivated, instead keeping the motor activated for the period specified in the corresponding parameter, until the mechanical brake is fully applied.

(2) Hardware configuration

Fig. 4.10 (a) Example of configuration
The numbers of the following descriptions correspond to those in the figure:
<1> Applicable system software
Any system soft can be used.
<2> Applicable servo software
(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series 90E0/A(01) and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series 9096/A(01) and subsequent editions
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions (Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)

Series 90B5/A(01) and subsequent editions
$<3>$ Servo amplifier
Use a single-axis servo amplifier (SVM1) to which the brake control function is applied. See NOTE below.
For an axis to which the brake control function is not applied, any servo amplifier can be used.

NOTE

If you want to control the brake for an axis with a two- or three-axis amplifier, specify the brake control parameter for all axes on the multiaxis amplifier including the target axis. If an alarm is generated for any of the axes connected to the two- or three-axis amplifier, brake control does not operate effectively.
$<4>$ Emergency stop signal
With the αi series, a timer for the emergency stop signal is built into the SVM. While motor activation is kept by brake control, the timer in the SVM is used to extend the activation time that lasts until the emergency stop signal operates. Motor deactivation can be delayed by the SVM for 50 ms to 400 ms . To delay motor deactivation by brake control for 400 or more, insert a timer in the contact signal of the emergency stop signal and +24 V , and delay the emergency stop signal to be input to the PSM, as traditionally done. (For SVM timer setting, see Item (3) "Setting parameters" below.)

Fig. 4.10 (b) αi series amplifier

<5> 200/400 VAC

If the 200 VAC or 400 VAC supply to the servo amplifier is cut, the brake control function cannot operate.
To cause the brake control function to work effectively even at a power break, apply the power brake machine protection function.

(3) Setting parameters

$<1>$ Brake control function enable/disable bit

$<2>$ Activation delay
Brake control timer
msec
[Increment system]
[Valid data range]
0 to 16000
(Example)
To specify an activation delay of 200 ms , set the brake control timer usually with 200 (appropriately). Do not set it with 500 or greater. Also set the timer connected to the emergency stop contact with the same value as set in the parameter.
$<3>$ Setting the emergency stop timer built into the αi amplifier

Set a period of time from the input of the emergency stop signal into the PSM until emergency stop operation is actually performed in the servo amplifier (SVM).

ESPTM1	ESPTM0	Delay time
0	0	50 ms (default)
0	1	100 ms
1	1	200 ms
1	1	400 ms

When using brake control, set a time longer than the setting of the brake control timer (No. 1976 for Series $15 i$ or No. 2083 for Series $16 i$ and so on).

NOTE

For those axes that are connected to a two-axis amplifier or three-axis amplifier, the parameters above need to be set in the same way.

(4) Detailed operation

Suppose that there is a machine having horizontal and vertical axes of motion. When a servo alarm ${ }^{(*)}$ occurs on the horizontal axis but no error occurs on the vertical axis, the MCCs of the amplifiers for all axes are turned off. When the emergency stop button is pressed, the MCCs of the amplifiers for all axes are turned off.
Standard machines have a mechanical brake that prevents the tool from dropping vertically in such cases. The mechanical brake may actually function according to the timing shown in Fig. 4.10 (c). If this occurs, the tool will drop vertically, causing the tool or workpiece to be damaged.
This function changes the timing to force MCC off, using a software timer, thus preventing the tool from dropping. Fig. 4.10 (d) shows the timing diagram.

Fig. 4.10 (c)

Fig. 4.10 (d)

NOTE

1 The servo alarm mentioned in the above description refers to a servo alarm detected by the software (OVC alarm, motor overheat alarm, software disconnection alarm, etc.), an alarm detected by the servo amplifier, or a servo alarm detected by the CNC (excessive error). If a servo alarm occurs on the axis using this function, no brake control is performed on the axis (except for a motor overheat alarm).
2 For brake control, use the SA signal (F0.6, which is common to all axes).

4.11 QUICK STOP FUNCTION

The functions described below prevent the tool from colliding with the machine or workpiece by reducing the distance required for the motor to come to a stop if a usual emergency stop condition occurs or if a separate detector disconnection alarm, overheat alarm, or OVC alarm is issued.

4.11.1 Quick Stop Type 1 at Emergency Stop

(1) Overview

This function reduces the stop distance by resetting the velocity command for a servo motor to 0 at a position where an emergency stop signal is detected for the servo motor. To further reduce the stop distance required for the motor to stop, use quick stop type 2 at emergency stop described in Subsec. 4.11.2.

(2) Series and editions of applicable servo software

(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series 90E0/A(01) and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series 9096/A(01) and subsequent editions
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series 0i-C,0i Mate-C,20i-B)
Series 90B5/A(01) and subsequent editions

(3) Setting parameters

DBST (\#0)
Specifies whether to enable quick stop type 1 at emergency stop as follows:
1: To enable
0 : To disable
To use the quick stop at emergency stop, enable the brake control function to all axes, which use the quick stop function.
(Brake control function)

BRKC (\#6) Specifies whether to enable brake control function as follows:
1: To enable
0 : To disable

NOTE

When only the brake control function is set, a gradual stop occurs with the torque limit reduced to 70\%.
When the quick stop at emergency stop is enabled, a gradual stop occurs with the torque limit set to 100%, so that the stop distance is reduced. Brake control timer
[Unit of data] ms
[Setting value] 50

(4) Timing diagram

Fig. 4.11.1 (a) Timing diagram of quick stop function

(5) Connection of amplifier

Fig. 4.11.1 (b) αi series amplifier

4.11.2 Quick Stop Type 2 at Emergency Stop

(1) Overview

This function returns a servo motor to a position where an emergency stop signal is detected for the servo motor, thereby assuring a shorter stop distance than with quick stop type 1 at emergency stop.

(2) Series and editions of applicable servo software
(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series $90 \mathrm{E} 0 / \mathrm{A}(01)$ and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series $9096 / \mathrm{A}(01)$ and subsequent editions
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series $90 \mathrm{~B} 5 / \mathrm{A}(01)$ and subsequent editions

(3) Setting parameters

1744 (FS15i)
2204 (FS30i, 16i)

DBS2 (\#7)

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
DBS2							

Specifies whether to enable quick stop type 2 at emergency stop as follows:
1: To enable
0 : To disable

NOTE

1 Like type 1, type 2 requires that the brake control parameter be set.
2 The method of connecting the amplifier for type 2 is the same as for type 1.
3 If both type 1 and type 2 function bits are set, type 2 function is assumed.

4.11.3 Lifting Function Against Gravity at Emergency Stop

(1) Overview

This function is intended to lift and stop the vertical axis (Z-axis) of a vertical machining center when the machine comes to an emergency stop or power failure.

(2) Series and editions of applicable servo software

(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series $90 \mathrm{E} 0 / \mathrm{A}(01)$ and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series $90 B 0 / P(16)$ and subsequent editions
Series $90 \mathrm{~B} 1 / \mathrm{A}(01)$ and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series 90B5/A(01) and subsequent editions

(3) Setting parameters

Because this function uses quick stop at emergency stop type 2, the following function bit must be set to 1 (enable).

NOTE

1 If the brake is in use, it starts working while the vertical axis is being lifted. So the distance through which the axis is actually lifted differs from the setting.
2 Whether the parameter values is positive or negative matches whether the machine coordinate value is positive or negative.
3 Using this function causes the load to stop after moving it to one side of the machine. So, it should be used for the vertical axis (Z-axis) of a vertical machining center in which an axis retracts in a fixed single direction at an emergency stop.

[Unit of data]

[Valid data range]
[Recommended value]

Lifting time
This parameter determines the lifting time as measured from the time of an emergency stop. The distortion easing function is executed after the lifting time has elapsed. This function is intended to decrease the amount of machine elastic strain that can increase when a vertical axis is lifted when the machine is about to apply the brake. Executing this function can reduce the shock that may occur when the axis drops because the servo amplifier stops energizing. The initial value of the function is a quarter of the distance to lift.
(See the following figure.)
ms
8 to 32767
Approximately 16 or 24 ms

NOTE

1 Specify an integer multiple of 8 as the lifting time
2 To use the lifting function against gravity at emergency stop, specify 8 ms or longer as the lifting time.
3 If the distortion easing function is not used, specify the time longer than or equal to the one set in the brake control timer as the lifting time.

- Velocity command

Fig. 4.11.3 (a) Velocity command

Fig. 4.11.3 (b) Motor position waveform
Using this function requires specifying the following brake control parameters.

Brake control function bit

$1883(\mathrm{FS} 15 i)$
$2005(\mathrm{FS} 30 i, 16 i)$

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
	BRKC						

BRKC(\#6) The brake control function is:
1: Enabled \leftarrow Use this setting.
0 : Disabled.

Energizing delay time

1976 (FS15i)
2083 (FS30i, 16i)

Brake control timer
[Unit of data] ms
[Recommended value] 100 ms

NOTE

If the Z-axis is connected to a multiaxis amplifier, it is necessary to enable the brake control function for all the axes connected to the multiaxis amplifier.

Set the time from the instant when an emergency stop signal is input to PSM to the instant when the emergency stop function works in the servo amplifier.

ESPTM1	ESPTM0	Delay time
0	0	50 ms (default value)
0	1	100 ms
1	0	200 ms
1	1	400 ms

It is necessary to specify the time longer than or equal to the brake control timer value.
If the brake control timer value is 100 ms , for example, specify ESPTM1 (bit 6) and ESPTM2 (bit 5) to be, respectively, 0 and 1 (100 ms).

NOTE

For a multiaxis amplifier, the largest of the values specified for the axes is assumed to be the delay time.

(4) Example of using the parameter

The following example shows the effect of using the lifting function against gravity at emergency stop for the vertical axis (Z-axis). In this example, the distance to lift is 500 , and the lifting time is 16 ms . The vertical axis of the graph is graduated $2 \mu \mathrm{~m} /$ div.

Fig. 4.11.3 (c) Motor position waveform
As seen from the graph, the motor is lifted through a large distance after an emergency stop signal is input. The graph also shows that the distortion easing function decreased the machine elastic strain and kept the motor from falling when the amplifier stopped energizing. Also as seen from the graph, the position where the motor finally rested is higher than the position where the motor was before the emergency stop signal was input.

NOTE

1 In this example, positive coordinates of the machine coordinate system correspond to the direction in which the axis is lifted.
2 Variation occurs in the position where the Z-axis stops depending on the direction in which the Z-axis is moving before an emergency stop. When tuning the parameter, it is necessary to take, into account, both the position where the motor rests before the axis is moved up and the position where the motor rests after the axis is moved down.

4.11.4 Quick Stop Function for Hardware Disconnection of Separate Detector

(1) Overview

This function reduces the stop distance by resetting the velocity command for a servo motor to 0 when the separate detector for the servo motor encounters a hardware disconnection condition. It also causes the other axes to stop sooner than they would when a usual alarm occurs.

(2) Series and editions of applicable servo software

(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series 90E0/A(01) and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series 9096/A(01) and subsequent editions
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series 90B5/A(01) and subsequent editions

(3) Setting parameters

NOTE

1 When applying this function to axes under synchronous control (including simple synchronous control), follow the steps below:

1) Change the servo axis setting (No. 1023) for two axes subjected to simple synchronous control so that the two axes can be controlled on 1DSP.
2) Set HD2O (bit 3) to 1 for both axes under synchronous control.
2 This function is implemented using part of the "unexpected disturbance torque detection function" option. So, using it requires that option.
3 Usually, when a separate detector disconnection alarm occurs for an axis, not only this axis but also the others are brought to an emergency stop. If an unexpected disturbance torque detection group function (not supported in the Series 15i) is set up, however, only the axes in the same group as the axis for which an alarm condition has occurred are brought to an emergency stop.
4 If the value (No. 1738 for the Series $15 i$ or No. 1880 for the Series $30 i$, $16 i$, and so on) specified as an interval between the detection of an unexpected disturbance torque and the occurrence of an emergency stop is small, it may impossible to keep the sufficient stop time. The value should be at least greater than or equal to the one specified in the brake control timer parameter (there is no problem with a setting value of 0 , because it means 200 ms).

4.11.5 Quick Stop Function at OVL and OVC Alarm

(1) Overview

This function reduces the stop distance for a servo motor when an OVL (motor overheat or amplifier overheat) or OVC alarm condition is detected for the servo motor. It also causes the other axes to stop sooner than they would when a usual alarm occurs.

(2) Series and editions of applicable servo software

(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series $90 \mathrm{E} 0 / \mathrm{A}(01)$ and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series $9096 / \mathrm{A}(01)$ and subsequent editions
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series 90B5/A(01) and subsequent editions

(3) Series and editions of applicable system software

Completely same as those described in (3) in Subsec. 4.11.4.
If this function is specified in any system software that does not support it, not only the OVC or OVL alarm condition but also an "unexpected disturbance torque detection alarm" condition occurs simultaneously.

(4) Setting parameters

OVQK (\#7) Specifies whether to enable quick stop function at the OVC and OVL alarm as follows:
1: To enable
0 : To disable

NOTE

The operation of this function is performed by using part of the unexpected disturbance torque detection function. Therefore, to use this function, the option for the unexpected disturbance torque detection function is required.

$1976($ FS15 i)	
2083 (FS30i, 16i)	
[Unit of data]	ms
[Setting value]	100

4.11.6 Overall Use of the Quick Stop Functions

To sum up, setting up the following parameters as stated can reduce the stop distance for an emergency stop, separate detector hardware disconnection, and OVL and OVC alarm occurrence.
$<1>$ Specify the unexpected disturbance torque detection option.
$<2>$ Specify quick stop type 2 at emergency stop.
$<3>$ For a vertical axis, specify the function for lifting up a vertical axis at emergency stop, if required.
$<4>$ For full-closed loop axes, specify the quick stop function for hardware disconnection of separate detector. Also if they are subjected to synchronous control, set the HD2O bit.
$<5>$ Specify the quick stop function at the OVC and OVL alarm.
$<6>$ Set the brake control function bit and the brake control timer.

4.12 UNEXPECTED DISTURBANCE TORQUE DETECTION FUNCTION

4.12.1 Unexpected Disturbance Torque Detection Function

(1) Overview

When a tool collides with the machine or workpiece, or when a tool is faulty or damaged, a load torque greater than that experienced during normal feed is imposed.
This function monitors the load torque to the motor at servo high-speed sampling intervals. If it detects an abnormal torque, it brings the axis to an emergency stop by issuing an alarm, or reverses the motor by an appropriate amount.
In addition, the function enables the PMC to be used to switch the speed at warning occurrence or load fluctuation.

Fig. 4.12.1 Overview of unexpected disturbance torque detection

(2) Series and editions of applicable servo software

(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series $90 \mathrm{E} 0 / \mathrm{A}(01)$ and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series $9096 / A(01)$ and subsequent editions
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series 90B5/A(01) and subsequent editions

(3) Parameter adjustment methods

$<1>$ Use SERVO GUIDE to observe the motor speed (SPEED) and estimated disturbance torque (DTRQ).
(Example of channel settings on SERVO GUIDE)

(See Sec. 4.20 for detailed descriptions about how to use the SERVO GUIDE.)
$<2>$ Switch on the CNC.
$<3>$ Enable the unexpected disturbance torque detection function

2016 (FS30i, 16i)
ABNT (\#0) Specifies whether to enable the unexpected disturbance torque detection function as follows:
1: To enable
0 : To disable

Moreover, be sure to set also the following parameters.

| \#7 | \#6 | \#5 | \#4 | \#3 | \#2 | \#1 | \#0 |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| | | | | | IQOB | | |

Specifies whether to eliminate influence of control voltage saturation when estimating disturbance, as follows:
1: To eliminate influence of control voltage saturation when estimating disturbance
0 : Not to take influence of control voltage saturation when estimating disturbance into consideration
$<4>$ Set up the parameters related to the observer.

1862 (FS15i)
2050 (FS30 $i, 16 i$)

Observer gain

- When HRV1, HRV2, or HRV3 control is used:
[Standard setting value] $956 \rightarrow$ To be changed to 3559 .
- When HRV4 control is used:
[Standard setting value] $\quad 264 \rightarrow$ To be changed to 1420

1863 (FS15i)
2051 (FS30 $i, 16 i$)

Observer gain

- When HRV1, HRV2, or HRV3 control is used:
[Standard setting value] $\quad 510 \rightarrow$ To be changed to 3329 .
- When HRV4 control is used:
[Standard setting value] $35 \rightarrow$ To be changed to 332

NOTE

When using this function together with the observer, do not modify the standard setting of the parameter above.
Observer:
Bit 2 of No. 1808 (Series 15i)
Bit 2 of No. 2003 (Series 30i, 16i, and so on)
<5> Make adjustments on the POA1 observer parameter.

$1859(\mathrm{FS} 15 i)$
2047 (FS30i, 16i)

Observer parameter (POA1)

Turn the servo motor to perform linear back and forth operation at a speed equal to about 50% of the rapid traverse rate, and observe the motor speed and the estimated disturbance value. The waveform observed before the adjustment should show one of the following features:

Measurement example: $1000 \mathrm{~min}^{-1}$ (rotary motor)

Make adjustments on the POA1 parameter so that neither an overshoot nor an undershoot will not be observed on the estimated disturbance value at acc./dec. After adjustment, the waveforms shown below should be obtained.
(A clear waveform like the one shown below may not be obtained in some machines. In such machines, find the POA1 value that can minimize the overshoot and undershoot by watching the estimated disturbance waveform at acc./dec.)

NOTE

The POA1 parameter is related to the load inertia ratio parameter ("velocity gain" on the servo screen) through the inside of the software. When the load inertia ratio parameter is changed, the POA1 parameter must also be changed. So, first determine the load inertia ratio (velocity gain) when adjusting the servo.
If you must change the load inertia ratio (velocity gain) after the POA1 parameter is determined, re-set the POA1 parameter using the following expression.
(New POA1 value) $=$
(Previous POA1 value) \times
(Load inertia ratio value set after adjustment+256) /
(Load inertia ratio value set before adjustment+256)
Load inertia ratio:
No. 1875 (Series 15i), No. 2021 (Series $16 i$ and so on) The velocity gain magnification (in cutting or high-speed HRV current control) does not affect the setting of POA1.
(Details)
The observer estimates a disturbance torque by subtracting the torque required for acc./dec. from the entire torque. The torque required for acc./dec. is calculated using a motor model. The POA1 parameter corresponds to the inertia of the motor model. If the parameter value differs from the actual value, it is impossible to estimate a correct disturbance torque. To detect an unexpected disturbance torque correctly, therefore, you must adjust the value of this parameter.
An estimated disturbance value when a usual condition is supposed to be related only to frictional torque (for the horizontal axis), and proportional to the velocity. Therefore, a program, like the one used for adjustment, that merely repeats simple acc./dec. is supposed to generate a trapezoidal estimated disturbance torque waveform like a velocity waveform.
$<6>$ For the vertical axis, adjust the torque offset. (This is unnecessary for the horizontal axis.)
For the vertical axis, the estimated disturbance value is not centered at level 0 . Torque offset adjustment is done to center the estimated disturbance value at level 0 .
[Unit of data] TCMD unit (7282 with the maximum current value of the amplifier)
-7282 to 7282
(Example of torque offset setting)
Estimated disturbance values for constant-velocity movements in the + direction and - direction are read. In the figure below, minimum value A (signed) is read in a movement in the + direction, and maximum value B (signed) is read in a movement in the - direction. A torque offset parameter setting is given using the following expressions:
Torque offset $=\frac{\mathrm{A}[\mathrm{Ap}]+\mathrm{B}[\mathrm{Ap}]}{\text { Maximum amplifier current value }[\mathrm{Ap}]} \times 3641$

If you read the minimum and maximum values as $-1.9[\mathrm{Ap}]$ and -0.1 [Ap] in the above chart (the amplifier used is rated at 40 [Ap] maximum), the torque offset parameter $=-\{(-1.9)+(-0.1)\} / 40 \times 3641$ $=182$. The following chart applies when the parameter is set with 182 .

If the torque offset parameter is specified, be sure to specify the following parameter also.

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
						TCPCLR	

The function for setting a value for canceling the torque offset at an emergency stop in the velocity loop integrator is:
0: Disabled
1: Enabled
<7> Compensate for dynamic friction.
(i) Method of canceling a dynamic friction in proportion to velocity
Measure an estimated disturbance value at a constant velocity. Then, by assuming this measured value as a dynamic friction, set the proportional coefficient for a velocity and dynamic friction compensation value.

[Unit of data]
[Valid data range]

See the equation below.
0 to 264 (Series 9096 or Series 90B0/A to /D)
-264 to 264 (Series 90B0/E and subsequent editions, Series 90B1,
Series 90B6, Series 90B5, Series 90D0, or Series 90E0)
[Measurement velocity] Rotary motor: $1000 \mathrm{~min}^{-1}$, Linear motor: $1000 \mathrm{~mm} / \mathrm{s}$
Measure an estimated disturbance value at a measurement velocity, then set the results of calculations made according to the table below.

Dynamic friction
compensation coefficient

NOTE

If the measurement velocity is too high, lower the measurement velocity, and measure the estimated disturbance value. By proportional calculation, obtain the estimated disturbance value at the above measurement velocity.

(Example of setting for a rotary motor)

- Suppose that the estimated disturbance value at $1000 \mathrm{~min}^{-1}$ is 1 [Ap] (the maximum amplifier current value is 40 [Ap]).

Dynamic friction compensation coefficient $=1 / 40 \times 440=11$

Dynamic friction compensation after setting

The effect of dynamic friction is reduced, and stable estimated disturbance values are obtained.
(ii) Method of setting a dynamic friction as "portion proportional to velocity + constant portion" and imposing a $\underline{\text { limit }}$
If the compensation value for stop time to low-velocity movement is insufficient in adjustment of (i), set a dynamic friction compensation value in the stop state. If the compensation value for high-speed movement is excessive, a limit is imposed on the compensation value.

Dynamic friction compensation value

No.2759(Series 15i)
No.2346(Series $16 i$ and so on)
Compensation limit value
No.2758(Series 15i) No.2345(Series $16 i$ and so on)
Compensation value in the stop time

Set a compensation value in the stop time and a compensation limit value in addition to a compensation value at $1000 \mathrm{~min}^{-1}$.

NOTE

This method can be used with the following servo software:

(Series 30i, 31i, 32i)
Series 90D0/A(01) and subsequent editions
Series 90E0/A(01) and subsequent editions
(Series 15i-B, 16i-B, 18i-B, 21i-B, 0i-B, 0i Mate-B, Power Mate i)

Series 90B0/E(05) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions (Series 0i-C, Oi Mate-C, 20i-B)

Series 90B5/A(01) and subsequent editions

[Unit of data] TCMD unit (7282 when the estimated disturbance value is equivalent to the maximum current value of the amplifier)
[Valid data range]
[Measurement velocity]

0 to 7282
$10 \mathrm{~min}^{-1}$ (rotary motor), $10 \mathrm{~mm} / \mathrm{s}$ (linear motor)
The absolute value of a setting is used.

[Unit of data]
[Valid data range]
[Measurement velocity]

Dynamic friction compensation limit value

TCMD unit (7282 when the estimated disturbance value is equivalent to the maximum current value of the amplifier)
0 to 7282
Maximum feedrate
The absolute value of a setting is used.
(Method of setting)
First, measure an estimated disturbance value when a movement is made at a maximum feedrate on the axis, then set the results of calculations made according to the table below in "dynamic friction compensation limit value".

Next, measure an estimated disturbance value when a movement is made on the axis at the measurement velocity $\left(10 \mathrm{~min}^{-1}\right.$ or 10 mm / s) for "dynamic friction compensation value in the stop state", then set the results of calculations made according the table below in "dynamic friction compensation value in the stop state".

| Dynamic friction
 compensation value in
 the stop state |
| :---: |$=\frac{\mid \text { Estimated disturbance value }[\mathrm{Ap}] \mid}{\text { Maximum amplifier current value }[\mathrm{Ap}]} \times 7282$

Finally, measure an estimated disturbance value when a movement is made on the axis at the measurement velocity (1000 min^{-1} or $1000 \mathrm{~mm} / \mathrm{s}$) for "dynamic friction compensation coefficient", then set the results of calculations made according the table below in "dynamic friction compensation coefficient".

$$
\begin{array}{|c}
\text { Dynamic friction } \\
\text { compensation coefficient }
\end{array}=\frac{\mid \text { Estimated disturbance value }[\mathrm{Ap}] \mid}{\text { Maximum amplifier current value }[\mathrm{Ap}]} \times 440
$$

$<8>$ Set an unexpected disturbance torque detection alarm level.
Perform several different operations (sample machining program, simultaneous all-axis rapid traverse acc./dec., etc.), and observe estimated disturbance values, and measure the maximum (absolute) value.
Then, set up an alarm level.

1997 (FS15i) Unexpected disturbance torque detection alarm level

Alarm level conversion uses the following expression.
Unexpected disturbance torque detection alarm level =
|Estimated disturbance value [Ap]|
Maximum amplifier current value [Ap]

NOTE

1 Add some margin (usually about 500 to 1000) to the alarm level to be set.
2 If the "unexpected disturbance torque detection alarm level" parameter is 32767 , no unexpected disturbance torque alarm detection is performed.
$<9>$ Set a distance to be retraced at unexpected disturbance torque detection.
If the retrace amount parameter is 0 , the motor stops at the point where an unexpected disturbance torque was detected. To retract the tool from the location of collision quickly, set the retrace distance parameter.

NOTE

When the tool is moving faster or slower than the velocity listed below, the tool will not go back even if this parameter is set. It stops at the location where an unexpected disturbance torque was detected.
Let the value set in the retrace distance parameter be A:
Minimum retract velocity $=$
$A \times$ detection unit $(\mu \mathrm{m}) \times 60 / 512[\mathrm{~mm} / \mathrm{min}]$ Example)

When detection unit $=1 \mu \mathrm{~m}$, and retract amount setting $=3000$, the minimum velocity at which the tool is retracted is:
Minimum retract velocity =

$$
3000 \times 1 \times 60 / 512=352[\mathrm{~mm} / \mathrm{min}]
$$

[2-axis simultaneous retract function at detection of an unexpected disturbance torque]
Because the 2-axis simultaneous retract function at detection of an unexpected disturbance torque is executed only for an axis on which an unexpected disturbance torque is detected, it has conventionally been unable to be applied to a position tandem (simple synchronous control) axis.
The following setting adds a function for retracting an axis in position tandem when an unexpected disturbance torque is detected on the other axis. This function enables a retract function to be applied also to position tandem axes.
(Series and editions of applicable servo software)
(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series $90 \mathrm{E} 0 / \mathrm{A}(01)$ and subsequent editions (Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)

Series $90 B 0 / E(05)$ and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series 90B5/A(01) and subsequent editions
(Setting parameters)
To use the unexpected disturbance torque detection function, set the following bit to 1 for both the master and slave axes.

| \#7 | \#6 | \#5 | \#4 | \#3 | \#2 | \#1 | \#0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| | | | | | RETR2 | | |

RETR2(\#2) With the unexpected disturbance torque detection function, 2-axis simultaneous retraction is:
1: Performed
0: Not performed
In the parameter for the distance to retract, specify the same value for both the master and slave axes. If an unexpected disturbance torque is detected on one of the axes, both axes are retracted.

NOTE

1 This function can be applied only to two axes in position tandem on the same DSP. Do not use this function for any axis that has not been set for position tandem.
2 If different values are specified for the master and slave axes, an invalid parameter alarm is issued. (The detail No. of the alarm is 1033.)
$<10>$ Run the machine with the alarm level set up.
If the unexpected disturbance torque detection function works incorrectly, increase the alarm level.
$<11>$ Now adjustment is completed.

4.12.2 Cutting/Rapid Unexpected Disturbance Torque Detection Switching Function

(1) Overview

An alarm threshold for unexpected disturbance torque detection is set separately for cutting and rapid traverse.

(2) Series and editions of applicable servo software

(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series $90 \mathrm{E} 0 / \mathrm{A}(01)$ and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series $9096 / \mathrm{A}(01)$ and subsequent editions
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series $90 \mathrm{~B} / \mathrm{A}(01)$ and subsequent editions (Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)

Series $90 \mathrm{~B} 5 / \mathrm{A}(01)$ and subsequent editions

(3) Setting parameters

A threshold can be set separately for cutting and rapid traverse by setting the following bit when the unexpected disturbance torque detection function is used:

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
				ABG0			

The cutting feed/rapid unexpected disturbance torque detection switching function is:
1: Enabled.
0: Disabled.

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
$2603(F S 15 i)$								
$2215(F S 30 i, 16 i)$								
ABT2								

ABT2(\#7) Cutting feed/rapid unexpected disturbance torque detection switching function type-2 is:
1: Enabled.
0 : Disabled.

NOTE

1 Set the two bits above. (Servo software was revised in type-2 to be able to switch even if you set bit 3 of No. 1800 to 1, feed-forward always enable.)
2 With Series 9096, switching is disabled when bit 3 of No. 1800 is set to 1 (to enable feed-forward in rapid traverse). The alarm level for cutting is enabled at all times.

Alarm thresholds for unexpected disturbance torque detection are set in the following parameters:

1997 (FS15i)
2104 (FS30i, 16i)

Unexpected disturbance torque detection threshold for cutting (This parameter is used both in not switching mode and in switching mode.)
[Valid data range] 0 to 7282

$1765($ (FS15i)	Unexpected disturbance torque detection threshold for rapid traverse
$\mathbf{2 1 4 2 (F S 3 0 i , 1 6 i)}$	
[Valid data range] 0 to 7282	

NOTE

1 When the alarm level for cutting is 32767, unexpected disturbance torque detection is not performed during cutting.
2 When the alarm level for rapid traverse is 32767, unexpected disturbance torque detection is not performed during rapid traverse. When both parameters are 32767 , unexpected disturbance torque detection is not performed at any time.

4.13 FUNCTION FOR OBTAINING CURRENT OFFSETS AT EMERGENCY STOP

(1) Overview

Abstract

The current offset is a current feedback offset value arising from the analog offset voltage of the current detector. If the current offset is measured incorrectly, motor current feedback can be adversely affected, resulting in very small motor rotation fluctuations (four components per motor revolution). A current offset measurement is made when the power is turned on. This function performs a current offset measurement not only at power-on time but also in each emergency stop state.

(2) Series and editions of applicable servo software

(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series 90E0/A(01) and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series $9096 / \mathrm{A}(01)$ and subsequent editions
Series $90 \mathrm{~B} 0 / \mathrm{A}(01)$ and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series 90B5/A(01) and subsequent editions

(3) Setting parameters

1: Enables the current offset to be obtained upon the occurrence of an emergency stop.

If the above setting is made, the current offset is obtained again during an emergency stop.

4.14 LINEAR MOTOR PARAMETER SETTING

4.14.1 Procedure for Setting the Initial Parameters of Linear Motors

(1) Overview

The following describes the procedure for setting the digital servo parameters to enable the use of a FANUC linear motor.
(2) Series and editions of applicable servo software
(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series $90 \mathrm{E} 0 / \mathrm{A}(01)$ and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}$, Power Mate i)
Series $9096 / \mathrm{A}(01)$ and subsequent editions
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series 20i-B)
Series $90 \mathrm{~B} 5 / \mathrm{A}(01)$ and subsequent editions

(3) Warning

> | 1 WARNING |
| :--- |
| 1 The linear motor can make an unpredictable |
| movement, resulting in a very dangerous situation, |
| if an error is made in linear motor assembly, power |
| line cabling, detector installation direction setting, |
| or basic parameter setting. |
| 2 It is recommended to take the following actions |
| until normal operation is confirmed: |
| - Lower the excessive error level so that an alarm |
| is issued immediately when an unpredictable |
| movement is made. |
| - Lower the torque limit value to disable abrupt |
| acceleration. |
| - Ensure that the emergency stop switch can be |
| pressed immediately. |

(4) Linear encoders

The position and velocity of the linear motor are detected using a linear encoder. Two types of linear encoders are available: incremental type and absolute type. The parameter setting and connection vary according to the type of encoder.

For incremental type

The linear encoder of incremental type is connected to a servo amplifier via a position detection circuit (A860-0333-T001, -T002, -T201, -T202, -T301, -T302) for linear motor manufactured by FANUC. Values to be set in parameters vary depending on the signal pitch of the linear encoder. Therefore, check the signal pitch of the encoder first.

If a position detection circuit (A860-0333-T201, -T202, -T301, or -T302) having an interpolation magnification of 2048 is used, it is necessary to specify additional parameters so that both the maintenance of a maximum feedrate and the realization of a higher resolution can be supported.
Table 4.14.1 (a) lists examples of usable incremental linear encoders.
Table 4.14.1 (a) Examples of usable linear encoders (incremental)

Encoder maker	Signal pitch $(\mu \mathrm{m})$	Model
HEIDENHAIN	20	LS486, LS186, etc.
	40	LB382, LIDA185, etc.
	2	LIP481
	4	LF481R, LIF181, etc.
Mitutoyo	100	LB382
Optodyne	20	AT402
Renishaw	40.513167	LDS
	20	RGH22
SAMTAK (FUTABA CORPORATION)	40	RGH41
Sony Precision Technology Inc.	20	FTV, FMV

When a linear encoder of incremental type is used, a linear motor pole detector (A860-0331-T001, -T002) is also needed.

For absolute type

The linear encoder of absolute type is directly connected to a servo amplifier. Depending on the resolution of an encoder used, the parameter setting varies. First, check the resolution. Table 4.14.1(b) lists examples of absolute type linear encoders currently usable.

Table 4.14.1 (b) Usable linear encoders (absolute)

Encoder maker	Resolution $(\mu \mathrm{m})$	Model
HEIDENHAIN	$0.05(0.1)^{*}$	LC191F, LC491F
Mitutoyo	0.05	AT353, AT553

* Encoders with resolutions of $0.05 \mu \mathrm{~m}$ and $0.1 \mu \mathrm{~m}$ are available.

NOTE

1 For details of the linear encoders usable with FANUC linear motors, refer to "FANUC LINEAR MOTOR Lis series DESCRIPTIONS (B-65382EN)".
2 For details of the linear encoders, contact the manufacturer of each linear encoder.
3 When servo HRV4 control is to be used with a linear motor, the AT553 (Mitutoyo Co., Ltd.) or a high-resolution serial output circuit must be used.

(5) Parameter settings

Set the parameters according to the procedure below. Note the points below when setting the parameters.
[Cautions for using incremental linear encoders]
The following parameter setting procedure involves a parameter to be specified according to the resolution of the linear encoder. If an incremental linear encoder is to be used, convert the encoder signal pitch to the resolution for parameter calculation, using the following equation.
Resolution $[\mu \mathrm{m}]=$ Encoder signal pitch $[\mu \mathrm{m}] / 512$

Parameter setting procedure (1)

Procedure (1) can be used to initialize the parameters (such as current gain) necessary to drive a linear motor. After initialization, parameters depending on the linear encoder resolution (or the value obtained by dividing the signal pitch of the linear encoder by the interpolation magnification of the position detection circuit) must be set. Set these parameters by following parameter setting procedure (2).

Parameters related to initialization

For incremental type, For absolute type

(a) When the coil slider is movable:
+111 : When the positive direction is specified, the slider moves in the positive direction.
-111: When the positive direction is specified, the slider moves in the reverse direction.

(b) When the magnet plate is movable:
+111: When the positive direction is specified, the magnet plate moves in the positive direction.
-111: When the positive direction is specified, the magnet plate moves in the reverse direction.

Motor ID number

For incremental type, For absolute type

Standard parameters are prepared for the linear motors listed below as of February, 2005. When the standard parameters are not included in the servo software used, see the parameter list shown in this manual, and set the parameters.
[200-V driving]

Motor model	Motor specification	Motor ID No.	$\begin{aligned} & \hline 90 \mathrm{~B} 6 \\ & 90 \mathrm{~B} 5 \end{aligned}$	90B1	$\begin{aligned} & \hline 90 \mathrm{DO} \\ & \text { 90E0 } \end{aligned}$
LiS300A1/4	0441-B200	351	B(02)	B(02)	G(07)
LiS600A1/4	0442-B200	353	B(02)	B(02)	G(07)
LiS900A1/4	0443-B200	355	B(02)	B(02)	G(07)
LiS1500B1/4	0444-B210	357	B(02)	B(02)	G(07)
LiS3000B2/2	0445-B110	360	B(02)	B(02)	G(07)
LiS3000B2/4	0445-B210	362	B(02)	B(02)	G(07)
LiS4500B2/2	0446-B110	364	B(02)	B(02)	G(07)
LiS6000B2/2	0447-B110	368	B(02)	B(02)	G(07)
LiS6000B2/4	0447-B210	370	B(02)	B(02)	G(07)
LiS7500B2/2	0448-B110	372	B(02)	B(02)	G(07)
LiS7500B2/4	0448-B210	374	B(02)	B(02)	G(07)
LiS9000B2/2	0449-B110	376	B(02)	B(02)	G(07)
LiS9000B2/4	0449-B210	378	B(02)	B(02)	G(07)
LiS3300C1/2	0451-B110	380	B(02)	B(02)	G(07)
LiS9000C2/2	0454-B110	384	B(02)	B(02)	G(07)
LiS11000C2/2	0455-B110	388	B(02)	B(02)	G(07)
LiS15000C2/2	0456-B110	392	B(02)	B(02)	G(07)
LiS15000C2/3	0456-B210	394	B(02)	B(02)	G(07)
LiS10000C3/2	0457-B110	396	B(02)	B(02)	G(07)
LiS17000C3/3	0459-B110	400	B(02)	B(02)	$\mathrm{G}(07)$

The motor ID numbers are for SERVO HRV2. Loading is possible with the servo software of the series and edition listed above or subsequent editions.

Motor model	Motor specification	Motor ID No.	$\begin{aligned} & \hline \text { 90B6 } \\ & \text { 90B5 } \end{aligned}$	90B1	$\begin{aligned} & \hline \text { 90DO } \\ & \text { 90EO } \end{aligned}$
LiS1500B1/4	0444-B210	358	B(02)	B(02)	G(07)
LiS3000B2/2	0445-B110	361	B(02)	B(02)	G(07)
LiS4500B2/2HV	0446-B010	363	B(02)	B(02)	G(07)
LiS4500B2/2	0446-B110	365	B(02)	B(02)	G(07)
LiS6000B2/2HV	0447-B010	367	B(02)	B(02)	G(07)
LiS6000B2/2	0447-B110	369	B(02)	B(02)	G(07)
LiS7500B2/HV2	0448-B010	371	B(02)	B(02)	G(07)
LiS7500B2/2	0448-B110	373	B(02)	B(02)	G(07)
LiS9000B2/2	0449-B110	377	B(02)	B(02)	G(07)
LiS3300C1/2	0451-B110	381	B(02)	$\mathrm{B}(02)$	G(07)
LiS9000C2/2	0454-B110	385	B(02)	B(02)	G(07)
LiS11000C2/2HV	0455-B010	387	B(02)	$\mathrm{B}(02)$	G(07)
LiS11000C2/2	0455-B110	389	B(02)	B(02)	$\mathrm{G}(07)$
LiS15000C2/3HV	0456-B010	391	B(02)	B(02)	G(07)
LiS10000C3/2	0457-B110	397	B(02)	B(02)	G(07)
LiS17000C3/2	0459-B110	401	B(02)	B(02)	$\mathrm{G}(07)$

The motor ID numbers are for SERVO HRV2. Loading is possible with the servo software of the series and edition listed above or subsequent editions.

NOTE

For the motor ID number of the conventional models, see Appendix G.

After parameter initialization, check that the function bit for linear motor control is set to 1 (linear motor control is enabled).

LINEAR(\#2) Linear motor control is:
1: Enabled
0: Disabled

When using position detection circuit H or C for linear motor

 For incremental typeWhen a position detection circuit having an interpolation magnification of 2048 is used with an incremental type linear encoder, the parameter shown below must be set to maintain both the maximum feedrate and high resolution. Set the parameter before proceeding to procedure (2).

Series and editions of applicable servo software (Series 30i,31i,32i)

Series 90D0/A(01) and subsequent editions
Series $90 \mathrm{E} 0 / \mathrm{A}(01)$ and subsequent editions (Series $15 i$-B, $16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}$, Power Mate i)

Series 90B0/Q(17) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series $90 \mathrm{~B} / \mathrm{A} /(01)$ and subsequent editions
(Series $0 i-\mathrm{C}, 20 i-\mathrm{B}$)
Series $90 \mathrm{~B} 5 / \mathrm{A}(01)$ and subsequent editions

2687(FS15i)
2274(FS30i,16i)
HP2048(\#0)

A circuit having an interpolation magnification of 2048 (position detection circuit H or C for linear motor) is:
1: Used
0 : Not used

NOTE

1 Setting this parameter(No.2274(FS30i,16i) or No.2687(FS15i)) to "enable" lets you make the basic parameter settings as explained in Procedure (2).

2 Changing this parameter results in a power-off alarm being raised.
3 When this parameter is set, the detection unit in the case of $\mathrm{FFG}=1 / 1$ is (signal pitch/512 [um]). If a minimum detection unit (signal pitch/2048 [$\mu \mathrm{m}$]) is necessary, specify:
FFG $=4 / 1$
4 If nano-interpolation is applied, a resolution as high as (signal pitch/2048 [$\mu \mathrm{m}]$) is applied as decimal-part feedback.
5 When a linear encoder of incremental type is used, a linear motor pole detector is needed. (A860-0331-T001, -T002)

NOTE

6 With position detection circuit H (A860-0333-T201 or A860-0333-T202) for linear motor, the interpolation magnification can be changed using setting pin SW3.
Setting A: The interpolation magnification is 512 .
Setting B: The interpolation magnification is 2048. (The setting at the time of shipment is Setting B.)
(Parameter setting when Setting B is used)

- HP2048=1
- Resolution $[\mu \mathrm{m}]=$ encoder signal pitch $[\mu \mathrm{m}] / 512$

In the case of Setting B, the input frequency is 200 kHz . So, the maximum allowable speed dependent on the detector is:

Maximum allowable speed
$=$ Signal pitch [m] $\times 200000[\mathrm{~Hz}] \times 3600[\mathrm{~s}]$ If the maximum allowable speed dependent on the detector needs to be increased, use Setting A.
(Parameter setting when Setting A is used)

- HP2048=1
- Resolution [$\mu \mathrm{m}$] = encoder signal pitch $[\mu \mathrm{m}] / 128$

In the case of Setting A, the input frequency is 750 kHz , so that the maximum allowable speed dependent on the detector is:

Maximum allowable speed
$=$ Signal pitch $[\mathrm{m}] \times 750000[\mathrm{~Hz}] \times 3600[\mathrm{~s}]$
Thus, the maximum allowable speed is greater than that for Setting B.

For details, refer to the specifications of position detection circuit H .

7 When the position detection circuit C (A860-0333-T301 or -T302) for linear motor is used, no function is available which can change an interpolation magnification according to a set-up pin.
The interpolation magnification is 2048, and the input frequency is 200 kHz .
Linear motor position detection circuit C is connected to the scale with an absolute address origin.

Parameter setting procedure (2)

For incremental type, For absolute type

Procedure (2) makes parameter settings that depend on the resolution of the linear encoder (hereafter simply called "the resolution"). Set the parameters according to Table 4.14.1 (d), (e).

When using an incremental type linear encoder, calculate as follows:
Resolution $[\mu \mathrm{m}]=$ encoder signal pitch $[\mu \mathrm{m}] / 512$

The pole-to-pole span used in calculation varies, depending on the motor model.

- Small linear motors: $30 \mathrm{~mm}(\mathrm{~L} i \mathrm{~S} 300 \mathrm{~A}, \mathrm{~L}$ iS600A, LiS900A)
- Medium-size and large linear motors: 60 mm (models other than the above)
(See Table 4.14.1(c).)

PLC0(\#0) The number of velocity pulses and the number of position pulses are:
0 : Used without being modified.
1: Used after being multiplied by 10
If the number of velocity pulses is lager than 32767 , set the parameter to 1 .
If the number of position pulses exceeds 32767 , use the following position pulse conversion coefficient.

1876 (FS15i)
2023 (FS30i, 16i)

Number of velocity pulses
(Parameter calculation expression)
Number of velocity pulses $=3125$ / 16 / (resolution [$\mu \mathrm{m}$])
If the calculation result is greater than 32767 , set up $\mathrm{PLC} 0=1$, and set the parameter (PULCO) with a value of $1 / 10$.

1891 (FS15i)
2024 (FS30i, 16i)

Number of position pulses
(Parameter calculation expression)
Number of position pulses $=625$ / (resolution [$\mu \mathrm{m}$])
If the calculation result is greater than 32767, determine the parameter setting (PPLS), using the following position pulse conversion coefficient (PSMPYL).

This parameter is used if the calculated number of position pulses is greater than 32767.
(It can be specified in the Series 90B0, 90B1, 90B6, 90B5, 90D0, or 90E0.)
(Parameter calculation expression)
$\mathrm{PLC} 0=0 \rightarrow$ The parameter is set so that the following equation holds: (the number of position pulses) \times (position pulses conversion coefficient) $=625 /$ resolution $[\mu \mathrm{m}]$.
$\mathrm{PLC} 0=1 \rightarrow$ The parameter is set so that the following equation holds: $10 \times$ (the number of position pulses) $\times($ position pulses conversion coefficient $)=625 /$ resolution $[\mu \mathrm{m}]$.
(\rightarrow See Supplementary 3 of Subsection 2.1.8.)

1: Ignores an α Pulsecoder soft disconnection.

Setting AMR conversion coefficients

Calculate the number of feedback pulses per pole-to-pole span of the linear motor, and find AMR conversion coefficients 1 and 2 expressed by the equation shown below.
Number of pulses per pole-to-pole span
$=$ pole-to-pole span $[\mathrm{mm}] \times 1000 /$ resolution $[\mu \mathrm{m}]$
$=($ AMR conversion coefficient 1$) \times 2^{(\text {AMR conversion coefficient } 2)}$

1705 (FS15i)
2112 (FS30i, 16i)

\square

1761 (FS15i)
2138 (FS30i, 16i)

AMR conversion coefficient 2

Supplementary)
If AMR conversion coefficient $1=$ (pole-to-pole span [mm]/ resolution $[\mu \mathrm{m}]$) is an integer and a multiple of 1024 , setting of only AMR conversion coefficient 1 is needed. In this case, the following are assumed:
AMR conversion coefficient 1
$=($ pole-to-pole span $[\mathrm{mm}] /$ resolution $[\mu \mathrm{m}])$
AMR conversion coefficient $2=0$
The pole-to-pole span depends on the motor model as indicated in the table below.

Table 4.14 .1 (c) List of pole-to-pole spans

Classification	Pole-to-pole span (D)	Motor model
Small motors	30 mm	LiS300A, LiS600A, LiS900A
Medium-size and large motors	60 mm	Model other than the above

Use a unified detection unit for the flexible feed gear (FFG) parameters according to Tables 4.14.1 (d) and 4.14.1 (e).
(Parameter calculation expression)
$\mathbf{F F G}=($ resolution $[\mu \mathrm{m}]) /(\operatorname{detection}$ unit $[\mu \mathrm{m}])$
Table 4.14.1 (d) Parameter setting when an incremental type linear encoder is used [Medium-size and large motors] (pole-to-pole span: 60mm)

Signal pitch	$\begin{gathered} \text { PLCO } \\ (\mathbf{2 0 0 0 \# 0}) \end{gathered}$	Number of velocity pulses / Number of position pulses, Conversion coefficient (No. 2023 / No.2024, 2185)	AMR conversion coefficient 1 or 2 (No.2112, 2138)	FFG(No.2084/No.2085)	
				1- $\mu \mathrm{m}$ detection	$\begin{gathered} 0.1-\mu \mathrm{m} \\ \text { detection } \end{gathered}$
20	0	5000 / 16000, 0	3000, 9	5/128	50 / 128
40	0	2500 / 8000, 0	1500, 9	5/64	$50 / 64$
2	1	5000 / 8000, 2	30000, 9	1/256	10 / 256
4	1	2500 / 8000, 0	15000, 9	1/128	10 / 128
40.513167	0	2468 / 7899, 0	1481, 9	301 / 3804	3010 / 3804

[Small motors] (pole-to-pole span: 30mm)

Signal pitch	$\begin{aligned} & \text { PLCO } \\ & (2000 \# 0) \end{aligned}$	Number of velocity pulses / Number of position pulses, Conversion coefficient (No. 2023 / No.2024, 2185)	AMR conversion coefficient 1 or 2 (No.2112, 2138)	FFG(No.2084/No.2085)	
				1- $\mu \mathrm{m}$ detection	$0.1-\mu \mathrm{m}$ detection
20	0	5000 / 16000, 0	1500, 9	5/128	$50 / 128$
40	0	2500 / 8000, 0	750, 9	5/64	50 / 64
2	1	5000 / 8000, 2	15000, 9	1/256	10/256
4	1	2500 / 8000, 0	7500, 9	1/128	10 / 128
40.513167	0	2468 / 7899, 0	1481, 8	$301 / 3804$	3010 / 3804

The parameter Nos. for the Series $15 i$ are omitted. See the previous page.

Table 4.14 .1 (e) Parameter setting when an absolute type linear encoder is used
[Medium-size and large motors] (pole-to-pole span: 60mm)

Resolution	$\begin{gathered} \text { PLCO } \\ (2000 \# 0) \end{gathered}$	Number of velocity pulses / Number of position pulses, Conversion coefficient (No. 2023 / No.2024, 2185)	AMR conversion coefficient 1 or 2 (No.2112, 2138)	FFG(No.2084/No.2085)	
				1- $\mu \mathrm{m}$ detection	$\begin{gathered} 0.1-\mu \mathrm{m} \\ \text { detection } \end{gathered}$
0.1	0	1953 / 6250, 0	9375, 6	1/10	1/1
0.05	0	3906 / 12500, 0	9375, 7	1/20	1/2

[Small motors] (pole-to-pole span: 30mm)

Resolution	$\begin{aligned} & \text { PLCO } \\ & \text { (2000\#0) } \end{aligned}$	Number of velocity pulses / Number of position pulses, Conversion coefficient (No. 2023 / No.2024, 2185)	AMR conversion coefficient 1 or 2 (No.2112, 2138)	FFG(No.2084/No.2085)	
				1- $\mu \mathrm{m}$ detection	$0.1-\mu \mathrm{m}$ detection
0.1	0	1953 / 6250, 0	9375, 5	1/10	1/1
0.05	0	3906 / 12500, 0	9375, 6	1/20	1/2

The parameter Nos. for the Series $15 i$ are omitted. See the previous page.
(Cautions)
If the encoder signal pitch is larger than $200 \mu \mathrm{~m}$, various coefficients used in the servo software may overflow to raise an alarm on invalid parameters, because the setting for the number of velocity pulses becomes very small.
In this case, change the corresponding parameter by referencing Subsection 2.1.8, "Measures for Alarms on Illegal Servo Parameter Settings."

The setting of an AMR conversion coefficient is changed from that described in B-65270EN/04 or earlier. (A change is made starting with B-65270EN/05 to improve the precision of setting.)
The conventional setting method poses no practical problem, but the setting of the new values is recommended.

Parameter setting procedure (3)

When a linear motor is used, the linear encoder must be installed so that the Z phase of the linear encoder matches the origin of the activating phase. Otherwise, the specified motor characteristics cannot be obtained. (For details of installation positions, refer to "FANUC LINEAR MOTOR Lis series DESCRIPTIONS (B-65382EN)".)

Procedure (3) describes the method of adjusting the activating phase origin (AMR offset adjustment) when it is difficult to install a linear encoder at a specified position with a specified precision.

Setting the AMR offset

For incremental type, For absolute type

- When the learning control function is used (Series 90B3 and 90B7), see "Learning Function Operator's Manual".
- When the learning control function is not used (Series 9096, 90B0, 90B6, 90B5, 90D0, and 90E0), set the AMR offset as follows:

Specifies an activating phase (AMR offset) for phase Z.
[Unit of data] Degrees
[Valid data range]
-45 to $+45^{(*)}$
(*) Extended AMR offset setting range (-60 degrees to +60 degrees) can be specified by setting the parameter below. So, if the AMR offset value does not lie within the range -45 degrees to +45 degrees in adjustment processing, set the bit below. (Usually, set the bit below to 0 .)
(Series 9096 and Series $90 B 0 / \mathrm{B}(02)$ and earlier editions are not supported.)

AMR60 (\#0) Changes the AMR offset setting range.
0 : $\quad-45$ degrees to +45 degrees (standard setting range)
1: -60 degrees to +60 degrees (extended setting range)
The procedure for AMR offset adjustment is described below. The procedure varies according to whether an incremental type linear encoder or absolute type linear enable is used. Before starting an adjustment, check the type of linear encoder used.

Incremental type

The procedure for AMR offset adjustment when an incremental type linear encoder is used is described below. When using an absolute type linear encoder, see the item of Absolute type described later.

Make a fine activating phase adjustment according to the procedure below.

Measuring the activating phase

(1) Connect SERVO GUIDE to the CNC, and set channel data as shown below.
Select the target axis for measurement, and set the data type to "ROTOR".

* For a linear motor, a value from 0 to 360 degrees is read each time a motion is made over the distance of a pair of the N pole and S pole of the magnet (pole-to-pole span).
(2) Run the linear motor using a JOG operation for example, and observe the behavior of the activating phase (AMR) before, at the moment, and after phase Z is captured. (See Figs. 4.14.1 (a) and (b).)
The activating phase changes to 0 (or 360) degrees at the moment phase Z is captured. Measure the value just before it changes, and let this value be A .

Fig. 4.14.1 (a) If the offset is set with a positive number (before AMR offset adjustment)

Fig. 4.14.1 (b) If the offset is set with a negative number (before AMR offset adjustment)
(*) The figures above show examples where AMR60 $=0$. When AMR60 $=1$, " $45^{\circ}\left(0.3 \mathrm{~V}\right.$) or lower" should read " $60^{\circ}(0.4 \mathrm{~V})$ or lower", and " $315^{\circ}(2.2 \mathrm{~V})$ or higher" should read " $60^{\circ}(2.1 \mathrm{~V})$ or higher".
(3) Set the AMR offset parameter with A (or A - 360).

* The parameter setting range is:
-45 degrees to +45 degrees (when AMR60 $=0$)
-60 degrees to +60 degrees (when AMR60 = 1)
When the value of A does not lie within the setting range, the installation position of the linear encoder needs to be readjusted. The voltage range of A allowing parameter setting, when measured by analog voltage, is as follows:
0 V to 0.3 V and 2.2 V to 2.5 V (when AMR60 $=0$)
0 V to 0.4 V and 2.1 V to 2.5 V (when AMR60=1)
(4) Switch the power off and on again. Now parameter setting is completed.
(5) Observe the activating phase (AMR) again according to step (2) above, and check that the activating phase changes continuously in the phase Z rising portion.
(6) Switch the power off and on again. This completes parameter setting.

Fig. 4.14.1(c) If the offset is set with a positive number (after AMR offset adjustment)

Fig. 4.14.1(d) If the offset is set with a negative number (after AMR offset adjustment)
(*) The figures above show examples where AMR60 $=0$. When AMR60 $=1$, " $45^{\circ}\left(0.3 \mathrm{~V}\right.$) or lower" should read " $60^{\circ}(0.4 \mathrm{~V})$ or lower", and " $315^{\circ}\left(2.2 \mathrm{~V}\right.$) or higher" should read " $300^{\circ}(2.1 \mathrm{~V}$) or higher".

When using the servo check board

(1) Connect the servo check board to the CNC.
(2) Set the 7-segment LED on check board CH1 as follows:

Set the axis number of parameter No. 1023 in the AXIS digit. Set 5 in the DATA digit.
(3) For activating phase measurement, set the parameter below.

1726 (FS15i)
$2115(F S 16 i)$

Parameter for internal data measurement

Series 9096:
326 for an odd-numbered axis and 966 for an even-numbered axis Series 90B0, 90B1, 90B5, or 90B6:

326 for an odd-numbered axis and 2374 for an even-numbered axis Under this condition, the activating phase is output from CH 1 on the check board.
To use a digital check board to measure data with a personal computer, set up "SD" (servo tuning software) as stated below. The displayed value is in degree units ("360 degrees" is displayed as "360").

DOS prompt > SD INIT [Enter]	
o	(Origin of position)
F9	(System setting)
0	(CH0)
2 [Enter]	(TCMD)
639.84375 [Enter]	(A)
F10	(Return to main menu.)

* See Sec. 4.19 for explanations about how to use the SD software. In addition, the analog voltage from the check board can be observed using an oscilloscope. In output conversion, 2.5 V corresponds to 360 degrees.
(4) The procedure for measuring the activating phase is the same as when SERVO GUIDE is used.
(5) After completing the adjustment, reset to 0 the parameter set in step (3).

Absolute type

The procedure for AMR offset adjustment when an absolute type linear encoder is used is described below. When using an incremental type linear encoder, see the item of Incremental type described earlier. Make a fine activating phase adjustment according to the procedure below.

CAUTION

In this adjustment, the linear motor is driven by current fed from the DC power supply. So, the CNC does not exercise position control. For safety, move the coil slider of the linear motor to near the stroke center and make an adjustment. (Activation by the DC power supply moves a medium-size or large linear motor for up to about 60 mm , and moves a small linear motor for up to about 30 mm .)
(1) For activating phase adjustment, set the parameter below.

- For Series 9096, 90B0, 90B6, 90B5, or 90B1
For internal data measurement

Series 9096:
320 for an odd-numbered axis, 960 for an even-numbered axis
Series 90B0, 90B1, 90B5, or 90B6:
320 for an odd-numbered axis, 2368 for an even-numbered axis

- For Series 90D0 or 90 E 0 (If diagnosis No. 762 is available, the activating phase can be directly checked using that data.)

For internal data measurement

Set 0 .

Series 90D0:
532 for an odd-numbered axis, 660 for an even-numbered axis
Series 90E0:
No. $1023=(4 \mathrm{n}+1)$ axis: 532
No. $1023=(4 n+2)$ axis: 660
No. $1023=(4 n+3)$ axis: 6676
No. $1023=(4 n+4)$ axis: 6804
($\mathrm{n}=0,1,2, \ldots$)

- Common to all series

After making the settings above, activating phase data is output to Display No. 353 on the CNC diagnosis screen. Note that display data $=256$ on the diagnosis screen corresponds to an activating phase of 360 degrees. The following expression is used for output unit conversion to an activation phase [degrees]:
Activating phase [degrees] $=$
(Value of DGN No. 353) $\times 360 / 256$
(2) Turn off the power to the CNC and servo amplifier.
(3) Detach the linear motor power line from the servo amplifier, then connect the power line to the DC power supply.
Connect the + terminal of the DC power supply to phase U of the power line, and connect the - terminal of the DC power supply to phase V and phase W of the power line.

Fig. 4.14.1(e) Connection of DC power supply
(4) In the emergency stop state, turn on the power to the CNC and servo amplifier.
(5) Display No. 353 on the CNC diagnosis screen, and turn on the power to the DC power supply. Next, increase the current gradually (DC activation).
When the force of the linear motor produced by current supplied from the DC power supply exceeds static friction, the linear motor starts moving, and the linear motor automatically stops at a position where activation phase $=0$.

A position where activating phase $=0$ is present at intervals of 60 mm with medium-size and large linear motors, or at intervals of 30 mm with small linear motors.

WARNING

If a large current flows abruptly, the motor produces a large force, resulting in a very dangerous situation. When making this adjustment, be sure to increase the current value gradually starting from current value $=0$ [Ap].
(6) When the linear motor is at rest, read the value of No. 353 on the CNC diagnosis screen. Turn off the power to the DC power supply immediately after reading the value of No. 353.

* Make measurements of (5) and (6) several times by changing the DC activation start position within one pole (medium-size, large linear motor $=60 \mathrm{~mm}$, small linear motor $=30 \mathrm{~mm}$) to fine average activating phase data (value of DGN No. 353).
(7) Based on activating phase data measured with up to step 6) above, set the AMR offset parameter as described below.
* In the description below, the parenthesized values assume AMR60 $=1$.

When $0 \leq$ Value of DGN No. $353 \leq 32$ (42)
AMR offset setting
$=-1 \times($ value of DGN No. 353) $\times 360 / 256$
When 224 (214) \leq Value of DGN No. $353 \leq 255$ (255)
AMR offset setting
$=360-($ value of DGN No. 353) $\times 360 / 256$
When 32 (42) < Value of DGN No. $353<224$ (214)
In this case, a soft phase alarm is issued when phase Z is passed. Adjust the linear encoder installation position according to "FANUC LINEAR MOTOR Lis series DESCRIPTIONS (B-65382EN)". After adjustment, make an AMR offset adjustment again from step 1).
(8) Turn off then turn on the power to the CNC.
(9) Perform steps (5) and (6) again, and check that the activating phase data at a stop position is about 0 or 255 .
(10) Turn off the power to the CNC and servo amplifier. Next, connect the power line of the linear motor to the servo amplifier. Then, turn on the power to the CNC and servo amplifier again.
(11) Check that feed operation by jogging and so forth can be performed normally. If no problem is observed, return the parameter set in step (1) to 0 . This completes setting.

The activating phase can also be observed by connecting SERVO GUIDE to the CNC and selecting "Monitor" from the "Communication" menu of the graph window.
(Set "ROTOR" as the data type in channel setting.)

(Supplement)
Method for checking the activating phase value in the Series $15 i$
The diagnosis screen of the Series $15 i$ has no data that corresponds to No. 353 on the diagnosis screen of the Series $16 i$ and so on. So, display an arbitrary data screen by making the following parameter setting to check the activating phase value.

ARB (\#3)
The arbitrary data screen is:
0: Not displayed
1: \quad Displayed \leftarrow Use this setting.
Settings on the arbitrary data screen (see Fig. 4.14.1 (f).)
Parameter 1 of data 1 is loaded with the value set in Procedure (1).
Make sure that parameter 2 is 0 .
The activating phase is displayed in an enclosed section in the figure.

Fig. 4.14.1 (f) Series $15 i$ arbitrary data screen

Parameter setting procedure (4)

Incremental type

Procedure (4) explains how to set up parameters for using a linear scale with a distance-coded reference marks in position detection circuit C (A860-0333-T301 or -T302).

- This function is optional.
- This function is supported only for the Series $30 i / 31 i / 32 i-A$, $15 i-\mathrm{MB}, 16 i / 18 i / 21 i-\mathrm{B}$ as of December 2005.
- For details of parameter setting, refer to the relevant CNC manual or specifications.
(For Series 30i/31i/32i-A)
Refer to the CNC connection manual (B-63943EN). All software series and editions are applicable.
(For Series $15 i-\mathrm{MB}$)
Refer to the CNC specifications (A-79233E).
All software series and editions are applicable.
(For Series 16i/18i/21i-B)
Refer to the CNC specifications (A-78754EN).
Series and editions of applicable CNC software B0H1/BDH1/DDH1-17 and subsequent editions (Series 16i/18i/21i-MB) B1H1/BEH1/DEH1-17 and subsequent editions (Series 16i/18i/21i-TB) BDH5-07 and subsequent editions (Series 18i-MB5)

Setting procedure (for the Series $15 i-M B$)

Refer to the CNC specifications (A-79233E).

Setting procedure (for the Series $\mathbf{3 0} i / 31 i / 32 i-A$, Series $16 i / 18 i / 21 i-B$)

(1) Enable the linear scale with a distance-coded reference marks.

DCLx (\#2)
The linear scale interface with absolute address referenced mark is:
0 : Not used as a position detector
1: Used as a position detector \leftarrow To be set

SDCx (\#3) The linear scale with a distance-coded reference marks is:
0: Not used
1: \quad Used \leftarrow To be set

-
1821 (FS30i, 16i)

Reference counter capacity

Specify a round figure, such as 10000 or 50000 , as the reference counter capacity.

Coordinate of the first reference position in the machine coordinate system for each axis

Specify 0 .

Distance 1 from the scale mark origin to the reference position

Specify 0 .

Distance 2 from the scale mark origin to the reference position
Specify 0 .
(2) Turn the CNC power off and on again.
(3) Follow this procedure to establish a reference position at an appropriate point.
Select the JOG mode, and set the manual reference position return signal ZRN to " 1 ".
Set a feed axis direction selection signal ($+\mathrm{J} 1,-\mathrm{J} 1,+\mathrm{J} 2,-\mathrm{J} 2, \ldots)$ for an axis for which a reference position is to be established to " 1 " and issue the signal.
When an absolute position on the linear scale is detected, the axis stops, causing the reference position-established signal (ZRF1, ZRF2, ...) to be set to " 1 ".
If an overtravel alarm is issued in establishing a reference position, try to establish a reference position by disabling a stored stroke check.
(4) In the JOG or handle feed mode, place the machine accurately on the reference position.
(5) Using the following steps, perform the automatic setting of parameter No. 1883.

DAT (\#2)

At a manual reference position return, the automatic setting of parameter No. 1883 is:
0: Not performed
1: Performed \leftarrow To be set
After setting this parameter to " 1 ", perform a manual reference position return.
When the manual reference position return is completed, parameter No. 1883 is specified, and this parameter is automatically reset to " 0 ".
(6) If you want to disable a stored stroke check in establishing a reference position, re-set the necessary parameters to the original setting.
(7) Specify parameter No. 1240 as required.

Coordinate of the first reference position in the machine coordinate system for each axis

Set up the coordinate of the first reference position in the machine coordinate system.
(8) This is the end of setting.

Parameter setting procedure (5)

Procedure (5) can be used to set parameters according to the cooling method used for linear motors.
Change the following parameters as listed in Table 4.14.1 (f). For self-cooling linear motors, the parameters need not be set here, because they are set up at initialization in procedure (1).

1877 (FS15i)
2062 (FS30i, 16i)

\square

1878 (FS15i)
2063 (FS30i, 16i)

OVC alarm parameter (POVC2)

1893 (FS15i)
2065 (FS30i, 16i)

\square

1979 (FS15i)
2086 (FS30i, 16i)

\square

1784 (FS15i)
2161 (FS30i, 16i)

Table4.14.1 (f) Setting OVC and current rating parameters by cooling method
[200-V driving]

Model	Cooling method	Rated (N)	POVC1	POVC2	POVCLMT	RTCURR	OVCSTP
LiS300A1/4	No cooling	50	32704	802	793	655	0
	Water cooling	100	32512	3199	3172	1310	0
LiS600A1/4	No cooling	100	32704	802	793	655	0
	Water cooling	200	32512	3199	3172	1310	0
LiS900A1/4	No cooling	150	32705	785	1784	983	0
	Water cooling	300	32518	3129	7136	1966	0
LiS1500B1/4	No cooling	300	32698	873	2590	1184	0
	Water cooling	600	32490	3481	10358	2368	0
LiS3000B2/2	No cooling	600	32711	719	2131	1074	0
	Water cooling	1200	32539	2867	8523	2148	0
LiS3000B2/4	No cooling	600	32698	873	2590	1184	0
	Water cooling	1200	32490	3481	10358	2368	0
LiS4500B2/2	No cooling	900	32707	758	1199	805	0
	Water cooling	1800	32526	3023	4794	1611	0
LiS6000B2/2	No cooling	1200	32711	719	2131	1074	0
	Water cooling	2400	32539	2867	8523	2148	0
LiS6000B2/4	No cooling	1200	32698	873	2590	1184	0
	Water cooling	2400	32528	3003	8932	2368	140
LiS7500B2/2	No cooling	1500	32707	765	832	671	0
	Water cooling	3000	32524	3053	3329	1342	0
LiS7500B2/4	No cooling	1500	32687	1010	799	658	0
	Water cooling	3000	32446	4026	3197	1316	0
LiS9000B2/2	No cooling	1800	32707	758	1199	805	0
	Water cooling	3600	32526	3023	4794	1611	0
LiS9000B2/4	No cooling	1800	32696	895	1151	789	0
	Water cooling	3600	32482	3570	4604	1579	0
LiS3300C1/2	No cooling	660	32708	749	1184	801	0
	Water cooling	1320	32529	2987	4738	1602	0
LiS9000C2/2	No cooling	1800	32729	489	1112	776	0
	Water cooling	3600	32612	1953	4448	1552	0
LiS11000C2/2	No cooling	2200	32723	560	1661	948	0
	Water cooling	4400	32589	2236	6644	1897	0
LiS15000C2/2	No cooling	3000	32729	483	621	579	0
	Water cooling	7000	32558	2623	3378	1352	0
LiS15000C2/3	No cooling	3000	32732	452	1340	852	0
	Water cooling	7000	32572	2455	7296	1988	140
LiS10000C3/2	No cooling	2000	32722	580	1719	964	0
	Water cooling	4000	32583	2314	6875	1929	0
LiS17000C3/3	No cooling	3400	32711	709	981	729	0
	Water cooling	6800	32542	2829	3925	1458	0

[400-V driving]

Model	Cooling method	Rated (N)	POVC1	POVC2	POVCLMT	RTCURR	OVCSTP
LiS1500B1/4	No cooling	300	32698	873	2590	1184	0
	Water cooling	600	32490	3481	10358	2368	0
LiS3000B2/2i	No cooling	600	32711	719	2131	1074	0
	Water cooling	1200	32539	2867	8523	2148	0
LiS4500B2/2HV	No cooling	900	32714	681	1549	915	0
	Water cooling	1800	32551	2718	6194	1831	0
LiS4500B2/2	No cooling	900	32707	758	1199	805	0
	Water cooling	1800	32526	3023	4794	1611	0
LiS6000B2/2HV	No cooling	1200	32706	774	688	610	0
	Water cooling	2400	32521	3085	2753	1221	0
LiS6000B2/2	No cooling	1200	32711	719	2131	1074	0
	Water cooling	2400	32539	2867	8523	2148	0
LiS7500B2/HV2	No cooling	1500	32714	680	1075	763	0
	Water cooling	3000	32551	2713	4301	1526	0
LiS7500B2/2	No cooling	1500	32709	739	658	596	0
	Water cooling	3000	32532	2949	2631	1193	0
LiS9000B2/2	No cooling	1800	32709	737	947	716	0
	Water cooling	3600	32533	2940	3788	1432	140
LiS3300C1/2	No cooling	660	32708	749	1184	801	0
	Water cooling	1320	32529	2987	4738	1602	0
LiS9000C2/2	No cooling	1800	32728	494	879	689	0
	Water cooling	3600	32610	1972	3514	1379	0
LiS11000C2/2HV	No cooling	2200	32723	560	1661	948	0
	Water cooling	4400	32589	2236	6644	1897	0
LiS11000C2/2	No cooling	2200	32730	474	1312	843	0
	Water cooling	4400	32616	1894	5250	1686	140
LiS15000C2/3HV	No cooling	3000	32730	471	1396	869	0
	Water cooling	7000	32563	2557	7601	2029	140
LiS10000C3/2	No cooling	2000	32720	597	1358	857	0
	Water cooling	4000	32577	2384	5432	1715	140
LiS17000C3/2	No cooling	3400	32711	709	981	729	0
	Water cooling	6800	32542	2829	3925	1458	0

[Conventional linear motors]

Model	Cooling method	Rated (N)	POVC1	POVC2	POVCLMT	RTCURR
1500A/4	No cooling	300	32698	873	2590	1184
	Air cooling	360	32667	1257	3729	1421
	Water cooling	600	32490	3481	10358	2369
3000B/2	No cooling	600	32698	873	2590	1184
	Air cooling	720	32667	1257	3729	1421
	Water cooling	1200	32490	3481	10358	2369
3000B/4	No cooling	600	32698	873	2590	1184
	Air cooling	720	32667	1257	3729	1421
	Water cooling	1200	32490	3481	10358	2368
6000B/2	No cooling	1200	32698	873	2590	1184
	Air cooling	1440	32667	1257	3729	1421
	Water cooling	2400	32490	3481	10358	2369
$6000 \mathrm{~B} / 4$(160-A driving)	No cooling	1200	32706	777	2304	1117
	Air cooling	1440	32679	1118	3317	1340
	Water cooling	2400	32520	3098	9215	2234
$9000 \mathrm{~B} / 2$(160-A driving)	No cooling	1800	32729	491	1457	888
	Air cooling	2160	32711	707	2098	1065
	Water cooling	3600	32611	1962	5827	1776
9000B/4 (360-A driving)	No cooling	1800	32737	388	1151	789
	Air cooling	2160	32723	559	1657	947
	Water cooling	3600	32644	1551	4604	1579
$\begin{gathered} 15000 \mathrm{C} / 2 \\ (360-\mathrm{A} \text { driving) } \end{gathered}$	No cooling	3000	32751	209	621	579
	Air cooling	3600	32744	301	894	695
	Water cooling	7000	32677	1139	3378	1352
15000C/3	No cooling	3000	32732	452	1340	852
	Air cooling	3600	32716	651	1930	1022
	Water cooling	7000	32572	2455	7296	1988

Parameter setting procedure (6)

Procedure (6) provides supplementary information when servo HRV2 is applied with a conventional linear motor. When initialization has been performed with a motor ID number for servo HRV2 control in procedure (1), parameter settings need not be changed.

When servo HRV2 is applied to increase the current loop gain of a linear motor, it is necessary to set the following parameter, because linear motors have a higher current gain compared with rotary motors. This parameter setting must be done whenever the absolute value of the current loop proportional gain (PK2) becomes higher than 16000-20000 (as a rule of thumb) after application of servo HRV2.

2210 (FS30i, 16i)
PK12S2 (\#2) Specifies whether to use the quadruple current loop gain function.
0 : Not to use
1: To use \leftarrow To be set
When setting this function to ON, re-set the current gain parameters (PK1 and PK2) to one-fourth.
(Note: This function is not available with the Series 9096.)
Table 4.14.1 (g) Current gain parameter setting when SERVO HRV2 is applied

Model name	Typical setting (HRV1)			Setting after SERVO HRV2 is applied		
	PK12S2	PK1	PK2	PK12S2	PK1	PK2
1500A/4	0	1890	-7180	0	1512	-11488
3000B/2	0	4804	-14453	1	961	-5782
3000B/4	0	1620	-11180	1	324	-4472
6000B/2	0	4804	-13138	1	961	-5253
$\begin{array}{c\|} \hline 6000 \mathrm{~B} / 4 \\ \text { (160-A driving) } \end{array}$	0	1751	-6701	0	1401	-10722
$\begin{gathered} 9000 \mathrm{~B} / 2 \\ \text { (160-A driving) } \end{gathered}$	0	6198	-19692	1	1240	-7877
9000B/4 (360-A driving)	0	7416	-17747	1	1484	-7099
$\begin{gathered} \text { 15000C/2 } \\ \text { (360-A driving) } \end{gathered}$	1	2130	-8400	1	1704	-13440
15000C/3	0	2392	-8448	1	478	-3379

CAUTION

Before specifying these parameters, be sure to put the machine at an emergency stop.
(6) Illegal servo parameter setting alarms when linear motors are used

The following illegal servo parameter setting alarms are checked additionally when linear motors are used (they are not issued for rotary motors).

Parameter error alarm detail No.	Description
10043	No separate detector can be used for linear motors. Full-closed loop setting results in an alarm being issued.
1123	If no AMR conversion coefficient is set, an alarm is issued. Even when the linear encoder is not relocated after the motor is replaced, the AMR conversion coefficients must be re-set, because initialization accompanying motor replacement causes the AMR coefficients to be erased.
	The valid AMR offset data range is below : -45 (degrees) and +45 (degrees) : (AMR60=0) -60 (degrees) and +60 (degrees) : (AMR60=1) If a value out of this range is specified in the parameter, an invalid-parameter alarm is issued.

CAUTION
When an AMR conversion coefficient is not set, an alarm is issued. If it is set, but incorrect, no alarm is issued. In this case, the linear motor fails to drive correctly immediately after it passes phase Z. It may move within one pole-to-pole span (60 mm or 30 mm) in the worst case.

(7) Notes on using high-speed HRV current control or the cutting /rapid velocity loop gain switching function

In general, a higher velocity loop gain (load inertia ratio) is set for a linear motor than for a rotary motor. So, if high-speed HRV current control and the cutting/rapid velocity loop gain switching function are used at the same time to achieve an even higher velocity loop gain, an overflow can occur in the internal value of the post-override velocity load proportional (PK2V: parameter No. 1856 for Series $15 i$ or No. 2044 for Series $30 i, 16 i$, and so on). (The parameter error detail number is $443{ }^{(*)}$). In this case, set the parameter indicated below. Whether an overflow occurs or not can be checked using Fig. 4.14.1(g).
${ }^{(*)}$ Series 9096 and Series 90B0/C(03) and earlier editions do not support the occurrence of parameter errors in velocity gain override and the display of detail numbers.

Fig. 4.14.1(g) PK2V overflow check

> | 1 CAUTION |
| :--- |
| In the flowchart above, the velocity loop gain |
| override is represented by one of the following |
| parameters: |
| Velocity gain magnification when high-speed HRV |
| current control is enabled |
| \rightarrow (No. 2335 for Series $30 i$, $16 i$, and so on or No. |
| 2748 for Series $15 i$) |
| Velocity gain override when the cutting feed/rapid |
| traverse switchable velocity loop gain function is |
| enabled |
| $\rightarrow($ No. 2107 for Series $30 i, 16 i$, and so on or No. |
| 1700 for Series $15 i)$ |

4.14.2 Detection of an Overheat Alarm by Servo Software when a Linear Motor and a Synchronous Built-in Servo Motor are Used

(1) Overview

When a linear motor and a synchronous built-in servo motor are used, the motor overheat signal cannot be posted to the CNC via a detector. Therefore, to detect a motor overheat, alarm processing for the thermostat signal had to be performed by a PMC ladder. (For details, refer to Section 2.5, "THERMOSTAT CONNECTION", in Part III, "HANDLING, DESIGN, AND ASSEMBLY", in "FANUC LINEAR MOTOR LiS series DESCRIPTIONS (B-65382EN).)

This function uses servo software to monitor the thermostat signal applied to DI and issues a servo alarm (motor overheat) when an overheat occurs. Use of this function eliminates the need to perform alarm processing by using the PMC ladder.
In addition, when an overheat alarm is issued, quick stop processing (quick stop function with velocity command 0) can be used. (For details, see Subsection 4.11.5, "Quick Stop Function at OVL (Motor Overheat) and OVC (Over Current) Alarm".)

Conventional overheat processing

Overheat processing when this function is used

(2) Series and editions of applicable servo software

(Series 30i,31i,32i)
Series 90D0/J(10) and subsequent editions
Series 90E0/J(10) and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}$, Power Mate i)
Series $90 B 6 / B(02)$ and subsequent editions
Series 90B1/C(03) and subsequent editions
(Series $0 i-\mathrm{C}, 20 i-\mathrm{B}$)
Series 90B5/B(02) and subsequent editions
When this function is used, the following system software is required: $\mathrm{B} 0 \mathrm{H} 1 / \mathrm{BDH1} / \mathrm{DDH} 1-24$ and subsequent editions ($\mathrm{FS} 16 i / 18 i-\mathrm{MB}$)
B1H1/BEH1/DEH1-24 and subsequent editions (FS16i/18i-TB)
BDH5-14 and subsequent editions (FS18i-MB5)
DDH1-24 and subsequent editions (FS21i-MB) (PMC-SB7 required)
DEH1-24 and subsequent editions (FS21i-TB) (PMC-SB7 required)
D4A1-07 and subsequent editions ($\mathrm{FS} 0 i-\mathrm{MB} / \mathrm{TB}$)(PMC-SB7 required)
D6A1-07 and subsequent editions ($\mathrm{FS} 0 i-\mathrm{MB} / \mathrm{TB}$)(PMC-SB7 required)
D4B1-01 and subsequent editions (FS0i-MC) (PMC-SB7 required)
D6B1-01 and subsequent editions (FS0i-TC) (PMC-SB7 required)
(*) This function is not supported by the Series $15 i$. The Power Mate i is planned to support this function in the future.

(3) Setting parameters

CKLNOH(\#7)

Overheat is:
1: Determined via the PMC.
0 : Not determined via the PMC.

CAUTION

This function bit is included in the motor standard parameters. It is set automatically when servo parameter initialization is performed with a motor ID number set.
In the CNC that cannot use interface G326 of the PMC, if this function bit is set to 1 , a servo alarm (motor overheat) is issued. If this occurs, set the function bit to 0 .

* For the FS15i, set bit 7 of parameter No. 2713 to 0; for the Power Mate i, set bit 7 of parameter No. 2300 to 0.

(4) Signals

Overheat status signals input via the PMC SVDI61 to SVDI68<G326>

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
G326	SVDI68	SVDI67	SVDI66	SVDI65	SVDI64	SVDI63	SVDI62	SVDI61

[Classification] Input signal
[Function] Thermostat signals are input via the PMC. An independent signal is provided for each axis, and the last digit of each name indicates the number of a controlled axis.
[Status] 0: A signal for issuing an overheat alarm or detecting an overheat is not connected.
1: No overheat alarm is issued.

(5) Connection and usage

$<1>$ Parameter setting

Set the function bit of this function, CKLNOH, to 1 .
In the standard parameters of the linear motor and synchronous built-in servo motor, CKLNOH is set to 1 . So, unless a thermostat is connected, an motor overheat alarm is issued.
$<2>$ Connecting the thermostat and DI signal
The signal of the thermostat mounted on the linear motor and synchronous built-in servo motor is connected to G326, which is a DI signal. The G326 status is automatically transferred to the servo software if the servo software supports this function. The servo software monitors the status, and when an overheat occurs, the servo software issues a servo alarm (motor overheat).
[Alarm detail indication on the servo adjustment screen]

Alarm	Alarm 1 \#7(OVL)	Alarm 2 \#7(ALD)	Alarm 2 \#4(EXP)
Motor overheat alarm via Pulsecoder	1	1	0
Overheat alarm via PMC DI signal	1	1	1

4.14.3 Smoothing Compensation for Linear Motor

(1) Overview

Smoothing compensation for linear motors improves the smoothness in feed of a linear motor by producing a sinusoidal compensation torque with a cycle of $1 / 2,1 / 4$, or $1 / 6$ of the pole-to-pole span produced by servo software and by applying such a torque to the current command. Compensation torque can be generated for each motor by setting gain and phase for each component.

(2) Series and editions of applicable servo software

(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series $90 \mathrm{E} 0 / \mathrm{A}(01)$ and subsequent editions (Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}$, Power Mate i)

Series $9096 / \mathrm{A}(01)$ and subsequent editions
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series $90 \mathrm{~B} 6 / \mathrm{A}(01)$ and subsequent editions
(Series 20i-B)
Series 90B5/A(01) and subsequent editions

(3) Setting parameters

$1753(\mathrm{FS} 15 i)$
$2130(\mathrm{FS} 30 i, 16 i)$

| Smoothing compensation performed twice per pole pair |
| :---: | :---: |
| Correction gain (high-order 8 bits) \quad Correction phase (low-order 8 bits) |

1754 (FS15i)
2131 (FS30 $i, 16 i$)

Smoothing compensation performed four times per pole pair
Correction gain (high-order 8 bits) \quad Correction phase (low-order 8 bits)

$1755($ FS15 i)
$2132($ FS30 $i, 16 i)$

Smoothing compensation performed six times per pole pair
Correction gain (high-order 8 bits) Correction phase (low-order 8 bits)

2782 (FS15i)
$2369($ FS30i, 16i)

Smoothing compensation performed twice per pole pair (negative direction)
Correction gain (high-order 8 bits) Correction phase (low-order 8 bits)

Smoothing compensation performed four times per pole pair (negative direction)
 Correction gain (high-order 8 bits) Correction phase (low-order 8 bits)

$2784(\mathrm{FS} 15 i)$
2371 (FS30 $i, 16 i$)

| Smoothing compensation performed six times per pole pair (negative direction) |
| :---: | :---: |
| Correction gain (high-order 8 bits) \quad Correction phase (low-order 8 bits) |

Since the compensation parameters differ from motor to motor (depending on the motor rather than the model), these parameters must be determined for each motor assembled.
In principle, variation in torque command that is generated when the motor is fed at a low speed depends on the position. The application of smoothing compensation cancels this position-dependent characteristic, allowing the motor to move smoothly.
The measuring instruments that can be used to determine these parameters include "SERVO GUIDE" (Ver. 2.00 or later) and "SD" (servo tuning software).

If using SERVO GUIDE (Ver. $\mathbf{2 . 0 0}$ or later)

By using SERVO GUIDE (Ver. 2.00 or later), these parameters can be determined easily. Follow the procedure below to measure the activating phase and torque command, which are required to determine the compensation parameters.
$<1>$ Set channels as follows:
Channel 1: Activating phase
Select the target axis for measurement, and set "ROTOR" as the data type.

Channel 2: Torque command
Select the target axis for measurement, and set "TCMD" as the data type.
As the conversion coefficient, set the maximum current of the amplifier used for the target axis.

$<2>$ Create a program that performs back and forth motion at a feedrate of F1200 ($\mathrm{mm} / \mathrm{min}$).
If the distance of movement is shorter than the pole-to-pole span, it is impossible to automatically calculate smoothing compensation parameters. Therefore, it is recommended that the distance of movement be at least 200 mm for large linear motors or at least 100 mm for small linear motors. For the number of measurement points, provide an enough time to obtain data during one back and forth motion of the motor. (About 15000 to 20000 points in 1 -ms sampling)
$<3>$ When making measurements, lower the velocity gain to such an extent that hunting does not occur.
$<4>$ From the "Tools" menu, select "Linear motor compensation calculation".
(The shortcut is [Ctrl] $+[\mathrm{L}]$.)
$<5>$ In the displayed dialog box, press the [Add] button. Then waveform data is analyzed, and candidates of the compensation parameters are registered.

$<6>$ The compensation parameters slightly vary depending on the measurement situation. So, repeat a data measurement and a press of the [Add] button several times in a similar manner while keeping the dialog box open. (Up to five candidates can be registered.)
If the displayed values include an extremely different value, uncheck the corresponding check box on the leftmost side of the list so that the value is not taken into account in the final compensation calculation.
$<7>$ Finally, press the [Calc] button for each of the forward and backward directions. Then, smoothing compensation parameters are displayed.
$<8>$ When the target axis for parameter transfer is selected in "Parameter change", and the [Set param.] button is pressed, the presented parameters are set in the CNC.
$<9>$ Measure TCMD again to confirm the effect of smoothing compensation.

Before smoothing compensation adjustment

After smoothing compensation adjustment Torque command
(TCMD)
(*) For details on the use of SERVO GUIDE, refer to the online help of SERVO GUIDE.

If using SD (servo tuning software)

Follow the procedure described below to measure the activating phase angle and torque command necessary to determine the correction parameters.
The following procedure use terms "odd-numbered axis" and "even-numbered axis" in relation to axis numbers specified in parameter No. 1023 (common to the Series $15 i$ and Series $16 i$ and so on).
$<1>$ Series 90B0: Does not require step $<1>$. Go to step $<2>$.
Series 9096: To measure an odd-numbered axis, set a dummy bit to 1 for the even-numbered axis paired with it.
If a linear motor is used in tandem control, however, do not set a dummy bit for the paired axis.

SERD (\#0)
Specifies whether to enable the dummy serial feedback function.
0: To disable
1: To enable \leftarrow To be set

* Do not forget to restore the previous setting after parameter setting is completed.
<2>-a When using A06B-6057-H620 (digital check board), set the DIP switches on the check board as follows:

To measure an odd-numbered axis:
A06B-6057-H620

AXIS2: 1 (torque) AXIS1: 10 (phase)

To measure an even-numbered axis:

<2>-b When using A06B-6057-H630 (one-piece analog/digital type), set up the 7 -segment LED digits on the check board as shown below:

$<3>$ To measure the activating phase angle, set the following parameter.

Parameter for internal data measurement

Series 9096: 1328 (for both odd- and even-numbered axes)
Series 90B0, 90B1, 90B6, 90B5:
704 for odd-numbered axis and 2752 for even-numbered axis
Steps $<2>$ and $<3>$ enable CH 0 and CH1 of the SD software to be used to measure the motor activating phase angle (CH 0) and torque command (CH1).
$<4>$ Start the "SD" software, and make the following setting.

DOS prompt > SD INIT [Enter]	
o	(Origin of position)
F9	(System setting)
0	(CH0)
2 [Enter]	(TCMD)
1.0 [Enter]	(1.0A)
1	(CH1)
$2[$ Enter]	(TCMD)
$40[$ Enter]	(Maximum current for servo amplifier to be used)
F10	(Return to main menu.)
(Ctrl)T	(XTYT mode selected)
F2	(Data number)
9000 [Enter]	(Number of data items to be measured)

* This description uses the LiS3000B2/2 as an example. It differs from other models only in the current rating of the servo amplifier. For small linear motors, set the number of data items to be measured to 4500 .
<5> When determining the correction parameters, set the velocity gain to a rather low value.
$<6>$ For medium-size and large motors, make a reciprocating motion for 200 mm or more at F1200 ($\mathrm{mm} / \mathrm{min}$).
For small linear motors, make a reciprocating motion for 100 mm or more at F1200 (mm/min).
$<7>$ Pressing the F1 key (to start measurement) at regular speed displays the data shown below. (Check that the activating phase angle-based sine waveform changes from negative to positive at three points or more.)

```
CAUTION
Measurement direction varies with the setting of the direction-of-movement parameter.
[If a direction-specific smoothing compensation is not used]
When the setting is 111: Measurement is performed during forward movement.
When the setting is -111 : Measurement is performed during backward movement.
[If a direction-specific smoothing compensation is used]
(When determining a compensation value for the positive direction)
When the setting is 111: Measurement is performed during forward movement.
When the setting is -111 : Measurement is performed during backward movement.
(When determining a compensation value for the negative direction)
When the setting is 111 : Measurement is performed during backward movement. When the setting is -111: Measurement is performed during forward movement.
Measurement in the wrong direction hinders correct calculation of the correction parameter.
```


$<8>$ Pressing [CTRL]+[L] causes the correction parameter values to be calculated as shown below. Enter the displayed parameter values. Usually, use the correction parameter values displayed on the top row.
The parameter values displayed on the middle and bottom rows are used for special parameter setting.
Middle row: To be used when either quadruple smoothing compensation or quadruple TCMD output is selected.
Bottom row: To be used when both quadruple smoothing compensation and quadruple TCMD output are selected.

Parameter settings are displayed in a form of, for example:
-25425 (156: 175)
This format means that the correction gain (parameter high byte) and correction phase (parameter low byte) are, respectively, 156 and 175.
Because $156=9 \mathrm{Ch}$ and $175=\mathrm{AFh}$, parameter setting $=9 \mathrm{CAFh}=-25425$.

When specifying the smoothing compensation (negative direction) parameters (Nos. 2782 to 2784 (Series 15i) or Nos. 2369 to 2371 (Series $16 i$ and so on)), it is impossible to use the parameter values stated on the previous pages without modifying them. It is necessary to shift the phase by 128.
Example)
Assuming that the correction gain and correction phase measured in the negative direction are, respectively, 10 and 100 :

$$
\begin{aligned}
& 10=0 \mathrm{Ah} \\
& 100+\mathbf{1 2 8}=228=\mathrm{E} 4 \mathrm{~h}
\end{aligned}
$$

Therefore, the parameter value is:
$0 \mathrm{AE} 4 \mathrm{~h}=2788$

* If the sum of the phase data and 128 exceeds 255 , perform the following calculation:
Phase data $=$ value that was read $+128-256$

The December 1999 version and later of the SD software can display correction parameters for the negative direction. When using these versions, use the parameter values displayed on the right section without modifying them.

Example of measurement

(a) Measured waveform where parameter value calculation is possible

(b) Measured waveform where parameter value calculation is impossible (No. 1)
Two activating phase angle-based sine waves cannot be acquired because of insufficient measurement time.

(c) Measured waveform where parameter value calculation is impossible (No. 2)
Two activating phase angle-based sine waves cannot be acquired because of an inappropriate measurement start position.

4.15 SYNCHRONOUS BUILT-IN SERVO MOTOR PARAMETER SETTING

4.15.1 Procedure for Setting the Initial Parameters of Synchronous Built-in Servo Motors

(1) Overview

> The following describes the procedure for setting the digital servo parameters to enable the use of a FANUC synchronous built-in servo motor.
> To drive a synchronous built-in servo motor, the optional pole detection function is required.

(2) Series and editions of applicable servo software

- Except α iCZ 768S
(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series 90E0/A(01) and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}$, Power Mate i)
Series 90B1/A(01) and subsequent editions
- $\alpha i \mathrm{CZ} 768 \mathrm{~S}$
(Series 30i,31i,32i)
Series $90 \mathrm{D} 0 / \mathrm{J}(10)$ and subsequent editions Series $90 \mathrm{E} 0 / \mathrm{J}(10)$ and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}$, Power Mate i)
Series $90 \mathrm{~B} 1 / \mathrm{C}(03)$ and subsequent editions

NOTE

Series 90B1 does not support RCN727 manufactured by HEIDENHAIN, as a detector for synchronous built-in servo motors.
(3) Warning

[^1]
(4) Detector

A rotary encoder is used to detect the position and speed of a synchronous built-in servo motor.
Table 4.15.1(a) lists examples of usable rotary encoders.
Table 4.15.1 (a) Examples of usable rotary encoders

Encoder	Number of pulses for parameter setting ${ }^{(* 1)}$	Remarks
$\alpha i C Z 512 \mathrm{~S}$	$500,000 \mathrm{p} / \mathrm{rev}$	Manufactured by FANUC
α iCZ 768S ${ }^{(* 2)}$	$750,000 \mathrm{p} / \mathrm{rev}$	Manufactured by FANUC
$\alpha i C Z 1024 \mathrm{~S}$	$1,000,000 \mathrm{p} / \mathrm{rev}$	Manufactured by FANUC
RCN220	$1,000,000 \mathrm{p} / \mathrm{rev}$	Manufactured by HEIDENHAIN
RCN223	$8,000,000 \mathrm{p} / \mathrm{rev}$	Manufactured by HEIDENHAIN
RCN723	$8,000,000 \mathrm{p} / \mathrm{rev}$	Manufactured by HEIDENHAIN
RCN727 ${ }^{* * 3)}$	$8,000,000 \mathrm{p} / \mathrm{rev}$	Manufactured by HEIDENHAIN

(*1) Number of pulses for parameter setting, which differs from an actual resolution.
(*2) $\alpha i C Z 768 S$ needs to use DECAMR for AMR setting. Please be careful of software edition.
(*3) Servo software Series 90B1 for Series $16 i$ and so forth does not support RCN727 as a detector for synchronous built-in servo motors.

NOTE

1 For details of rotary encoders usable with FANUC synchronous built-in servo motors, refer to "FANUC SYNCHRONOUS BUILT-IN SERVO MOTOR DiS series Descriptions (B-65332EN)".
2 For the detailed specifications of each rotary encoder, contact each rotary encoder manufacturer.

(5) Parameter settings

Set the parameters according to the procedure below.

Parameter setting procedure (1)

Procedure (1) can be used to initialize the parameters (such as current gain) necessary to drive a synchronous built-in servo motor. After initialization, the parameters dependent on the type of rotary encoder need to be set. Set the parameters according to procedure (2) described later.

Parameters related to initialization

+111 : When the positive direction is specified, the rotor rotates in the positive direction.
-111: When the positive direction is specified the rotor rotates in the reverse direction.

The positive direction (+ direction) of the DiS series motor is the counterclockwise rotation of the rotor as determined by viewing the motor from the power line side.

Motor ID number

1874 (FS15i)
2020 (FS30i, 16i)

Motor ID number

Table 4.15 .1 (b) and Table 4.15 .1 (c) indicate the synchronous built-in servo motors for which the standard parameters are available as of December, 2005. When the standard parameters are not included in the servo software used, see the parameter list shown in this manual, and set the parameters.

Table 4.15.1 (b) Synchronous built-in servo motor [200-V driving]

Motor model	Motor specification	Motor ID No.	90B6	90B1	90D0 90E0
DiS85/400	$0483-B 20 x$	423	-	-	$\mathrm{K}(11)$
DiS110/300	$0484-B 10 \mathrm{x}$	425	-	-	$\mathrm{K}(11)$
DiS260/600	$0484-\mathrm{B} 31 \mathrm{x}$	429	-	-	$\mathrm{K}(11)$
DiS370/300	$0484-\mathrm{B} 40 \mathrm{x}$	431	-	-	$\mathrm{K}(11)$

Table 4.15 .1 (c) Synchronous built-in servo motor [400-V driving]

Motor model	Motor specification	Motor ID No.	90B6	90B1	90D0 90E0
DiS85/400	$0483-B 20 x$	424	-	-	$\mathrm{K}(11)$
DiS110/300	$0484-B 10 \mathrm{x}$	426	-	-	$\mathrm{K}(11)$
DiS260/600	$0484-\mathrm{B} 31 \mathrm{x}$	430	-	-	$\mathrm{K}(11)$
DiS370/300	$0484-\mathrm{B} 40 \mathrm{x}$	432	-	-	$\mathrm{K}(11)$

The motor ID numbers are for SERVO HRV2. Loading is possible with the servo software of the series and edition listed above or subsequent editions.

After parameter initialization, check that the function bit for synchronous built-in servo motor control is set to 1 (synchronous built-in servo motor control is enabled).

Parameter setting procedure (2)

Procedure (2) can be used to set the parameters that need to be set according to the type of a rotary encoder used.

Setting of parameters related to feedback

PLC0(\#0) The number of velocity pulses and the number of position pulses are:
0 : Used without being modified.
1: Used after being multiplied by 10
If the number of velocity pulses is lager than 32767 , set the parameter to 1 .

1876 (FS15i)
2023 (FS30i, 16i)

\square

1891 (FS15i)
2024 (FS30i, 16i)

Number of position pulses (PPLS)

2628 (FS15i)
2185 (FS30i, 16i)

Position pulses conversion coefficient (PSMPYL)

This parameter is used if the calculated number of position pulses is greater than 32767.
When this parameter is set to 0 , $\mathrm{PSMPYL}=1$ is assumed for processing.
(Parameter calculation expression)
When PLC0=0
\rightarrow Set so that Number of position pulses $=$ PPLS \times PSMPYL.
When PLC0=1
\rightarrow Set so that Number of position pulses $=10 \times$ PPLS \times PSMPYL
Table 4.15 .1 (d) Setting the number of velocity pulses and number of position pulses

Encoder	PLC0 (No.200\#\#)	PULCO (No.2023)	PPLS (No.2024)	PSMPYL (No.2185)
αi CZ 512S	0	4096	6250	0
αi CZ 768S	0	6144	9375	0
$\alpha i C Z$ 1024S	0	8192	12500	0
RCN220	0	8192	12500	0
RCN223	1	6554	10000	0
RCN723	1	6554	10000	0
RCN727	1	6554	10000	0

(Parameter calculation expression)

FFG $=\frac{\text { No. } 2084}{\text { No. } 2085}=\frac{$| Number of pulses per motor revolution |
| :---: |
| (detection unit) |}{Number of pulses per detector revolution}

For the number of pulses per detector revolution, see Table 4.15.1 (e).
Table 4.15.1 (e) Number of pulses for flexible feed gear setting

Encoder	Number of pulses per detector revolution $\left.{ }^{*} 1\right)$	Remarks
α iCZ 512S	$500,000 \mathrm{p} / \mathrm{rev}$	FFG, maximum value is $36 / 5$.
$\alpha i C Z 768 \mathrm{~S}$	$750,000 \mathrm{p} / \mathrm{rev}$	FFG, maximum value is $360 / 75$.
α iCZ 1024S	$1,000,000 \mathrm{p} / \mathrm{rev}$	FFG, maximum value is $36 / 10$.
RCN220	$1,000,000 \mathrm{p} / \mathrm{rev}$	FFG, maximum value is $1 / 1$.
RCN223	$8,000,000 \mathrm{p} / \mathrm{rev}$	FFG, maximum value is $1 / 1$.
RCN723	$8,000,000 \mathrm{p} / \mathrm{rev}$	FFG, maximum value is $1 / 1$.
RCN727	$8,000,000 \mathrm{p} / \mathrm{rev}$	FFG, maximum value is $8 / 1$.

(*1) Number of pulses for parameter setting, which differs from an actual resolution.

1896 (FS15i)
1821 (FS30 $i, 16 i$)

Reference counter capacity

Set the number of pulses per motor revolution (detection unit) or the same number divided by an integer.
With $\alpha i \mathrm{CZ} 768 \mathrm{~S}$, however, set the number of pulses per one-third of one motor revolution (detection unit) or the same number divided by an integer.

800PLS (\#0)

A rotary encoder with eight million pulses per revolution is:
1: To be used. (To use the RCN223, RCN723, or RCN727, set the bit to 1.)
0 : Not to be used.

RCNCLR (\#1) The number of revolution is:
1: To be cleared. (To use the RCN220, RCN223, RCN723, or RCN727, set the bit to 1.)
0 : Not to be cleared.
This function bit is to be set in combination with the number of data mask digits, described below.

2807 (FS15i)
2394 (FS30 $i, 16 i$)

Number of data mask digits (DMASK)

[Settings] 8. (To use the RCN223, RCN723, or RCN727)
5. (To use the RCN220)

This parameter need not be set for an $\alpha i \mathrm{CZ}$ sensor. (When using an $\alpha i \mathrm{CZ}$ sensor, set this parameter to 0 .)
Set this parameter together with RCNCLR above.

Setting of an AMR conversion coefficient

1806 (FS15i)
2001 (FS30 $i, 16 i$)

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
0	AMR6	AMR5	AMR4	AMR3	AMR2	AMR1	AMR0

Set the value that matches the type of a rotary encoder used, according to Table 4.15.1 (f).

Table 4.15.1 (f) Setting AMR

Encoder	AMR6-AMR0	Remarks
$\alpha i C Z 512 S$	Set the number of motor poles in binary.	
$\alpha i C Z 768 \mathrm{~S}$	Set 0.	
$\alpha i C Z 1024 \mathrm{~S}$	Set the number of motor poles/2 in binary.	
RCN220	Set the number of motor poles/2 in binary.	
RCN223	Set the number of motor poles in binary.	
RCN723	Set the number of motor poles in binary.	
RCN727	Set the number of motor poles in binary.	

2608 (FS15i)
2220 (FS30i, 16i)

Set the value that matches the type of a rotary encoder used, according to Table 4.15.1 (g).

Table 4.15.1 (g) Setting DECAMR

Encoder	DECAMR	Remarks
$\alpha i C Z 512 \mathrm{~S}$	Set 0.	
$\alpha i C Z 768 \mathrm{~S}$	Set 1.	Meaning of AMR conversion coefficient 1 and 2 changes.
$\alpha i C Z 1024 \mathrm{~S}$	Set 0.	
RCN220	Set 0.	
RCN223	Set 0.	
RCN723	Set 0.	
RCN727	Set 0.	

1705 (FS15i)
2112 (FS30i, 16i)

\square
2112 (FS30i, 16i)
AMR conversion coefficient 1 (AMRDL)

1761 (FS15i)
2138 (FS30i, 16i)

AMR conversion coefficient 2 (AMR2)

Set the value that matches the type of a rotary encoder used, according to Table 4.15.1 (h).

Table 4.15.1 (h) Setting AMRDL and AMR2

Encoder	AMR conversion coefficient 1 AMRDL : No.2112)	AMR conversion coefficient 2 (AMR2 : No.2138)
$\alpha i C Z 512 \mathrm{~S}$	Set 0.	Set 0.
α iCZ 768S	Set 768.	Set the number of motor poles/2.
$\alpha i C Z 1024 \mathrm{~S}$	Set 0.	Set 0.
RCN220	Set 0.	Set 0.
RCN223	Set 0.	Set -4.
RCN723	Set 0.	Set -4.
RCN727	Set 0.	Set -4.

Summary of parameter setting according to the type of rotary encoder
Tables 4.15.1 (i), (j), (k), (l), and (m) provide summarized examples of parameter setting according to the type of rotary encoder. Set parameters according to the types of a rotary encoder and synchronous built-in servo motor used.
For the number of poles of each motor model, see Table 4.15.1 (n).
Table 4.15 .1 (i) For $\alpha i C Z 512 S$

Symbol name	Parameter number		Parameter setting	
	FS3i,16i	FS15i	Detection unit $\mathbf{1 / 1 0 0 0 d e g}$	Detection unit $\mathbf{1 / 1 0 0 0 0 d e g ~}$
AMRDL	2112	1705	0	0
AMR2	2138	1761	0	0
PLC0	$2000 \# 0$	$1804 \# 0$	0	0
AMR	2001	1806	Number of poles (binary)	Number of poles (binary)
PULCO	2023	1876	4096	4096
PPLS	2024	1891	6250	6250
REFCOUNT	1821	1896	360000	3600000
FFG	2084	1977	36	36
FFG	2085	1978	50	5
PSMPYL	2185	2628	0	0
DECAMR	$2220 \# 0$	$2608 \# 0$	0	0

Table 4.15 .1 (j) For $\alpha i C Z 768 \mathrm{~S}$

Symbol name	Parameter number		Parameter setting	
	FS30i,16i	FS15i	Detection unit 1/1000deg	Detection unit 1/10000deg
AMRDL	2112	1705	768	768
AMR2	2138	1761	Number of poles/2 (binary)	Number of poles/2 (binary)
PLC0	$2000 \# 0$	$1804 \# 0$	0	0
AMR	2001	1806	0	0
PULCO	2023	1876	6144	6144
PPLS	2024	1891	9375	9375
REFCOUNT	1821	1896	120000	1200000
FFG	2084	1977	36	360
FFG	2085	1978	75	75
PSMPYL	2185	2628	0	0
DECAMR	$2220 \# 0$	$2608 \# 0$	1	1

Table 4.15 .1 (k) For $\alpha i C Z 1024 S$

Symbol name	Parameter number		Parameter setting	
	FS30i,16i	FS15i	Detection unit $\mathbf{1 / 1 0 0 0 d e g}$	Detection unit $\mathbf{1 / 1 0 0 0 0 d e g}$
AMRDL	2112	1705	0	0
AMR2	2138	1761	0	0
PLC0	$2000 \# 0$	$1804 \# 0$	0	0
AMR	2001	1806	Number of poles/2 (binary)	Number of poles/2 (binary)
PULCO	2023	1876	8192	8192
PPLS	2024	1891	12500	12500
REFCOUNT	1821	1896	360000	3600000
FFG	2084	1977	36	36
FFG	2085	1978	100	10
PSMPYL	2185	2628	0	0
DECAMR	$2220 \# 0$	$2608 \# 0$	0	0

Table 4.15.1 (I) For RCN220

Symbol name	Parameter number		Parameter setting	
	FS30i,16i	FS15i	Detection unit $\mathbf{1 / 1 0 0 0} \mathbf{d e g}$	Detection unit $\mathbf{1 / 1 0 0 0 0 d e g}$
AMRDL	2112	1705	0	0
AMR2	2138	1761	0	0
PLC0	$2000 \# 0$	$1804 \# 0$	0	0
AMR	2001	1806	Number of poles/2 (binary)	Number of poles/2 (binary)
PULCO	2023	1876	8192	8192
PPLS	2024	1891	12500	12500
REFCOUNT	1821	1896	360000	3600000
FFG	2084	1977	36	36
FFG	2085	1978	100	10
PSMPYL	2185	2628	0	0
DECAMR	$2220 \# 0$	$2608 \# 0$	0	0
800PLS	$2275 \# 0$	$2688 \# 0$	0	0
RCNCLR	$2275 \# 1$	$2688 \# 1$	1	1
DMASK	2394	2807	5	5

Table 4.15.1 (m) For RCN223, RCN723, or RCN727

Symbol name	Parameter number		Parameter setting	
	FS30i,16i	FS15i	Detection unit $\mathbf{1 / 1 0 0 0 d e g ~}$	Detection unit $\mathbf{1 / 1 0 0 0 0 d e g}$
AMRDL	2112	1705	0	0
AMR2	2138	1761	-4	-4
PLC0	$2000 \# 0$	$1804 \# 0$	1	1
AMR	2001	1806	Number of poles/2 (binary)	Number of poles/2 (binary)
PULCO	2023	1876	6554	6554
PPLS	2024	1891	10000	10000
REFCOUNT	1821	1896	360000	3600000
FFG	2084	1977	9	9
FFG	2085	1978	200	20
PSMPYL	2185	2628	0	0
DECAMR	$2220 \# 0$	$2608 \# 0$	0	0
800PLS\#0	$2275 \# 0$	$2688 \# 0$	1	1
800PLS\#1	$2275 \# 1$	$2688 \# 1$	1	1
DMASK	2394	2807	8	8

NOTE

Servo software Series 90B1 for Series $16 i$ and so forth does not support RCN727 as a detector for synchronous built-in servo motors.

Table 4.15.1 (n) Number of poles and number of pole pairs of each motor model

Motor model	Number of poles	Number of pole pairs (number of poles/2)
DiS85/400	32	16
DiS110/300	40	20
DiS260/600	40	20
DiS370/300	40	20

Parameter setting procedure (3)

To drive a synchronous built-in servo motor, the pole detection function (option) is required. Procedure (3) describes the pole detection function.

(1) Overview

The pole position detection function detects the pole position of a motor to be driven when the relationship between the pole position of the motor and the phase of the detector is unknown.

WARNING

1 This function may be unable to detect the correct pole position, depending on the detection condition, resulting in an unpredictable motor movement. To avoid this dangerous situation, the following conditions must be satisfied until completion of detection:
<1> The torque limit parameter (FS30i, 16i: No. 2060, FS15i: No. 1872) must be set so that 150% of the current needed for ordinary operation is not exceeded.
$<2>$ The setting of excessive error at stop time must be $100 \mu \mathrm{~m}$ or 0.1 deg or less. Moreover, the setting of excessive error at move time must be 120% of the logical positional deviation or less.
$<3>$ While pole position detection is in progress and a subsequent move operation is specified, the protection doors must be closed.
If these conditions are not satisfied and pole position detection operation is not terminated normally, the motor can make an unpredictable movement with the maximum torque until the NC detects an excessive error alarm.

For safety, create the following sequence with the PMC by using the pole detection state signal:
$<1>$ When the protection doors are open, pole detection is not started.
$<2>$ If a protection door is opened during pole detection ($\mathrm{F} 158=1$), a reset is made.
$<3>$ When pole detection is uncompleted ($\mathrm{F} 159=0$), no command is issued to relevant axes.
$<4>$ When pole detection is uncompleted ($\mathrm{F} 159=0$), the brake for the vertical axis is not released. (For brake operation, monitor not only the SA signal but also the pole detection completion signal.)

In general, this function cannot be applied to the following motors and conditions:
$<1>$ Linear motor
<2>DD motor that has a stroke limit such as a tilt axis
$<3>$ Axis for which the axis separation function (detach) is used
$<4>$ When the joint rigidity between the motor and detector is low
However, when this function needs to be used for an unavoidable reason, pay full attention to safety and use this function with only the following:
$<1>$ Linear motor using an absolute value detector
$<2>$ DD motor that has a stroke limit using an absolute value detector

WARNING

2 For the following conditions, use a specified servo series/edition. Otherwise, the pole position cannot be detected correctly.
$<1>$ When a detector that has an absolute address referenced mark is used.
$<2>$ When an $\alpha i C Z$ or $\alpha A 1000$ s sensor is used.
$<3>$ When this function is applied to an axis such as a vertical axis that is completely locked.
(Specified series/edition)

- Series 90B1/02 and subsequent editions (FS15i, $16 i$ and so on)
- Series 90D0, 90E0/10 and subsequent editions (FS30i and so on)

CAUTION

1 When two axes are placed under tandem control or simple synchronous control and each of the two axes has a speed detector (Pulsecoder or linear scale for a linear motor), ensure that an axis not detected is placed in the servo-off state and pole detection is performed for each of the main axis and sub-axis.
2 When using the motor feedback sharing function (FS16i, 30i: No. 2018\#7, FS15i: No. 1960\#7) under tandem control, start pole detection simultaneously for the two axes to avoid incorrect detection.
3 When a resonance elimination filter is used with a machine that has less friction, an excessive error alarm may be issued during detection, or a pole position may not be detected correctly. Turn off all resonance elimination filters or set bit 3 of No. 2283 to 1 (with FS16i and $18 i$ only).

NOTE

This function is optional function.

(2) Details

Pole detection sequence

- Enable the parameter (FS30i, 16i: No. 2213\#7, FS15i: No. 2601\#7) for a target axis. Pole position detection is performed only for an enabled axis. For an axis not enabled, the pole position detection request signal (G135) is ignored.
- Set the servo-on state.

Here, ensure that the brake for a vertical axis must not be released until the detection completion signal (F159) is set to 1.

- Do not perform a pole position detection operation in the servo-off state. Moreover, do not set the servo-off state during pole position detection operation.
- When the pole position detection request signal (G135) is set to 1 , pole position detection is started, and the pole position detection in-progress signal (F158) is set to 1 .
- Once a pole position detection operation is started, the detection operation is continued even when the pole position detection request signal is set to 0 .
- Motor operation during pole position detection is not under control of the CNC. During this period, the CNC performs a follow-up operation.
- Upon completion of pole position detection after several seconds, the pole position detection in-progress signal (F158) is set to 0 , and the pole position detection completion signal (F159) is set to 1.
- If pole position detection is terminated abnormally for a mechanical cause or motor characteristics, the servo alarm "POLE DETECTION ERROR" is issued.
- The servo alarm "POLE DETECTION ERROR" cannot be released with a reset. Turn off the power then turn on the power again.
- When a reset is made during pole position detection, the pole position detection is stopped. To restart pole position detection, set the pole position detection request signal to 0 then set the same signal to 1 again.
- Once a pole position detection operation is completed, no additional pole position detection operation can be performed until the power is turned off.
- When using an absolute detector, set the parameter (FS30i, 16i: No. 2229\#0, FS15i: No. 2617\#0) to 1. In this case, when pole position detection is completed, the result of detection is stored in the parameter (FS30i, 16i: No. 2139, FS15i: No. 1762). So, pole position detection need not be performed each time the power is turned on.
- In the MDI, MEM, or EDIT mode, the result of detection is reflected on the screen immediately. In the REF or JOG mode, the result of detection is reflected on the screen when the reset key is pressed or the mode is switched to the MDI mode.
- Before restarting pole detection, clear the parameter (FS30i, 16i: No. 2139, FS15i: No. 1762) to 0.
- When pole position detection is completed and the motor one-rotation signal is detected, the result of detection is stored in the parameter (FS30i, 16i: No. 2139, FS15i: No. 1762) in the MDI mode by setting the parameter (FS30i, 16i: No. 2229\#0, FS15i: No. 2617\#0) to 1 also in the case where an incremental detector is used. Thus, a torque constant change due to pole position detection variation can be avoided.

NOTE

1 When an absolute detector is used and the parameter (FS30i, 16i: No. 2229\#0, FS15i: No. 2617\#0) is set to 1 , the pole position detection completion signal (F159) is set to 1 immediately after power-on if the parameter (FS30i, 16i: No. 2139, FS15i: No. 1762) is not set to 0.
2 Create logic for confirming the pole position detection completion signal (F159) before specifying a move command immediately after power-on.
3 If an alarm such as a count error alarm is issued for a detector fault, the pole position detection completion signal (F159) is returned to 0 . In this case, perform another pole position detection operation.

Detection mode and method of application
The three detection modes indicated below are available with servo Series 90B1/Edition 02 or later, or Series 90D0 and 90E0/Edition 10 or later. With other servo series/editions, only the minute operation mode in 1) below can be used.

1) Minute operation mode

Operation: A pole position is detected with the motor making a minute operation.
Application: When the friction is less so that the motor can move in a minute range
Setting: No.2229\#4=1, No. $2182 \geqq 0$ (FS30i,16i) No. $2617 \# 4=1$, No. $2625 \geqq 0$ (FS15i)
Usually, it is recommended to use this mode.
2) Automatic selection mode

Operation: The minute operation mode is initially used for detection. If the motor is locked or the friction is larger, the detection mode is automatically switched to the stop mode.
Application: A pole position can be detected, regardless of the machine state.
Setting: No.2229\#4=0, No. $2182 \geqq 0$ (FS30i,16i) No.2617\#4 $=0$, No. $2625 \geqq 0$ (FS15i)
3) Stop mode

Operation: A pole position is detected with the motor placed in the stop state.
Application: Axis such as a vertical axis where the motor is locked
Setting: No.2229\#4 $=0$, No.2182 $=-1$ (FS30i,16i)
No.2617\#4=0, No.2625=-1 (FS15i)

NOTE

As the guideline for stop mode application, the following conditions apply:

1) The motor saliency (=Ld-Lq) is 1 mH or more.
2) Magnetic saturation occurs at a current larger than the rated motor current by a factor of 2 or less.
(The torque constant is reduced by 5% or more.)
If these conditions are not satisfied, the precision may be degraded or detection may be disabled. Note that some models of FANUC DiS Series do not satisfy these conditions, thus disabling the stop method from being used. When using the stop mode, make a sufficient operation check beforehand.
When the automatic selection mode is used, the mode is switched from the minute operation mode to the stop mode automatically, depending on the axis state. So, before using the automatic selection mode, check that normal operation can be performed in the stop mode.

(3) Parameter

When this parameter has been modified, the power to the NC must be turned off before operation is continued.

2228 (FS30i, 16i)
ELSAL(\#0)
0 : \quad The motor saliency is $\mathrm{Lq}>\mathrm{Ld}$.
1: The motor saliency is $\mathrm{Lq}<\mathrm{Ld}$.
This parameter is related only to a case where the stop mode is used. When a synchronous motor (IPM) of magnet-embedded type is used, the motor saliency is $\mathrm{Lq}>\mathrm{Ld}$ (reverse saliency). In rare cases, however, a synchronous motor of magnet surface attachment type (SPM) may indicate the saliency $\mathrm{Lq}<\mathrm{Ld}$. In this case, the detection phase is shifted 90 degrees relative to the reverse saliency. With many motors, however, saliency information acquisition is presently difficult. So, if the results of repeated detections always indicate a shift of 90 degrees, set this bit.

NOTE

This function can be used with Series 90B1/Edition 02 or later (FS15i, 16i, etc.), or Series 90D0 and 90E0/Edition 10 or later (FS30i, etc.).

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
2617 (FS15i)				FORME	WATRA			AbSEN
2229 (FS30i, 16i)								
ABSEN(\#0)				$\begin{aligned} & 0 i, 16 i: N \\ & 0 i, 16 i: N \end{aligned}$	$\begin{aligned} & \text { No. } 2139 \\ & \text { No. } 2139 \end{aligned}$			2) is no) is us

If an absolute detector is used, the result of detection is saved to the AMR offset of the parameter (FS30i, 16i: No. 2139, FS15i: No. 1762). In the case of a second or subsequent power-on operation, pole position detection need not be executed.
If an incremental detector is used, the result of detection is saved to the AMR offset when the one-rotation signal is detected. In this case, pole position detection needs to be performed each time the power is turned on. After the one-rotation signal is detected, however, the value saved to the AMR offset is used, so that an influence due to pole detection variation can be eliminated.

WATRA(\#3) 0: After pole detection, an abnormal movement is monitored. 1: After pole detection, no abnormal movement is monitored.

If a detection error occurs, protection against an abnormal operation is provided. Operation is monitored until a command after detection is issued. If an abnormal operation is detected, detection error alarm 454 is issued.

NOTE

This function can be used with Series 90B1/Edition 02 or later (FS15i, 16i, etc.), or Series 90D0 and 90E0/Edition 10 or later (FS30i, etc.).

FORME(\#4) 0: Automatic selection mode (minute operation mode + stop mode)
1: Minute operation mode

Usually, set this parameter to 1 (minute operation mode).

NOTE

This function can be used with Series 90B1/Edition 02 or later (FS15i, 16i, etc.), or Series 90D0 and 90E0/Edition 10 or later (FS30i, etc.).

1762 (FS15i)
2139 (FS30i, 16i)

AMR offset (AMROFS)
[Unit of data] Degrees
[Valid data range] 0 to 360
[Standard setting]
0
If $\operatorname{ABSEN}=1$, the result of operation is stored in this parameter when the MDI mode is set upon completion of detection.

WARNING

After pole determination, never rewrite the value of this parameter manually. If this parameter is rewritten for adjustment, the power must be turned off before operation is continued.

2625 (FS15i)	Current A for pole detection (DTCCRT_A)
2182 (FS30i, 16i)	
[Unit of data]	7282 is the maximum amplifier current value.
[Valid data range]	-1 to 7282
[Standard setting]	0
	Set a current value for pole position detection. If this parameter is set to 0 , pole position detection is performed according to the value of the rated current parameter (FS30i, 16i: No. 2086, FS15i: No. 1979). If the static friction of the machine is large, and the pole detection error alarm is issued during detection, increase current A for pole detection.

The maximum value of this parameter is limited by the torque limit parameter (FS30i, 16i: No. 2060, FS15i: No. 1872).

NOTE

When -1 is set, the stop mode is used for detection. The setting of -1 can be used with Series 90B1/Edition 02 or later (FS15i, 16i, etc.) and Series 90D0 and 90E0/Edition 10 or later (FS30i, etc.).

2641 (FS15i)
2198 (FS30i, 16i)

\square
[Unit of data] \% unit
[Valid data range] 0 to 370
[Standard setting] 0
This parameter is related only to a case where the stop mode is used. Set a current value for pole direction detection. When this parameter is set to $0,100 \%$ is set internally.

NOTE

This function can be used with Series 90B1/Edition 02 or later (FS15i, 16i, etc.), or Series 90D0 and 90E0/Edition 10 or later (FS30i, etc.).

2642 (FS15i)
Current C for pole detection (DTCCRT_C)
[Unit of data]
[Valid data range]
[Standard setting]

7282 is the maximum amplifier current value.
0 to 7282
0
This parameter is related only to a case where the stop mode is used. Set a current value for pole direction detection. When this parameter is set to $0,100 \%$ is set internally. When this parameter is set to 0 , pole position detection is performed using a current value two times greater than the value of the rated current parameter (FS30i, 16i: No. 2086, FS15i: No. 1979).

NOTE

This function can be used with Series 90B1/Edition 02 or later (FS15i, 16i, etc.), or Series 90D0 and 90E0/Edition 10 or later (FS30i, etc.).

(4) Signals

Pole position detection request signal RPREQ1 to RPREQ8
[Classification] Input signal
[Function] Requests pole position detection. This signal is available for each controlled axis, and the suffix at the end of each signal name indicates a controlled axis number.
[Operation] Pole position detection is started by setting this signal to 1 . Once a pole position detection operation is started, the operation is continued even when this signal is set to 0 .

Pole position detection in-progress signal RPDET1 to RPDET8

[Classification] Output signal
[Function] Posts that pole position detection is being performed. This signal is available for each controlled axis, and the suffix at the end of each signal name indicates a controlled axis number.
[Output condition] This signal is set to 1 in the following case:

- When pole position detection is being performed

This signal is set to 0 in one of the following cases:

- When pole position detection is completed
- When pole position detection is terminated abnormally
- When pole position detection is stopped by a reset

Pole position detection completion signal
 RPFIN1 to RPFIN8

[Classification] Output signal
[Function] Posts that pole position detection is completed. This signal is available for each controlled axis, and the suffix at the end of each signal name indicates each controlled axis number.
[Output condition] This signal is set to 1 in the following case:

- When pole position detection is completed after pole position detection is started by setting the pole position detection request signal to 1

NOTE

1 If an absolute detector is used, this signal remains set to 1 even when the power is turned off then back on after completion of pole position detection performed by setting the parameter (FS30i, 16i: No. 2229\#0, FS15i: No. 2617) to 1. When the power is turned off then back on after setting the parameter (FS30i, 16i: No. 2139, FS15i: No. 1762) to 0, this signal is set to 0 .
2 If an incremental detector is used, the pole position detection completion signal is not set to 0 unless the power is turned off.

Signal address

For Series 30i, 16i, and Power Mate i

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
RPREQ8	RPREQ7	RPREQ6	RPREQ5	RPREQ4	RPREQ3	RPREQ2	RPREQ1

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
F158	RPDET8	RPDET7	RPDET6	RPDET5	RPDET4	RPDET3	RPDET2	RPDET1
F159	RPFIN8	RPFIN7	RPFIN6	RPFIN5	RPFIN4	RPFIN3	RPFIN2	RPFIN1

For Series $15 i$

(5) Action for trouble

Symptom	State	Detection request (G135)	During detection (F158)	Detection completion (F159)	Cause	Action
[Before detection completion]						
Detection is not started.	In the minute operation mode, the motor moves slightly. In the stop mode, a varying activating sound, which is to be heard, cannot be confirmed.	OFF	OFF	OFF	The pole detection request signal is turned off.	Turn on the pole detection request signal.
		ON	OFF	OFF	The pole detection function is disabled.	Check bit 7 of No. 2213 or the option.
					Servo-off	Set the servo-on state.
Detection is not completed.	The motor appears to be moving slightly. However, detection is not completed and no alarm is issued.	ON	ON	OFF	Aṇ $\alpha i C Z$ sensor is used. An $\alpha \mathrm{A} 1000 \mathrm{~S}$ is used.	Use Series 90B1/Edition 02 or later, or Series 90D0 or 90E0/Edition 10 or later.
					The detector resolution is low: 100 million/rev or lower	Set the stop speed decision value (No. 2268) to a value from -200 to -500.
					Velocity feedback noise	Take action for noise protection.
					The friction is very small, so that activation causes a vibration to disable stop decision initiation.	Decrease detection current A (No. 2182) to find an optimal value.
	During detection, an abnormally large motion is made and detection is not completed.				Detector with high resolution	Increase the stop speed decision value (No. 2268).
Excessive error at stop time	During detection, the excessive error alarm at stop time is issued.	ON	ON	OFF	The friction is small.	Increase the setting of excessive error at stop time or set detection current A (No. 2182) to the rated current or lower.
					Influence of resonance elimination filters	Turn off all resonance elimination filters or set bit 3 of No. 2283 to 1.
Detection error alarm (SV454)	The pole detection error alarm is issued.	ON	ON	OFF	The friction is large.	Set detection current A (No. 2182) to the rated current or higher.
					The current gain is small.	Set a proper current gain.
					The motor saliency is small.	Set detection current B (No. 2198) to 100% or more.

Symptom	State	Detection request (G135)	During detection (F158)	Detection completion (F159)	Cause	Action
[After detection completion]						
Vibration		ON	ON	ON	The phase order of the power line does not match the direction of the detector.	Change the phase order of the power line.
					Detector setting error	Set a correct detector resolution.
					The number of poles is not set correctly.	Set the correct number of motor poles.
					The velocity gain is high.	Adjust the velocity gain to a proper value.
Excessive error at stop time or excessive error at move time	An unpredictable movement is made, or no movement is made in response to an issued command, so that an excessive error alarm is issued.	ON	ON	ON	The phase order of the power line does not match the direction of the detector.	Change the phase order of the power line.
					The number of poles is not set correctly.	Set the correct number of motor poles.
					The motor saliency is small.	Set detection current B (No. 2198) to 100% or more.
					The motor is not magnetically saturated.	Set detection current C (No. 2199) to a value larger than the rated current by a factor of 2 or more.
					No reverse saliency	Set bit 3 of No. 2228 to 1.
					+ circuit C with a referenced mark	Use Series 90B1/Edition 02 or later, or Series 90D0 or 90E0/Edition 10 or later.
The AMR offset does not change.	After detection completion, the result of detection is not written to the AMR offset.	ON	ON	ON	Bit 0 of No. 2229 = 0	Set bit 0 of No. 2229 to 1.
					The mode is not the MDI mode.	The display is updated in the MDI mode.
					Incremental detector	The motor needs to make one or more revolutions.
Detection error alarm (SV454)	After detection completion, the pole detection error alarm is issued.	ON	ON	ON	The VCMD mode is used for operation.	Set bit 3 of No. 2229 to 1.

Symptom	State	Detection request (G135)	During detection (F158)	Detection completion (F159)	Cause	Action
[After restart]						
No motion	The AMR offset is not 0 , but no movement is made in response to an issued command.	-	-	-	Incremental detector	Pole detection needs to be performed each time a start-up operation is performed.
					Detector alarm	Pole detection needs to be performed again.
Detection result variation	The value of the AMR offset varies in each detection operation.	-	-	-	The friction is large.	Set detection current A (No. 2182) to the rated current or higher.
					The motor saliency is small.	Set detection current B (No. 2198) to 100% or more.

(6) Usable software

Usable CNC software
FS30 $i-\mathrm{MB} / \mathrm{TB} \quad$ Usable starting with the first edition
FS31 $i-\mathrm{MB} / \mathrm{TB} \quad$ Usable starting with the first edition
FS32 $i-\mathrm{MB} / \mathrm{TB} \quad$ Usable starting with the first edition
FS16i-MB/TB Usable starting with the first edition
FS18i $-\mathrm{MB} / \mathrm{TB} \quad$ Usable starting with the first edition
FS21 $i-\mathrm{MB} / \mathrm{TB} \quad$ Usable starting with the first edition
FS15i-MB F0A1-10 or later
FS15i-TB F6A1-10 or later
Power Mate i-MODEL D 88E0-21 or later
Power Mate i-MODEL H 88F1-12, 88F2-02 or later

NOTE

Please refer to 4.15.1(2) about usable servo software

Parameter setting procedure (4)

Procedure (4) can be used to set parameters according to the cooling method used for synchronous built-in servo motors.
In the case of no cooling, the parameters are set by initialization according to procedure (1), so that the parameters need not be modified.
In the case of liquid cooling only, modify the parameters according to Table 4.15.1 (x) and Table 4.15.1 (y).

1877 (FS15i)
2062 (FS30i, 16i)

\square

1878 (FS15i)
2063 (FS30i, 16i)

\square
OVC alarm parameter (POVC2)

1893 (FS15i)
2065 (FS30i, 16i)

\square

Table 4.15.1 (x) Setting OVC and current rating parameters by cooling method [200-V driving]

Model	Cooling method	Rated $[\mathbf{N m}]$	POVC1 (N2062)	POVC2 (N2063)	POVCLMT (N2065)	RTCURR (N2086)	OVCSTP (N2161)
	No cooling	17	32683	1069	3172	1310	0
	Liquid cooling	35	32427	4258	12689	2621	0
DiS110/300	No cooling	25	32682	1069	3173	1310	0
	Liquid cooling	45	32427	4260	12694	2621	0
DiS260/600	No cooling	55	32722	578	1714	963	0
	Liquid cooling	105	32583	2307	6857	1926	119
DiS370/300	No cooling	75	32705	782	2322	1121	0
	Liquid cooling	150	32518	3121	9287	2242	0

Table 4.15.1 (y) Setting OVC and current rating parameters by cooling method [400-V driving]

Model	Cooling method	Rated $[\mathbf{N m}]$	POVC1 (N2062)	POVC2 (N2063)	POVCLMT (N2065)	RTCURR (N2086)	OVCSTP (N2161)
	No cooling	17	32683	1069	3172	1310	0
	Liquid cooling	35	32427	4258	12689	2621	0
DiS110/300	No cooling	25	32682	1069	3173	1310	0
	Liquid cooling	45	32427	4260	12694	2621	0
DiS260/600	No cooling	55	32731	457	1354	856	0
	Liquid cooling	105	32622	1824	5418	1712	0
DiS370/300	No cooling	75	32705	782	2322	1121	0
	Liquid cooling	150	32518	3121	9287	2242	0

4.15.2 Detection of an Overheat Alarm by Servo Software when a Synchronous Built-in Servo Motor are Used

For this subsection, see Subsection 4.14.2, "Detection of an Overheat Alarm by Servo Software when a Linear Motor and a Synchronous Built-in Servo Motor are Used".

4.15.3 Smoothing Compensation for Synchronous Built-in Servo Motor

(1) Overview

Smoothing compensation for synchronous built-in servo motor is a function used to improve the feed smoothness of a synchronous built-in servo motor by applying, to the current command, a sine wave compensation torque 1.5 times and 3 times per pole pair. By setting a compensation gain and phase with parameters for each component, a compensation torque matching each motor can be obtained. A value to be set in a parameter for compensation is automatically calculated using SERVO GUIDE.

NOTE

1 This function can be used only when an encoder with a minimum resolution of 2^{23} pulses/rev or 8,000,000 pulses/rev or less (for example, RCN223 manufactured by HEIDENHAIN) is used.
2 This function can only be used for synchronous built-in servo motor with encoder whose minimum resolution is lower than or equal to 2^{23} pulse/rev (EX. HEIDENHAIN RCN223). This function can only be used for synchronous built-in servo motor with encoder whose minimum resolution is lower than or equal to 2^{23} pulse/rev (EX. HEIDENHAIN RCN223). Though HEIDENHAIN RCN727 has 16 times higher resolution than that of RCN223, servo software treats it as same as RCN223 in the data point of view. (Of course, even if the servo software treats the data as above, you can use 2^{27} pulse/rev as the minimum resolution.) Therefore, HEIDENHAIN RCN727 is possible for using this function.

(2) Series and editions of applicable servo software

(Series 30i, 31i, 32i,)
Series 90D0/L(12) and subsequent editions
Series 90E0/L(12) and subsequent editions
(Series $15 i, 16 i, 18 i, 21 i$, Power Mate i)
Series 90B1/E(05) and subsequent editions

(3) Setting parameters

0: Disabled.
1: Enabled. (Smoothing compensation for synchronous built-in servo motor is also enabled.)

| Smoothing compensation performed 1.5 times per pole pair |
| :---: | :---: |
| Correction gain (high-order 8 bits) \quad Correction phase (low-order 8 bits) |

2793 (FS15i)
$2380(F S 30 i, 16 i)$

| Smoothing compensation performed three times per pole pair |
| :---: | :---: |
| Correction gain (high-order 8 bits) \quad Correction phase (low-order 8 bits) |

Setting the correction gain of the following parameters with a nonzero value can switch between the negative direction smoothing compensation and the positive direction smoothing compensation. In this case, the smoothing compensation parameter explained above applies only to feeding in the positive direction.

Smoothing compensation performed three times per pole pair (negative direction)
Correction gain (high-order 8 bits) Correction phase (low-order 8 bits)
An optimal value varies from one motor to another (not from one motor model to another). So, compensation parameters need to be determined for each assembled motor. A torque command variation generated when the motor is fed at low speed is dependent on the position. The application of smoothing compensation cancels this position-dependent characteristic, allowing the motor to move smoothly.

The measuring instruments that can be used to determine these parameters include "SERVO GUIDE" (Ver. 3.20 or later).
By using SERVO GUIDE (Ver. 3.20 or later), these parameters can be determined easily. Follow the procedure below to measure the activating phase and torque command, which are required to determine the compensation parameters.

Measurement procedure

$<1>$ Set channels as follows:
Channel 1: Counter for smoothing compensation for synchronous built-in servo motor
Select the target axis for measurement, and set "ROTDD" as the data type.

Channel 2: Torque command
Select the target axis for measurement, and set "TCMD" as the data type.
As the conversion coefficient, set the maximum current of the amplifier used for the target axis.

$<2>$ With this setting, make bidirectional movements by about ± 90 deg at about F (14400/number of poles) deg/min for data measurement. At the time of data measurement, ensure that all smoothing compensation values are set to 0 . Smoothing compensation for linear motors may be used. Check this point as well.
Parameters for synchronous built-in servo motor:
No.2377, No.2378, No.2380, No. 2381
Parameters for linear motor:
No.2130, No.2131, No.2132, No.2369, No.2370, No. 2371
When making measurements, lower the velocity gain to such an extent that hunting does not occur.
$<3>$ From the "Tools" menu, select "Linear motor compensation calculation".
(The shortcut is [Ctrl] + [L].)
$<4>$ Pressing the [ADD] button on the displayed dialog box analyzes waveform data and registers compensation parameter candidates. The " $2 /$ span" item and " $4 /$ span" item correspond to smoothing compensation performed 1.5 times per pole and smoothing compensation performed 3 times per pole, respectively. " $6 /$ span" is not used for smoothing compensation for synchronous built-in servo motor.

$<5>$ The compensation parameters slightly vary depending on the measurement situation. So, repeat a data measurement and a press of the [Add] button several times in a similar manner while keeping the dialog box open. (Up to five candidates can be registered.)
If the displayed values include an extremely different value, uncheck the corresponding check box on the leftmost side of the list so that the value is not taken into account in the final compensation calculation.
<6> Finally, press the [Calc] button for each of the forward and backward directions. Then, smoothing compensation parameters are displayed.
$<7>$ By pressing the [Set param] button, the smoothing compensation parameters are set in the CNC.
<8> Measure TCMD again to confirm the effect of smoothing compensation.

(*) For details on the use of SERVO GUIDE, refer to the online help of SERVO GUIDE.

4.16 TORQUE CONTROL FUNCTION

(1) Overview

(2) Control types

(i) Torque control type 1

The motor produces a torque according to a torque command specified by the PMC. A servo alarm is issued if the speed of the motor exceeds the excessive speed alarm level specified by the PMC.
A block diagram of torque control type 1 is shown below.

Fig. 4.15 (a) Torque control type 1
(ii) Torque control type 2

The motor produces a torque according to a torque command specified by the PMC.
When the motor is loaded, it produces a torque according to a torque command. When it is not loaded, it rotates at a constant (allowable) speed.

Fig. 4.15 (b) Torque control type 2

* Basically, torque control type 2 performs speed control to cause the limiter to operate on a command from the speed controller according to a torque command specified by the PMC. This causes the motor to produce a torque that matches the torque command when it is loaded and to rotate at a constant (allowable) speed when it is not loaded.

(3) Series and editions of applicable servo software

(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series $90 \mathrm{E} 0 / \mathrm{A}(01)$ and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series $9096 / \mathrm{A}(01)$ and subsequent editions
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series $90 \mathrm{~B} 5 / \mathrm{A}(01)$ and subsequent editions

(4) Setting parameters

This manual describes servo-related parameters only.

NOTE

For details about the setting of the torque control function for each CNC, refer to "PMC Axis Control" in the respective CNC Connection Manual (Function).
The ordering information for each connection manual is as follows:

- Series 30i,31i,32i-MODEL A

Connection Manual (Function) (B-63943EN-1)

- Series 15i-MODEL B

Connection Manual (Function) (B-63783EN-1)

- Series 16i,18i,21i-MODEL B

Connection Manual (Function) (B-63523EN-1)

- Power Mate i

Connection Manual (Function) (B-63173EN-1)

\#7	\#6	\#5	\#4	\#3	\#2		\#1
FRCAXS							

FRCAXS (\#7)
Torque control is:
0 : Not used
1: Used \leftarrow To be set

2203 (FS30i, 16i)
FRCAX2 (\#4) Torque control type 2 is:
0 : Not used (Torque control type 1 is used.)
1: Used \leftarrow To be set (Usually, use type 2.)

1808 (FS15i)
2003 (FS30i, 16i)

1998 (FS15i)
2105 (FS30i, 16i)

PIEN (\#3) The velocity control method to be used is:
0: I-P control
1: PI control \leftarrow To be set

This parameter is used to specify a motor-specific torque constant. The units are as follows:
$0.00001 \mathrm{~N} \cdot \mathrm{~m} /$ (torque command) for a rotary motor
$0.001 \mathrm{~N} \cdot \mathrm{~m} /$ (torque command) for a linear motor

NOTE

1 When the initial parameter setting function (Sec. 2.1) is used, a motor-specific value is set automatically.
2 When torque control is set, the following functions are disabled:

- Velocity loop high cycle management function
- Acceleration feedback function

4.17 TANDEM DISTURBANCE ELIMINATION CONTROL (POSITION TANDEM)
 Optional function

(1) Overview

This function suppresses vibration caused by interference between the main axis and sub-axis in position tandem (simple synchronous or synchronous) control.

(2) Series and editions of applicable servo software
(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series 90D3/A(01) and subsequent editions
Series 90E0/A(01) and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B3/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
Series 90B7/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series 90B5/A(01) and subsequent editions

(3) Cautions

- This function is optional. (To enable the position tandem function, the option of axis synchronous control (FS30i), simple synchronous control (FS16i), or synchronous control (FS15i) is additionally needed.)
- This function can be used only for two-axis (simple) synchronous control. This function cannot be used for more than two axes.
- In servo axis arrangement, the main axis must be an odd-numbered axis, and the sub-axis must be a subsequent even-numbered axis.
- This function cannot be used with a mechanism that allows the mechanical coupling of two axes to be released.
- Servo HRV4 control exercises one-axis control with one CPU, so that this function cannot be used together with servo HRV4 control.

(4) Setting parameters

(Set this parameter for the main axis only.)
TANDMP (\#1) Tandem disturbance elimination control is:
0: Not used.
1: Used.

(Set this parameter for the main axis only.)
VFBAVE (\#2) The velocity feedback average function is:
0 : Not used.
1: Used.
Usually, set this parameter to 0 . The velocity feedback average function has an effect equivalent to that of tandem disturbance elimination control for machines that have a certain rigidity. In general, this function is not used together with tandem disturbance elimination control. When using this function together with tandem disturbance elimination control, set integral gain Ki and proportional gain Kc to 0 .

* With Series 90B3 and 90B7, a different bit position is assigned, that is, bit 6 for the sub-axis is used.

1721 (FS15i)
2036 (FS30i, 16i)

Proportional gain Kc

(Set this parameter for the main axis only.)
[Valid data range] 0 to $32767(0<\mathrm{Kc}<0.5)$
[Typical setting] 0
0
This parameter is not used generally, but is used for machines with a large friction. This parameter has the same function as damping compensation gain Kc of the tandem control function. (See Subsec. 4.19.2.)

1721 (FS15i)
2036 (FS30 $i, 16 i$)

(Set this parameter for the sub-axis only.)
[Valid data range]
51 to $512(0.1<\alpha<1)$
[Typical setting]
0 (512 internally)
This parameter has the same function as damping compensation of the tandem control function. When 512 is specified, the advance amount is 0 degree. (See Subsec. 4.19.2.)

$2738($ FS15 i)
2325 (FS30 $i, 16 i$)

\square
(Set this parameter for the main axis only.)
[Valid data range] 0 to 4000
This parameter compensates for a machine spring element. Set a large value when the rigidity is high. Set a small value for a motor with a greater torque constant.

2738 (FS15i)
$2325(F S 30 i, 16 i)$

Phase compensation coefficient 2T/t
(Set this parameter for the sub-axis only.)
[Valid data range] 0 to 32767
[Typical setting] 0 (40 internally)
This parameter is used with coefficient α to compensate the compensation delay. When the resonance frequency is 100 Hz or more, set $\alpha=100$ and $2 \mathrm{~T} / \mathrm{t}=6$.

2746 (FS15i)	Incomplete integral time constant
2333 (FS30i, 16i)	
	(Set this parameter for the main axis only.)
[Valid data range]	0 to 32767
[Typical setting]	0 (30877 internally)
	As integral gain Ki increases, vibration in the low frequency area (10
	Hz or less) may occur. In such a case, set the incomplete integral time constant to decrease the time constant. Set a parameter value listed below.

Table 4.16.1 Setting in the incomplete integral time constant parameter (when HRV1, HRV2, HRV3 is used)

Time constant (sec)	Parameter setting
0.1	30887
0.05	29307
0.02	25810

(5) Adjustment method

- Check the torque commands for the main axis and sub-axis and velocity feedback vibration by using a check board. (See Item (6).)
- If the vibration phase is shifted by 180 degrees, the cause of resonance is assumed to be inter-axis interference.
- Enable tandem disturbance elimination control, and adjust integral gain Ki.
- Increase the value of integral gain Ki gradually from 0 , and observe vibration. Ki has an optimal value. When the value of Ki is increased excessively, vibration becomes stronger.
- When the velocity loop gain is changed, the frequency of vibration changes. So, adjust Ki to minimize vibration.
- If the frequency of vibration exceeds 100 Hz , the effect of tandem disturbance elimination control decreases. In such a case, set phase compensation coefficients α and $2 \mathrm{~T} / \mathrm{t}$ or increase the current loop gain with the current $1 / 2$ PI control function.

Effect of tandem disturbance elimination control

(6) Method of checking the frequency of vibration

In this adjustment, use the disturbance input function for the sub-axis, measure the velocity feedback for the main axis, check for interference between the axes, and check and adjust the effect of tandem disturbance elimination control.

The following explains how to use the disturbance input function and how to make settings for data measurement.

(a) Setting parameters related to disturbance input

Parameters related to the disturbance input function are set for the sub-axis.
(About the disturbance input function)
The disturbance input function applies vibration to an axis by inputting a sine wave disturbance to the torque command. In the adjustment of tandem disturbance elimination control, this function is used for the sub-axis to observe the interference status between the axes when vibration is applied to the sub-axis.

For the sub-axis, set parameters related to the disturbance input function.

DSTIN(\#7)

DSTTAN(\#6)
DSTWAV(\#5)

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
DSTIN	DSTTAN	DSTWAV					

Disturbance input
0: Stop
1: Start (Disturbance input starts on the rising edge from 0 to 1.)
Set 0 . Set 0 .

[Setting value]
500
(*) Set the amplitude of the applied vibration (torque). (Value 7282 is equivalent to the maximum current of the amplifier.) First, set about 500 to apply vibration to the machine so that light sound is generated. If it is difficult to observe the vibration status, increase the parameter value gradually.

Disturbance input function: Start frequency (Hz)
[Setting value] 0
(*) If 0 is set, the default $(10 \mathrm{~Hz})$ is assumed to be the vibration start frequency.

$\left(^{*}\right)$ If 0 is set, the default $(200 \mathrm{~Hz})$ is assumed to be the vibration end frequency.

2742 (FS15i)
2329 (FS30i, 16i)

Number of disturbance input measurement points
[Setting value] 0
${ }^{(*)}$ If 0 is set, the default (3) is assumed as the number of disturbance input measurement points.

[Cautions]

1 Disable the functions that operate only in the stop state, such as the variable proportional gain function in the stop state and the overshoot compensation function.
2 When characteristics at the time of cutting are measured, cutting/rapid switching functions should be treated carefully.
3 Decrease the position gain to about 1000 .

(b) Channel setting with SERVO GUIDE

With SERVO GUIDE, make settings for data acquisition. Two types of data including disturbance frequency data (the main axis) and velocity feedback data (the sub-axis) are acquired at the same time.

From the graph window menu of SERVO GUIDE, select [Setting] then [Channel].

Channel 1: Disturbance frequency

- Specify the sub-axis as the axis, and set the data type to "FREQ". (The other items are automatically set when FREQ is selected.)

Channel 2: Main axis velocity feedback

- Specify the main axis as the axis, and set the data type to "SPEED".
- Set the conversion coefficient to 1 , and set the conversion base data to 1 .
- Check the check box of the extended address, and set an address as listed in the table below. (The setting varies depending on the value set in parameter No. 1023.) Set the shift amount to 0 .

No.1023	Odd	Even
Series 90D0	596	724
Series 90B0, Series 90B1, Series 90B5, Series 90B6	340	468
Series 90B3, Series 90B7	2048	2176

No.1023 (n:0,1,2,..)	$\mathbf{4 n + 1}$	$\mathbf{4 n + 2}$	$\mathbf{4 n + 3}$	$\mathbf{4 n + 4}$
Series 90E0	596	724	6740	6868

(c) Setting for sampling

Set the sampling cycle to $250 \mu \mathrm{~s}$.

(d) Usage

When the rising edge of the disturbance input bit (DSTIN) is detected, application of vibration is started. Vibration is automatically stopped after a sine sweep is performed from the start frequency to the end frequency. The operation is stopped by a reset or an emergency stop. After the emergency stop is released, disturbance input is resumed starting with the start frequency by setting the function bit off then on again.
[Example of setting]

$$
\begin{aligned}
& \text { No. } 2326=500 \rightarrow \quad \text { Gain }=500 \\
& \text { No. } 2327=0 \quad \rightarrow \quad \text { Start frequency }=10 \mathrm{~Hz} \\
& \text { No. } 2328=0 \quad \rightarrow \quad \text { End frequency }=200 \mathrm{~Hz} \\
& \text { No. } 2329=0 \quad \rightarrow \quad \text { Number of measurement points }=3
\end{aligned}
$$

By using SERVO GUIDE, obtain data, and display the frequency (ch1) and velocity feedback (ch2) in the XY-YT mode.

As shown in the above waveform, the envelope of the velocity feedback indicates the gain characteristic at each frequency, and a swell portion in the waveform shows a resonance point.
Adjust the tandem disturbance elimination control parameters so that the degree of the gain swell at the resonance point is reduced.

(7) Notes on Series 90B3 and 90B7

Series 90B3 and 90B7 are used for applications that require learning control. It is assumed that the mechanical coupling between two rotation axes, C 1 and C 2 , is released. So, only when the two axes are mechanically coupled with each other, tandem disturbance elimination control functions. Whether the two axes are mechanically coupled with each other can be checked using the input of the external signal G139 (coupling flag). For details of the external signal interface, refer to the description of "Tandem leaning control" in "Learning Function Operator's Manual (A-63639E-034)".

4.18 SYNCHRONOUS AXES AUTOMATIC COMPENSATION

(1) Overview

With synchronized axes having a long stroke, a machine twist may occur due to the absolute precision of the scale and thermal expansion of the machine. In such a case, the master motor and slave motor of the synchronized axes pull each other, and if a large current flows for the pull, an overheat problem or OVC alarm is raised.
The fundamental cause of this is a measurement position error. Pitch error compensation can compensate for the scale error but cannot compensate for thermal expansion due to change in temperature.
The synchronous axes automatic compensation function is useful for such cases. The function monitors a torque error between the master and slave and corrects the position on the slave side slowly to reduce the torque error.
(Structure of the synchronous axes automatic compensation function)

(2) Series and editions of applicable servo software

(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series 90B5/A(01) and subsequent editions

NOTE

Servo HRV4 control exercises one-axis control with one CPU, so that this function cannot be used together with servo HRV4 control.

(3) Setting parameters

- The following parameters are all set for the slave axis (the axis for which an even number is set in parameter No. 1023) only.

Synchronous axes automatic compensation function is:
0: Disabled.
1: Enabled.

2816 (FS15i)
2403 (FS16i)

Synchronous axes automatic compensation coefficient (K)
[Unit of data]
[Valid data range]

Detection unit / TCMD unit $\times 4096$
-32767 to 32767
From the relationship between the current value generated in the stopped state when this function is disabled and the position error between the synchronized axes, determine the coefficient (K) according to the following expression:
$\underline{K}=$ position error/current value (in TCMD) $\times 4096$. <1> When the current value is measured on the servo tuning screen, the current value is indicated in amperes or as the percentage to the rated current value. So, use expression $<2>$ or $<3>$ for calculation.
$\underline{K}=$ position error $/\{$ current value $(\%) \times \operatorname{Ir} \times 7282 / 6554\} \times 4096$
Ir: Rated current in parameter No. 2086 (Series 16i) or No. 1979 (Series 15i)
$\underline{K}=$ position error $/\{$ current value (A)/Amax $\times 7282\} \times 4096$
\qquad
Amax: Maximum current value of the amplifier
Measure the current value when the problem of a pull is being observed at the release of emergency stop. The position error between the synchronized axes is obtained from the difference in position error between the master axis and slave axis at the time of emergency stop. Normally, the position error of the master axis at the time of emergency stop is 0 , so you need to check the position error of the slave axis only.
Example)
Suppose that the position error of the slave at the time of emergency stop is 200 , the current value at the release of emergency stop is 60% (the percentage to the rating), and 1437 is set in parameter No. 2086 (rated current value for the Series 16i): Settings $=200 /\{1437 \times 60 / 100 \times 7282 / 6554\} \times 4096=855$

2817 (FS15i)
2404 (FS16i)

Synchronous axes automatic compensation: Maximum compensation
[Unit of data] Detection unit
[Valid data range] 0 to 5000
Set the maximum compensation amount in synchronous axes automatic compensation.

2818 (FS15i)
2405 (FS16i)

[Valid data range]
[Typical setting]

Synchronous axes automatic compensation: Filter coefficient

32700 to 32767
0 (equivalent to a time constant of 1 second)
Set the time constant for reflecting the twist in position compensation.
As a larger coefficient is set, compensation to release the twist is performed more slowly.

Table 4.18.1 Setting in the filter coefficient parameter

Time constant (s)	Setting in the parameter
1	0
5	32761
10	32765

NOTE

1 This function reduces the difference in torque between the master and slave axes by adding compensation pulses to the slave axis. In the steady state, position error equivalent to the compensation amount is accumulated in the slave axis.
2 This function cannot be used together with the dual position feedback function.
3 Set parameters on the even-numbered axis side.
4 Be sure to assign the master and slave, which are the synchronized axes, to the odd- and even-numbered axes on the same DSP.

With the following servo software, a dead-band width can be set: (Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)

Series 90B1/A(01) and subsequent editions
Set the following parameter for the odd-numbered axis side (the master axis) only:

2817 (FS15i)
2404 (FS16 i)

[Unit of data] [Valid data range]

Synchronous axes automatic compensation: Dead-band width

Percentage (\%) with respect to rated current
0 to 800
If the difference in torque command between the master axis and slave axis is within the dead-band width, the synchronous axes automatic compensation value becomes 0 .

(4) Application example

The figure below shows how synchronous axes automatic compensation works effectively.
When the master axis and slave axis, which are synchronized axes connected mechanically, indicate different positions as position B, the master axis and slave axis pull each other, and their TCMD waveforms increase in the opposite directions.
Use of this function allows the position of the slave axis to move slowly to such a position that is balanced with the master axis position, so the problem that the axes pull each other does not occur.

Synchronous axes automatic compensation
function: enables

$4.19 \quad$ (1) Overview

If a single motor is not capable of producing sufficient torque to drive a large table, for example, tandem control allows two motors to produce movement along one axis.
A motor of the same specification is used for both the main motor and sub-motor.
Only the main motor is responsible for positioning. The sub-motor only produces a torque. In this way, double the torque can be obtained (load sharing mode).

By applying a preload torque to produce tension between the main motor and sub-motor, the backlash between gears can be reduced (anti-backlash mode).

Tandem control is used to run linked linear motors and motors with a winding tandem (α iS300/2000, αi S500/2000, $\alpha i \mathrm{~S} 1000 / 2000 \mathrm{HV}$).

(2) Applicable servo software series and editions

(Series 30i,31i,32i)
Series 90D0/A(01) and subsequent editions
Series $90 \mathrm{E} 0 / \mathrm{A}(01)$ and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}$, Power Mate i)
Series $9096 / \mathrm{A}(01)$ and subsequent editions
Series 90B0/A(01) and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series 0i-C)
Series 90B5/A(01) and subsequent editions

NOTE

Servo HRV4 control exercises one-axis control with one CPU, so that this function cannot be used together with servo HRV4 control.

Fig. 4.19 (a) Example of tandem control application (1)

Fig. 4.19 (b) Example of tandem control application (2)

Fig. 4.19 (c) Example of exercising tandem control (linking linear motors)

Fig. 4.19 (d) Example of exercising tandem control (winding tandem)

(3) Start-up procedure

To start tandem control, follow the procedure below.

Fig. 4.19 (e) Start-up procedure flowchart
<1> Tandem axis setting
Tandem control is an optional function.
Refer to the Parameter Manual of CNC for details.

TANDEM (\#6)
1: Enables tandem control. (Set this parameter for the main- and
sub-axes.)

Number of CNC controlled axes (for Series $16 i$ and so on)

As with the PMC axis, specify a number obtained by subtracting the number of tandem sub-axes from the number of controlled axes.
If an invalid-parameter alarm is occurred, check whether the value set in this parameter is correct.

1021 (FS15i)
-

Specify 77 and 83 for the main axis and sub-axis, respectively.

1023 (FS15i)
1023 (FS30i, 16i)

Servo axis arrangement

This parameter specifies servo axis arrangement.
Set an odd number for a main axis, and the subsequent even number for the sub-axis.
If 3 is set for a main axis, for example, set 4 for the sub-axis.

NOTE

Specify a tandem sub-axis after a CNC-controlled axis (command axis) (by referencing the following examples of setting).

Example of tandem axis setting
(1) For Series $30 i, 16 i$, and so on (\star indicates a tandem axis.)

Number of controlled axes $=6$
Number of CNC-controlled axes (No. 1010) $=3$ (for Series $16 i$ and so on)

Axis number	Axis name	Servo axis arrangement No. 1023	Tandem No. 1817\#6	Position display No. 3115\#0	Remark
\star					
\star	X	1	1	0	CNC axis (main axis)
	\star	Y	3	1	0
CNC axis (main axis)					
\star	Z	5	0	0	CNC axis
4	A	2	1	1	Tandem control sub-axis (sub-X-axis)
5	B	4	1	1	Tandem control sub-axis (sub-Y-axis)
6	C	6	0	0	PMC axis

(2) For Series $15 i$ (\star indicates a tandem axis.)

Axis number	Axis name	Servo axis arrangement No. 1023	Tandem No. 1817\#6	Parallel axis No. 1021	Remark
$\star \star$	\star	X_{M}	1	1	77
2	Y_{M}	3	1	77	CNC axis (main axis)
3	Z	5	0	0	CNC axis (main axis)
4	A	6	0	0	CNC axis
\star	B	7	0	0	CNC axis
6	X_{S}	2	1	83	Tandem control sub-axis (sub-X-axis)
7	Y_{S}	4	1	83	Tandem control sub-axis (sub-Y-axis)

<2> Direction of motor rotation

1879 (FS15i)
2022 (FS30i, 16i)

Main axis: With a forward direction specified, 111 specifies that the main axis motor rotates counterclockwise as viewed from the motor shaft side, while -111 specifies the opposite direction.
Sub-axis: To cause the sub-axis motor to rotate in the same direction as for the main axis, specify the same value for both the sub-axis and the main axis because of their mechanical structure. To cause the sub-axis motor to reverse, specify a value whose sign is opposite to that for the normal direction. For winding tandem, be sure to specify the values with the same sign.

<3> Position feedback setting

Specify position feedback for both main axis and sub-axis. (See Subsec. 4.19.8 for a concrete example.)

* Assume position feedback shown in Fig. 4.19 .8 (a) not only for the main axis but also for the sub-axis.

Series 30i,16i, Series $15 i$
and so on

- Semi-closed or full-closed loop setting No. 1815\#1 No. 1815\#1
- CMR setting No. 1820 No. 1820
- Setting the reference counter capacity No. 1821 No. 1896
- Setting the high-resolution Pulsecoder No. 2000\#0 No. 1804\#0
- Setting the number of velocity detection pulses

No. 2023 No. 1876

- Setting the number of position detection pulses

No. $2024 \quad$ No. 1891

- Flexible feed gear (numerator) setting No. 2084 No. 1977
- Flexible feed gear (denominator) setting No. 2085 No. 1978

(4) Descriptions of servo parameters for adjustment

The load inertia ratio to be specified for axes subjected to tandem control differs from that for ordinary axes.

1875 (FS15i)
2021 (FS30i, 16i)

[Standard setting] (Load inertia/motor inertia) $\times 256$
(NOTE) In typical tandem control, the total load inertia of the machine is borne by two motors. So, calculate the load inertia for the above formula as follows:
$($ Load inertia $)=($ Total load inertia of machine $) / 2$
When the full preload function is used, the motor on the driving side is required to bear the total load inertia of the machine and the motor inertia of the other motor. So, calculate the load inertia for the above formula as follows:
$($ Load inertia $)=($ Total load inertia of machine $)+($ Motor inertia $)$

Example of setting The example shown in Fig. 4.19 (a) is used. Assume that the inertia of each section applied to the motor shaft as follows:

- Inertias of the reducers of the main- and sub-axes: $\mathrm{J}_{1 \mathrm{~m}}, \mathrm{~J}_{1 \text { s }}$
- Inertias of the pinions of the main- and sub-axes: $\mathrm{J}_{2} \mathrm{~m}, \mathrm{~J} 2 \mathrm{~s}$
- Inertia of the rack: J3
$($ Total load inertia of the machine $)=\mathrm{J}_{1 \mathrm{~m}}+\mathrm{J}_{2 \mathrm{~m}}+\mathrm{J}_{3}+\mathrm{J}_{1 \mathrm{~s}}+\mathrm{J}_{2 \mathrm{~s}}$
When the total load inertia of the machine is double that of the motor inertia, for example, set the following:
When typical tandem control is used:
$($ Load inertia ratio $)=(2 / 2) \times 256=256$
When the full preload function is used:
$($ Load inertia ratio $)=(2+1) \times 256=768$
The result obtained from the above formula may cause oscillation due to the mechanical structure. In such a case, set a smaller value.

- Notes on stable tandem control operation

To ensure stable tandem control operation, the machine must be capable of performing back-feed.
Back-feed is the moving of the sub-motor from the main motor, or vice versa, through the connected transmission feature. Then the back-feed capability is disabled, unstable operation results. In this case, machine adjustment becomes necessary.
The user can check whether the back-feed capability is enabled. To make this check in the case of the example shown in Figs. 4.19 (a) and (b), turn the main motor with the power line for the sub-motor disconnected, and check that the main motor can be turned with one-third or less of the rated torque of the motor (See (2) in Subsec. 4.19.8).

4.19.1 Preload Function

By applying an offset to the torque controlled by position (velocity) feedback, torques of opposite directions can be applied to the main(main motor) and sub-axes (sub-motor) to maintain tension at all times. This function can reduce the backlash between the main- and sub-axes, caused by the tandem connection of two motors through gears. However, this function does not reduce the backlash between the ball screw and table, which are a feature of the machine system.
For example, set preload +Pre for the main axis and preload -Pre for the sub-axis. Then, torques are produced as shown below.
If a torque is required during acc./dec., a torque of the same direction is produced with the two motors. (Load sharing mode)
If no torque is required, for example, during stop state, preload torques produce tension between the two axes. (Anti-backlash mode)
For an application which requires only anti-backlash mode, use the full preload function, described in Subsec. 4.19.6.

Fig. 4.19.1 (a) Changes of torque during movement

Fig. 4.19.1 (b) Relationship between required torque and torque command for each motor

Set this parameter for the main- and sub-axes.

. CAUTION

Set a value that is as small as possible but greater than the static friction torque. A set preload torque is applied to each motor at all times. So, set a value that does not exceed the rated static torque of each motor. As a guideline, specify a value equal to one-third of the rated static torque.
As shown in Fig. 4.19.11 (a) in Subsec. 4.19.11, a preload torque is added in any case. So, set the preload torque directions as follows:

- When the rotation directions of the main axis and sub-axis are the same: Different signs
- When the rotation directions of the main axis and sub-axis are different: Same sign

Example of setting For the αi F4/4000 (Servo amplifier αi SV 40)
When a preload torque of $1 \mathrm{~N} \cdot \mathrm{~m}$ is to be applied, the torque constant is $0.52 \mathrm{~N} \cdot \mathrm{~m} /$ Arms according to the specifications of the servo motor. So, the peak value is $0.368 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{Ap}$. The torque is converted to a current value as follows:
$1 / 0.368=2.72 \mathrm{Ap}$.
The amplifier limit is 40 Ap , so that the value to be set is:
$2.72 / 40 \times 7282=495$
So, set 495 for the main axis, and -495 for the sub-axis (when the directions of rotation of the two motors are the same).
When movement of the table is stopped, check whether the system is in tension. If not, increase this value gradually.

WARNING

When two motors are not connected, always set a preload value of 0 .
The sub-axis motor may rotate at extremely high speed, which is very dangerous.

4.19.2 Damping Compensation Function

To enable more stable tandem control, a torque offset can be applied to the sub-axis, or to both the main- and sub-axes to eliminate a difference in speed, if any, between the main- and sub-axes.
This function is particularly useful for controlling the vibration (with a frequency of several Hz to 30 or 40 Hz) that may occur in a machine system with low spring rigidity.

Fig. 4.19.2 (a) Damping compensation function

LAXDMP (\#7)

1: Enables the damping compensation function for the main- and sub-axes.
0: Enables the damping compensation function for the sub-axis only.
Usually, set this bit to 0 . (Set this parameter for the main axis only.)

1721 (FS15i)
2036 (FS30i, 16i)

[Valid data range]
Set this parameter for the main axis only.
[Setting method]

0 to 32767
$\mathrm{Kc} \times 32768(0 \leq \mathrm{Kc}<0.5)$
A function bit is not supported for the damping compensation function; the damping compensation function is enabled at all times. When 0 is set in this parameter, the damping compensation function is ineffective.
1721 (FS15i)
Damping compensation phase coefficient α (ABPHL)
Set this parameter for the sub-axis only.
[Valid data range]
51 to 512
[Setting method]
$\alpha \times 512(0.1 \leq \alpha \leq 1.0)$
When 0 is set in this parameter, this setting is internally handled as $512(\alpha=1)$, When $\alpha=1$, phase compensation is not performed. Instead, the set value is output to Kc as is.
(Example of adjustment) The speeds of the motors are checked using the check board (when the motors rotate in the same direction).
This function may be useful when the oscillation frequencies (several Hz to 30 or 40 Hz) are the same, and the phases are opposite as shown below.

NOTE

1 When the directions of rotation of the main motor and sub-motor are different, the phase relationship is reversed.
2 When the phase difference is not 180°, the phase coefficient α must be adjusted. Start with 512, then decrease the value gradually.

Fig. 4.19.2 (b) Motor speed vibration

- Adjustment procedure for damping compensation

1 Enable the velocity feedback average function.
[No. 1952\#2 (Series 15i), No. 2008\#2 (Series 30i, 16i, and so on) = 1]
2 Set an adequate preload value.
[No. 1980 (Series 15i), No. 2087 (Series 30i, 16i, and so on)]
Set a value slightly larger than the load applied during movement.
3 If dual-position feedback function is used, set a time constant of 200 [No. 1973 (Series 15i), No. 2080 (Series 30i, 16i, and so on)].
Adjust the setting of the parameter to ensure stable axis movement.
$4 \quad$ Set 0 or 512 as phase coefficient α.
[Sub-axis No. 1721 (Series 15i), No. 2036 (Series 30i, 16i, and so on)]
If 512 is set, the value may have to be reduced when the vibration phase difference between the motors is other than 180°. (See Fig. 4.19.2 (b).)
5 Set a damping gain of 3277 .
[Main axis No. 1721 (Series 15i), No. 2036 (Series 30i, 16i, and so on)]
To reduce the vibration, this value must be increased or decreased.
Be careful not to increase this value excessively. Otherwise, high-frequency vibration will occur.
When adjusting this parameter, apply the maximum axis load.
6

4.19.3 Velocity Feedback Average Function

As can be seen from the tandem control block diagram shown in Fig. 4.19.10(a) in Subsec. 4.19.10, velocity control is not applied to the sub-axis motor. For this reason, the sub-axis may vibrate and become unstable due to a backlash such as, for example, in the gears, in a machine with a large backlash. In such a case, the machine can be made stable by applying velocity control to the sub-axis as well. This function is referred to as the velocity feedback average function.

VFBAVE (\#2) 1: Enables the velocity feedback average function. Usually, set this bit to 1 . (Set this parameter for the main axis only.)

4.19.4 Servo Alarm 2-axis Simultaneous Monitor Function

If an alarm occurs in either of two axis motors used to operate a machine in concert as in synchronization control or tandem control, it is necessary to stop the other axis immediately so as to prevent the machine from being twisted.
This function monitors two axes (controlled by the same DSP) simultaneously for servo alarm conditions. If an alarm condition is detected in either of the two axes, the function can promptly turn off activation (MCC) for the other axis.
This function is not confined to tandem axes. It can be used also axes (controlled by the same DSP) under synchronization control.

2007 (FS30i, 16i)
ESP2AX (\#0) 1: Enables the servo alarm two-axis monitor function.
(Set this parameter for the main axis only.)
$\operatorname{IGNVRO}(\# 1)$ 1: An alarm condition is released 2 seconds after the servo alarm 2-axis simultaneous monitor function holds the alarm condition.
(Set this parameter for the main axis only.)
(Series 9096, and Series $90 B 0 / B(02)$ and earlier editions are not supported.)

Some systems have a configuration in which the ESP line of the PSM is cut off with an interlocked machine door, independently of the emergency stop button, for safety purposes. In these systems, the amplifier is turned off with an emergency stop not in effect, and therefore, a "V ready-off alarm" is occurred. This alarm is evaded by using the "VRDY OFF alarm invalidation signal."

Conventionally, however, it was impossible to use "PSM cut-off based on the VRDY OFF alarm invalidation signal" along with the "servo alarm 2-axis simultaneous monitor function." This is because the "servo alarm 2-axis simultaneous monitor function" holds an alarm condition in the servo software and will not activate a motor even after the ESP line is connected.

To evade this problem, a function has been added which clears information about an alarm condition from the servo software 2 seconds after the alarm condition is detected. This way, it is possible to use the "servo alarm 2-axis simultaneous monitor function" along with "PSM cut-off based on the VRDY OFF alarm invalidation signal."

NOTE

It is necessary to release the VRDY OFF alarm invalidation signal 2 seconds after the PSM ESP signal is turned off.

4.19.5 Motor Feedback Sharing Function

To achieve improved thrust, two linear motors may be connected in series.
When linear motors are connected in series, one position feedback signal, which is originally available for the main axis, is to be shared by the sub-axis as well. In this case, the motor feedback sharing function can be used.
This function can also be used when a motor (α iS300/2000, α iS500/2000, α iS1000/2000HV) with the wire tandem specification is used.

NOTE

When using this function in a full-closed loop system, the main axis shares its separate detector feedback loop with the sub-axis.

2018 (FS30i, 16i)
PFBCPY (\#7) 1:

The motor feedback signal for the main axis is shared with the sub-axis motor.
(Set this parameter for the sub-axis only.)

Fig. 4.19.5 Motor feedback sharing function

NOTE

If the scale of an axis for which this function is used is based on the A/B phase, the sub-axis side cannot perform absolute position communication. Accordingly, note that this function cannot be used with an absolute system.

4.19.6 Full-closed Feedback Sharing Function

If a feedback cable cannot be divided into two as in the case of a serial cable, this function enables one separate position feedback to be shared by the main axis and sub-axis by means of software.

Fig. 4.19.7 (d) Full-closed feedback sharing function

NOTE

If the scale of an axis for which this function is used is based on the A / B phase, the sub-axis side cannot perform absolute position communication. Accordingly, note that this function cannot be used with an absolute system.

4.19.7 Adjustment

(1) Examples of parameter setting

This section gives examples of parameter setting.
$<1>$ Full-closed loop system using a $1-\mu \mathrm{m}$ increment system, 8080P/motor revolution for scale feedback, a scale detection unit of $0.5 \mu \mathrm{~m} / \mathrm{P}$, and an $\alpha i_{\mathrm{A}} 1000$ Pulsecoder (conventional tandem)

Fig. 4.19.8 (a) Example of position feedback setting

- Tandem axis
- Full-closed loop
- CMR
- Reference counter capacity
- High-resolution Pulsecoder
- Number of velocity detection pulses
- Number of position detection pulses
- Flexible feed gear
- Flexible feed gear

Series 30i, 16i, and so on Series $15 i$
No. 1817\#6
No. 1815\#1
No. 1820
No. 1821
No. 2000\#0
No. 2023
No. 2024
No. 2084
No. 2085

No. 1817\#1
No. 1815\#1
No. 1807\#3
No. 1820
No. 1896
No. 1804\#0
No. 1876
No. 1891
No. 1977
No. 1978

Main
Sub
$<2>$ Semi-closed loop system using a $1 / 1000 \mathrm{deg}$ increment system, rotary axis with a gear reduction ratio of $1 / 984$, and an $\alpha i_{\mathrm{A} 1000}$ Pulsecoder (conventional tandem)

- Tandem axis
- Semi-closed loop
- CMR
- Reference counter capacity
- High-resolution Pulsecoder
- Number of velocity detection pulses

Series 30i, 16i, and so on	Series 15i	Main	Sub
No. 1817\#6	No. $1817 \# 1$	1	1
No. 1815\#1	No. $1815 \# 1$	0	0
	No. $1807 \# 3$	0	0
No. 1820	No. 1820	2	2
No. 1821	No. 1896	15000	15000
No. 2000\#0	No. $1804 \# 0$	0	0
No. 2023	No. 1876	8192	8192
No. 2024	No. 1891	12500	12500
No. 2084	No. 1977	3	3
No. 2085	No. 1978	8200	8200

$$
(\mathrm{NOTE}) \frac{360000 / 984}{1000000}=\frac{36}{98400}=\frac{3}{8200}
$$

$<3>$ Assuming a semi-closed loop system with an increment system of $0.1 \mu \mathrm{~m}, 10 \mathrm{~mm}$ stroke per motor revolution, and $\alpha i \mathrm{~S} 300$ motor (winding tandem):

- Tandem axis
- CMR
- Reference counter capacity
- High-resolution Pulsecoder
- Motor feedback sharing function
- Number of velocity detection pulses Series 30i, 16i, and so on
No. 1817\#6
No. 1820
No. 1821
No. 2000\#0
No. 2018\#7
No. 2023
No. 2024
No. 2084
No. 2085

Series 15i	Main	Sub
No. $1817 \# 1$	1	1
No. 1820	2	2
No. 1896	100000	100000
No. 1804\#0	1	1
No. 1960\#7	0	1
No. 1876	819	819
No. 1891	1250	1250
No. 1977	10	10
No. 1978	100	100

(2) Back-feed confirmation method

"Back-feed" means the feasibility that the axis can be driven not only from motor side but also from machine table side.
(a) Check whether back-feed is possible when the machine is connected and the power line is removed.
If back-feed is impossible, unstable control will result, and machine adjustment such as a gear box adjustment will be necessary.
$<1>$ Making a check manually
First, turn the shaft of the main motor manually to check that the sub-motor turns. Next, turn the shaft of the sub-motor manually to check that the main motor turns. If these checks are successful, back-feed is possible.
$<2>$ Making a check using NC commands
After checking (b) and (c) below, remove the sub-motor power line. Then, enter a plus (+) command or minus (-) command to rotate the main motor. Check that the main motor can be turned with one-third or less of its rated static torque. When this check is successful, back-feed is possible.
(b) With the machine connected, activate the motors. At this time, release the emergency stop state after reducing the torque limit by a factor of about 10 .
Check the motor current on the servo adjustment screen. If the current increases gradually, the directions of rotation of the mainand sub-motors may not be set correctly.
(c) Check the operation by entering a plus (+) command and minus $(-)$ command.
If the error persists due to friction load, increase the torque limit.
(d) If the operation is normal, return the torque limit to its original value, and then set a preload value.

(3) Adjustment items

If vibration occurs:

- \quad Check the position feedback setting ($<3>$ in Sec. 4.19(3)).
- With SERVO GUIDE, check VCMD, TCMD, and SPEED. (When using the check board, check Vcmd (CH1), Tcmd (CH2 and CH 4), and speed (CH 5 and CH 6).
(a) A higher gear reduction ratio tends to produce more backlash, such that unstable operation will result from the sub-axis running between backlashes.
\rightarrow Enable the velocity feedback average function.
(No. 1952\#2 = 1) Series $15 i$
(No. 2008\#2 = 1) Series $30 i, 16 i$, and so on
(b) The main axis and sub-axis vibrate at the same frequency (several Hz to 30 or 40 Hz) as a result of the spring rigidity being low.
(The twist rigidity is proportional to the second power of the gear reduction ratio, so that the frequency is probably a lower resonant frequency.)
$\rightarrow \quad$ Enable damping compensation.
(See the adjustment procedure described in Subsec. 4.19.2.)
(No. 1952\#2 = 1) Series $15 i$
(No. 2008\#2 $=1$) Series $30 i, 16 i$, and so on
(c) The operation of a full-closed-loop system is unstable.
$\rightarrow \quad$ Check the position feedback setting ($<3>$ in Sec. 4.19(3).) If the parameters are set correctly, place the system in semi-closed loop mode, then adjust the system to achieve stable operation.
Then, return the system to full-closed loop mode. If the operation is still unstable, apply a function such as the dual position feedback function.
(d) In the stop state, no tension is established between the main axis and sub-axis.
\rightarrow Set a preload value of 0 , and check the torque in the stop state.
Then, set a preload value greater than the stop-state torque.
(No. 1980) Series $15 i$
(No. 2087) Series $30 i, 16 i$, and so on
(e) Position-dependent vibration occurs.
\rightarrow Change the feedrate to determine whether the vibration frequency is constant or proportional to the feedrate. If the vibration frequency is proportional to the feedrate, position-dependent vibration is occurring. Check position-related items such as the number of gear teeth.

4.19.8 Cautions for Controlling One Axis with Two Motors

(1) Tandem control and synchronous control (position tandem control) selection criteria

Two control methods are supported to enable the control of one axis using two motors: tandem control and synchronous control. The (simple) synchronous control method controls the position of the master axis and slave axis by using the same command. Position control is exercised separately on each of the master axis and slave axis. Control exercised when the master axis and slave axis are allocated on the same DSP is particularly referred to as position tandem control.
The tandem control method exercises position control over the main axis only; this method exercises torque control over the sub-axis only. (For clarity, the terms master and slave are used for synchronous control, while main and sub are used for tandem control.)
When building a machine system, select a suitable control method, paying careful attention to the differences between the control methods. Tandem control is used in the following cases and when back-feed is enabled:

- Two motors are used because sufficient torque cannot be produced by one motor alone.
- Two small motors have an advantage over one large motor in terms of inertia.
In other cases, position tandem control (synchronous control) is usually used.
Position tandem control is also used when two motors are used to improve the precision degraded by a machine position difference.

Fig. 4.19.9 (a) Example of tandem control (machine system supporting back-feed)

Fig. 4.19.9 (b) Example of synchronous control (to suppress the effect of a position difference)

Fig. 4.19 .9 (c) Example of tandem control (when a torque two times greater is required)

(2) Velocity loop integrator copy function

If the velocity loop integrator gets unbalanced between the master and slave during synchronous or velocity command tandem control, the axes may get twisted, leading to an OVC alarm.
This problem can be solved using a function that copies the velocity loop integrator from the master axis to the slave axis, thereby preventing integrator imbalance between the master and slave.

| \#7 | \#6 | \#5 | \#4 | \#3 | \#2 | \#1 | \#0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | WSVCP | |

2273 (FS30i, 16i) WSVCP(\#1) 1:

The loop integrator of the master axis is copied to the slave axis. (Specify only the slave axis.)
(Series 9096, and Series $90 \mathrm{~B} 0 / \mathrm{M}(13)$ and earlier editions are not supported.)

CAUTION

1 This function is applicable only to two axes controlled on the same DSP.
2 No compatibility problem occurs between this function and the system software.
3 This function bit is usable when simple synchronous control or velocity command tandem control is in use.
4 This function cannot be used together with the preload function.
5 It is impossible to specify functions related to the velocity loop integrator (such as the incomplete integral or low-speed integral function) separately for the master axis and slave axis.
6 This function cannot be used together with servo HRV4 control.

4.19.9 Block Diagrams

(1) Tandem control

4.20 SERVO TUNING TOOL SERVO GUIDE

4.20.1 SERVO GUIDE

(1) Overview

The servo tuning tool SERVO GUIDE has the following features.

- PC-based integrated tuning tool for servo spindles
- Can be connected easily with a PCMCIA-LAN card from the front of the CNC
- GUI-based ease of use
- Automatic tuning with the tuning navigator (Ver. 2.00 or later)

[Software ordering information]
A08B-9010-J900 (supplied on a CD-ROM)
[Upgrade ordering information]
A08B-9010-J901 (supplied on a CD-ROM)
To install software from an upgrade CD, SERVO GUIDE or i TUNE of an older edition must have been installed on the personal computer used.

(2) Operating environment

The following table lists operating environments for the servo tuning tool SERVO GUIDE. The operating environment must be configured with the listed hardware and software.

CNC	Series $30 i$, $31 i, 32 i$-MODEL A or later Series 16i, 18i, 21i, 20i-MODEL B or later Power Mate i-MODEL D, H Series 0i-MODEL B, Oi Mate-MODEL B Series 0i-MODEL C, $0 i$ Mate-MODEL C (Note 1)
Personal computer	PC/AT compatible Ethernet port (for Ethernet connection) FANUC HSSB board (for HSSB connection) or CNC display unit with PC functions (PANEL i)
CPU	Pentium 200MHz or better processor
OS	Microsoft Windows 98/Me (Note 2) Microsoft Windows NT4.0/2000/XP Recommended Microsoft Windows NT4.0/2000/XP Viewing online help requires Internet Explorer 4.01 or later. (Note 5)
Memory	64 MB or more (Recommended 128MB or more)
Hard disk	25 MB or more (Note 6) (50 MB during installation)
Display resolution	SVGA (800×600) or higher (XGA (1024 $\times 768$) or higher is recommended.) (Note 7)
Printer	Printer added in printer setting on Windows
PCMCIA LAN card (for Ethernet connection)	Card specified by FANUC (A02B-0281-K710) (Note 8)
Others	Cross Ethernet cable and coupler (required for Ethernet connection)

* Microsoft, Windows are registered trademarks of Microsoft Corporation.
* This manual contains the program names or device names of other companies, some of which are registered trademarks of respective owners.

Note 1 The following software series and editions support SERVO GUIDE.
[System software]
Series $30 i$-A G001/23 and subsequent editions,
G011/23 and subsequent editions,
G021/23 and subsequent editions, G00A/01 and subsequent editions, G01A/01 and subsequent editions, G02A/01 and subsequent editions, G002/01 and subsequent editions, G012/01 and subsequent editions, G022/01 and subsequent editions (SERVO GUIDE Ver. 3.00 or later)
Series 31i-A G101/01 and subsequent editions, G111/01 and subsequent editions (SERVO GUIDE Ver. 3.00 or later)

Series 31i-A5 G121/01 and subsequent editions, G131/01 and subsequent editions (SERVO GUIDE Ver. 3.00 or later)
Series 32 i-A G201/01 and subsequent editions (SERVO GUIDE Ver. 3.00 or later)
Series $16 i-\mathrm{MB} \quad \mathrm{B} 0 \mathrm{H} 1 / 05$ and subsequent editions
Series $16 i-\mathrm{TB} \quad \mathrm{B} 1 \mathrm{H} 1 / 06$ and subsequent editions ${ }^{(*)}$
Series $18 i-\mathrm{MB} \quad \mathrm{BDH} 1 / 05$ and subsequent editions
Series $18 i-\mathrm{MB} 5 \quad \mathrm{BDH5} / 01$ and subsequent editions
Series $18 i-\mathrm{TB} \quad$ BEH1/06 and subsequent editions ${ }^{(*)}$
Series $21 i-\mathrm{MB} \quad \mathrm{DDH} 1 / 05$ and subsequent editions
Series $21 i-\mathrm{TB} \quad$ DEH1/06 and subsequent editions ${ }^{(*)}$
Series $20 i$-FB D0H1/01 and subsequent editions (SERVO GUIDE Ver. 3.00 or later)
Series 20i-TB D1H1/01 and subsequent editions (SERVO GUIDE Ver. 3.00 or later)
Power Mate i-D $88 \mathrm{E} 0 / 18$ and subsequent editions (SERVO GUIDE Ver. 2.00 or later)
Power Mate i-H $\quad 88 \mathrm{~F} 2 / 01$ and subsequent editions (SERVO GUIDE Ver. 2.00 or later)
Series $0 i-\mathrm{MB} \quad$ D4A1/01 and subsequent editions (SERVO GUIDE Ver. 2.00 or later)
Series 0i-TB D6A1/01 and subsequent editions (SERVO GUIDE Ver. 2.00 or later)
Series $0 i$ Mate-MB D501/01 and subsequent editions (SERVO GUIDE Ver. 2.00 or later)
Series $0 i$ Mate-TB D701/01 and subsequent editions (SERVO GUIDE Ver. 2.00 or later)
Series $0 i$-MC D4B1/01 and subsequent editions (SERVO GUIDE Ver. 3.00 or later)
Series 0i-TC D6B1/01 and subsequent editions (SERVO GUIDE Ver. 3.00 or later)
Series $0 i$ Mate-MC D511/01 and subsequent editions (SERVO GUIDE Ver. 3.00 or later)
Series $0 i$ Mate-TC D711/01 and subsequent editions (SERVO GUIDE Ver. 3.00 or later)
(*) Measuring rigid tapping synchronization errors on the T
Series CNC requires the following system software series and editions.
Series $16 i-\mathrm{TB} \quad \mathrm{B} 1 \mathrm{H} 1 / 15$ and subsequent editions
Series $18 i-\mathrm{TB}$ BEH1/15 and subsequent editions
Series $21 i$-TB DEH1/15 and subsequent editions
[Relationship between the Ethernet and open CNC]
For Series 30i, 31i, 32i
$656 \mathrm{E} / 06$ and subsequent editions $656 \mathrm{~F} / 07$ and subsequent editions
For Series $30 i, 31 i, 32 i$ (when a 15 " display is used)
Software for 15 " display control
A02B-0207-J595\#60VB 1.3 and subsequent editions

For Series 310 is , 310 is , 320 i
WindowsCE.NET customized OS
A02B-0207-J594 1.2 and subsequent editions
WindowsCE.NET FOCAS2/HSSB library
A02B-0207-J808 1.2 and subsequent editions
WindowsCE.NET standard application/library
A02B-0207-J809 1.2 and subsequent editions
For Series $16 i, 18 i, 21 i, 0 i$
$656 \mathrm{~A} / 03$ and subsequent editions (For a system with a sub-CPU, 656A/04 or later)
Using Series $0 i$ requires 656A/05 or later.
(Edition 656A/07 does not support the use of the PCMCIA LAN card.)
For Power Mate i
6567/01 and subsequent editions
[Servo software]
For Series 30i,31i,32i
90D0/03(C) and subsequent editions, 90E0/03(C) and subsequent editions
For Series $16 i, 18 i, 21 i, 20 i, 0 i$, Power Mate i
90B0/06(F) and subsequent editions
(Note that using the tuning navigator requires 90B0/20(T) and subsequent editions.)
90B6/01(A) and subsequent editions,
90B5/01(A) and subsequent editions, 90B1/01(A) and subsequent editions
For Series 21i, 0i, Power Mate i
9096/01(A) and subsequent editions
(They do not support the tuning navigator.)
[Spindle software]
For Series 30i,31i,32i
9D70/02 and subsequent editions
(For αi series spindle)
For Series $16 i, 18 i, 21 i, 0 i$, Power Mate i 9D50/02 and subsequent editions (For αi series spindle)
For Series $16 i, 18 i, 21 i, 0 i$, Power Mate i 9D20/11 and subsequent editions (For α series spindle)
(For some α series spindles, restrictions are placed on data acquisition.)

SERVO GUIDE may operate on combinations other than stated above. For αi series models, however, SERVO GUIDE can run only on the combinations stated above.
In SERVO GUIDE version 3.00 and later versions, the parameter window and program window also support the multipath CNC.

Note 2 It has yet to be verified whether SERVO GUIDE operates on Windows 95.
Note 3 To use this software on Windows NT 4.0, install Service Pack 3 or later. Service Pack is available from Microsoft.
Note 4 On Windows 98/Me, opening multiple parameter and graph windows at a time may result in insufficient resources. We recommend Windows NT/2000/XP be used.
Note 5 Online help cannot be displayed unless Internet Explorer 4.01 or later is available.
Note 6 In addition to the program area, a storage area is necessary to hold measured data.
Note 7 SERVO GUIDE can operate also on SVGA. If multiple windows are open on SVGA, however, they overlap on one another, impairing legibility.
Note 8 If you are using a Windows CE-based "is Series" CNC (160is, $180 i$ s, $210 i \mathrm{is}$), you do not need this card, because no LAN card can be used to connect between the PC and CNC. (Use a built-in Ethernet port for connection.)
With the is Series of the Series $30 i$ (the $300 i$ s, 310is, and $320 i s)$, connection using a LAN card is also possible.
To use this software on Power Mate i, an Ethernet board must be installed on the NC. In this case, the PCMCIA-LAN card is not required. Get ready the following:

- Fast Ethernet board (A02B-0259-J293)
- Fast Ethernet option (A02B-0259-J862)
- Ethernet software (A02B-0259-J555\#6567)
- Extended basic 1 function option (A02B-0259-J878)
- Extended driver/library (A02B-0259-J847)

Note 9 A FANUC-supplied LAN card is provided with a straight cable with an RJ45 male connector attached. The following figure shows how the cable is used to connect directly between the PC and CNC.

(The cross cable and coupler are available from general PC stores.)

The following figure shows how a hub is used to connect between the PC and CNC. No coupler is needed. However, you need to prepare a straight cable.

If you are using an HSSB, you may probably use an optical cable to connect between the CNC and PC as shown below. Using SERVO GUIDE does not require any additional connection.

* Even if you are using a CNC display unit with PC functions, such as the $160 i$, no additional connection is needed.

(3) Software specification overview

The servo tuning tool SERVO GUIDE has four windows ("parameter window," "graph window," "program window," and "tuning navigator"). The software specification overview of each window follows.
(a) Parameter window

- Collects parameters from the NC, categorizes them by function, and displays them.
- Supports servo and spindle parameters.
- Supports the automatic acc./dec. function for high speed and high precision.
- Lets you modify NC parameters on the PC.
* The multipath system is supported by Version 3.00 and later versions.
(Details of supported functions)

System setting	Extracting and displaying information related to servo sections from CNC options.			
Servo axis setting	Whether there is a separate detector, rotary/linear motor, CMR, flexible feed gear, etc.			
Acceleration/deceleration	Time constants for acc./dec. before interpolation and acc./dec. after interpolation, speed difference related to automatic deceleration at corner, arc radius-based feedrate clamp setting, and acceleration-based deceleration setting (ordinary control, advanced preview control, Al advanced preview control, AI contour control, Al nano-contour control, high-precision contour control, Al nano high-precision contour control, AI contour control I/II)			
Current control	HRV, HRV2, HRV3, or HRV4 control			
Velocity loop gain setting, setting related to filters for				
measures for vibration in machine sections, vibration				
control, and dual position feedback		$	$	Sostrol
:---				
Setting of position gain Contour error suppression				
Setting related to feed-forward, backlash acceleration, and fine acc./dec. (for Series 16i and so on)				

Overshoot improvement	Setting for overshoot correction
High-speed positioning	Setting of FAD + advanced preview feed-forward and position gain line graph
Stop	Setting related to brake control and quick stop at emergency stop
Unexpected disturbance torque detection	Estimated disturbance value tuning and alarm detection level
Linear motor	Setting of AMR conversion coefficient and smoothing compensation
Spindle system setting	Extracting and displaying information related to spindles from CNC options.
Spindle system configuration	Motor edge sensor setting, spindle edge sensor setting, and gear ratio setting (main and sub)
Spindle ordinary velocity control	Velocity loop gain setting and filter setting for anti-vibration (main and sub) or resonance elimination filter
Rigid tapping	Command setting, velocity control setting (main and sub), position control setting, and fine acc./dec. (for Series 16i and so on)
Cs contour control	Command setting, velocity control setting, position control setting, fine acc./dec. (for Series 16i and so on), and resonance elimination filter
Orientation	Velocity control setting, position control setting, acceleration setting (high-speed orientation), and resonance elimination filter
Spindle synchronous control	Velocity control setting, position control setting, and resonance elimination filter

(b) Graph window

- Data measurement and display
- Horizontal axis time mode

Ordinary mode, first-order differential mode, second-order differential mode (YT mode)
Feed smoothness measurement mode (DXDY mode)
Tangential velocity display mode (XTVT mode)
Synchronization error measurement mode (Synchro mode)

- XY mode (also XYR mode for polar coordinate conversion)
- Arc path error expansion mode (Circle mode)
- Arbitrary figure path error expansion mode (Contour mode)
- Frequency spectrum analysis mode (Fourier mode)
- Velocity loop frequency characteristic measurement mode (Bode mode)
Data can be measured on both servo and spindle sections (even if mixed)
* For non- αi series spindles, restrictions are placed on measured data.
Simultaneous measurement is possible on up to six channels.
The fastest sampling period coincides with the current control period. (For servo axes only)
Displayed data can be printed. Bit maps can also be acquired via the clip board.

- Linear motor smoothing compensation parameter determination function
(Can be used with SERVO GUIDE Ver. 2.00 or later)
This function allows easy determination of the parameters for the "smoothing compensation function", which is a function for improving the smoothness of linear motor feed.

(Tuning example)

Before tuning of smoothing compensation

After tuning of smoothing compensation

(c) Program window

- Test program creation assistance
- One-axis linear acc./dec.
- Arc
- Rectangle
- Rectangle with rounded corners
- Rigid tapping
- Cs contour
- Test program path display
- \quad Sending test programs to NC memory and executing them (The operator must press the start button.)
- Selecting and executing a program from NC memory (The operator must press the start button.)
- Printing a created program
* The multipath system is supported by Version 3.00 and later versions.

(d) Tuning navigator
- Conditions for use

SERVO GUIDE Ver. 2.00 or later
Servo software Series 90B0/20 and subsequent editions, Series 90B6, Series 90B5, Series 90B1, Series 90D0, Series 90E0

NOTE

Series 9096 is not supported.

- Automatic tuning of velocity loop gain and filters
- High-speed and high-precision function setup support
[Automatic tuning of velocity loop gain and filters]
Measures the frequency characteristics of a velocity loop while making the tool move along an axis to automatically determine the values of the velocity loop gain and resonance elimination filter parameters. Submitted parameter values can be fine-tuned to verify their effects.

Filter tuning (example)
[High-speed and high-precision function setup support]
In a program for a square with corner rounding, the support adjusts the parameters for high-speed and high-precision functions while confirming overshoots. High-speed and high-precision functions have multiple tuning parameters. FANUC-recommended parameter sets (sets that give priority to speed and those that give priority to precision) are provided, and values between them can be selected easily with a single operation on the slider.

High-speed and high-precision function tuning (example)
(4) Tuning procedure overview
$<1>$ Specify parameters from the parameter window.
$<2>$ In the program window, create, send, and execute test programs.
$<3>$ In the graph window, measure data.
$<4>$ Repeat steps $<1>$ to $<3>$ to make optimum tunings while watching the graphed data.

For details of usage, refer to "FANUC SERVO GUIDE Operator's Manual (B-65404EN)" or the online manual after software installation.

5
 DETAILS OF PARAMETERS

5.1 DETAILS OF THE SERVO PARAMETERS FOR Series 30i, 31i, 32i, 15i, 16i, 18i, 21i, 0i, 20i, Power Mate i (SERIES 90D0, 90E0, 90B0, 90B1, 90B6, 90B5, AND 9096)

The descriptions of parameters follow.
For parameters for which a specification method is not described, do not change the parameters from the values set up automatically during servo parameter initialization.
The parameter in the top left cell applies to Series $15 i$; the one in the bottom left cell, to Series $30 i, 31 i, 32 i, 16 i, 18 i, 20 i, 21 i, 0 i, 20 i$, Power Mate i.
\star : Do not change.

OPTX (\#1)
A separate detector is:
0 : Used.
1: Not used.
[Reference item] Subsection 2.1.3
APCX (\#5) An absolute detector is:
0 : Not used.
1: Used.
[Reference item] Subsection 2.1.3

TANDEM (\#6)
Tandem control (optional function) is:
0: Disabled.
1: Enabled.
Specify this parameter for both main axis and sub-axis.
[Reference item]
Section 4.19

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
			PGEX	PRMC		DGPR	PLC0

2000 (FS30i, 16i)
PLC0 (\#0) Specifies whether to multiply the number of velocity and position pulses by ten internally as follows:
0 : Not to multiply by ten.
1: To multiply by ten.
[Reference item] Subsection 2.1.3
DGPR (\#1) When power is switched on, the motor-specific standard servo parameter is:
0: Specified.
1: Not specified.
[Reference item] Subsection 2.1.3

```
PRMC (\#3) Do not change. ( \(\star\) )
PGEX (\#4) The position gain range is:
0 : Not expanded.
1: Expanded by 8 times.
[Reference item] Subsection 2.1.5
```


AMR0 to AMR7 (\#0 to \#7)
Specify the AMR value according to the Pulsecoder model for the motor.

AMR							
$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
0	0	0	1	0	0	0	16-pole servo motors α iS2000/2000HV, α iS3000/2000HV
0	0	0	0	0	0	0	Other than 16-pole servo motor (8-pole servo motors)

[Related parameters]
2608\#5 (15i), 2220\#5 (16i etc.)

1807 (FS15i)
2002 (FS30i, 16i)

PFSE (\#3) A separate detector is:
0 : Not used.
1: Used.
Specify this parameter only in the Series $15 i$.
In the Series $30 i, 31 i, 32 i, 16 i, 18 i, 21 i, 0 i$, and Power Mate i, setting bit 1 of parameter No. 1815 (OPT) to 1 automatically specifies this parameter.
[Reference item] Subsection 2.1.3

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
1808 (FS15i)	VOFS	ovsc	BLEN	NPSP	PIEN	OBEN	TGAL	

2003 (FS30i, 16i)
TGAL (\#1) The software disconnection alarm detection level is:
0 : Standard setting.
1: Lower sensitivity specified elsewhere.
[Related parameters] 1892 (15i), 2064 (16i etc.)
OBEN (\#2) The velocity control observer function is:
0 : Not used.
1: Used.
[Reference item] Subsection 4.5.4
[Related parameters] 1859 (15i), 2047 (16i etc.), 1862 (15i), 2050 (16i etc.), 1863 (15i), 2051 (16i etc.)

PIEN (\#3) The velocity control method to be used is:
0 : I-P
1: PI

NPSP (\#4) The N pulse suppression function is:
0 : Not used.
1: Used.
[Reference item] Subsection 4.4.4
[Related parameters] 1992 (15i), 2099 (16i etc.)
BLEN (\#5) The backlash acceleration function is:
0 : Not used.
1: Used.
[Reference item] Subsections 4.6.6 and 4.6.7
[Related parameters] 1860 (15i), 2048 (16i etc.)
OVSC (\#6) The overshoot compensation function is:
0 : Not used.
1: Used.
[Reference item] Section 4.7
[Related parameters] 1857 (15i), 2045 (16i etc.)
VOFS (\#7) The VCMD offset function is:
0 : Not used.
1: Used.
[Related parameters] 1970 (15i), 2077 (16i etc.)

TIA0 (\#0), TIB0 (\#1), TRW0 (\#2), TRW1 (\#3)
The setting of these bits varies according to the HRV control method.

TRW1	TRW0	TIB0	TIA0	
0	1	1	0	For HRV1 control
0	0	1	1	For HRV2, HRV3, HRV4 control

[Related parameters] 1707 (15i), 2013 ($16 i$ etc.)

	\#7	\#6	\#5	\#4
1883 (FS15i)	SFCM	BRKC		
2005 (FS30i, 16i)				
FEED (\#1)	The feed-forward function is:			
	0 : Not used.			
	1: Used.			
[Reference item]	Subsections 4.6.1 to 4.6.5			
[Related parameters]	1961 (15i), 2068 (16i etc.),			
BRKC (\#6)	The brake control function is			
	0 : Not used.			
	1: Used.			
[Reference item]	Section 4.10.			
[Related parameters]	1976 (15i), 2083 (16i etc.)			

$\operatorname{SFCM}(\# 7) \quad$ The static friction compensation function is:
0 : Not used.
1: Used.
[Reference item] Subsection 4.6.8
[Related parameters] 1808 (15i), 2003 (16i etc.), 1965 (15i), 2072 (16i etc.), 1966 (15i), 2073 (16i etc.)

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
1884 (FS15i)				ACCF		PKVE		FCBL

2006 (FS30i, 16i)
FCBL (\#0) During full-closed feedback, backlash compensation is:
0: Applied to the position.
1: Not applied to the position.
[Reference item] Subsections 4.6.6 and 4.6.7
PKVE (\#2) Speed-dependent current loop gain variable function is:
0: Not used
1: Used
(\star Do not change)
[Related parameters] 1967 (15i), 2074 (16i etc.)
ACCF (\#4) Specifies the amount of velocity feedback data to be used as follows:
0 : Velocity feedback for the latest 2 ms .
1: Velocity feedback for the latest 1 ms .

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
1951 (FS15i)	FRCAXS	FAD					IGNVRO	ESP2AX

2007 (FS30i, 16i)
ESP2AX (\#0) The servo alarm 2-axis simultaneous monitor function is:
0 : Not used.
1: Used.
[Reference item] Subsection 4.19.4
IGNVRO (\#1) An alarm condition is:
0 : Not released 2 seconds after the servo alarm 2-axes simultaneous monitor holds the alarm condition.
1: Released 2 seconds after the servo alarm 2-axes simultaneous monitor holds the alarm condition.
[Reference item] Subsection 4.19.4
FAD (\#6) The fine acc./dec. function is:
0 : Not used.
1: Used.
[Reference item] Subsection 4.8.3
[Related parameters] $1702(15 i), 2109$ (16i etc.)
FRCAXS (\#7) Torque control function is:
0 : Not used.
1: Used.
[Reference item] Section 4.16

1952 (FS15i)
2008 (FS30i, 16i)

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
LAXDMP	PFBSWC	VCMDTM	SPPCHG	SPPRLD	VFBAVE	TNDM	

TNDM (\#1) This bit is automatically set to 1 when bit 6 (tandem axis) of parameter No. 1817 is set to 1 . (In the Series $15 i$, this bit is kept at 0 .) This bit cannot be set directly.

VFBAVE (\#2) 1: Enables the velocity feedback average function. (Usually, set this bit to 1 . Set this parameter for the main axis only.)
[Reference item] Section 4.17 and Subsection 4.19.3
SPPRLD (\#3) 1: Enables the full preload function. (Set this parameter for the main axis only.)
[Reference item] Subsection 4.19.6
SPPCHG (\#4) The motor output torque polarities are as follows:
0 : Outputs only the positive polarity to the main axis, and outputs only the negative polarity to the sub-axis.
1: Outputs only the negative polarity to the main axis, and outputs only the positive polarity to the sub-axis. (Set this parameter for the main axis only.)
[Reference item] Subsection 4.19.6
VCMDTM (\#5) 1: Enables velocity command tandem control.
(Set this parameter for the main axis only.)
PFBSWC (\#6) 1: Switches position feedback according to the direction of a torque command. (Set this parameter for the main axis only.)
[Reference item] Subsection 4.19.7
LAXDMP (\#7) 0: Enables damping compensation for the sub-axis only.
1: Enables damping compensation with both the main axis and sub-axis. Usually, set this bit to 1. (Set this parameter for the main axis only.)
[Reference item] Subsection 4.19.2

1953 (FS15i)

2009 (FS30i, 16i)
DMY (\#0) The serial feedback dummy function is:
0 : Not used.
1: Used.
[Reference item] Subsection 4.9.1
ADBL (\#2) The new backlash acceleration function is:
0 : Not used.
1: Used.
[Related parameters] $1860(15 i), 2048$ (16i etc.), 1980 (15i), 2087 (16i etc.)

FFAL (\#1) Feed-forward control always is:
1: Enabled in all modes.
[Reference item] Subsection 4.6.1
[Related parameters] 1961 (15i), 2068 (16i etc.)
RCCL (\#5) The actual current torque limit variable function is:
0 : Not used.
1: Used.
[Related parameters] 1995 (15i), 2102 (16i etc.) (\star Do not change)

TMPABS (\#7) Temporary absolute coordination setting function is:
0: Not used.
1: Used.

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
1956 (FS15i)	STNG		VCM2	VCM1			MSFE	

2012 (FS30i, 16i)
MSFE (\#1) The machine speed feedback function is:
0 : Not used.
1: Used.
[Reference item] Subsection 4.5.8
[Related parameters] 1981 (15i), 2088 (16i etc.)
VCM1 (\#4) The VCMD waveform signal conversion on the check board is switched.

VCM2 (\#5) Switches the VCMD waveform conversion value according to the following list:
For rotary type motor

VCM2	VCM1	Number of velocity commandrevolution/5 V
0	0	$0.9155 \mathrm{~min}^{-1}$
0	1	$14 \mathrm{~min}^{-1}$
1	0	$234 \mathrm{~min}^{-1}$
1	1	$3750 \mathrm{~min}^{-1}$

For linear motor (P in the table below represents a scale signal pitch.)

VCM2	VCM1	Number of velocity commandrevolution/5 V
0	0	$0.00375 \times \mathrm{P} \mathrm{m} / \mathrm{min}$
0	1	$0.06 \times \mathrm{P} \mathrm{m} / \mathrm{min}$
1	0	$0.96 \times \mathrm{P} \mathrm{m} / \mathrm{min}$
1	1	$15.36 \times \mathrm{P} \mathrm{m} / \mathrm{min}$

[Reference item] Item (5) in Appendix I
STNG (\#7) In velocity command mode, a software disconnection alarm is:
0 : Detected.
1: Ignored.

1958 (FS15i)

2016 (FS30i, 16i)
ABNT (\#0) The unexpected disturbance torque detection function (option) is:
0 : Not used.
1: Used.
[Reference item] Subsection 4.12.1
[Related parameters] 1997 (15i), 2104 (16i etc.)

PK2VDN (\#3) The variable proportional gain function in the stop state is:
0 : Not used.
1: Used.
[Reference item] Subsection 4.4.3
[Related parameters] $1730(15 i), 2119$ (16i etc.)

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
1959 (FS15i)	PK2V25		RISCFF	HTNG				DBST

2017 (FS30i, 16i)
DBST (\#0) The quick stop type 1 at emergency stop is:
0 : Not used.
1: Used.
[Reference item] Subsection 4.11.1
[Related parameters] 1883 (15i), 2005 (16i etc.), 1976 (15i), 2083 (16i etc.)
HTNG (\#4) In velocity command mode, the hardware disconnection alarm of a separate detector is:
0 : Detected.
1: Ignored.

RISCFF (\#5) 0: When RISC is used, the feed-forward response characteristics remain as is.
1: When RISC is used, the feed-forward response characteristics are improved.
[Reference item] Subsection 4.6.3
PK2V25 (\#7) Velocity loop high cycle management function is:
0 : Not used.
1: Used.
[Reference item] Subsection 4.4.1

RVRSE (\#0) The signal direction for the separate detector is:
0: Not reversed.
1: Reversed.
Series 90B0 supports the serial type and incremental parallel type.

MOVOBS (\#1) The disable function for observer in the stop state is:
0 : Not used.
1: Used
[Reference item] Subsection 4.5.4
OVR8 (\#2) The stage-2 acceleration amount override format is on the basis of:
0 : 4096.
1: 256.
[Reference item] Subsection 4.6.7
PFBCPY (\#7) 1: The motor feedback signal for the main axis is shared by the sub-axis. (Set this parameter for the sub-axis only.)
[Reference item] Subsection 4.19.5

2019 (FS30i, 16i)
TANDMP (\#1) The tandem disturbance elimination control function (option) is:
0 : Not used.
1: Used.
[Reference item] Section 4.17
DPFB(\#7) The dual position feedback function (option) is:
0 : Not used.
1: Used.
[Reference item] Subsection 4.5.7
[Related parameters] 1971 (15i), 2078 (16i etc.), 1972 (15i), 2079 (16i etc.), 1973 (15i), 2080 (16i etc.)

OVSP (\#0) A feedback mismatch alarm is:
0: Detected.
1: Not detected.

IQOB (\#2) 1: Eliminates the effect of voltage saturation on unexpected disturbance torque detection.
[Reference item] Subsection 4.12.1
ABG0(\#3) 1: When an unexpected disturbance torque is detected, a threshold is set separately for cutting and rapid traverse.
[Reference item] Subsection 4.12.2
[Related parameters] 1997 (15i), 2104 (16i etc.), 1765 (15i), 2142 ($16 i$ etc.)

RISCMC (\#5) When a RISC processor is used:
0: The response to a positioning command is the same as before.
1: The response to a positioning command is improved.
[Reference item] Subsection 4.6.3

P2EX (\#6) The velocity loop proportional gain (PK2V) format is:
0: \quad Standard format. (See Item (5) of Subsec. 4.14.1.)
1: Converted format.
[Reference item] Supplement 4 of Subsection 2.1.5

2201 (FS30i, 16i)
CROFS (\#0)
The function for obtaining current offsets upon an emergency stop is:
0 : Not used.
1: Used.
[Reference item] Section 4.13
RNLV (\#1) Specifies the detection level for the feedback mismatch alarm as follows:
0: $600 \mathrm{~min}^{-1}$
1: $1000 \mathrm{~min}^{-1}$
CPEE (\#6) The actual current display peak hold function is:
0 : Not used
1: Used

2202 (FS30i, 16i)
FADCH (\#0) The cutting/rapid FAD switching function is:
0 : Not used.
1: Used.
[Reference item] Section 4.3 and Subsection 4.8.3
[Related parameters] 1702 (15i), 2109 (16i etc.), 1766 (15i), 2143 ($16 i$ etc.), 1951 (15i), 2007 (16i etc.)

VGCCR (\#1) The cutting/rapid velocity loop gain switching function is:
0 : Not used.
1: Used.
[Reference item] Section 4.3 and Subsection 4.5.5
[Related parameters] 1700 (15i), 2107 (16i etc.)
PIAL (\#2) When rapid traverse is selected by the cutting/rapid velocity loop gain switching function, the $1 / 2 \mathrm{PI}$ control function is:
0 : Automatically disabled.
1: Always enabled.
[Reference item] Subsection 4.5.5
OVS1 (\#3) 1: Overshoot compensation is valid only once after the termination of a move command.
[Reference item] Section 4.7

DUAL (\#4) Zero width is determined:
$0: \quad$ Only by setting $=0$.
1: By setting.
[Reference item] Subsection 4.5.7
[Related parameters] 1974 (15i), 2081 (16i etc.)

2203 (FS30i, 16i)
CRPI (\#2) The current loop 1/2 PI control function is:
0 : Not used.
1: Used.
[Reference item] Subsection 4.5.5
FRCAX2 (\#4) Torque control type 2 is:
0 : Not exercised.
1: Exercised.
[Reference item] Section 4.16
TCMD4X (\#5) The check board output voltage of the TCMD signal is:
0: As usual (default).
1: Multiplied by 4.
[Reference item] Appendix I

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
1744 (FS15i)	DBS2		PGTWN2				HSTP10	

2204 (FS30i, 16i)
HSTP10 (\#1) The valid speed increment system for the high-speed positioning function is:
0 : $\quad 0.01 \mathrm{~mm}^{-1}$ (rotary motor), $0.01 \mathrm{~mm} / \mathrm{min}$ (linear motor).
1: $0.1 \mathrm{~mm}^{-1}$ (rotary motor), $0.1 \mathrm{~mm} / \mathrm{min}$ (linear motor).
[Reference item] Subsections 4.8.1 and 4.8.2
PGTWN2 (\#5) Position gain switching type 2 is:
0 : Not used.
1: Used.
[Reference item] Subsection 4.8.1
[Related parameters] 1713 (15i), 2028 (16i etc.)
DBS2 (\#7) Quick stop type 2 at emergency stop is:
0 : Not used.
1: Used.
[Reference item] Subsection 4.11.2

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
1745 (FS15i)				HDIS	HD2O	FULDMY		

2205 (FS30i, 16i)
FULDMY (\#2) The dummy separate detector function is:
0 : Not used.
1: Used.
[Reference item] Subsection 4.9.1

HD2O (\#3) The quick stop function for hardware disconnection of separate detector is:
0: Not applied to axes under synchronous control.
1: Applied to axes under synchronous control.
[Reference item] Subsection 4.11.4
HDIS (\#4) The quick stop function for hardware disconnection of separate detector is:
0: Disabled.
1: Enabled.
[Reference item] Subsection 4.11.4

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
1746 (FS15i)	HSSR HBSF							

2206 (FS30i, 16i)
HBSF (\#4) The backlash compensation amount and pitch error compensation amount are added:
1: Simultaneously for the full-closed and semi-closed sides.
0: Selectively according to the conventional parameter (No. 2010 (Series $16 i$ etc.) and No. 1954 (Series 15i))If this parameter is set to 1 (enabled), the settings of parameter No. 2010 (Series $16 i$ etc.) and parameter No. 1954 (Series 15i) are ignored.
[Reference item] Subsection 4.5.7
HSSR (\#7) High-speed data output to the check board is:
0: Not performed.
1: Performed.
[Reference item] Appendix I

2207 (FS30i, 16i)
NEGSHC (\#0)
Overcurrent alarm (software) is:
0: Not ignored.
1: Ignored .
[Reference item] Section 3.2
[Related parameters] 1749\#4 (15i), 2209\#4 (16i etc.)

CAUTION

If the emergency stop state is released without connecting the power line in a test such as a test for machine start-up, the overcurrent alarm detected by the servo software may be issued. In such a case, the alarm can be avoided temporarily by setting this bit parameter to 1 . However, be sure to return the bit parameter to 0 before starting up in the normal operation state after completion of a test.

PK2D50 (\#3) Specifies a variable proportional gain function in the stop state as follows:
0: 75% down.
1: 50% down.
[Reference item] Subsection 4.4.3
[Related parameters] $1730(15 i), 2119$ (16i etc.)

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
1749 (FS15i)		PGAT		HCNGL	FADPGC	FADL		
2209 (FS30i, 16i)								
FADL (\#2) 0: FAD bell-shaped type								
[Reference item]	Subsection 4.8.3							
[Related parameters]	1702 (15i), 2109 (16i etc.)							

FADPGC (\#3) 0: Synchronization is not established in the FAD setting rigid tapping mode.
1: Synchronization is established in the FAD setting rigid tapping mode.
[Reference item] Subsection 4.8.3
HCNGL (\#4) 0: The overcurrent alarm avoidance function based on amplifier hardware is disabled.
1: The overcurrent alarm avoidance function based on amplifier hardware is enabled.

NOTE

1 If an abnormal level of current that causes the overcurrent alarm to be issued is detected momentarily, processing is performed to suppress the level of current without issuing the alarm.
2 Even if this function is used, the overcurrent alarm is issued:

- When a complete short circuit occurs, or
- When the processing above for suppressing the level of current is continuously performed.

PGAT (\#6) 0: Automatic format change for position gain is enabled.1: Automatic format change for position gain is disabled. (available in Series 90B0/01 (A) and later editions)

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
1750 (FS15i)		ESPTM1	ESPTM0			PK12S2		

2210 (FS30i, 16i)
PK12S2 (\#2) The current gain internally 4 times function is:
0: Not used.
1: Used.
[Reference item] Subsection 4.14.1

ESPTM0(\#5), ESPTM1(\#6) Set the timer built into the αi amplifier to delay emergency stop.

ESPTM1	ESPTM0	Delay time
0	0	50 ms (default)
0	1	100 ms
1	0	200 ms
1	1	400 ms

[Reference item]
Section 4.11

PHCP (\#1) The phase lag compensation during deceleration is:
0 : Not used.
1: Used.
[Related parameters] 1756 (15i), 2133 (16i etc.), 1757 (15i), 2134 (16i etc.)

$2600(F S 15 i)$
2212 (FS30i, 16i)

OVQK (\#7) When a quick stop function at the OVC and OVL alarm is:
0 : Not used.
1: Used.
[Reference item] Subsection 4.11.5

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
2601 (FS15i)	осм							
2214 (FS30i, 16i)								
OCM (\#7) [Reference item]	Pole 0 0 $1:$ Subs	ition	ctio	ncti	opti			

FFCHG (\#4) The cutting/rapid feed-forward switching function is:
0 : Not used.
1: Used.
[Reference item] Subsection 4.6.4

2603 (FS15i)
2215 (FS30i, 16i)

TCPCLR (\#1) A function of setting the velocity loop integrator with a value for canceling a torque offset at an emergency stop is:
0 : Disabled.
1: Enabled.
[Reference item] Subsection 4.12.1

> | ABT2 (\#7) | Cutting/rapid unexpected disturbance torque detection function type 2 |
| ---: | :--- |
| | is: |
| | $0:$ |
| | Disabled. |
| | $1:$ |
| [Reference item $]$ | Subsection 4.12.2 |

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
2608 (FS15i)			P16					DECAMR
2220 (FS30i, 16i)								
DECAMR (\#0)	A non-binary detector is:							
	0: Not used.							
	1: Used.							
	Subsection 4.15.1							
[Related parameters]	1705 (15i), 2112 (16i etc.), 1761 (15i), 2138 (16i etc.)							
P16 (\#5)	16-pole servo motor is:							
	0: Not used.							
	1: Used.							
[Reference item]	Subsection 2.1.7							
[Related parameters]	1806 (15i), 2001 (16i etc.)							

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
2611 (FS15i)	BLCUT2							DISOBS

2223 (FS30i, 16i)
DISOBS (\#0) The disturbance elimination filter function is:
0 : Not used.
1: Used.
[Reference item] Subsection 4.5.3
BLCUT2 (\#7) The backlash acceleration function is:
0: Enabled for both cutting feed and rapid traverse
1: Enabled only for cutting feed
[Reference item] Subsection 4.6.6
2613 (FS15i)

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
					TSA05	TCMD05	

2225 (FS30i, 16i)
TCMD05 (\#1)
The check board output voltage of the TCMD signal is:
0: As usual (default).
1: Halved.
[Reference item] Appendix I

TSA05 (\#2) The check board output voltage of the SPEED signal is:
0: As usual (default).
1: Halved (7500 $\left.\mathrm{min}^{-1} / 5 \mathrm{~V}\right)$.
[Reference item] Appendix I

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
2616 (FS15i)					ELSAL			
2228 (FS30i, 16i)								
[Reference item]	$\begin{aligned} & 0: \quad L q>L d \\ & 1: \quad L q<L d \\ & \text { Subsection } 4.15 .1 \end{aligned}$							
	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
2617 (FS15i)				FORME	WATRA			ABSEN
$2229 \text { (FS30i, 16i) }$								
ABSEN (\#0)	In p $0:$ $1:$	use	th	MR off	et is:			
[Reference item]	Subsection 4.15.1							
[Related parameters]	1762 (15i), 2139 (16i etc.)							
WATRA (\#3)	After pole detection, an abnormal operation is:							
	0: Monitored.							
	1: Not monitored.							
[Reference item]	Subsection 4.15.1							

NOTE

This function can be used with Series 90B1/Edition 02 or later (FS15i, 16i, etc.) or Series 90D0 and 90E0/Edition 10 or later (FS30i, etc.).

FORME (\#4) The operation mode for pole detection is:
0 : Automatic selection mode (minute operation mode + stop mode)
1: Minute operation mode
[Reference item] Subsection 4.15.1

NOTE

This function can be used with Series 90B1/Edition 02 or later (FS15i, 16i, etc.) or Series 90D0 and 90E0/Edition 10 or later (FS30i, etc.).

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
2683 (FS15i)	DSTIN	DSTTAN	dstwav		ACREF			AMR60
2270 (FS30i, 16i)								
AMR60 (\#0)	The valid setting range of the AMR offset is from:							
	0: -45 degrees to +45 degrees.							
		-60 degre	es to +6	degr				
[Reference item] Section 4.14								
ACREF (\#3)	The active resonance elimination filter is:							
	0 : Not used.							
	1: Used.							
[Reference item]	Subsection 4.5.2							

DSTWAV(\#5) The input waveform of disturbance input is:
0: \quad Sine wave. (Usually, select the sine wave.).
1: Square wave.
[Reference item] Appendix H
DSTTAN(\#6) Disturbance is:
0 : Input for one axis only.
1: Input for both the L and M axes (To be set only for the L axis side of synchronous axes or tandem axes).
[Reference item] Appendix H
DSTIN(\#7) The disturbance input function is:
0 : Not used.
1: Used.
[Reference item] Appendix H

2684 (FS15i)

2271 (FS30i, 16i)
RETR2 (\#2) When an unexpected disturbance torque is detected, the simultaneous two-axis retract function is:
0 : Not used.
1: Used.

2273 (FS30i, 16i) WSVCP (\#0)

When the simple synchronous control is used, the loop integrator of the master axis :
0: Can not be copied to the slave axis.
1: Can be copied to the slave axis.
(Specify only the slave axis.)
[Reference item] Subsection 4.19.9
POA1NG (\#4) In the calculation of the observer coefficient (POA1), the load inertia ratio (LDINT) is:
0: Considered.
1: Not considered.
EGBEX (\#5) The EGB automatic phase matching function is:
0 : In the normal mode (deceleration not performed between the master and detector).
1: In the extended mode (deceleration performed between the master and detector).

EGBFFG(\#6) FFG is:
0: Not considered in the EGB ratio.
1: Considered in the EGB ratio.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline HP2048 (\#0)
[Related parameters] \& \multicolumn{8}{|l|}{\begin{tabular}{l}
During brake control, the torque limit setting function is: \\
0: Disabled. \\
1: Enabled. \\
2788 (15i), 2375 (\(16 i\) etc.)
\end{tabular}} \\
\hline \& \#7 \& \#6 \& \#5 \& \#4 \& \#3 \& \#2 \& \#1 \& \#0 \\
\hline 2687 (FS15i) \& \& \& \& \& \& \& \& HP2048 \\
\hline 2274 (FS30i, 16i) \& \& \& \& \& \& \& \& \\
\hline HP2048 (\#0)

[Reference item] \& \multicolumn{8}{|l|}{| A 2048-time interpolation circuit (position detection circuit H or C) is: |
| :--- |
| 0: Not used. |
| 1: Used. |
| Subsection 2.1.4 and Section 4.14 |}

\hline
\end{tabular}

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
2688 (FS15i)				ASYN			RCNCLR	800PLS

2275 (FS30i, 16i)
800PLS (\#0)
When the RCN723 or RCN223 is used, the reference counter setting is made in reference to:
0 : $1 / 8$ turns of the detector.
1: 1 turn of the detector.
[Reference item] Subsection 2.1.4
RCNCLR (\#1) The speed data is:
0: Not cleared.
1: Cleared. (To use the RCN223 or RCN723, set it to 1.)
[Reference item] Subsection 2.1.4
[Related parameters] 2807 (15i), 2394 (16i etc.)
ASYN (\#3) Synchronous axes automatic compensation function is:
0: Disabled.
1: Enabled.
[Reference item] Section 4.18

NOG54(\#0)

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
BLSTP2							NOG54

High-speed HRV current control mode (servo HRV3 control) is:

0: Used only when both G5.4Q1 and G01 are specified.
1: Used when G01 is specified. (G5.4Q1 is not monitored.)

NOTE

This function can be used when servo HRV3 control is used with the servo software for the Series 30i/31i/32i (Series 90D0 and 90E0). This function cannot be used when servo HRV4 control is used.
[Reference item] Section 4.2
BLSTP2 (\#7) The function for disabling backlash acceleration after a stop is:
0: Not used.
1: Used.

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
2713 (FS15i)	CKLNOH					Do		HRVEN
2300 (FS30i, 16i)								
HRVEN(\#0)	The ex $0:$ 1: N	tended	V f	ion				
		Et	unc	wh	usin	erv	RV	control.
[Reference item]	Section 4.2							
DD (\#2)	1: Synchronous built-in servo motor control is exercised. This bit is automatically set when the synchronous built-in servo motor parameters are initialized. However, before driving a synchronous built-in servo motor, check that this bit is set to 1 .							
[Reference item]	Subsection 4.15.1							
CKLNOH (\#7)	$\begin{array}{ll}\text { Detern } \\ 0 \text { 0: } \\ 1: & \text { P } \\ 1\end{array}$	natio	Determination of an overheat via the PMC is:					
[Reference item]	Subsection 4.14.2							

Hu: Parameters set up automatically at initialization
\star : Parameters that can be kept at the automatically set values

Parameter number		Details	
Series $15 i$	Series 30i, 16i, and so on		
1896	1821	Reference counter capacity	$\rightarrow 2.1 .3$
1825	1825	Position loop gain (position gain)	$\rightarrow 3.1$
1851	1851	Backlash compensation value	$\rightarrow 4.6 .6,4.6 .7$
1874	2020	Motor ID No. Motor ID number that can be specified	$\begin{array}{\|l} \hline \rightarrow 2.1 .2,4.14 .1 \\ \text { Initial setting } \\ \hline \end{array}$
1875	2021	Load inertia ratio (LDINT) Load inertia $\frac{\text { Rotor inertia }}{} \times 256$ Increase velocity loop gain parameters PK1V and PK2V by (1 + LDINT/256) times	Adjust for individual machines separately.
$\begin{aligned} & \hline 1879 \\ & 1876 \\ & 1891 \\ & \hline \end{aligned}$	$\begin{aligned} & 2022 \\ & 2023 \\ & 2024 \\ & \hline \end{aligned}$	Rotation direction of the motor Number of velocity pulse Number of position pulse	$\begin{array}{\|l} \rightarrow \text { 2.1.2, } 4.14 .1 \\ \text { Initial setting } \end{array}$
$\begin{aligned} & 1713 \\ & 1714 \\ & \\ & 1715 \end{aligned}$	$\begin{aligned} & 2028 \\ & 2029 \\ & \\ & 2030 \end{aligned}$	Velocity enabling position gain switching Acceleration-time velocity enabling integral function for low speed Deceleration-time velocity enabling integral function for low speed	$\begin{aligned} & \rightarrow 4.8 .1 \\ & \rightarrow 4.8 .2 \\ & \rightarrow 4.8 .2 \end{aligned}$
$\begin{aligned} & \hline 1718 \\ & 1719 \\ & \hline \end{aligned}$	$\begin{array}{r} 2033 \\ 2034 \\ \hline \end{array}$	Number of position feedback pulses Vibration damping control gain	$\rightarrow 4.5 .6$
1721	2036	Tandem control/damping compensation gain (main axis) Tandem control/damping compensation phase coefficient (sub-axis)	\rightarrow 4.19.2, 4.17
1724	2039	2-stage backlash acceleration function : stage 2 acceleration amount	$\rightarrow 4.6 .7$
$\begin{aligned} & 1852 \\ & 1853 \\ & 1854 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2040 \\ & 2041 \\ & 2042 \\ & \hline \end{aligned}$	Current loop gain (PK1) Current loop gain (PK2) Current loop gain (PK3)	\star Motor-specific \star Motor-specific \star Motor-specific
1855	2043	Velocity loop integral gain (PK1V)	¿ Motor-specific
1856	2044	Velocity loop proportional gain (PK2V)	Adjust for individual machines separately.
1857	2045	Velocity loop incomplete integral gain (PK3V)	$\begin{aligned} & \text { A Motor-specific } \\ & \rightarrow 4.7 \\ & \hline \end{aligned}$
1858	2046	Velocity loop gain (PK4V)	\star Motor-specific
1859	2047	Observer parameter (POA1) This parameter is adjusted when the unexpected disturbance torque detection and two-stage backlash functions are used. NOTE: If the velocity gain (load inertia ratio) is changed, this parameter must be re-adjusted.	$\begin{aligned} & \vec{*} \text { Motor-specific } \\ & \rightarrow 4.6 .7,4.12 \end{aligned}$
1860	2048	Backlash acceleration amount	H \rightarrow 4.6.6, 4.6.7
1861	2049	Maximum dual position feedback amplitude	- \rightarrow 4.5.7
$\begin{aligned} & 1862 \\ & 1863 \end{aligned}$	$\begin{aligned} & 2050 \\ & 2051 \end{aligned}$	Observer gain (POK1) Observer gain (POK2) When only the unexpected disturbance torque detection function is used, these parameters must be changed.	M Motor-specific $\rightarrow 4.12$
1864	2052	Not used	\star
1865	2053	Current dead-band compensation (PPMAX)	\star Motor-specific

H：Parameters set up automatically at initialization
\star ：Parameters that can be kept at the automatically set values

Parameter number		Details	
Series $15 i$	Series 30i，16i， and so on		
1866	2054	Current dead－band compensation（PDDP） The standard setting for αi motors is 1894.	\star Motor－specific
$\begin{aligned} & \hline 1867 \\ & 1868 \\ & 1869 \\ & 1870 \\ & 1871 \\ & \hline \end{aligned}$	$\begin{aligned} & 2055 \\ & 2056 \\ & 2057 \\ & 2058 \\ & 2059 \\ & \hline \end{aligned}$	Current dead－band compensation（PHYST） Variable current loop gain during deceleration（EMFCMP） Phase D current at high－speed（PVPA） Phase D current limit（PALPH） Back electromotive force compensation（EMFBAS）	\star Motor－specific
1872	2060	Torque limit The standard setting represents the maximum current of the amplifier．	\star Motor－specific
$\begin{aligned} & \hline 1873 \\ & 1877 \\ & 1878 \\ & \hline \end{aligned}$	$\begin{aligned} & 2061 \\ & 2062 \\ & 2063 \end{aligned}$	Back electromotive force compensation（EMFCMP） Overload protection coefficient（POVC1） Overload protection coefficient（POVC2）	\star Motor－specific
1892	2064	Software disconnection alarm level	\star Motor－specific $\rightarrow 3.2$
1893	2065	Soft thermal coefficient（POVCLMT）	\star Motor－specific
1894	2066	Acceleration feedback gain	$\stackrel{\text { H }}{*} \rightarrow 4.4 .2$
1895	2067	Torque command filter	$\stackrel{\text { H }}{\text { H }}$－4．5．1
1961	2068	Feed－forward coefficient	$\stackrel{\text { H }}{\text { \％}} \rightarrow 4.6 .1$ to 4．6．5
1962	2069	Velocity feed－forward coefficient	$\stackrel{\text { H }}{\boldsymbol{*}} \rightarrow 4.6 .1$ to 4．6．5
1963	2070	Backlash acceleration timing	\％\rightarrow 4．6．6
1964	2071	Time during which backlash acceleration is effective， Static friction compensation count	$\psi_{\text {H }} \rightarrow$ 4．6．6，4．6．8
1965	2072	Static friction compensation amount	H $\rightarrow 4.6 .8$
1966	2073	Stop state judgment parameter	H $\rightarrow 4.6 .8$
1967	2074	Current loop gain variable with velocity	\star Motor－specific
1968	2075	Not in use at present．	\＃
1969	2076	Not in use at present．	\＃
1970	2077	Overshoot compensation counter	\＃$\rightarrow 4.7$
$\begin{aligned} & 1971 \\ & 1972 \\ & 1973 \\ & 1974 \\ & \hline \end{aligned}$	$\begin{aligned} & 2078 \\ & 2079 \\ & 2080 \\ & 2081 \end{aligned}$	Dual position feedback Conversion coefficient（numerator） Conversion coefficient（denominator） Constant of first－order lag Zero zone	$\dot{H} \rightarrow 4.5 .7$
1975	2082	Backlash acceleration stop amount	$\stackrel{\text { H }}{\text { H }}$ ，4．6．6，4．6．7
1976	2083	Brake control timer（msec）	抎 $\rightarrow 4.10$
$\begin{aligned} & 1977 \\ & 1978 \end{aligned}$	$\begin{array}{r} 2084 \\ 2085 \\ \hline \end{array}$	Flexible feed gear（numerator） Flexible feed gear（denominator）	$\begin{array}{\|l} \hline \rightarrow 2.1 .2,4.14 .1 \\ \text { Initial setting } \end{array}$
1979	2086	Rated current parameter	\star Motor－specific
1980	2087	Torque offset Tandem control／Preload value	$\begin{aligned} & \dot{\mu} \rightarrow 4.6 .7,4.12 \\ & \dot{\mu} \rightarrow 4.19 .1 \end{aligned}$
1981	2088	Machine speed feedback gain	\％\rightarrow 4．5．8
1982	2089	2－stage backlash acceleration function ：stage－2 end magnification	尖 \rightarrow 4．6．7
1984	2091	Nonlinear control parameter	H
1985	2092	Advanced preview feed－forward coefficient	动 $\rightarrow 4.6 .2$
1987	2094	Backlash acceleration amount in the negative direction	
1988	2095	Feed－forward timing adjustment coefficient	雄 $\rightarrow 4.6 .5$

m: Parameters set up automatically at initialization
\star : Parameters that can be kept at the automatically set values

Parameter number		Details	
Series 15i	Series 30i, 16i, and so on		
1990	2097	Static friction compensation stop parameter	H \rightarrow 4.6.8
1991	2098	Current phase lead compensation coefficient	\star Motor-specific
1992	2099	N pulses suppression function	$\star \rightarrow$ 4.4.4
1994	2101	Overshoot compensation valid level	$\stackrel{\sim}{*} \rightarrow 4.7$
1995	2102	Final clamp value for the actual-current limit	\star Motor-specific
1996	2103	Track back amount applied when an unexpected disturbance torque is detected	H $\rightarrow 4.12$
1997	2104	Unexpected disturbance torque detection alarm level (cutting when switching is used)	$\dot{*} \rightarrow 4.12$
1998	2105	Torque constant	H $\rightarrow 4.16$
1700	2107	Velocity loop gain override	$\stackrel{H}{\text { H }} \rightarrow 4.3$
1702	2109	Fine acc./dec. time constant (rapid traverse when switching is used)	$\vec{\sim} \rightarrow 4.3$ and 4.8.3
1703	2110	Magnetic saturation compensation	\star Motor-specific
1704	2111	Torque limit at deceleration	\star Motor-specific
1705	2112	Linear motor AMR conversion coefficient 1	* $\rightarrow 4.14$
1706	2113	Resonance elimination filter 1: attenuation center frequency	$\stackrel{H}{*} \rightarrow 4.5 .2$
1725	2114	Backlash acceleration function : acceleration amount override 2-stage backlash acceleration function : stage 2 acceleration amount override	$\begin{aligned} & \rightarrow 4.6 .6 \\ & \rightarrow 4.6 .7 \end{aligned}$
1726	2115	For internal data output: Usually to be kept at 0 .	
1727	2116	Unexpected disturbance torque detection : dynamic friction cancel	$\rightarrow 4.12$
1729	2118	Dual position feedback Semi-closed/full-closed error overestimation level	$\rightarrow 4.5 .7$
1730	2119	Variable proportional gain function in the stop state : Stop level	$\rightarrow 4.4 .3,4.5 .4$
$\begin{aligned} & \hline 1732 \\ & 1733 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2121 \\ & 2122 \\ & \hline \end{aligned}$	Not used	
1737	2126	Tandem control/position feedback switching time constant	$\rightarrow 4.19 .7$
1735	2127	Non-interference control coefficient (NINTCT)	\star Motor-specific
1736	2128	Coefficient for magnetic flux weaken compensation (MFWKCE)	\star Motor-specific
1752	2129	Coefficient for magnetic flux weaken compensation (MFWKBL)	\star Motor-specific
$\begin{aligned} & \hline 1753 \\ & 1754 \\ & 1755 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2130 \\ & 2131 \\ & 2132 \\ & \hline \end{aligned}$	Smoothing compensation performed twice per pole pair Smoothing compensation performed four times per pole pair Smoothing compensation performed six times per pole pair	is \rightarrow 4.14.3
1756	2133	Coefficient for phase lag compensation during deceleration (PHDLY1)	\star Motor-specific
1757	2134	Coefficient for phase lag compensation during deceleration (PHDLY2)	\star Motor-specific
1760	2137	2-stage backlash acceleration function : stage 1 acceleration amount override	$\rightarrow 4.6 .7$
$\begin{aligned} & \hline 1761 \\ & 1762 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2138 \\ & 2139 \\ & \hline \end{aligned}$	Linear motor AMR conversion coefficient 2 Linear motor AMR offset	$\rightarrow 4.14$
1765	2142	Unexpected disturbance torque detection alarm level in rapid traverse	$\rightarrow 4.12 .2$
1766	2143	Fine acc./dec. time constant 2 (in cutting)	$\rightarrow 4.3,4.8 .3$
1767	2144	Position feed-forward coefficient for cutting	\rightarrow 4.3, 4.6.4, 4.8.3
1768	2145	Velocity feed-forward coefficient for cutting	\rightarrow 4.3, 4.6.4, 4.8.3

H: Parameters set up automatically at initialization
\star : Parameters that can be kept at the automatically set values

Parameter number		Details	
Series 15i	Series 30i, 16i, and so on		
1769	2146	Two-stage backlash acceleration end timer	$\rightarrow 4.6 .7$
1771	2148	Deceleration decision level (HRV control) Usually to be kept at 0 .	Usually adjustment is not needed.
1774	2151	For internal data output: Usually, be sure to set 0 .	
1775	2152	For internal data output: Usually, be sure to set 0 .	
1776	2153	For internal data output: Usually, be sure to set 0 .	
1777	2154	Static friction compensation function : decision level for movement restart after stop.	$\rightarrow 4.6 .8$
1779	2156	Torque command filter (at rapid traverse)	$\rightarrow 4.3,4.5 .1$
1784	2161	OVC magnification at a stop (OVCSTP)	\star Motor-specific
1785	2162	Soft thermal coefficient 2 (POVC21)	\star Motor-specific
1786	2163	Soft thermal coefficient 2 (POVC22)	\star Motor-specific
1787	2164	Soft thermal coefficient 2 (POVCLMT2)	\star Motor-specific
1788	2165	Maximum amplifier current	\star Motor-specific
1790	2167	2-stage backlash acceleration function : stage 2 acceleration amount offset	$\rightarrow 4.6 .7$
2620	2177	Resonance elimination filter 1: attenuation bandwidth	$\rightarrow 4.5 .2$
2622	2179	Reference counter size (denominator)	\rightarrow 2.1.3
2625	2182	Current A for pole detection (DTCCRT_A)	$\rightarrow 4.15 .1$
2628	2185	Position pulses conversion coefficient	$\begin{array}{\|l} \hline \rightarrow 2.1,2.1 .8,4.14 .1, \\ \text { Initial setting } \\ \hline \end{array}$
2641	2198	Current B for pole detection (DTCCRT_B)	$\rightarrow 4.15 .1$
2642	2199	Current C for pole detection (DTCCRT_C)	$\rightarrow 4.15 .1$
2681	2268	Allowable travel distance magnification/stop speed decision value (MFMPMD)	$\rightarrow 4.15 .1$
2731	2318	Disturbance elimination filter : gain	$\rightarrow 4.5 .3$
2732	2319	Disturbance elimination filter : inertia ratio	$\rightarrow 4.5 .3$
2733	2320	Disturbance elimination filter : inverse function gain	$\rightarrow 4.5 .3$
2734	2321	Disturbance elimination filter : time constant	$\rightarrow 4.5 .3$
2735	2322	Disturbance elimination filter : acceleration feedback limit	$\rightarrow 4.5 .3$
2736	2323	Variable current PI rate	$\rightarrow 4.5 .5$
2737	2324	Variable proportional gain function in the stop state : arbitrary magnification at a stop (for cutting only)	$\rightarrow 4.4 .3$
2738	2325	Tandem disturbance elimination control function/integral gain (main axis) Tandem disturbance elimination control function/phase coefficient (sub-axis)	$\rightarrow 4.17$
2739	2326	Disturbance input : gain	\rightarrow Appendix H
2740	2327	Disturbance input : start frequency	\rightarrow Appendix H
2741	2328	Disturbance input : end frequency	\rightarrow Appendix H
2742	2329	Number of disturbance input measurement points	\rightarrow Appendix H
2746	2333	Tandem disturbance elimination control function /incomplete integral time constant (main axis)	$\rightarrow 4.17$
2747	2334	Current loop gain magnification (enabled only during high-speed HRV current control)	$\rightarrow 4.2$
2748	2335	Velocity loop gain magnification (enabled only during high-speed HRV current control)	$\rightarrow 4.2$

H: Parameters set up automatically at initialization
Parameters that can be kept at the automatically set values

Parameter number		Details	
Series 15i	Series 30i, 16i, and so on		
2751	2338	Backlash acceleration function : acceleration amount limit value 2-stage backlash acceleration function : stage-2 acceleration amount limit value	$\begin{aligned} & \rightarrow 4.6 .6 \\ & \rightarrow 4.6 .7 \end{aligned}$
2752	2339	2-stage backlash acceleration function : stage-2 acceleration amount (negative direction)	$\rightarrow 4.6 .7$
2753	2340	Backlash acceleration function : acceleration amount override (negative direction) Backlash acceleration function : Acceleration amount override (negative direction)	$\begin{aligned} & \rightarrow 4.6 .6 \\ & \rightarrow 4.6 .7 \end{aligned}$
2754	2341	2-stage backlash acceleration function : stage-2 acceleration amount limit value (negative direction) 2-stage backlash acceleration function : stage-2 acceleration amount limit value (negative direction)	$\begin{aligned} & \rightarrow 4.6 .6 \\ & \rightarrow 4.6 .7 \end{aligned}$
2758	2345	Disturbance estimation function : dynamic friction compensation value in the stop state	$\rightarrow 4.12 .1$
2759	2346	Disturbance estimation function : dynamic friction compensation limit value	$\rightarrow 4.12 .1$
2765	2352	Active resonance elimination filter : detection level	$\rightarrow 4.5 .2$
2772	2359	Resonance elimination filter 1 : damping	$\rightarrow 4.5 .2$
2773	2360	Resonance elimination filter 2 : attenuation center frequency	$\rightarrow 4.5 .2$
2774	2361	Resonance elimination filter 2 : attenuation bandwidth	$\rightarrow 4.5 .2$
2775	2362	Resonance elimination filter 2 : damping	$\rightarrow 4.5 .2$
2776	2363	Resonance elimination filter 3 : attenuation center frequency	$\rightarrow 4.5 .2$
2777	2364	Resonance elimination filter 3 : attenuation bandwidth	$\rightarrow 4.5 .2$
2778	2365	Resonance elimination filter 3 : damping	$\rightarrow 4.5 .2$
2779	2366	Resonance elimination filter 4 : attenuation center frequency	$\rightarrow 4.5 .2$
2780	2367	Resonance elimination filter 4 : attenuation bandwidth	$\rightarrow 4.5 .2$
2781	2368	Resonance elimination filter 4 : damping	$\rightarrow 4.5 .2$
$\begin{gathered} 2782 \\ 2783 \\ 2784 \end{gathered}$	$\begin{aligned} & 2369 \\ & 2370 \\ & 2371 \end{aligned}$	Smoothing compensation performed twice per pole pair (negative direction) Smoothing compensation performed four times per pole pair (negative direction) Smoothing compensation performed six times per pole pair (negative direction)	$\rightarrow 4.14 .3$
2785	2372	Serial EGB exponent setting	
2786	2373	Lifting function against gravity at emergency stop : Distance to lift	$\rightarrow 4.11 .3$
2787	2374	Lifting function against gravity at emergency stop : Lifting time	$\rightarrow 4.11 .3$
2788	2375	Torque limit magnification during brake control	$\rightarrow 4.10$
$\begin{aligned} & \hline 2790 \\ & 2791 \end{aligned}$	$\begin{aligned} & \hline 2377 \\ & 2378 \end{aligned}$	Smoothing compensation performed 1.5 times per pole pair Smoothing compensation performed 1.5 times per pole pair (negative direction)	$\rightarrow 4.15 .3$
$\begin{aligned} & \hline 2793 \\ & 2794 \end{aligned}$	$\begin{aligned} & 2380 \\ & 2381 \end{aligned}$	Smoothing compensation performed three times per pole pair Smoothing compensation performed three times per pole pair (negative direction)	$\rightarrow 4.15 .3$
2795	2382	Torsion preview control: maximum compensation value (LSTCM)	$\rightarrow 4.6 .9$

H: Parameters set up automatically at initialization
\star : Parameters that can be kept at the automatically set values

Parameter number		Details	
Series 15i	Series 30i, 16i, and so on		
$\begin{aligned} & \hline 2796 \\ & 2797 \\ & 2798 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2383 \\ & 2384 \\ & 2385 \\ & \hline \end{aligned}$	Torsion preview control: acceleration 1 (LSTAC1) Torsion preview control: acceleration 2 (LSTAC2) Torsion preview control: acceleration 3 (LSTAC3)	$\rightarrow 4.6 .9$
$\begin{aligned} & 2799 \\ & 2800 \\ & 2801 \end{aligned}$	$\begin{aligned} & 2386 \\ & 2387 \\ & 2388 \end{aligned}$	Torsion preview control: acceleration torsion compensation value K1 (LSTK1) Torsion preview control: acceleration torsion compensation value K2 (LSTK2) Torsion preview control: acceleration torsion compensation value K3 (LSTK3)	$\rightarrow 4.6 .9$
$\begin{aligned} & 2802 \\ & 2803 \end{aligned}$	$\begin{aligned} & 2389 \\ & 2390 \end{aligned}$	Torsion preview control: torsion delay compensation value KD KD (LSTKD) Torsion preview control: torsion delay compensation value KDN (LSTKDN)	$\rightarrow 4.6 .9$
$\begin{aligned} & 2804 \\ & 2805 \\ & 2806 \end{aligned}$	$\begin{aligned} & 2391 \\ & 2392 \\ & 2393 \end{aligned}$	Torsion preview control: acceleration torsion compensation value K1N (LSTK1N) Torsion preview control: acceleration torsion compensation value K2N (LSTK2N) Torsion preview control: acceleration torsion compensation value K3N (LSTK3N)	$\rightarrow 4.6 .9$
2807	2394	Number of data mask digits	$\rightarrow 2.1 .4$
2808	2395	Feed-forward timing adjustment function (for use when FAD is enabled)	$\rightarrow 4.6 .5$
2815	2402	Torsion preview control: torsion torque compensation coefficient (LSTKT)	$\rightarrow 4.6 .9$
2816	2403	Synchronous axes automatic compensation function : coefficient (K)	$\rightarrow 4.18$
2817	2404	Synchronous axes automatic compensation function : maximum compensation (sub axis) Synchronous axes automatic compensation function : dead-band width (main axis)	$\rightarrow 4.18$
2818	2405	Synchronous axes automatic compensation function : filter coefficient	$\rightarrow 4.18$

PARAMETER LIST

6.1 PARAMETERS FOR HRV1 CONTROL

December, 2005
Series 9096
Series 90B0
Series 90B1
Series 90B5 and 90B6

Symbol	Motor model	
	Motor specification	
	FS15i	FS16i,etc
	1808	2003
	1809	2004
	1883	2005
	1884	2006
	1951	2007
	1952	2008
	1953	2009
	1954	2010
	1955	2011
	1956	2012
	1707	2013
	1708	2014
	1750	2210
	1751	2211
	2713	2300
	2714	2301
PK1	1852	2040
PK2	1853	2041
PK3	1854	2042
PK1V	1855	2043
PK2V	1856	2044
PK3V	1857	2045
PK4V	1858	2046
POA1	1859	2047
BLCMP	1860	2048
DPFMX	1861	2049
POK1	1862	2050
POK2	1863	2051
RESERV	1864	2052
PPMAX	1865	2053
PDDP	1866	2054
PHYST	1867	2055
EMFCMP	1868	2056
PVPA	1869	2057
PALPH	1870	2058
PPBAS	1871	2059
TQLIM	1872	2060
EMFLMT	1873	2061
POVC1	1877	2062
POVC2	1878	2063
TGALMLV	1892	2064
POVCLMT	1893	2065
PK2VAUX	1894	2066
FILTER	1895	2067
FALPH	1961	2068
VFFLT	1962	2069
ERBLM	1963	2070
PBLCT	1964	2071
SFCCML	1965	2072
PSPTL	1966	2073
AALPH	1967	2074
OSCTPL	1970	2077
PDPCH	1971	2078
PDPCL	1972	2079
DPFEX	1973	2080
DPFZW	1974	2081
BLENDL	1975	2082
MOFCTL	1976	2083
RTCURR	1979	2086
TDPLD	1980	2087
MCNFB	1981	2088
BLBSL	1982	2089
ROBSTL	1983	2090
ACCSPL	1984	2091
ADFF1	1985	2092
VMPK3V	1986	2093
BLCMP2	1987	2094
AHDRTL	1988	2095
RADUSL	1989	2096
SMCNT	1990	2097
DEPVPL	1991	2098
ONEPSL	1992	2099
INPA1	1993	2100
INPA2	1994	2101
DBLIM	1995	2102
ABVOF	1996	2103
ABTSH	1997	2104
TRQCST	1998	2105
LP24PA	1999	2106
VLGOVR	1700	2107
RESERV	1701	2108
BELLTC	1702	2109
MGSTCM	1703	2110
DETQLM	1704	2111
AMRDML	1705	2112
NFILT	1706	2113
NINTCT	1735	2127
MFWKCE	1736	2128
MFWKBL	1752	2129
LP2GP	1753	2130
LP4GP	1754	2131
LP6GP	1755	2132
PHDLY1	1756	2133
PHDLY2	1757	2134
DGCSMM	1782	2159
TRQCUP	1783	2160
OVCSTP	1784	2161
POVC21	1785	2162
POVC22	1786	2163
POVCLMT	1787	2164
MAXCRT	1788	2165

00001000
00000110
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00001110
00000000
00000000 Ni

$\alpha \mathrm{C} 12$	$\alpha i F 12$	$\beta i S$
$2000 i$	3000	FSO
0241	0243	007
191	193	
00001000	00001000	000
00000110	00000110	000
00000000	00000000	00
00000000	00000000	00
00000000	00000000	00
00000000	00000000	00
00000000	00000000	00
00000000	00000000	00
00100000	00100000	00
00000000	00000000	00
00000000	00000000	00
00000000	00000000	00
00000000	00000000	00
00000010	00000000	00
00000000	00000000	00
00000000	00000000	00
38009	1072	
-8197	-3835	

6.2 PARAMETERS FOR HRV2 CONTROL

Series 90B0
Series 90B1
Series 90B6 and 90B5
Series 90D0 and 90E0

		Motor model	$\alpha \mathrm{C} 22$	aiF22	$\beta i S 12 / 2000$ FSOi	$\begin{gathered} \alpha i F 22 \\ 3000 \mathrm{HV} \end{gathered}$	$\alpha \text { C30 }$ $1500 i$	$\beta i S 22 / 1500$ FSO i	$\alpha i{ }^{2 i} 30$	BiS22/1500	BiS2/4000 FSOi	aiF40 3000	α iF40
		or specification	0246	0247	0077-Bxx6	0249	0251	0084-Bxx6	0253	0084-Bx×6	0061-Bxx6	0257	${ }_{0257}$
		Motor ID No.	296	297	298	299	301	302	303	305	306	307	308
Symbol	FS15i	FS30,16i,etc											
	$\begin{aligned} & 1808 \\ & 1809 \end{aligned}$	$\begin{aligned} & 2003 \\ & 2004 \end{aligned}$	00001000 0000001	00001000 0000001	00001000 00000011	00001000 00000011	00001000 0000001	00001000	00001000	00001000 00000011	00001000 00000011	00001000 0000001	00001000 0000001
	1883	2005	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1884	2006	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1951	2007	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1952	2008	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1953	2009	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1954	2010	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1955	2011	00000000	00100000	00000000	00100000	00000000	00000000	00000000	00000000	00000000	00100000	00100000
	1956	2012	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1707	2013	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000100	00000000	00000000
	1708	2014	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000100	00000000	00000000
	1750	2210	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1751	2211	00001010	00000000	00001110	00000000	00001010	00001110	00001010	00001110	00001110	00001010	00000010
	2713	2300	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	2714	2301	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
PK1	1852	2040	2320	1750	547	1919	2238	2171	768	4342	360	1613	1613
PK2	1853	2041	-10593	-6000	-3289	-9132	-13330	-8178	-4492	-16356	-1920	-7446	-7446
PK3	1854	2042	-1347	-1345	-1305	-1346	-1347	-1329	-1347	-1329	-1237	-1348	-1348
PK1V	1855	2043	271	198	230	197	166	280	230	140	78	191	191
PK2V	1856	2044	-2426	-1775	-2054	-1765	-1486	-2507	-2057	-1254	-698	-1712	-1712
PK3V	1857	2045					0	0	0	0	0	0	0
PK4V	1858	2046	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235
POA1	1859	2047	1565	2137	3695	2150	2553	3027	1845	6054	-1089	2216	2216
BLCMP	1860	2048	0	0	0	0	0	0	0	0	0	0	0
DPFMX	1861	2049	0	0	0	0	0	0	0	0	0	0	0
POK1	1862	2050	956	956	956	956	956	956	956	956	956	956	956
POK2	1863	2051	510	510	510	510	510	510	510	510	510	510	510
RESERV	1864	2052	0	0	0	0	0	0	0	0	0	0	0
PPMAX	1865	2053	21	21	21	21	21	21	21	21	21	21	21
PDDP	1866	2054	1894	1894	1894	1894	1894	1894	1894	1894	1894	1894	1894
PHYST	1867	2055	319	319	319	319	319	319	319	319	319	319	319
EMFCMP	1868	2056	0	0	0	0	0	0	-20500	0	0	0	0
PVPA	1869	2057	-2597	-5136	-3884	-5136	-1545	-2110	-8465	-2079	-10250	-2570	-2570
PALPH	1870	2058	-1942	-2800	-4350	-2824	-1300	-4691	-1657	-2342	-1000	-2000	-2000
PPBAS	1871	2059	0			0		0		0	0	0	0
TQLIM	1872	2060	8010	7282	7282	7282	7282	7282	7282	3641	6554	7282	7282
EMFLMT	1873	2061		0	0	0	0	0	0	0	0	0	0
	1878	2062	32171	32520	32323	32548	32520	32319	3251	32655	32652	32511	32431
TGALMLV	1892	2064	8	4	5566 4	2755 4	${ }^{3101}$	${ }_{4}$	3215 4	1411 4	1455 4	3215 4	4212 4
POVCLMT	1893	2065	24454	9224	16603	8192	9224	16756	9565	4189	4317	9565	12545
PK2VAUX	1894	2066	0	0	0	0	0	0	0	0	0	0	0
FILTER	1895	2067	0	0	0	0	0	0	0	0	0	0	0
FALPH	1961	2068	0	0	0	0	0	0	0	0	0	0	0
VFFLLT	1962	2069	0	0	0	0	0	0	0	0	0	0	0
ERBLM	1963	2070	0	0	0	0	0	0	0	0	-	0	0
PBLCT	1964	2071	0	0	0	0	0	0	0	0	0	0	
SFCCML	1965	2072	0	0	0	0	0	0	0	0	0	0	0
PSPTL	1966	2073	0	0	0	0	0	0	0	0	0	0	0
AALPH	1967	2074	4096	12288	8192	8192	8192	8192	4096	0	16384	16384	16384
OSCTPL	1970	2077	0	0	0	0	0	0	0	0	0	0	0
${ }^{\text {PDPCCH }}$	1971	2078	0	0	0	0	0	0	0	0	0	0	0
PDPCL DPFEX	1972	2079	0	0	0	0	0	0	0	0	0	0	
DPFZW	1974	2080	0	0	0	0	0	0	0	0	0	0	0
BLENDL	1975	2082	0	0	0	0	0	0	0	0	0	0	0
MOFCTL	1976	2083	0	0	0	0	0	0	0	0	0	0	0
RTCURR	1979	2086	2911	2131	3126	2118	1655	3012	2306	1506	1529	1957	2593
TDPLD	1980	2087	0	0	O	0	0	0	0	0	0	0	0
MCNFB	1981	2088	0	0	0	0	0	0	0	0	0	0	0
BLBSL	1982	2089	0	0	0	0	0	0	0	0	0	0	0
ACCSPL	1983	2090	0	0	0	0	0	0	0	0	0	0	
ADFF1	1985	2092	0	0	0	0	0	0	0	0	0	0	0
VMPK3V	1986	2093	0	0	0	0	0	0	0	0	0	0	0
BLCMP2	1987	2094	0	0	0	0	0	0	0	0		0	0
AHDRTL	1988	2095	0	0	0	0	0	0	0	0	0	0	0
RADUSL	1989	2096	0	0	0	0	0	0	0	0	0	0	0
SMCNT	1990	2097	0	0	0	0	0	0	0	0	0	0	0
DEPVPL	1991	2098	0	0	0	0	0	0	0	0	0	0	0
ONEPSL	1992	2099	400	400	400	400	400	400	400	400	400	400	400
INPA1	1993	2100	0	0	0	0	0	0	0	0	0	0	0
INPA2	1994	2101	0		0	0	0	0	0	0	0	0	0
DBLIM	1995	2102	0	15000	0	15000	0	0	0	0	0	12000	12000
ABVOF	1996	2103	0	0	0	0	0	0	0	0	0	0	0
ABTSH TRQCST	1997	2104	0	0		0	0	0	,		0	0	0
TRQCST	1998	2105	680	929	315	934	1630	597	1170	1194	119	1839	1839
VLGOVR	1700	2107	0	0	0	0	0	0	0	0	0	0	0
RESERV	1701	2108	0	0		0	0	0	0	0	0	0	0
BELLTC	1702	2109	0	0	0	0	0	0	0	0	0	0	0
MGSTCM	1703	2110	1548	1291	1	787	2059	1025	1032	514	1048	1291	1291
DETQLM AMRDML	1704	2111	2600	0	3940	0	2148	2248	7735	2248	11600	5220	5140
NFILT	1706	2113	0	0	0	0	0	0	0	0	0	0	0
NINTCT	1735	2127	3695	3272	1350	6547	6680	3290	1688	3290	1172	3041	3041
MFWKCE	1736	2128	4000	4500	4000	6000	14000	5500	2500	11000	2500	6000	2000
MFWKBL	1752	2129	1046	1301	280	1808	539	1032	2829	1032	3358	1560	1553
LP2GP	1753	2130	0	0	0	0	0	0	0	0	0	0	0
LP6GP	1755	2132	0	0	0	0	0	0	0	0	0	0	0
PHDLY1	1756	2133	2070	0	3614	0	1054	2580	5140	2580	7192	2590	3085
PHDLY2	1757	2134	9000	0	8980	0	9000	8990	8995	4382	8990	8990	8990
DGCSMM	1782	2159	0	0	0	0	0	0	0	0	0	0	0
TRQCUP	1783 1784	2160	0	0	0	0	0	0	0	0	0	0	140
POVC21	1785	2162	32761	32765	32763	32765	32766	32763	32764	32767	32767	32765	32718
POVC22	1786	2163		40	60	40	23	60	48	14	14	33	629
POVCLMT	1787	2164	13493	7229	10250	7142	4361	10345	8466	2586	2665	6099	10707
MAXCRT	1788	2165	45				85	25	165	45	25	165	165

Symbol	Motor model		$\begin{aligned} & \alpha i S 1000 \\ & 2000 \mathrm{HV} \end{aligned}$
	Motor specification Motor ID No.		0298
			348
	$\begin{gathered} \text { FS15i } \\ 1808 \end{gathered}$	$\mathrm{FS} 30,166$, etc 2003	00001000
	1809	2004	01000011
	1883	2005	00000000
	1884	2006	00000000
	1951	2007	00000000
	1952	2008	00000000
	1953	2009	00000000
	1954	2010	00000000
	1955	2011	00000000
	1956	2012	00000000
	1707	2013	00000000
	1708	2014	00000000
	1750	2210	00000000
	1751	2211	00001010
	2713	2300	00000000
	2714	2301	00000000
PK1	1852	2040	840
PK2	1853	2041	-5329
PK3	1854	2042	-1361
PK1V	1855	2043	234
PK2V	1856	2044	-2096
PK3V	1857	2045	0
PK4V	1858	2046	-8235
POA1	1859	2047	1811
BLCMP	1860	2048	0
DPFMX	1861	2049	0
POK1	1862	2050	956
POK2	1863	2051	510
RESERV	1864	2052	0
PPMAX	1865	2053	21
PDDP	1866	2054	3787
PHYST	1867	2055	319
EMFCMP	1868	2056	0
PVPA	1869	2057	-2320
PALPH	1870	2058	-2500
PPBAS	1871	2059	0
TQLIM	1872	2060	7282
EMFLMT	1873	2061	0
POVC1	1877	2062	32309
POVC2	1878	2063	5734
TGALMLV	1892	2064	4
POVCLMT	1893	2065	27346
PK2VAUX	1894	2066	0
FILTER	1895	2067	0
FALPH	1961	2068	0
VFFLT	1962	2069	0
ERBLM	1963	2070	0
PBLCT	1964	2071	0
SFCCML	1965	2072	0
${ }^{\text {PSPTL }}$	1966	2073	12288
OSCTPL	1970	2077	12288
PDPCH	1971	2078	0
PDPCL	1972	2079	0
DPFEX	1973	2080	0
DPFEV	1974	2081	0
BLENDL	1975	2082	0
RTCURR	1979	2086	2834
TDPLD	1980	2087	0
MCNFB	1981	2088	0
BLBSL	1982	2089	0
ROBSTL	1983	2090	0
ACCSPL	1984	2091	0
ADFF1	1985	2092	0
VMPK3V	1986	2093	0
BLCMP2	1987	2094	0
AHDRTL	1988	2095	0
RADUSL	1989	2096	0
SMCNT	1990	2097	0
DEPVPL	1991	2098	0
ONEPSL	1992	2099	00
INPA1	1993	2100	0
INPA2	1994	2101	0
DBLIM	1995	2102	0
ABVOF	1996	2103	0
ABTSH	1997	2104	0
TRQCST	1998	2105	28573
LP24PA	1999	2106	0
VLGOVR	1700	2107	0
RESERV	1701	2108	0
BELLTC	1702	2109	0
MGSTCM	1703	2110	1296
DETQLM	1704	2111	3172
AMRDML	1705	2112	0
NFILT	1706	2113	
NINTCT	1735	2127	8637
MFWKCE	1736	2128	6000
MFWKBL	1752	2129	1047
LP2GP	1753	2130	0
LP4GP	1754 1755	2131	0
PHDLY1	1756	2133	2580
PHDLY2	1757	2134	8985
DGCSMM	1782	2159	0
TRQCUP	1783	2160	0
OVCSTP	1784	2161	140
POVC21	1785	2162	32745
POVC22	17886	2163	292
POVCLMT	17887	2164	13952
MAXCRT	1788	2165	365

		Motor model	$\begin{aligned} & \text { Lis6000B2 } \\ & \text { /2HV(400V) } \end{aligned}$	$\begin{aligned} & \text { Lis6000B2/2 } \\ & (200 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \text { Lis6000B2/2 } \\ & (400 \mathrm{~V}) \end{aligned}$	$\begin{gathered} \text { Lis6000B2/4 } \\ (200 \mathrm{~V}) \end{gathered}$	$\begin{aligned} & \text { Lis7500B2 } \\ & \text { /2HV(400V) } \end{aligned}$	$\begin{gathered} \text { Lis7500B2/2 } \\ (200 \mathrm{~V}) \end{gathered}$	$\begin{aligned} & \text { Lis } 7500 \mathrm{~B} 2 / 2 \\ & (400 \mathrm{~V}) \end{aligned}$	$\begin{gathered} \text { Lis7500B2/4 } \\ (200 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \text { Lis9000B2/2 } \\ (200 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \text { Lis9000B2/2 } \\ (400 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \text { Lis9000B2/4 } \\ (200 \mathrm{~V}) \end{gathered}$
Symbol	FS15i	Motor specification Motor ID No. FS30,16i,etc	$\begin{gathered} 0447-\mathrm{B010} \\ 367 \end{gathered}$	$\begin{gathered} \text { 0447-B110 } \\ 368 \end{gathered}$	$\begin{gathered} 0447-\mathrm{B} 110 \\ 369 \end{gathered}$	$\begin{gathered} 0447-\mathrm{B} 210 \\ 370 \end{gathered}$	$\begin{gathered} 0448-\mathrm{B010} \\ 371 \end{gathered}$	$\begin{gathered} 0448-\mathrm{B} 110 \\ 372 \end{gathered}$	$\begin{gathered} 0448-\mathrm{B} 110 \\ 373 \end{gathered}$	$\begin{gathered} 0448-\mathrm{B} 210 \\ 374 \end{gathered}$	$\begin{gathered} 0449-\mathrm{B} 110 \\ 376 \end{gathered}$	$\begin{gathered} 0449-\mathrm{B} 110 \\ 377 \end{gathered}$	$\begin{gathered} 0449-\mathrm{B} 210 \\ 378 \end{gathered}$
	1808	2003	00000000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00000000	00001000
	1809	2004	00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011
	1883	2005	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1884	2006	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1951	2007	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1952	2008	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1953	2009	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1954	2010	00000100	00000100	00000100	00000100	00000100	00000100	00000100	00000100	00000100	00000100	00000100
	1955	2011	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1956	2012	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1707	2013	00000110	00000000	00000000	00000000	00000000	00000000	00001000	00001000	00000110	00000010	00001010
	1708	2014	00000110	00000000	00000000	00000000	00000000	00000000	00001000	00001000	00000110	00000010	00001010
	1750	2210	00000100	00000100	00000100	00000000	00000100	00000100	00000100	00000100	00000100	00000100	00000100
	1751	2211	00001000	00000000	00001000	00000000	00001000	00001000	00001000	00001000	00000000	00001000	00000000
	2713	2300	10000000	10000000	10000000	10000000	10000000	10000000	10000000	10000000	10000000	10000000	10000000
	2714	2301	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
PK1	1852	2040	1469	961	766	1401	1742		1123	946	1240	834	1483
PK2	1853	2041	-9936	-5255	-4195	-10722	-6205	-5532	-6625	-6400	-7877	-4701	-7099
PK3	1854	2042	-1330	-2660	-2696	-2660	-2697	-2696	-2696	-1331	-2660	-1330	-2660
PK1V	1855	2043		13	13	15	9	8		8	12	9	10
PK2V	1856	2044	-96	-169	-169	-202	-117	-103	-92	-101	-158	-128	-141
PK3V	1857	2045		0	0	0	0	0	0	0	0	0	0
PK4V	1858	2046	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235
POA1	1859	2047	-11870	-6746	-6746	-5642	-9690	-11014	-12391	-11240	-7199	-8929	-8099
BLCMP	1860	2048	0	0	0	0	0	0	0	0	0	0	0
DPFMX	1861	2049	0	0	0	0	0	0	0	0	0	0	0
POK1	1862	2050	956	956	956	956	956	956	956	956	956	956	956
POK2	1863	2051	510	510	510	510	510	510	510	510	510	510	510
RESERV	1864	2052	0	0	0	0	0	0	0	0	0	0	0
PPMAX	1865	2053	21	21	21	21	21	21	21	21	21	21	21
PDDP	1866	2054	1894	1894	1894	1894	1894	1894	1894	1894	1894	1894	1894
PHYST	1867	2055	319	319	319	319	319	319	319	319	319	319	319
EMFCMP	1868	2056	-7680	0	0	0	0	-7936	0	-7680	0	-9216	0
PVPA	1869	2057	0	0	0	0	0	0	0	0	0	0	0
PALPH	1870	2058	0	0	0	0	0	0	0	0	0	0	0
PPBAS	1871	2059	0	0	0	0	0	0	0	0	0	0	0
TQLIM	1872	2060	4369	7282	7282	7282	5462	4551	4046	4046	5917	5259	4855
EMFLMT	1873	2061	120	120	120	120	120	120	120	120	120	120	120
POVC1	1877	2062	32749	32711	32711	32708	32714	32707	32709	32687	32707	32709	32696
POVC2	1878	2063	232	719	719	753	680	765	739	1010	758	737	895
TGALMLV	1892	2064	4	4	4	4	4	4	4	4	4	4	4
POVCLMT	1893	2065	688	2131	2131	2233	1075	832	858	799	1199	947	1151
PK2VAUX	1894	2066	0	0	0	0	0	0	0	0	0	0	0
FILTER	1895	2067	0	0	0	0	0	0	0	0	0	0	0
FALPH	1961	2068	0	0	0	0	0	0	0	0	0	0	0
VFFLT	1962	2069	0	0	0	0	0	0	0	0	0	0	0
ERBLM	1963	2070	0	0	0	0	0	0	0	0	0	0	0
PBLCT	1964	2071	0	0	0	0	0	0	0	0	0	0	0
SFCCML	1965	2072	0	0	0	0	0	0	0	0	0	0	0
PSPTL	1966	2073	0	0	0	0	0	0	0	0	0	0	0
AALPH	1967	2074	20480	0	0	0	20480	-24576	0	20480	0	20480	0
OSCTPL	1970	2077	0	0	0	0	0	0	0	0	0	0	0
PDPCH	1971	2078	0	0	0	0	0	0	0	0	0	0	0
PDPCL	1972	2079	0	0	0	0	0	0	0	0	0	0	0
DPFEX	1973	2080	0	0	0	0	0	0	0	0	0	0	0
DPFZW	1974	2081	0	0	0	0	0	0	0	0	0	0	0
BLENDL	1975	2082	0	0	0	0	0	0	0	0	0	0	0
MOFCTL	1976	2083	0	0	0	0	0	0	0	0	0	0	0
RTCURR	1979	2086	610	1074	1074	1184	763	671	671	658	805	716	789
TDPLD	1980	2087	0	0	0	0	0	0	0	0	0	0	0
MCNFB	1981	2088	0	0	0	0	0	0	0	0	0	0	0
BLBSL	1982	2089	0	0	0	0	0	0	0	0	0	0	0
ROBSTL	1983	2090	0	0	0	0	0	0	0	0	0	0	0
ACCSPL	1984	2091	0	0	0	0	0	0	0	0	0	0	0
ADFF1	1985	2092	0	0	0	0	0	0	0	0	0	0	0
VMPK3V	1986	2093	0	0	0	0	0	0	0	0	0	0	0
BLCMP2	1987	2094	0	0	0	0	0	0	0	0	0	0	0
AHDRTL	1988	2095	0	0	0	0	0	0	0	0	0	0	0
RADUSL	1989	2096	0	0	0	0	0	0	0	0	0	0	0
SMCNT	1990	2097	0	0	0	0	0	0	0	0	0	0	0
DEPVPL	1991	2098	0	0	0	0	0	0	0	0	0	0	0
ONEPSL	1992	2099	400	400	400	400	400	400	400	400	400	400	400
INPA1	1993	2100	0	0	0	0	0	0	0	0	0	0	0
INPA2	1994	2101	0	0	0	0	0	0	0	0	0	0	0
DBLIM	1995	2102	0	0	0	0	0	0	0	0	0	0	0
ABVOF	1996	2103	0	0	0	0	0	0	0	0	0	0	0
ABTSH	1997	2104	0	0	0	0	0	0	0	0	0	0	0
TRQCST	1998	2105	1768	1005	1005	911	1768	2010	2261	2051	2010	2261	2051
LP24PA	1999	2106	0	0	0	0	0	0	0	0	0	0	0
VLGOVR	1700	2107	0	0	0	0	0	0	0	0	0	0	0
RESERV	1701	2108	0	0	0	0	0	0	0	0	0	0	0
BELLTC	1702	2109	0	0	0	0	0	0	0	0	0	0	0
MGSTCM	1703	2110	0	0	0	0	0	0	0	0	0	0	0
DETQLM	1704	2111	0	0	0	0	0	0	0	0	0	0	0
AMRDML	1705	2112	0	0	0	0	0	0	0	0	0	0	0
NFILT	1706	2113	0	0	0	0	0	0	0	0	0	0	0
NINTCT	1735	2127	0	0	0	0	0	0	0	0	0	0	0
MFWKCE	1736	2128	0	0	0	0	0	0	0	0	0	0	0
MFWKBL	1752	2129	0	0	0	0	0	0	0	0	0	0	0
LP2GP	1753	2130	0	0	0	0	0	0	0	0	0	0	0
LP4GP	1754	2131	0	0	0	0	0	0	0	0	0	0	0
LP6GP	1755	2132	0	0	0	0	0	0	0	0	0	0	0
PHDLY1	1756	2133	0	0	0	0	0	0	0	0	0	0	0
PHDLY2	1757	2134	0	0	0	0	0	0	0	0	0	0	0
DGCSMM	1782	2159	0	0	0	0	0	0	0	0	0	0	0
TRQCUP	1783	2160	0	0	0	0	0	0	0	0	0	0	0
OVCSTP	1784	2161	0	0	0	0	0	0	0	0	0	0	0
POVC21	1785	2162	0	0	0	0	0	0	0	0	0	0	0
POVC22 POVCLM	1786 1787	2163	0	0	0	0	0	0	0	0	0	0	0
PAXCLMT	1787 1788	2164	0 85	80	80	-	85	160	185	0 365	165	185	-

		Motor model	$\begin{aligned} & \text { Lis } 3300 \mathrm{C} 1 / 2 \\ & (200 \mathrm{~V}) \end{aligned}$	$\begin{gathered} \text { Lis } 3300 \mathrm{C} 1 / 2 \\ (400 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \text { Lis9000C2/2 } \\ (200 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \mathrm{Lis} 9000 \mathrm{C} 2 / 2 \\ (400 \mathrm{~V}) \end{gathered}$	Lis11000C2 $12 \mathrm{HV}(400 \mathrm{~V})$	Lis11000C2/2 (200V)	Lis11000C2/2 (400V)	$\begin{aligned} & \text { Lis15000C2 } \\ & \text { /3HV(400V) } \end{aligned}$	$\begin{aligned} & \text { Lis } 15000 \mathrm{C} 2 / 2 \\ & (200 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \text { Lis } 15000 \mathrm{C} 2 / 3 \\ & (200 \mathrm{~V}) \end{aligned}$	$\begin{gathered} \text { Lis } 10000 \mathrm{C} 3 / 2 \\ (200 \mathrm{~V}) \end{gathered}$
		Motor specification Motor ID No. FS30,16i,etc	$\begin{gathered} 0451-\mathrm{B} 110 \\ 380 \end{gathered}$	$\begin{gathered} 0451-\mathrm{B} 110 \\ 381 \end{gathered}$	$\begin{gathered} 0454-\mathrm{B} 110 \\ 384 \end{gathered}$	$\begin{gathered} 0454-\mathrm{B} 110 \\ 385 \end{gathered}$	$\begin{gathered} 0455-\mathrm{B010} \\ 387 \end{gathered}$	$\begin{gathered} 0455-\mathrm{B} 110 \\ 388 \end{gathered}$	$\begin{gathered} 0455-\mathrm{B} 110 \\ 389 \end{gathered}$	$\begin{gathered} 0456-\mathrm{B010} \\ 391 \end{gathered}$	$\begin{gathered} 0456-\mathrm{B} 110 \\ 392 \end{gathered}$	$\begin{gathered} 0456-\mathrm{B} 210 \\ 394 \end{gathered}$	$\begin{gathered} 0457-\mathrm{B} 110 \\ 396 \end{gathered}$
Symbol	FS15i 1808	$\begin{gathered} \text { FS30,16i,etc } \\ 2003 \end{gathered}$	00001000	00001000	00001000	00001000	00001000	00001000	00001000			00001000	
	1809	2004	00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011	$\begin{aligned} & 00000000 \\ & 00000011 \end{aligned}$
	1883	2005	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1884	2006	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1951	2007	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1952	2008	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1953	2009	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1954	2010	00000100	00000100	00000100	00000100	00000100	00000100	00000100	00000100	00000100	00000100	00000100
	1955	2011	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1956	2012	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1707	2013	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00001010	00000000	00000000
	1708	2014	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00001010	00000000	00000000
	1750	2210	00000100	00000100	00000100	00000100	00000100	00000100	00000100	00000100	00000100	00000100	00000100
	1751	2211	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00000000	00000000	00001000
	2713	2300	10000000	10000000	10000000	10000000	10000000	10000000	10000000	10000000	10000000	10000000	10000000
	2714	2301	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
PK1	1852	2040	1346	636	587	910	605	431	702	989	1704	478	158
PK2	1853	2041	-6448	-3246	-3839	-4971	-3361	-3377	-4479	-6312	-13440	-3379	-1761
PK3	1854	2042	-2695	-2695	-2696	-2696	-2694	-2695	-2695	-2695	-2663	-2657	-2695
PK1V	1855	2043	9	9	8		10	10	9	10	- 7	10	10
PK2V	1856	2044	-126	-126	-110	-98	-136	-136	-121	-131	-87	-128	-141
PK3V	1857	2045	0	0	0	0	0	0	0	0	0	0	0
PK4V	1858	2046	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235
POA1	1859	2047	-9048	-9048	-10377	-11674	-8363	-8363	-9409	-8681	-13022	-8861	-8077
BLCMP	1860	2048	0	0	0	0	0	0	0	0	0	0	0
DPFMX	1861	2049	0	0	0	0	0	0	0	0	0	0	0
POK1	1862	2050	956	956	956	956	956	956	956	956	956	956	956
POK2	1863	2051	510	510	510	510	510	510	510	510	510	510	510
RESERV	1864	2052	0	0	0	0	0	0	0	0	0	0	0
PPMAX	1865	2053	21	21	21	21	21	21	21	21	21	21	21
PDDP	1866	2054	1894	1894	1894	1894	1894	1894	1894	1894	1894	1894	1894
PHYST	1867	2055	319	319	319	319	319	319	319	319	319	319	319
EMFCMP	1868	- 2056	0	0	0	0	0	0	0	0	0	0	0
PVPA	1869	2057	0	0	0	0	0	0	0	0	0	0	0
PALPH	1870	2058	0	0	0	0	0	0	0	0	0	0	0
PPBAS	1871	2059	0	0	0	,	0	0	0	0	0	0	0
TQLIM	1872	2060	5462	5462	6372	5663	7282	7282	6877	7282	4855	7282	7282
EMFLMT	1873	2061	120	120	120	120	120	120	120	120	120	120	120
POVC1	1877	2062	32708	32708	32729	32728	32723	32723	32730	32730	32729	32732	32722
POVC2	1878	2063	749	749	489	494	560	560	474	471	483	452	582
TGALMLV	1892	2064	4	4	4	4	4	4	4	4	4	4	4
POVCLMT	1893	2065	1184	1184	1112	879	1661	1661	1312	1396	621	1340	1719
PK2VAUX	1894	2066	0	0	0	0	0	0	0	0	0	0	0
FILTER	1895	2067	0	0	0	0	0	0	0	0	0	0	0
FALPH	1961	2068	0	0	0	0	0	0	0	0	0	0	0
VFFLT	1962	2069	0	0	0	0	0	0	0	0	0	0	0
ERBLM	1963	2070	0	0	0	0	0	0	0	0	0	0	0
PBLCT	1964	2071	0	0	0	0	0	0	0	0	0	0	0
SFCCML	1965	2072	0	0	0	0	0	0	0	0	0	0	0
PSPTL	1966	2073	0	0	0	0	0	0	0	0	0	0	0
AALPH	1967	2074	0	0	-16384	0	-24576	-24576	0	0	0	0	-24576
OSCTPL	1970	2077	0	0	0	0	0	0	0	0	0	0	0
PDPCH	1971	2078	0	0	0	0	0	0	0	0	0	0	0
PDPCL	1972	2079	0	0	0	0	0	0	0	0	0	0	0
DPFEX	1973	2080	0	0	0	0	0	0	0	0	0	0	0
DPFZW	1974	2081	0	0	0	0	0	0	0	0	0	0	0
BLENDL	1975	2082	0	0	0	0	0	0	0	0	0	0	0
MOFCTL	1976	2083	0	0	0	0	0	0	0	0	0	0	0
RTCURR	1979	2086	801	801	776	689	948	948	843	869	579	852	964
TDPLD	1980	2087	0	0	0	0	0	0	0	0	0	0	0
MCNFB	1981	2088	0	0	0	0	0	0	0	0	0	0	0
BLBSL	1982	2089	0	0	0	0	0	0	0	0	0	0	0
ROBSTL	1983	2090	0	0	0	0	0	0	0	0	0	0	0
ACCSPL	1984	2091	0	0	0	0	0	0	0	0	0	0	0
ADFF1	1985	2092	0	0	0	0	0	0	0	0	0	0	0
VMPK3V	1986	2093	0	0	0	0	0	0	0	0	0	0	0
BLCMP2	1987	2094	0	0	0	0	0	0	0	0	0	0	0
AHDRTL	1988	2095	0	0	0	0	0	0	0	0	0	0	0
RADUSL	1989	2096	0	0	0	0	0	0	0	0	0	0	0
SMCNT	1990	2097	0	0	0	0	0	0	0	0	0	0	0
DEPVPL	1991	2098	0	0	0	0	0	0	0	0	0	0	0
ONEPSL	1992	2099	400	400	400	400	400	400	400	400	400	400	400
INPA1	1993	2100	0	0	0	0	0	0	0	0	0	0	0
INPA2	1994	2101	0	0	0	0	0	0	0	0	0	0	0
DBLIM	1995	2102	0	0	0	0	0	0	0	0	0	0	0
ABVOF	1996	2103	0	0	0	0	0	0	0	0	0	0	0
ABTSH	1997	2104	0	0	0	0	0	0	0	0	0	0	0
TRQCST	1998	2105	741	741	2087	2348	2087	2087	2348	3104	4656	3168	1865
LP24PA	1999	2106	0	0	0	0	0	0	0	0	0	0	0
VLGOVR	1700	2107	0	0	0	0	0	0	0	0	0	0	0
RESERV	1701	2108	0	0	0	0	0	0	0	0	0	0	0
BELLTC	1702	2109	0	0	0	0	0	0	0	0	0	0	0
MGSTCM	1703	2110	0	0	0	0	0	0	0	0	0	0	0
DETQLM	1704	2111	0	0	0	0	0	0	0	0	0	0	0
AMRDML	1705	2112	0	0	0	0	0	0	0	0	0	0	0
NFILT	1706	2113	0	0	0	0	0	0	0	0	0	0	0
NINTCT	1735	2127	0	0	0	0	0	0	0	0	0	0	0
MFWKCE	1736	2128	0	0	0	0	0	0	0	0	0	0	0
MFWKBL	1752	2129	0	0	0	0	0	0	0	0	0	0	0
LP2GP	1753	2130	0	0	0	0	0	0	0	0	0	0	0
LP4GP	1754	2131	0	0	0	0	0	0	0	0	0	0	0
LP6GP	1755	2132	0	0	0	0	0	0	0	0	0	0	0
PHDLY1	1756	2133	0	0	0	0	0	0	0	0	0	0	0
PHDLY2	1757	2134	0	0	0	0	0	0	0	0	0	0	0
DGCSMM	1782	2159	0	0	0	0	0	0	0	0	0	0	0
TRQCUP	1783	2160	0	0	0	0	0	0	0	0	0	0	0
OVCSTP	1784	2161	0	0	0	0	0	0	0	0	0	0	0
POVC21	1785	2162	0	0	0	0	0	0	0	0	0	0	0
POVC22	1786	2163	0	0	0	0	0	0	0	0	0	0	0
POVCLMT MAXCRT	1787 1788	2164 2165	0 85	0 85	0 165	0 185	0 85	0 165	0 185	0 185	0 365	0 365	0

		Motor model	$\begin{gathered} \text { Lis } 10000 \mathrm{C} 3 / 2 \\ (400 \mathrm{~V}) \end{gathered}$	Lis17000C3/2 (200V)	Lis17000C3/2 (400V)	$\begin{gathered} \text { DiS85/400 } \\ (200 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \text { DiS85/400 } \\ (400 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \text { DiS110/300 } \\ (200 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \text { DiS110/300 } \\ (400 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \text { DiS260/600 } \\ (200 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \text { DiS260/600 } \\ (400 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \text { DiS370/300 } \\ (200 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \text { DiS370/300 } \\ (400 \mathrm{~V}) \end{gathered}$
		Motor specification Motor ID No.	$\begin{gathered} 0457-\mathrm{B} 110 \\ 397 \end{gathered}$	$\begin{gathered} 0459-\mathrm{B} 110 \\ 400 \end{gathered}$	$\begin{gathered} 0459-\mathrm{B} 110 \\ 401 \end{gathered}$	$\begin{gathered} 0483-B 20 x \\ 423 \end{gathered}$	$\begin{gathered} 0483-\mathrm{B} 20 \mathrm{x} \\ 424 \end{gathered}$	$\underset{425}{0484-B 10 x}$	$\begin{gathered} 0484-B 10 x \\ 426 \end{gathered}$	$\begin{gathered} 0484-B 31 x \\ 429 \end{gathered}$	$\begin{gathered} 0484-B 31 x \\ 430 \end{gathered}$	$\begin{gathered} \text { 0484-B40x } \\ 431 \end{gathered}$	$\begin{gathered} 0484-B 40 x \\ 432 \end{gathered}$
Symbol	FS15i	FS30,16i,etc											
	1808	2003	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000
	1809	2004	00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011	00000011
	1883	2005	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1884	2006	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1951	2007	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1952	2008	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1953	2009	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1954	2010	00000100	00000100	00000100	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1955	2011	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1956	2012	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1707	2013	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00001000	00001000	00000000	00000000
	1708	2014	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00001000	00001000	00000000	00000000
	1750	2210	00000100	00000100	00000100	00000100	00000100	00000100	00000100	00000100	00000100	00000100	00000100
	1751	2211	00000000	00001000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	2713	2300	10000000	10000000	10000000	10000100	10000100	10000100	10000100	10000100	10000100	10000100	10000100
	2714	2301	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
PK1	1852	2040	839	2182	253	344	172	156	78	571	321	478	239
PK2	1853	2041	-4103	-8540	-3693	-2368	-1184	-1045	-523	-4138	-2327	-3338	-1669
PK3	1854	2042	-2695	-2696	-2696	-2491	-2491	-2448	-2448	-2573	-2573	-2515	-2515
PK1V	1855	2043	9			242	242	420	420	240	213	264	264
PK2V	1856	2044	-125	-99	-99	-2164	-2164	-3763	-3763	-2146	-1907	-2361	-2361
PK3V	1857	2045	0	0	0	0	0	0	0	0	0	0	0
PK4V	1858	2046	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235
POA1	1859	2047	-9086	-11497	-11497	3897	3897	2241	2241	3931	4422	3572	3572
BLCMP	1860	2048	0	0	0	0	0	0	0	0	0	0	0
DPFMX	1861	2049	0	0	0	0	0	0	0	0	0	0	0
POK1	1862	2050	956	956	956	956	956	956	956	956	956	956	956
POK2	1863	2051	510	510	510	510	510	510	510	510	510	510	510
RESERV	1864	2052	0	0	0	0	0	0	0	0	0	0	0
PPMAX	1865	2053	21	21	21	21	21	21	21	21	21	21	21
PDDP	1866	2054	1894	1894	1894	1894	1894	1894	1894	1894	1894	1894	1894
PHYST	1867	2055	319	319	319	319	319	319	319	319	319	319	319
EMFCMP	1868	2056	0	0	0	0	0	0	0	0	0	0	0
PVPA	1869	2057	0	0	0	0	0	0	0	0	0	0	0
PALPH	1870	2058	0	0	0	0	0	0		0	0	0	0
PPBAS	1871	2059	0	0	0	0	0	0	0	0	0	0	0
TQLIM	1872	2060	6877	6887	6877	7282	7282	7282	7282	5352	4758	7282	7282
EMFLMT	1873	2061	120	120	120	0	0	,	0	0	0	0	0
POVC1	1877	2062	32720	32711	32711	32683	32683	32682	32682	32722	32731	32705	32705
POVC2	1878	2063	597	709	709	1069	1069	1069	1069	578	457	782	782
TGALMLV	1892	2064	4	4	,	4	4	4	4	4	4	4	4
POVCLMT	1893	2065	1358	981	981	3172	3172	3173	3173	1714	1354	2322	2322
PK2VAUX	1894	2066	0	0	0	0	0	0	0	0	0	0	0
FILTER	1895	- 2067	0	0	0	0	0	0	0	0	0	0	0
FALPH	1961	2068	0	0	0	0	0	0	0	0	0	0	0
VFFLT	1962	2069	0	0	0	0	0	0	0	0	0	0	0
ERBLM	1963	2070	0	0	0	0	0	0	0	0	0	0	0
PBLCT	1964	2071	0	0	0	0	0	0	0	0	0	0	0
SFCCML	1965	2072	0	0	0	0	0	0	0	0	0	0	0
PSPTL	1966	2073	0	0	0	0	0	0		0	0	0	0
AALPH	1967	2074	20480	20480	20480	0	0	0	0	0	0	0	0
OSCTPL	1970	2077	0	0	0	0	0	0	0	0	0	0	0
PDPCH	1971	2078	0	0	0	0	0	0	0	0	0	0	0
PDPCL	1972	2079	0	0	0	0	0	0	0	0	0	0	0
DPFEX	1973	2080	0	0	0	0	0	0	0	0	0	0	0
DPFZW	1974	2081	0	0	0	0	0	0	0	0	0	0	0
BLENDL	1975	2082	0	0	0	0	0	0	0	0	0	0	0
MOFCTL	1976	2083	0	0	0	0	0	0	0	0	0	0	0
RTCURR	1979	2086	857	729	729	1310	1310	1310	1310	963	856	1121	1121
TDPLD	1980	2087	0	0	0	0	0	0	0	0	0	0	0
MCNFB	1981	2088	0	0	0	0	0	0	0	0	0	0	0
BLBSL	1982	2089	0		0		0	0	0	0	0	0	0
ROBSTL	1983	2090	0	0	0	0	0	0	0	0	0	0	0
ACCSPL	1984	2091	0	0	0	0	0	0	0	0	0	0	0
ADFF1	1985	2092	0	0	0	0	0	0	0	0	0	0	0
VMPK3V	1986	2093	0	0	0	0	0	0	0	0	0	0	0
BLCMP2	1987	2094	0	0	0	0	0	0	0	0	0	0	0
AHDRTL	1988	2095	0	0	0	0	0	0	0	0	0	0	0
RADUSL	1989	2096	0	0	0	0	0	0	0	0	0	0	0
SMCNT	1990	2097	0	0	0	0	0	0	0	0	0	0	0
DEPVPL	1991	2098	0	0	0	0	0	0	0	0	0	0	0
ONEPSL	1992	2099	400	400	400	400	400	400	400	400	400	400	400
INPA1	1993	2100	0	0	0	0	0	0	0	0	0	0	0
INPA2	1994	- 2101	0	0	0	0	0	0	0	0	0	0	0
DBLIM	1995	- 2102	0	0	0	0	0	0	0	0	0	0	0
ABVOF	1996	- 2103	0	0	0	0	0	0	0	0	0	0	0
ABTSH	1997	2104	0	0	0	0	0	0	0	0	0	0	0
TRQCST	1998	2105	2098	4197	4197	1167	1167	1510	1510	4857	5464	6020	6020
LP24PA	1999	- 2106	0	0	0	0	0	0	0	0	0	0	0
VLGOVR	1700	- 2107	0	0	0	0	0	0	0	0	0	0	0
RESERV	1701	2108	0	0	0	0	0	0	0	0	0	0	0
BELLTC	1702	- 2109	0	0	0	0	0	0	0	0	0	0	0
MGSTCM	1703	2110	0	0	0	0	0	0	0	0	0	0	0
DETQLM	1704	2111	0	0	0	0	0	0	0	0	0	0	0
AMRDML	1705	- 2112	0	0	0	0	0	0	0	0	0	0	0
NFILT	1706	- 2113	0	0	0	0	0	0	0	0	0	0	0
NINTCT	1735	2127	0	0	0	0	0	0	0	0	0	0	0
MFWKCE	1736	- 2128	0	0	0	0	0	0	0	0	0	0	0
MFWKBL	1752	2129	0	0	0	0	0	0	0	0	0	0	0
LP2GP	1753	2130	0	0	0	0	0	0	0	0	0	0	0
LP4GP	1754	2131	0	0	0	0	0	0	0	0	0	0	0
LP6GP	1755	- 2132	0	0	0	0	0	0	0	0	0	0	0
PHDLY1	1756	- 2133	0	0	0	0	0	0	0	0	0	0	0
PHDLY2	1757	2134	0	0	0	0	0	0	0	0	0	0	0
DGCSMM	1782	2159	0	0	0	0	0	0	0	0	0	0	0
TRQCUP	1783	2160	0	0	0	0	0	0	0	0	0	0	0
OVCSTP	1784	2161	0	0	0	0	0	0	0	0	0	0	0
POVC21	1785	- 2162	0	0	0	0	0	0	0	0	0	0	0
POVC22	1786	- 2163	0	0	0	0	0	0	0	0	0	0	0
POVCLMT MAXCRT	1787 1788	2164 2165	O	0 365	0 365	0 45	0 45	0 85	0 85	0 165	0 185	0 85	0 85

6.3 PARAMETERS FOR HRV1 CONTROL (FOR Series 0i-A)

9066 series (Series 0i-A)
NOTE
The parameters listed below cannot be loaded automatically.
In parameter No. 2020 for entering a motor ID number, enter an appropriate number (15, for example), and perform automatic loading. Then, overwrite these parameters manually.

APPENDIX

ANALOG SERVO INTERFACE SETTING PROCEDURE

(1) Overview

Appendix A describes the method of setting parameters required when using the analog servo function with an analog servo interface unit.
. CAUTION
1 For the CNCs that support this function, contact FANUC.
2 For analog servo axes, only the feed-forward, backlash compensation, pitch error compensation, and position gain switch functions can be used as digital servo functions.

(2) Series and editions of applicable servo software

(Series 30i,31i,32i)
Series 90D0/J(10) and subsequent editions
Series 90E0/J(10) and subsequent editions
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}$, Power Mate i)
Series $90 \mathrm{~B} 0 / \mathrm{A}(01)$ and subsequent editions
Series 90B1/A(01) and subsequent editions
Series $90 \mathrm{~B} 6 / \mathrm{A}(01)$ and subsequent editions
(3) Setting parameters
(1) Setting start: Switch on the CNC power from an emergency stop.
(2) Set up the FSSB. Switch the power off and on again.
(3) Initialize the servo parameters. Switch the power off and on again.
(4) Enable the analog servo interface function. Switch the power off and on again. Now setting is completed.
(4) FSSB setting
(a) Connecting the analog servo interface unit requires that the FSSB be set up manually. (The FSSB setting screen cannot be used.)

(b) Directly enter all parameters listed in the following table. Before doing this, understand the meaning of each parameter sufficiently. For detailed descriptions about parameter setting, refer to the respective CNC Connection Manuals and Parameter Manuals. Analog and digital servo axes can be used together as shown in the reference examples below.

Parameter number			Meaning
FS15i	FS16i, PM i	FS30i	
1023	1023	1023	Servo axis number for each axis
1093\#6, \#7	1905\#6, \#7	1905\#6, \#7, \#1, \#2	Selection of interface unit used
1080 to 1089	1910 to 1919	14340 to 14357	Conversion table value for slave number
1120 to 1129	1970 to 1979	14358 to 14375	Conversion table value for slave number
1094	1936	1936	Connector number for interface unit 1
1095	1937	1937	Connector number for interface unit 2
-	-	1938	Connector number for interface unit 3
-	-	1939	Connector number for interface unit 4
-	-	14376 to 14383	Conversion table value for connector number of interface unit 1
-	-	14384 to 14391	Conversion table value for connector number of interface unit 2
-	-	14392 to 14400	Conversion table value for connector number of interface unit 3
-	-	14401 to 14407	Conversion table value for connector number of interface unit 4
$\begin{aligned} & \hline 1100 \text { to } 1109 \\ & 1130 \text { to } 1139 \\ & \hline \end{aligned}$	-	-	Conversion table value for number of slave connected to 1st axis card on additional-axis board
$\begin{aligned} & 1110 \text { to } 1119 \\ & 1140 \text { to } 1149 \end{aligned}$	-	-	Conversion table value for number of slave connected to 2nd axis card on additional-axis board
-	-	14408 to 14425	Conversion table value for slave number on additional-axis board
-	-	14444 to 14451	Conversion table value for connector number of interface unit 1 on additional-axis board
-	-	14452 to 14459	Conversion table value for connector number of interface unit 2 on additional-axis board

NOTE

1 The FSSB settings for the analog servo interface unit are also used for the separate detector interface unit.
(Bits 6, 7, 1, and 2 of parameter No. 1905 or bits 6 and 7 of parameter No. 1093 are used in common.)
2 The slave number of an analog servo axis must be added to behind the last slave number of the units actually connected to the FSSB line. (See the setting examples provided below.)
3 With the FS15i, 16i, and PMi, when an analog servo interface unit is used, HRV3 control (high-speed HRV current control) cannot be used.
4 With the FS30i, up to two interface units (separate detector interface unit and (or) analog servo interface unit) can be connected per FSSB line. Therefore, the first and second interface units are connected to the FSSB1 line, and the third and fourth interface units are connected to the FSSB2 line.
With the FS15i, 16i, and PMi, up to two units (separate detector interface unit, analog servo interface unit, and (or) FSSB I/O unit) can be connected to the entire FSSB line of one axis card.
(Reference)
FSSB setting example where an analog servo interface unit is used
[Setting example 1: Two analog servo axes]
Let the analog servo interface unit be slave 1. Assume that analog amplifiers are connected behind the analog servo interface unit, and let them be slaves 2 and 3 sequentially.

Parameter No. (FS15i)	1080	1081	1082	1083	1084	1085	1086	1087	1088	1089
Parameter No. (FS16i, PM i)	1910	1911	1912	1913	1914	1915	1916	1917	1918	1919
Set value	16	0	1	40	40	40	40	40	40	40

Parameter No. (FS30)	14340	14341	14342	14343 to 14357
Set value	64	0	1	-96

Parameter No. (FS15i)	No.1023	No.1093	No.1094	No.1095
Parameter No. (FS16i, PM i) (FS30i)	No.1023	No.1905	No.1936	No.1937
X axis	1	01000000	0	0
Y axis	2	01000000	1	0

Parameter No. (FS30i)	14376	14377	14378 to 14407
Set value	0	1	32

[Setting example 2: One digital servo axis + one analog servo axis]
The digital servo amplifier and analog servo interface unit are slaves 1 and 2 , as in the sequence in which they are connected to the FSSB. Assuming that the axis connected to the analog servo amplifier is behind the analog servo interface unit, it is slave 3 .

Slave 2

Parameter No. (FS15i)	1080	1081	1082	1083	1084	1085	1086	1087	1088	1089
Parameter No. (FS16i, PM i)	1910	1911	1912	1913	1914	1915	1916	1917	1918	1919
Set value	0	16	1	40	40	40	40	40	40	40

Parameter No. (FS30i)	14340	14341	14342	14343 to 14357
Set value	0	64	1	-96

Parameter No. $($ FS15 $)$	No.1023	No.1093	No.1094	No.1095
Parameter No. (FS16 i, PM i $)$ (FS30 i)	No.1023	No.1905	No.1936	No.1937
X axis	1	00000000	0	0
Y axis	2	01000000	0	0

Parameter No. (FS30i)	14376	14377 to 14407
Set value	0	32

[Setting example 3: Five analog servo axes + two digital servo axes]
The first analog servo interface unit (including expansion) is slave 1, two digital servo amplifiers are slaves 2 and 3, the second analog servo interface unit is slave 4 , as in the sequence in which they are connected to the FSSB. Assuming that the analog amplifiers are connected behind the analog servo interface unit, they are slaves 5 to 9 .

Parameter No. (FS15i)	1080	1081	1082	1083	1084	1085	1086	1087	1088	1089
Parameter No. (FS16i, PM i)	1910	1911	1912	1913	1914	1915	1916	1917	1918	1919
Set value	16	4	5	48	0	1	2	3	6	40
Parameter No. (FS30 $\boldsymbol{\text { }}$)	14340	14341	14342	14343	14344	14345	14346	14347	14348	14349 to 14357
Set value	64	4	5	-56	0	1	2	3	6	-96

Parameter No. (FS15i)		No. 1023		No. 1093	No. 1094		No. 1095
Parameter (FS16i, PMi),		No. 1023		No. 1905	No. 1936		No. 1937
X axis		1		01000000	0		0
Y axis		2		01000000	1		0
Z axis		3		01000000	2		0
A axis		4		01000000	3		0
B axis		5		00000000	0		0
C axis		6		00000000	0		0
U axis		7		10000000	0		0
$\begin{array}{\|c} \hline \text { Parameter No. } \\ \text { (FS30i) } \\ \hline \end{array}$	14376	14377	14378	14379	$\begin{array}{c\|} \hline 14380 \\ \text { to } 14383 \end{array}$	14384	$\begin{aligned} & 14385 \\ & \text { to } 14407 \end{aligned}$
Set value	0	1	2	3	32	6	32

(5) Servo parameter initialization

For axes connected to an analog servo circuit, initialize the servo parameters as listed below.

Parameter number		Name	Set value
FS15i	FS30i,16i, etc.		
1804	2000	Initialization bit	00000000
1874	2020	Motor ID number	50 (for HRV1) 252 (for HRV2)
1806	2001	AMR	00000000
1820	1820	CMR	Perform the same initialization as for digital servo according to your machine tool.
1977	2084	FFG (numerator)	
1978	2085	FFG (denominator)	
1879	2022	Direction of movement	111 (counterclockwise) or -111 (clockwise)
1896	1821	Reference counter	Specify the number of pulses per motor revolution (after FFG) in the same manner as for the digital servo circuit.
1876	2023	Number of velocity pulses	Set value $=1536.797 \times \mathrm{E}$ where E is the voltage (V) that corresponds to a velocity command of $1000 \mathrm{~min}^{-1}$.
1891	2024	Number of position pulses	Specify the number of pulses per motor revolution (before FFG) in the same manner as for the digital servo circuit.

NOTE

Although difference in HRV setting is not directly related to analog servo axes, they must be initialized with the same HRV setting by reason of the relationship with the settings of other digital servo axes.
The Series $30 i$ does not support HRV1 control, so it is necessary to perform initialization with the motor ID number (252) for HRV2.

(6) Setting the analog servo function

To enable the analog servo function, set the following parameters for the axes to be connected to an analog servo circuit. (It is also necessary to enable the dummy serial feedback function.)

Specify 0 for the axis to be connected to an analog servo circuit.

PARAMETERS SET WITH VALUES IN DETECTION UNITS

If the detection unit is changed with a CMR or flexible feed gear, it is also necessary to change the parameters that are set with values in detection units. This appendix lists these parameters.
For details of these parameters, refer to the respective CNC parameter manuals.

No.	Description
1718	For vibration damping control : position pulses conversion coefficient
1730	Variable proportional gain function in the stop state : stop judgement level
1827	Effective area (in-position check) for individual axis
1828	Position error limit for individual axis during movement
1829	Position error limit for individual axis at stop
1830	Position error limit for individual axis with servo off
1832	Position error limit for individual axis with feed at stop
1837	Position error limit during rigid tapping movement
1841	Servo error amount within which reference position return is assumed to be possible
1843	Position error limit with torque limit skipped
1844	Grid shift for reference position shift function
1846	Distance for starting second stage compensation in smooth backlash compensation
1847	Distance for ending second stage compensation in smooth backlash compensation
1848	First stage compensation value in smooth backlash compensation
1849	Backlash compensation for individual axis at rapid traverse
1850	Grid shift for individual axis
1851	Backlash compensation for individual axis
1881	Permissible error amount for starting chopping compensation
1896	Mark 1 intervals on linear scale having reference marks
1912	Zero-width synchronization error for each axis
1913	Maximum permissible synchronization error for each axis at rapid traverse
1914	Maximum permissible synchronization error for each axis at stop
1917	Zero-width synchronization error for each axis No. 2
1975	Second stage start/end parameter (when the two-stage backlash acceleration function is used)
1994	Overshoot compensation enable level
1996	Unexpected disturbance torque detection pull-back amount
2786	Lifting function against gravity at emergency stop : distance to lift
2795	Torsion preview control: maximum compensation value (LSTCM)
2799	Torsion preview control: acceleration torsion compensation value K1 (LSTK1)
2800	Torsion preview control: acceleration torsion compensation value K2 (LSTK2)
2801	Torsion preview control: acceleration torsion compensation value K3 (LSTK3)
2804	Torsion preview control: acceleration torsion compensation value K1N (LSTK1N)
2805	Torsion preview control: acceleration torsion compensation value K2N (LSTK2N)
2806	Torsion preview control: acceleration torsion compensation value K3N (LSTK3N)
2817	Synchronous axes automatic compensation function : maximum compensation value
5226	Mark 2 intervals on linear scale having reference marks
5227	Distance from origin to reference position on linear scale having reference marks
5423	Pitch error compensation magnification
5428	Pitch error compensation (absolute value) at reference position for movement to reference position in direction opposite to origin return direction
5433	Second cyclic pitch error compensation magnification
5449	Three-dimensional error compensation magnification
5450	Three-dimensional error compensation magnification
5451	Three-dimensional error compensation magnification
5471	Compensation α at compensation point number a for individual axis
5472	Compensation β at compensation point number b for individual axis

No.	
5473	Compensation γ at compensation point number c for individual axis
5474	Compensation ε at compensation point number d for individual axis
5504	Compensation point number d for movement axis 1 subjected to straightness compensation
5551	Compensation at compensation point number a for movement axis 1
5552	Compensation at compensation point number b for movement axis 1
5553	Compensation at compensation point number c for movement axis 1
5554	Compensation at compensation point number d for movement axis 1
5561	Compensation at compensation point number a for movement axis 2
5562	Compensation at compensation point number b for movement axis 2
5563	Compensation at compensation point number c for movement axis 2
5564	Compensation at compensation point number d for movement axis 2
5571	Compensation at compensation point number a for movement axis 3
5572	Compensation at compensation point number b for movement axis 3
5573	Compensation at compensation point number c for movement axis 3
5574	Compensation at compensation point number d for movement axis 3
5591	Compensation magnification 1 for movement axis 1 subjected to straightness compensation
5592	Compensation magnification 1 for movement axis 2 subjected to straightness compensation
5593	Compensation magnification 1 for movement axis 3 subjected to straightness compensation
5594	Compensation magnification 1 for movement axis 4 subjected to straightness compensation
5595	Compensation magnification 1 for movement axis 5 subjected to straightness compensation

B. 2 PARAMETERS FOR Series 16i, 18i, AND $21 i$

No.	Description
1821	Reference counter capacity for individual axis
1826	Effective area (in-position check) for individual axis
1827	Effective area (in-position check) for individual axis at cutting feed
1828	Position error limit for individual axis during movement
1829	Position error limit for individual axis at stop
1830	Position error limit for individual axis with servo off
1832	Position error limit for individual axis with feed at stop
1836	Servo error amount within which reference position return is assumed to be possible
1846	Distance for starting second stage compensation in smooth backlash compensation
1847	Distance for ending second stage compensation in smooth backlash compensation
1848	First stage compensation value in smooth backlash compensation
1850	Grid shift/reference position shift for individual axis
1851	Backlash compensation for individual axis
1852	Backlash compensation for individual axis at rapid traverse
1876	Inductosyn 1-pitch interval
1877	Inductosyn shift
1882	Mark 2 intervals on linear scale having reference marks
1883	Distance from origin to reference position on linear scale having reference marks
1884	Distance from origin to reference position on linear scale having reference marks
1885	Permissible cumulative movement value during torque control (PMC axis control)
1886	Position error with torque control canceled (PMC axis control)
2033	For vibration damping control : position pulses conversion coefficient
2082	Second stage start/end parameter (when the two-stage backlash acceleration function is used)
2101	Overshoot compensation enable level
2103	Unexpected disturbance torque detection amount retrace distance
2119	Function for changing the proportional gain in the stop state : stop judgement level
2373	Lifting function against gravity at emergency stop : distance to lift
2382	Torsion preview control: maximum compensation value (LSTCM)
2386	Torsion preview control: acceleration torsion compensation value K1 (LSTK1)
2387	Torsion preview control: acceleration torsion compensation value K2 (LSTK2)
2388	Torsion preview control: acceleration torsion compensation value K3 (LSTK3)
2391	Torsion preview control: acceleration torsion compensation value K1N (LSTK1N)
2392	Torsion preview control: acceleration torsion compensation value K2N (LSTK2N)
2393	Torsion preview control: acceleration torsion compensation value K3N (LSTK3N)
2404	Synchronous axes automatic compensation function : maximum compensation value
3623	Pitch error compensation magnification for individual axis
5300	Rigid tapping effective area (in-position check) for tapping axis
5302	Second-spindle rigid tapping effective area (in-position check) for tapping axis
5304	Third-spindle rigid tapping effective area (in-position check) for tapping axis
5310	Rigid tapping position error limit for tapping axis during movement
5312	Rigid tapping position error limit for tapping axis at stop
5314	Rigid tapping position error limit for tapping axis during movement
5350	Second-spindle rigid tapping position error limit for tapping axis during movement
5352	Second-spindle rigid tapping position error limit for tapping axis at stop
5354	Third-spindle rigid tapping position error limit for tapping axis during movement
5356	Third-spindle rigid tapping position error limit for tapping axis at stop
5761	Compensation at compensation point number a for movement axis 1 (straightness compensation)
5762	Compensation at compensation point number b for movement axis 1 (straightness compensation)
5763	Compensation at compensation point number c for movement axis 1 (straightness compensation)

No.	Description
5764	Compensation at compensation point number d for movement axis 1 (straightness compensation)
5771	Compensation at compensation point number a for movement axis 2 (straightness compensation)
5772	Compensation at compensation point number b for movement axis 2 (straightness compensation)
5773	Compensation at compensation point number c for movement axis 2 (straightness compensation)
5774	Compensation at compensation point number d for movement axis 2 (straightness compensation)
5781	Compensation at compensation point number a for movement axis 3 (straightness compensation)
5782	Compensation at compensation point number b for movement axis 3 (straightness compensation)
5783	Compensation at compensation point number c for movement axis 3 (straightness compensation)
5784	Compensation at compensation point number d for movement axis 3 (straightness compensation)
5871	Compensation α at compensation point number a for individual axis (gradient compensation)
5872	Compensation β at compensation point number b for individual axis (gradient compensation)
5873	Compensation γ at compensation point number c for individual axis (gradient compensation)
5874	Compensation ε at compensation point number d for individual axis (gradient compensation)
8313	Limit to difference in position error between master and slave axes (pair under simplified synchronization control)
8315	Maximum compensation for synchronization (pair under simplified synchronization control)
8316	Difference in reference counter between master and slave axes (pair under simplified synchronization control)
8323	Limit to difference in position error between master and slave axes (more than one pair under simplified synchronization control)
8325	Maximum compensation for synchronization (more than one pair under simplified synchronization control)
8326	Difference in reference counter between master and slave axes (more than one pair under simplified synchronization control)

- \quad Setting data for shifting external machine coordinate systems
B. 3 PARAMETERS FOR THE Power Mate \boldsymbol{i}

No.	Description
1821	Reference counter capacity for individual axis
1826	Effective area (in-position check) for individual axis
1827	Effective area (in-position check) for individual axis at cutting feed
1828	Position error limit for individual axis during movement
1829	Position error limit for individual axis at stop
1830	Position error limit for individual axis with servo off
1832	Position error limit for individual axis with feed at stop
1836	Servo error amount within which reference position return is assumed to be possible (when ISC is in use)
1850	Grid shift/reference position shift for individual axis
1851	Backlash compensation for individual axis
1852	Backlash compensation for individual axis at rapid traverse
1872*	Servo position error check value
1882	Mark 2 intervals on linear scale having reference marks
1883	Distance from origin to reference position on linear scale having reference marks
1884	Distance from origin to reference position on linear scale having reference marks
1885	Permissible cumulative movement value during torque control (PMC axis control)
1886	Position error with torque control canceled (PMC axis control)
2033	For vibration damping control : position pulses conversion coefficient
2082	Second stage start/end parameter (when the two-stage backlash acceleration function is used)
2101	Overshoot compensation enable level
2103	Unexpected disturbance torque detection amount retrace distance
2119	Function for changing the proportional gain in the stop state : stop judgement level
2404	Synchronous axes automatic compensation function : maximum compensation value
3623	Pitch error compensation magnification for individual axis (H is optional)
5300(D)	Rigid tapping effective area (in-position check) for tapping axis
5310(D)	Rigid tapping position error limit for tapping axis during movement
5312(D)	Rigid tapping position error limit for tapping axis at stop
5314(D)	Rigid tapping position error limit for tapping axis during movement
5761	Compensation at compensation point number a for movement axis 1 (straightness compensation)
5762	Compensation at compensation point number b for movement axis 1 (straightness compensation)
5763	Compensation at compensation point number c for movement axis 1 (straightness compensation)
5764	Compensation at compensation point number d for movement axis 1 (straightness compensation)
5771	Compensation at compensation point number a for movement axis 2 (straightness compensation)
5772	Compensation at compensation point number b for movement axis 2 (straightness compensation)
5773	Compensation at compensation point number c for movement axis 2 (straightness compensation)
5774	Compensation at compensation point number d for movement axis 2 (straightness compensation)
5781	Compensation at compensation point number a for movement axis 3 (straightness compensation)
5782	Compensation at compensation point number b for movement axis 3 (straightness compensation)
5783	Compensation at compensation point number c for movement axis 3 (straightness compensation)
5784	Compensation at compensation point number d for movement axis 3 (straightness compensation)
8313	Limit to difference in position error between master and slave axes (pair under simplified synchronization control)
8315	Maximum compensation for synchronization (pair under simplified synchronization control)
8316	Difference in reference counter between master and slave axes (pair under simplified synchronization control)
8323(H)	Limit to difference in position error between master and slave axes (more than one pair under simplified control)
8325(H)	Maximum compensation for synchronization (more than one pair under simplified synchronization control)
8326(H)	Difference in reference counter between master and slave axes (more than one pair under simplified synchronization control)

The parameter No. indicated with an asterisk (*) is related to a function unique to the Power Mate.
The parameter No. suffixed with "(D)" are related to the functions dedicated to the Power Mate i-D.
The parameter No. suffixed with " (H) " are related to the functions dedicated to the Power Mate $i-\mathrm{H}$.

No.	Description
1821	Reference counter capacity for individual axis
1826	Effective area (in-position check) for individual axis
1827	Effective area (in-position check) for individual axis at cutting feed
1828	Position error limit for individual axis during movement
1829	Position error limit for individual axis at stop
1830	Position error limit for individual axis with servo off
1832	Position error limit for individual axis with feed at stop
1836	Servo error amount within which reference position return is assumed to be possible
1844	Distance from the point at which deceleration dog is turned off to first grid point when reference position shift of the reference position shift function is set to 0
1846	Distance for starting second stage compensation in smooth backlash compensation
1847	Distance for ending second stage compensation in smooth backlash compensation
1848	First stage compensation value in smooth backlash compensation
1850	Grid shift/reference position shift for individual axis
1851	Backlash compensation for individual axis
1852	Backlash compensation for individual axis at rapid traverse
1876	Inductosyn 1-pitch interval
1877	Inductosyn shift
1882	Mark 2 intervals on linear scale having reference marks
1883	Distance from origin to reference position on linear scale having reference marks
1884	Distance from origin to reference position on linear scale having reference marks
1885	Permissible cumulative movement value during torque control (PMC axis control)
1886	Position error with torque control canceled (PMC axis control)
2033	For vibration damping control : position pulses conversion coefficient
2082	Second stage start/end parameter (when the two-stage backlash acceleration function is used)
2101	Overshoot compensation enable level
2103	Unexpected disturbance torque detection amount retrace distance
2119	Function for changing the proportional gain in the stop state : stop judgment level
2382	Torsion preview control: maximum compensation value (LSTCM)
2373	Lift amount in lifting function against gravity at emergency stop
3623	Pitch error compensation magnification for individual axis
3627	Pitch error compensation value at reference position when movement to reference position is made in the direction opposite to reference position return direction
5300	First-spindle rigid tapping effective area (in-position check) for tapping axis
5302	Second-spindle rigid tapping effective area (in-position check) for tapping axis
5304	Third-spindle rigid tapping effective area (in-position check) for tapping axis
5306	Fourth-spindle rigid tapping effective area (in-position check) for tapping axis
5310	First-spindle rigid tapping position error limit for tapping axis during movement
5312	First-spindle rigid tapping position error limit for tapping axis at stop
5350	Second-spindle rigid tapping position error limit for tapping axis during movement
5352	Second-spindle rigid tapping position error limit for tapping axis at stop
5354	Third-spindle rigid tapping position error limit for tapping axis during movement
5356	Third-spindle rigid tapping position error limit for tapping axis at stop
5358	Fourth-spindle rigid tapping position error limit for tapping axis during movement
5360	Fourth-spindle rigid tapping position error limit for tapping axis at stop
5761	Compensation at compensation point number a for movement axis 1 (straightness compensation)
5762	Compensation at compensation point number b for movement axis 1 (straightness compensation)
5763	Compensation at compensation point number c for movement axis 1 (straightness compensation)
5764	Compensation at compensation point number d for movement axis 1 (straightness compensation)

No.	Description
5771	Compensation at compensation point number a for movement axis 2 (straightness compensation)
5772	Compensation at compensation point number b for movement axis 2 (straightness compensation)
5773	Compensation at compensation point number c for movement axis 2 (straightness compensation)
5774	Compensation at compensation point number d for movement axis 2 (straightness compensation)
5781	Compensation at compensation point number a for movement axis 3 (straightness compensation)
5782	Compensation at compensation point number b for movement axis 3 (straightness compensation)
5783	Compensation at compensation point number c for movement axis 3 (straightness compensation)
5784	Compensation at compensation point number d for movement axis 3 (straightness compensation)
5871	Compensation α at compensation point number a for individual axis (gradient compensation)
5872	Compensation β at compensation point number b for individual axis (gradient compensation)
5873	Compensation γ at compensation point number c for individual axis (gradient compensation)
5874	Compensation ε at compensation point number d for individual axis (gradient compensation)
6287	Position error limit at torque limit skip
7772	Number of pulses from position detector per rotation of EGB master axis (tool axis) [path type]
7773	Number of pulses from position detector per rotation of EGB slave axis (workpiece axis) [path type]
7782	Number of pulses from position detector per rotation of EGB master axis [axis type]
7783	Number of pulses from position detector per rotation of EGB slave axis [axis type]
8181	Synchronous error limit for each axis (axis recomposition)
8323	Limit of position error check in feed axis synchronous control
8326	Difference in reference counter value between master axis and slave axis
8331	Maximum permissible synchronous error in synchronous error excess alarm 1
8332	Maximum permissible synchronous error in synchronous error excess alarm 2
8333	Synchronous error zero width for each axis
8335	Synchronous error zero width 2 for each axis
8377	Permissible error at start of chopping compensation
14010	Maximum permissible movement amount at reference position setup of linear scale with absolute addressing reference marks
14988	Magnification of cycle type second pitch error compensation for each axis

- \quad Setting data for shifting external machine coordinate systems

FUNCTION－SPECIFIC SERVO PARAMETERS

is ：Parameters set up automatically or cleared at initialization
Parenthesized parameters ：Common parameters that are also used for other functions

Parameter number		Meaning		
FS15i	FS30i，16i，etc．			
［Servo initialization functions］				
1804	2000	Initialization bits		\rightarrow 2．1．2
1874	2020	Motor ID number		
1806	2001	AMR		
1820	1820	CMR		
1977	2084	Flexible feed gear（numerator）		
1978	2085	Flexible feed gear（denominator）		
1879	2022	Move direction		
1876	2023	Number of velocity pulses		
1891	2024	Number of position pulses		
2628	2185	Position pulses conversion coefficient		
1804\＃0	2000\＃0	1：Multiplies the number of velocity pulses and position pulses by 10.		
1896	1821	Reference counter capacity		
2622	2179	Reference counter capacity（denominator）		
1875	2021	Load inertia ratio		
－	3111\＃0	1：Displays the servo setting screen．		
［HRV control］				
1707\＃0	2013\＃0	1：Servo HRV3 control	\＃	$\rightarrow 4.2$
－	2014\＃0	1：Servo HRV4 control	H	
－	2300\＃0	1：Extended HRV function	\％	
2747	2334	High－speed HRV current control mode：Current loop gain magnification		
2748	2335	High－speed HRV current control mode：Velocity loop gain magnification		
［Vibration suppression functions in the stop state］				
1959\＃7	2017\＃7	Velocity loop high cycle management function		$\rightarrow 4.4 .1$
1894	2066	$250 \mu \mathrm{~s}$ acceleration feedback gain	ぇ	$\rightarrow 4.4 .2$
1958\＃3	2016\＃3	Variable proportional gain function in the stop state		$\rightarrow 4.4 .3$
1730	2119	Variable proportional gain function in the stop state ：stop judgement level		
1747\＃3	2207\＃3	1：The velocity loop proportional gain in the stop state is 50% ．		
2733	2324	Function for changing the proportional gain in the stop state ：arbitrary magnification		
1808\＃4	2003\＃4	N pulse suppression function	ム	$\rightarrow 4.4 .4$
1992	2099	N pulse suppression level	么	$\rightarrow 4.4 .4$
1895	2067	TCMD filter coefficient	\＆	$\rightarrow 4.3$
1779	2156	Torque command filter coefficient for rapid traverse		$\rightarrow 4.5 .1$
［Machine－resonance suppression functions］				
1706	2113	Resonance elimination filter 1 ：attenuation center frequency	\％	$\rightarrow 4.5 .2$
2620	2177	Resonance elimination filter 1 ：attenuation bandwidth		
2772	2359	Resonance elimination filter 1 ：damping		
2773	2360	Resonance elimination filter 2 ：attenuation center frequency		
2774	2361	Resonance elimination filter 2 ：attenuation bandwidth		

~ : Parameters set up automatically or cleared at initialization
Parenthesized parameters : Common parameters that are also used for other functions

Parameter number		Meaning		
FS15i	FS30i,16i,etc.			
2775	2362	Resonance elimination filter 2 : damping		$\rightarrow 4.5 .2$
2776	2363	Resonance elimination filter 3: attenuation center frequency		
2777	2364	Resonance elimination filter 3 : attenuation bandwidth		
2778	2365	Resonance elimination filter 3 : damping		
2779	2366	Resonance elimination filter 4 : attenuation center frequency		
2780	2367	Resonance elimination filter 4 : attenuation bandwidth		
2781	2368	Resonance elimination filter 4 : damping		
2683\#3	2270\#3	1: Active resonance elimination filter function (applied with resonance elimination filter 1)		
2765	2352	Detection level (active resonance elimination filter)		
2611\#0	2223\#0	1: disturbance elimination filter function		$\rightarrow 4.5$. 3
2731	2318	Disturbance elimination filter : gain		
2732	2319	Disturbance elimination filter : inertia ratio		
2733	2320	Disturbance elimination filter : gain for inverse model		
2734	2321	Disturbance elimination filter : filter time constant		
2735	2322	Disturbance elimination filter : acceleration feedback limit		
1808\#2	2003\#2	Observer function	动	$\rightarrow 4.5 .4$
1859	2047	Observer coefficient (POA1)	\%	
1862	2050	Observer coefficient (POK1)	~	
1863	2051	Observer coefficient (POK2)	\%	
1960\#1	2018\#1	Disable function for observer in the stop state		
1730	2119	Disable function for observer in the stop state : judgment level for stop state		
1743\#2	2203\#2	1: Current loop 1/2 PI control function enabled		$\begin{aligned} & \rightarrow 4.5 .5 \\ & \rightarrow 4.3 \end{aligned}$
$\begin{aligned} & 1742 \# 1 \\ & \text { 1742\#2 } \end{aligned}$	$\begin{aligned} & 2202 \# 1 \\ & 2202 \# 2 \end{aligned}$	1: Current loop $1 / 2 \mathrm{PI}$ control function enabled only in cutting feed (Common to the cutting/rapid velocity gain switching function) 1: Current loop $1 / 2 \mathrm{PI}$ control function is always enabled when the above bit is used.		
2736	2323	Current control PI ratio		
1718	2033	Position feedback pulse count (vibration damping control)		$\rightarrow 4.5 .6$
1719	2034	Vibration damping control gain		
1709\#7	2019\#7	Dual position feedback function (optional function)	H	$\rightarrow 4.5 .7$
1861	2049	Dual position feedback function : maximum amplitude	i	
1971	2078	Dual position feedback function : conversion coefficient (numerator)	i	
1972	2079	Dual position feedback function : conversion coefficient (denominator)	家	
1973	2080	Dual position feedback function : primary delay time constant	H	
1974	2081	Dual position feedback function : zero zone	\%	
1729	2118	Dual position feedback function : alarm detection level of Semi-Full error (Only this function can be used even if there is no option.)		
1954\#5 1954\#4	2010\#5 2010\#4	1: The backlash compensation amount is added to the error counter on the full-closed side. 1: The pitch error compensation amount is added to the error counter on the semi-closed side.		
1746\#4	2206\#4	1: The backlash compensation amount and pitch amount are added to the error counters on both the full- and semi-closed sides.		
1742\#4	2202\#4	1: Improvement of judge on zero width		
1956\#1	2012\#1	Machine speed feedback function	\%	$\rightarrow 4.5 .8$
1981	2088	Machine speed feedback gain	H	

\# : Parameters set up automatically or cleared at initialization
Parenthesized parameters : Common parameters that are also used for other functions

Parameter number		Meaning		
FS15i	FS30i,16i,etc.			
[Contour error suppression functions]				
[Feed-forward functions]				
1808\#3	2003\#3	Pl control	\#	
1883\#1	2005\#1	Feed-forward function	H	4.6 .1 to 4.6 .3
1961	2068	Feed-forward coefficient	动	4.6.1 to 4.6.3
1962	2069	Velocity feed-forward coefficient	云	
1985	2092	Advanced preview feed-forward coefficient	н	$\rightarrow 4.6 .2$
1959\#5	2017\#5	1: The response of feed-forward is improved when RISC is used.		
1740\#5	2200\#5	1: The response of the position command is improved when RISC is used.		$\rightarrow 4.6 .3$
1800\#3	1800\#3	Enables feed-forward in rapid traverse.		$\begin{aligned} & \rightarrow 4.3 \\ & \rightarrow 4.8 .3 \end{aligned}$
1988	2095	Feed-forward timing adjustment coefficient		
2808	2395	Feed-forward timing adjustment coefficient (for use when FAD is enabled)		$\rightarrow 4.6 .5$
(1742\#0)	(2202\#0)	Switches the feed-forward coefficient between cutting and rapid traverse. (This parameter is also used for the cutting/rapid traverse-specific fine acc./dec. function.)		
2602\#3	2214\#4	Switches the feed-forward coefficient between cutting and rapid traverse. (This function is independent of fine acc./dec..)		$\begin{aligned} & \rightarrow 4.3 \\ & \rightarrow 4.6 .4 \\ & \rightarrow 4.8 .3 \end{aligned}$
1767	2144	Position feed-forward coefficient for cutting		
1768	2145	Velocity feed-forward coefficient for cutting		
(1985)	(2092)	Position feed-forward coefficient for rapid traverse	$\dot{\sim}$	
(1962)	(2069)	Velocity feed-forward coefficient for rapid traverse	H	
[Backlash acceleration functions]				
1808\#5	2003\#5	Backlash acceleration function	\#	
1860	2048	Backlash acceleration amount	\%	
1964	2071	Period during which backlash acceleration remains effective	H	
(1725)	(2114)	Acceleration amount override		
(2751)	(2338)	Limit of acceleration amount		
(1987)	(2094)	Backlash acceleration amount (for reverse from negative to positive direction)	H	$\rightarrow 4.6 .6$
(2753)	(2340)	Acceleration amount override (for reverse from negative to positive direction)		
(2754)	(2341)	Limit of acceleration amount (for reverse from negative to positive direction)		
1953\#7	2009\#7	Backlash acceleration stop	H	
1975	2082	Timing at which the backlash acceleration is stopped	H	
1953\#6	2009\#6	1: Enables the backlash acceleration function during cutting feed only.	\%	
1851	1851	Backlash compensation		6 to 4.6 .7
1884\#0	2006\#0	1: Does not reflect the backlash compensation in positions.	\%	. 6 to 4.6 .7
$\begin{gathered} 1957 \# 6 \\ (1808 \# 5) \end{gathered}$	$\begin{gathered} 2015 \# 6 \\ (2003 \# 5) \end{gathered}$	Two-stage backlash acceleration function (The backlash acceleration function is also enabled.)	$\dot{\sim}$	
(1860)	(2048)	First stage acceleration amount	\#	$\rightarrow 4.6 .7$
1987	2094	First stage acceleration amount from negative direction to positive direction	H	

H: Parameters set up automatically or cleared at initialization
Parenthesized parameters : Common parameters that are also used for other functions

Parameter number		Meaning		
FS15i	FS30i,16i,etc.			
1760	2137	First stage acceleration override		$\rightarrow 4.6 .7$
1975	2082	Second stage start position	\%	
1982	2089	Second stage end scale factor	\%	
1724	2039	Second stage acceleration amount		
1790	2167	Second stage offset		
1725	2114	Second stage acceleration override		
2751	2338	Second stage acceleration amount limit value		
2752	2339	Second stage acceleration amount (for turn-over from negative direction to positive direction)		
2753	2340	Second stage acceleration amount override (for turn-over from negative direction to positive direction)		
2754	2341	Second stage acceleration amount limit value (for turn-over from negative direction to positive direction)		
1960\#2	2018\#2	The format of the second stage acceleration override is changed.		
1953\#6	2009\#6	1: Enables backlash acceleration only during cutting feed.	\%	
2611\#7	2223\#7	1: When bit 3 of parameter No. $1800=1$, the backlash acceleration function is enabled only for cutting feed.		
(1980)	(2087)	Torque offset	~	
(2603\#1)	(2215\#1)	Torque offset canceling when an emergency stop is released		
$\begin{gathered} 1883 \# 7 \\ (1808 \# 5) \end{gathered}$	$\begin{gathered} 2005 \# 7 \\ (2003 \# 5) \end{gathered}$	Static friction compensation function (The backlash acceleration function is also enabled.)	\%	$\rightarrow 4.6 .8$
(1964)	(2071)	Compensation count	~	
1965	2072	Static friction compensation	\%	
1966	2073	Stop state judgement parameter	\%	
(1953\#7)	(2009\#7)	Stop of static friction compensation	i	
1990	2097	Parameter for stopping static friction compensation	*	
[Torsion preview control]				
2795	2382	Torsion preview control: maximum compensation value (LSTCM) (Setting maximum compensation value enables torsion preview control.)		$\rightarrow 4.6 .9$
2796	2383	Torsion preview control: acceleration 1 (LSTAC1)		
2797	2384	Torsion preview control: acceleration 2 (LSTAC2)		
2798	2385	Torsion preview control: acceleration 3 (LSTAC3)		
2799	2386	Torsion preview control: acceleration torsion compensation value K1 (LSTK1)		
2800	2387	Torsion preview control: acceleration torsion compensation value K2 (LSTK2)		
2801	2388	Torsion preview control: acceleration torsion compensation value K3 (LSTK3)		
2802	2389	Torsion preview control: torsion delay compensation value KD (LSTKD)		
2803	2390	Torsion preview control: torsion delay compensation value KDN (LSTKDN)		
2804	2391	Torsion preview control: acceleration torsion compensation value K1N (LSTK1N)		
2805	2392	Torsion preview control: acceleration torsion compensation value K2N (LSTK2N)		
2806	2393	Torsion preview control: acceleration torsion compensation value K3N (LSTK3N)		

ش : Parameters set up automatically or cleared at initialization
Parenthesized parameters : Common parameters that are also used for other functions

Parameter number		Meaning		
FS15i	FS30i,16i,etc.			
2815	2402	Torsion preview control: torsion torque compensation coefficient (LSTKT)		$\rightarrow 4.6 .9$
[Overshoot compensation functions]				
1808\#6	2003\#6	Overshoot compensation function	\#	$\rightarrow 4.7$
1857	2045	Velocity loop incomplete integral gain (PK3V)	\#	
1970	2077	Overshoot compensation counter	\%	
1994	2101	Overshoot compensation enable level	i	
1742\#3	2202\#3	Overshoot compensation type 2		
[High-speed positioning functions]				
1957\#0	2015\#0	Position gain switch function		$\rightarrow 4.8 .1$
1714	2029	Limit speed for enabling position gain switching		
1744\#1	2204\#1	1: Increases the increment system for the effective switch velocity to 10 times.		
$\begin{aligned} & 1957 \# 0 \\ & 1744 \# 5 \end{aligned}$	$\begin{aligned} & 2015 \# 0 \\ & 2204 \# 5 \\ & \hline \end{aligned}$	Position gain switch function type 2		
1957\#1	2015\#1	Low-speed integration function		$\rightarrow 4.8 .2$
1714	2029	Limit speed for disabling low-speed integration at acceleration		
1716	2030	Limit speed for enabling low-speed integration at deceleration		
(1744\#1)	(2204\#1)	1: Increases the increment system for the switch velocity to 10 times.		
1951\#6	2007\#6	Fine acc./dec. (FAD) function	\star	$\rightarrow 4.8 .3$
1749\#2	2209\#2	0: FAD bell-shaped, 1: FAD linear type		
(1985)	(2092)	Position feed-forward coefficient (This parameter is also used for look-ahead control.)		
1742\#0	2202\#0	Cutting/rapid traverse-specific fine acc./dec. function		$\begin{aligned} & \rightarrow 4.3 \\ & \rightarrow 4.8 .3 \end{aligned}$
1800\#3	1800\#3	Enables feed-forward in rapid traverse.		
1702	2109	Fine acc./dec. time constant		
1766	2143	Fine acc./dec. time constant 2		
(1767)	(2144)	Position feed-forward coefficient for cutting		
(1768)	(2145)	Velocity feed-forward coefficient for cutting		
(1985)	(2092)	Position feed-forward coefficient for rapid traverse	\%	
(1962)	(2069)	Velocity feed-forward coefficient for rapid traverse	i	
1749\#3	2209\#3	1: Synchronization is established in the rigid tapping mode when FAD is specified.		$\rightarrow 4.8 .3$
[Serial feedback dummy functions]				
1953\#0	2009\#0	Dummy serial feedback function	\%	$\rightarrow 4.9$
1800\#1	1800\#1	1: Ignores the V-READY ON alarm.		
1745\#2	2205\#2	Separate detector-based dummy feedback function		
[Brake control functions]				
1883\#6	2005\#6	Brake control function	i	$\rightarrow 4.10$
1976	2083	Brake control timer	\%	
2686\#7	2273\#7	Torque limit setting function during brake control		
2788	2375	Torque limit magnification during brake control		
[Stop distance reduction functions]				
1959\#0	2017\#0	Emergency stop distance reduction function type 1 (VCMD0)		$\rightarrow 4.11 .1$
1744\#7	2204\#7	Emergency stop distance reduction function type 2 (return)		$\rightarrow 4.11 .2$
2786 2787	$\begin{aligned} & \hline 2373 \\ & 2374 \\ & \hline \end{aligned}$	Lifting function against gravity at emergency stop : distance to lift Lifting function against gravity at emergency stop : lifting time		$\rightarrow 4.11 .3$

in : Parameters set up automatically or cleared at initialization
Parenthesized parameters : Common parameters that are also used for other functions

Parameter number		Meaning		
FS15i	FS30i,16i,etc.			
1745\#4	$2205 \# 4$ $2205 \# 5$	Separate detector hardware disconnection stop distance reduction function For axes under synchronization control, this bit is also set.		$\rightarrow 4.11 .4$
2600\#7	2212\#7	OVL and OVC alarm stop distance reduction function		$\rightarrow 4.11 .5$
[Unexpected disturbance torque detection functions] (Optional functions)				
1958\#0	2016\#0	Unexpected disturbance torque detection function		$\rightarrow 4.12$
1740\#5	2200\#5	Improvement in the accuracy of an estimated disturbance load		
2716	2302	Improvement in the accuracy of an estimated disturbance load (A Q-phase current phase lag is compensated for.)	\%	
1980	2087	Torque offset	\%	
1727	2116	Dynamic friction compensation value	\%	
2758	2345	Dynamic friction compensation value in the stop state		
2759	2346	Dynamic friction compensation limit value		
1997	2104	Unexpected disturbance torque detection alarm level		
1996	2103	Retrace distance	\%	
1740\#3	2200\#3	Cutting/traverse unexpected disturbance torque detection switching function	\%	
2603\#7	2215\#7	Cutting/traverse unexpected disturbance torque detection switching function type-2		
(1997)	(2104)	Unexpected disturbance torque detection alarm level for cutting		
1765	2142	Unexpected disturbance torque detection alarm level for rapid traverse	山	
2684\#2	2271\#2	2-axes simultaneous retract function at unexpected disturbance torque detection		
2603\#1	2215\#1	Torque offset canceling when an emergency stop is released		
[Linear motor functions]				
1954\#2	2010\#2	Linear motor control function	\%	$\rightarrow 4.14$
1705	2112	AMR conversion coefficient 1	\%	
1761	2138	AMR conversion coefficient 2		
1762	2139	AMR offset		
2683\#0	2270\#0	AMR offset setting range expansion from -60 degrees to +60 degrees		
(2628)	(2185)	Position pulse conversion coefficient		
1740\#6	2200\#6	The velocity loop proportional gain format is changed.		
1750\#2	2210\#2	Current gain internally 4 times function	~	
1753	2130	Smoothing compensation performed twice per pole pair		
1754	$\begin{aligned} & 2131 \\ & 2132 \end{aligned}$	Smoothing compensation performed four times per pole pair Smoothing compensation performed six times per pole pair	\%	
2782	2369	Smoothing compensation performed twice per pole pair (negative direction)		
2783	2370	Smoothing compensation performed four times per pole pair (negative direction)		
2784	2371	Smoothing compensation performed six times per pole pair (negative direction)		
1743\#6	2203\#6	Linear motor quadruple smoothing compensation		
2713\#7	2300\#7	1: Determines overheat via PMC.	i	
[Synchronous built-in servo motor functions]				
1954\#2	2300\#2	Synchronous built-in servo motor control	*	$\rightarrow 4.15$
1806	2001	AMR		
2608\#0	2220\#0	Non-binary detector		
1705	2112	AMR conversion coefficient 1	is	

\# : Parameters set up automatically or cleared at initialization
Parenthesized parameters : Common parameters that are also used for other functions

H : Parameters set up automatically or cleared at initialization
Parenthesized parameters : Common parameters that are also used for other functions

Parameter number		Meaning		
FS15i	FS30i,16i,etc.			
1952\#7	2008\#7	Damping compensation function	~	
1721	2036	Damping compensation gain (main axis) and damping compensation phase (sub-axis)		$\rightarrow 4.19 .2$
1952\#2	2008\#2	Velocity feedback average function	\%	$\rightarrow 4.19 .3$
1951\#1	2007\#1	Servo alarm two-axis monitor function	*	$\rightarrow 4.19 .4$
1960\#7	2018\#7	Motor feedback sharing function (sub-axis)		$\rightarrow 4.19 .5$
1940\#1	2200\#1	Full-closed loop feedback sharing function (sub-axis)		$\rightarrow 4.19 .6$
[Servo check board functions]				
$\begin{aligned} & 1956 \# 5 \\ & 1956 \# 4 \end{aligned}$	$\begin{aligned} & \hline 2012 \# 5 \\ & 2012 \# 4 \end{aligned}$	VCMD output magnification $00: 1, \quad 01: 16,10: 16^{2}, 11: 16^{3}$	む	\rightarrow Appendix I
1957\#5	2015\#5	1: Outputs an estimated load to the check board. (The estimated load is output to the torque command channel.)		$\rightarrow 4.6 .7,4.12$
1743\#5	2203\#5	1: Enables the four-times torque command output. (Small-torque command output can be measured.)		
1726	2115	For internal data output: Must be kept at 0 . The output of the SPEED signal (number of revolutions) is disabled. (Series 9096)		$\begin{array}{\|l\|} \rightarrow \\ \\ \\ \text { Appendix } \end{array}$
1774	2151	Internal data output: Always specify 0. (Series 90B0)		
1775	2152	Internal data output: Always specify 0. (Series 90B0)		$\rightarrow 4.14$
1776	2153	Internal data output: Always specify 0. (Series 90B0)		
1746\#7	2206\#7	1: Performs high-speed data output to the check board (Series 90B0).		
2613\#1	2225\#1	1: TCMD signal check board output 1/2 (Series 90B0)		
2613\#2	2225\#2	1: SPEED signal check board output $1 / 2\left(7500 \mathrm{~min}^{-1} / 5 \mathrm{~V}\right)$ (Series 90B0)		\rightarrow Appendix
2208\#3	-	1: Arbitrary data screen is displayed.		
-	$\begin{aligned} & \text { DGN353 } \\ & \text { DGN354 } \end{aligned}$	DGN for internal data display DGN for internal data display		$\rightarrow 4.14$
[Related to simplified frequency characteristics measurement]				
2683\#7	2270\#7	1: Starts disturbance input.		\rightarrow Appendix H
2683\#6	2270\#6	1: Inputs disturbance for both of an odd-numbered axis and even-numbered axis simultaneously. (Used for synchronous axes or tandem axes)		
2683\#5	2270\#5	1: The input waveform of disturbance input is a square wave. (Usually, select 0: Sine wave.)		
2739	2326	Disturbance input gain		
2740	2327	Disturbance input start frequency		
2741	2328	Disturbance input end frequency		
2742	2329	Number of disturbance input measurement points		

PARAMETERS RELATED TO HIGH-SPEED AND HIGH PRECISION OPERATIONS

The i series CNCs are provided with some functions for high-speed and high precision operations. This appendix lists parameters categorized by model and function and their standard setting values so as to make it easy to tune the functions.
Appendix D consists of the following two items:
(1) CNC model-specific information

This section lists high-speed and high precision functions and parameters related to them for individual CNC models.
The parameter tables in this section contain standard setting values.
(2) Servo parameters

This section lists servo parameters common to all CNC models and standard setting values for them.

NOTE

1 Use the standard setting values included in the parameter tables as reference data for initialization. If a parameter needs tuning based on the machine type, determine a final setting for the parameter according to the characteristic of the machine and how to use it.
To reduce machining time, change parameters from standard settings to speed priority I to speed priority II while checking the operation status. (The settings for speed priority II can reduce much more machining time than the settings for speed priority I.)

2 For the specifications of CNC models and detailed explanations about their functions, refer to the respective CNC manuals.
3 In the following table, the circle indicates that the item is supported, the triangle indicates partial support, and the cross indicates non-support.

D. 1 MODEL-SPECIFIC INFORMATION

D.1.1 Series 15i-MB

[Functions related to high-speed and high precision operations]

High-speed high precision functions	Look-ahead acc./dec. before interpolation	Fine HPCC
Series 15i-MB	\bigcirc	\bigcirc
Acc./dec. before interpolation		
Type	Linear/Bell-shaped	Linear/Bell-shaped/ Smooth bell-shaped
Time constant setting for individual axes	\bigcirc	\bigcirc
Velocity control		
Automatic corner deceleration	\bigcirc	\bigcirc
Arc radius-based velocity control	\bigcirc	\bigcirc
Acceleration-based velocity control	\times	\bigcirc
Cutting load-based velocity control	\times	\bigcirc
Jerk control	\times	\bigcirc
Optimum torque acc./dec.	\bigcirc	\bigcirc
Other functions		
Nano interpolation	\bigcirc	\bigcirc
5-axis machining function	\bigcirc	\bigcirc
Smooth interpolation	\bigcirc	\bigcirc
NURBS	\bigcirc	\bigcirc
Nano smoothing	\bigcirc	\bigcirc
Additional hardware	None	None

[Parameters]

Use the standard setting values included in the parameter tables as reference data for initialization. If a parameter needs tuning based on the machine type, determine a final setting for the parameter according to the characteristic of the machine and how to use it.

- Standard settings (precision priority)

When there is vibration or significant impact, or when machining is to be performed more precisely, make settings based on the standard settings.

- Cutting time-first setting

To reduce machining time, make settings for speed priority I then for speed priority II in stages. The settings for speed priority II can reduce much more machining time than the settings for speed priority I.

- Parameters that need tuning based on the machine type

Parameter No.	Standard setting value			Description
	Standard setting	Speed priority I	Speed priority II	
1478	400.0	500.0	1000.0	Allowable speed difference (mm/min) in acceleration-dependent on speed difference at corners
1635	24	16	16	Time constant (msec) for acc./dec. after interpolation
1656	64	48	32	Time constant (msec) for bell-shaped acc./dec. before interpolation (portion with the time fixed)
1660	700.0	2000.0	4000.0	Acceleration of linear-/bell-shaped acc./dec. before interpolation (portion with the acceleration fixed) (Acceleration is specified in $\mathrm{mm} / \mathrm{sec}^{2}$ units for individual axes.)
1663	525.0	1500.0	3000.0	Allowable acceleration $\left(\mathrm{mm} / \mathrm{sec}^{2}\right.$) during acceleration-dependent deceleration (HPCC mode) (Acceleration is specified in $\mathrm{mm} / \mathrm{sec}^{2}$ for individual axes.)
1665	525.0	1500.0	3000.0	Allowable acceleration ($\mathrm{mm} / \mathrm{sec}^{2}$) at arc interpolation during acceleration-dependent deceleration (non-HPCC mode) (Acceleration is specified in $\mathrm{mm} / \mathrm{sec}^{2}$ for individual axes.)

- Parameters that do not usually need tuning so often and can be left at fixed values

Parameter No.	Standard setting value	Description
1483	100.0	Lower speed limit to acceleration-dependent deceleration (HPCC mode) ($\mathrm{mm} / \mathrm{min}$)
1491	100.0	Lower speed limit to deceleration acceleration-dependent (non-HPCC mode) ($\mathrm{mm} / \mathrm{min}$)
1517\#6	0	Speed difference- or acceleration-dependent deceleration type 0 : Compatible with the 15B (by making the most of allowable speed difference and acceleration for each axis) 1: Fixed speed regardless of the direction of movement as long as the same contour is involved.
1600\#4	0	0 : Linear- or bell-shaped acc./dec. after interpolation enabled ${ }^{\text {(Note 1) }}$ 1: Exponential acc./dec. after interpolation enabled
1603\#6	1/0	When using the function for changing the time constant of bell-shaped acc./dec. before interpolation, set 1.
1473	$\begin{gathered} \mathrm{mm} / \text { inch } \\ 10000.0 / 3937.0 \end{gathered}$	Reference speed in the function for changing the time constant of bell-shaped acc./dec. before interpolation ($\mathrm{mm} / \mathrm{min} / \mathrm{inch} / \mathrm{min}$)
2401\#6	0	Setting this parameter to 1 enables look-ahead acc./dec. before interpolation and multibuffer when the power is switched on and in the cleared state. Fine HPCC is also enabled if available. If it is reset to 0 , it is turned on with the G05.1Q1 command.
7565\#7	0	Setting this parameter to 1 causes a specified speed to be ignored and assumes that a speed set in parameter No. 7567 is specified
7567	0	Specified clamp value in the fine HPCC mode ($\mathrm{mm} / \mathrm{min}$ (input unit)) If the parameter setting is 0 , no clamp takes place except for the maximum cutting speed specified in parameter No. 1422.
7565\#4	0/1	Set this parameter to 1 if the cutting load-based deceleration function is to be enabled. (This parameter is used if the mechanical rigidity of the Z -axis is low.)
7697\#1	0/1	When using the slant type for override by cutting load, set 1. ${ }^{\text {(Note 2) }}$
7698	80	Override of area 1 in deceleration by cutting load (This setting is unnecessary if bit 4 of parameter No. 7565 is set to 0 or bit 1 of parameter No. 7697 is set to 0.) (\%) ${ }^{\text {(Note }}$ 2)
7591	80	Region 2 override (\%) for the cutting load-based deceleration function (needn't be specified if bit 4 of parameter No. $7565=0$)

Parameter No.	Standard setting value	Description
7592	70	Region 3 override (\%) for the cutting load-based deceleration function (needn't be specified if bit 4 of parameter No. 7565 = 0)
7593	60	Region 4 override (\%) for the cutting load-based deceleration function (needn't be specified if bit 4 of parameter No. 7565 = 0)
$8495 \# 0$	$0 / 1$	When using smooth velocity control as velocity control by acceleration, set 1. . (Note 2)

NOTE

1 To perform bell-shaped acc./dec. after cutting feed interpolation, the option for bell-shaped acc./dec. after cutting feed interpolation is required.
2 Only fine HPCC can be used.

D.1.2 Series $16 i / 18 i / 21 i / 0 i / 0 i$ Mate-MB, $0 i / 0 i$ Mate-MC/20i-FB

[Functions related to high-speed and high precision operations]

High-speed and high precision function	Advanced preview control (APC)	AI advanced preview control (AI-APC)	Al contour control (AICC)	Al nano contour control (Al nano CC)	High precision contour control (HPCC)	Al high precision contour control (AI-HPCC)	AI nano high precision contour control (Al nano HPCC)
Series Oi Mate M-C	\times	\bigcirc	\times	\times	\times	\times	\times
Series 0i-MC	\times	\bigcirc	\bigcirc	\times	\times	\times	\times
Series20i-FB	\bigcirc	\times	\bigcirc	\times	X	\times	\times
Series $0 i$ Mate-MB	\times	\bigcirc	\times	\times	X	\times	\times
Series 0i-MB	\times	\bigcirc	\bigcirc	\times	X	X	\times
Series21i-MB	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times
Series18i-MB	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Series16i-MB	\bigcirc	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Acc./dec. before interpolation

Type	Linear	Linear/ Bell-shaped	Linear/ Bell-shaped/ Smooth bell-shaped	Linear/ Bell-shaped/ Smooth bell-shaped	Linear/ Bell-shaped	Linear/ Bell-shaped/ Smooth bell-shaped	Linear/ Bell-shaped/ Smooth bell-shaped
Time constant setting for individual axes	\times	\times	\times	\times	\times	\bigcirc	\bigcirc
Velocity control							
Automatic corner deceleration	\bigcirc						
Arc radius-based velocity control	\bigcirc						
Acceleration-based velocity control	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Cutting load-based velocity control	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
Jerk control ${ }^{\text {(Note 1) }}$	\times	\times	\triangle	\triangle	\times	\bigcirc	\bigcirc
Optimum torque acc./dec.	\times	\times	\times	\times	\times	\bigcirc	\bigcirc
Other functions							
Nano interpolation	\times	\times	\times	\bigcirc	\times	\times	\bigcirc
5-axis machining function	\times	\times	\times	\times	\times	\bigcirc	\bigcirc
Smooth interpolation	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
NURBS	\times	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc
Nano smoothing	\times	\times	\times	\times	\times	\bigcirc	\bigcirc
Additional hardware	None	None	None	None	RISC	ard is ne	sary.

NOTE
 1 Jerk control can be used in the Series $16 i-\mathrm{MB} / 18 i-\mathrm{MB}$.

Described below are the parameters that must be specified for individual high-speed and high precision cutting machines separately. Use the standard setting values included in the parameter tables as reference data for initialization. If a parameter needs tuning based on the machine type, determine a final setting for the parameter according to the characteristic of the machine and how to use it.

- \quad Standard settings (precision priority)

When there is vibration or significant impact, or when machining is to be performed more precisely, make settings based on the standard settings.

- Cutting time-first setting

To reduce machining time, make settings for speed priority I then for speed priority II in stages. The settings for speed priority II can reduce much more machining time than the settings for speed priority I.

NOTE

1 Performing bell-shaped acc./dec. after interpolation requires the look-ahead bell-shaped acc./dec. after interpolation option.
2 Performing linear-shaped acc./dec. after cutting feed interpolation requires the linear-shaped acc./dec. after cutting feed interpolation option.
3 Performing bell-shaped acc./dec. after cutting feed interpolation requires the bell-shaped acc./dec. after cutting feed interpolation option.
4 Performing bell-shaped acc./dec. in rapid-traverse requires the bell-shaped acc./dec. in rapid-traverse option.

(1) Advanced preview control

- Parameters that need tuning based on the machine type

Parameter No.	Standard setting value			Description
	Speed priority I	Speed priority II		
1432	-	-	-	Maximum cutting feedrate (mm/min) for individual axes
1620	-	-	-	Time constant (msec) for linear-shaped acc./dec. in rapid-traverse for individual axes
1621	-	-	-	Time constant T2 (msec) for bell-shaped acc./dec. in rapid-traverse for individual axes
1730	3060	5150	7275	Feedrate upper limit (mm/min) for arc radius R
1731	5000	5000	5000	Arc radius R (1 $\mu \mathrm{m})$ for arc radius-based feedrate upper limit
1732	100	100	100	Arc radius-based feedrate clamp lower speed limit (mm/min)
1768	24	16	16	Time constant (msec) for acc./dec. after cutting feed interpolation 1770
10000	10000	10000	Maximum cutting feedrate (mm/min) during acc./dec. before interpolation	
1771	240	80	40	Time (msec) allowed before a maximum cutting feedrate during acc./dec. before interpolation is reached
1783	400	500	1000	Allowable speed difference (mm/min) in acceleration-dependent on speed difference at corners
1784	-	-	-	Speed (mm/min) at occurrence of overtravel alarm To be specified according to the overrun distance at overtravel

- Parameters that do not usually need tuning so often and can be left at fixed values

Parameter No.	Standard setting value	Description
$1602 \# 0$	1	The type of linear-shaped acc./dec. before interpolation is B.
$1602 \# 4$	1	Automatic deceleration at corners is under speed difference-dependent control
$1602 \# 6, \# 3$	1,0	
$1802 \# 7$	1,1	Acc./dec. after interpolation is of a linear type (to be specified when FAD is used) Acc./dec. after interpolation is of a bell-shaped type (to be specified when FAD is not used)
$3403 \# 0$	$0 / 1$	To be set to 1 if the CMR setting is 2 or greater (parameter No. 1820 setting is 4 or greater).

(2) AI advanced preview control

- Parameters that need tuning based on the machine type

Parameter No.	Standard setting value standard		Speed priority I	Speed priority II
	-	-	-	Maximum cutting feedrate (mm/min) for individual axes
1620	-	-	-	Time constant (msec) for linear-shaped acc./dec. in rapid-traverse for individual axes
1621	-	-	-	Time constant T2 (msec) for bell-shaped acc./dec. in rapid-traverse for individual axes
1730	3060	5150	7275	Feedrate upper limit (mm/min) for arc radius R
1731	5000	5000	5000	Arc radius R (1 $\mu \mathrm{m})$ for arc radius-based feedrate upper limit
1732	100	100	100	Arc radius-based feedrate clamp lower speed limit (mm/min)
1768	24	16	16	Time constant (msec) for acc./dec. after cutting feed interpolation
1770	10000	10000	10000	Maximum cutting feedrate (mm/min) during acc./dec. before interpolation
1771	240	80	40	Time (msec) allowed before a maximum cutting feedrate during acc./dec. before interpolation is reached
1772	64	48	32	Time constant of bell-shaped acc./dec. before interpolation (for constant-time part) (msec)
1783	400	500	1000	Allowable speed difference (mm/min) in acceleration-dependent on speed difference at corners
1784	-	-	-	Speed (mm/min) at occurrence of overtravel alarm To be specified according to the overrun distance at overtravel
1785	320	112	56	Parameter (msec) for determining an allowable acceleration in determining acceleration-dependent speed. The parameter is to be set with the time allowed before a maximum cutting feedrate (1432) is reached. A maximum cutting feedrate of 10000 mm/min is used as the standard setting value.

- Parameters that do not usually need tuning so often and can be left at fixed values

Parameter No.	Standard setting value	Description
$1602 \# 6, \# 3$	$\# 6, \# 3$	
	1,0	Acc./dec. after interpolation is of a linear type (to be specified when FAD is used)
$1603 \# 7$	1,1	Acc./dec. after interpolation is of a bell-shaped type (to be specified when FAD is not used)
$1802 \# 7$	1	Acc./dec. before interpolation is of bell-shaped type. (0: Linear-shaped acc./dec. before interpolation)

(3) AI contour control

- Parameters that need tuning based on the machine type

Parameter No.	Standard setting value setting		Speed priority I	Speed priority II
	-	-	-	Maximum cutting feedrate (mm/min) for individual axes
1620	-	-	-	Time constant (msec) for linear-shaped acc./dec. in rapid-traverse for individual axes
1621	-	-	-	Time constant T2 (msec) for bell-shaped acc./dec. in rapid-traverse for individual axes
1730	3060	5150	7275	Feedrate upper limit (mm/min) for arc radius R
1731	5000	5000	5000	Arc radius R (1 $\mu \mathrm{m})$ for arc radius-based feedrate upper limit
1732	100	100	100	Arc radius-based feedrate clamp lower speed limit (mm/min)
1768	24	16	16	Time constant (msec) for acc./dec. after cutting feed interpolation
1770	10000	10000	10000	Maximum cutting feedrate (mm/min) during acc./dec. before interpolation
1771	240	80	40	Time (msec) allowed before a maximum cutting feedrate during acc./dec. before interpolation is reached
1772	64	48	32	Time constant (msec) for bell-shaped acc./dec. before interpolation (portion with the time fixed)
1783	400	500	1000	Allowable speed difference (mm/min) in acceleration-dependent on speed difference at corners
1784	-	-	-	Speed (mm/min) at occurrence of overtravel alarm To be specified according to the overrun distance at overtravel
1785	320	112	56	Parameter (msec) for determining an allowable acceleration in determining acceleration-dependent speed. The parameter is to be set with the time allowed before a maximum cutting feedrate (1432) is reached. A maximum cutting feedrate of 10000 mm/min is used as the standard setting value.

- Parameters that do not usually need tuning so often and can be left at fixed values

Parameter No.	Standard setting value	Description
$1602 \# 6, \# 3$	$\# 6, \# 3$	
	1,0	Acc./dec. after interpolation is of a linear type (if bell-shaped acc./dec. before interpolation is used)
	1,1	Acc./dec. after interpolation is of a bell-shaped type (if linear-shaped acc./dec. before interpolation is used)
$1603 \# 7$	1	Acc./dec. before interpolation is of a bell-shaped type (0: Linear-shaped acc./dec. before interpolation)
$7002 \# 7$	$0 / 1$	To be set to 1 if the CMR setting is 2 or greater (parameter No. 1820 setting is 4 or greater).
$7050 \# 6$	1	To be set to the standard setting value.
$7052 \# 0$	0	To be set to the standard setting value.
$7055 \# 3$	$1 / 0$	To be set to 1 for the PMC and Cs axes.
7058	0	To be set to 1 if a function of changing the time constant for bell-shaped acc./dec. before interpolation is to be used.
7066	mm / inch $10000 / 3937$	To be set to standard value. Reference speed (mm/min / inch/min) for a function of changing the time constant for bell-shaped acc./dec. before interpolation

(4) Al nano contour control

- Parameters that need tuning based on the machine type

Parameter No.	Standard setting value setting		Speed priority I	Speed priority II
	-	-	-	Maximum cutting feedrate (mm/min) for individual axes
1620	-	-	-	Time constant (msec) for linear-shaped acc./dec. in rapid-traverse for individual axes
1621	-	-	-	Time constant T2 (msec) for bell-shaped acc./dec. in rapid-traverse for individual axes
1730	3060	5150	7275	Feedrate upper limit (mm/min) for arc radius R
1731	5000	5000	5000	Arc radius R (1 $\mu \mathrm{m})$ for arc radius-based feedrate upper limit
1732	100	100	100	Arc radius-based feedrate clamp lower speed limit (mm/min)
1768	24	16	16	Time constant (msec) for acc./dec. after cutting feed interpolation
1770	10000	10000	10000	Maximum cutting feedrate (mm/min) during acc./dec. before interpolation
1771	240	80	40	Time (msec) allowed before a maximum cutting feedrate during acc./dec. before interpolation is reached
1772	64	48	32	Time constant (msec) for bell-shaped acc./dec. before interpolation (portion with the time fixed)
1783	400	500	1000	Allowable speed difference (mm/min) in acceleration-dependent on speed difference at corners
1784	-	-	-	Speed (mm/min) at occurrence of overtravel alarm To be specified according to the overrun distance at overtravel
1785	320	112	56	Parameter (msec) for determining an allowable acceleration in determining acceleration-dependent speed. The parameter is to be set with the time allowed before a maximum cutting feedrate (1432) is reached. A maximum cutting feedrate of 10000 mm/min is used as the standard setting value.

- Parameters that do not usually need tuning so often and can be left at fixed values

Parameter No.	Standard setting value	Description
$1602 \# 6, \# 3$	1,0	Acc./dec. after interpolation is of a linear type (if bell-shaped acc./dec. before interpolation is used)
	1,1	Acc./dec. after interpolation is of a bell-shaped type (if linear-shaped acc./dec. before interpolation is used)
	1	Acc./dec. before interpolation is of a bell-shaped type (0: Linear-shaped acc./dec. before interpolation)
$1802 \# 7$	$0 / 1$	To be set to 1 if the CMR setting is 2 or greater (parameter No. 1820 setting is 4 or greater).
$7052 \# 0$	$0 / 1$	To be set to 1 for the PMC and Cs axes.
$7053 \# 0$	0	Al nano contour control (1: Al contour control is enabled.)
$7055 \# 3$	$1 / 0$	To be set to 1 if a function of changing the time constant for bell-shaped acc./dec. before interpolation is to be used.
7058	0	To be set to standard value.
7066	mm/ inch $10000 / 3937$	Reference speed (mm/min / inch/min) for a function of changing the time constant for bell-shaped acc./dec. before interpolation

(5) High-precision contour control

- Parameters that need tuning based on the machine type

Parameter No.	Standard setting value			Description
	Speed priority I	Speed priority II		
1432	-	-	-	Maximum cutting feedrate (mm/min) for individual axes
1620	-	-	-	Time constant (msec) for linear-shaped acc./dec. in rapid-traverse for individual axes
1621	-	-	-	Time constant T2 (msec) for bell-shaped acc./dec. in rapid-traverse for individual axes
1768	24	16	16	Time constant (msec) for acc./dec. after cutting feed interpolation
8400	10000	10000	10000	Maximum cutting feedrate (mm/min) during acc./dec. before interpolation
8401	240	80	40	Time (msec) allowed before a maximum cutting feedrate during acc./dec. before interpolation is reached
8410	400	500	1000	Allowable speed difference (mm/min) in acceleration-dependent on speed difference at corners
8416	64	48	32	Time constant (msec) for bell-shaped acc./dec. before interpolation (portion with the time fixed)
8470	320	112	56	Parameter (msec) for determining an allowable acceleration in determining acceleration-dependent speed. The parameter is to be set with the time allowed before a maximum cutting feedrate (1432) is reached. A maximum cutting feedrate of 10000 mm/min is used as the standard setting value.

- Parameters that do not usually need tuning so often and can be left at fixed values

Parameter No.	Standard setting value	Description
$1602 \# 6, \# 3$	$\# 6, \# 3$	
	1,0	Acc./dec. after interpolation is of a linear type (if bell-shaped acc./dec. before interpolation is used)
	1,1	Acc./dec. after interpolation is of a bell-shaped type (if linear-shaped acc./dec. before interpolation is used)
7510	$0 / 1$	To be set to 1 if the CMR setting is 2 or greater (parameter No. 1820 setting is 4 or greater).
$8402 \# 7, \# 1$,	1,1	Largest of controlled-axis numbers for which high precision contour control is performed
$1603 \# 3$	1	Acc./dec. before interpolation is of a bell-shaped type (with the acceleration change fixed)
$8402 \# 4$	0	To be set to the standard setting value.
$8402 \# 5$	1	To be set to the standard setting value.
$8403 \# 7, \# 1$, $8404 \# 1, \# 0$	1,1	No alarm is raised on an M, S, T, B, or rapid traverse command. Rapid traverse is processed on the RISC side.
8420	1,1	Number of blocks to be looked ahead (0: 120 blocks) $8451 \# 0$
$8451 \# 4$	$0 / 1$	To be set to the standard setting value. 8456
80	70	Set this parameter to 1 if cutting load-dependent override is to be used. (This parameter is used if the mechanical rigidity of the Z-axis is low.) (needn't be speride (\%) for the cutting load-based deceleration function if bit 4 of parameter No. 8451 = 0)
8457	Region 3 override (\%) for the cutting load-based deceleration function) (needn't be specified if bit 4 of parameter No. 8451 = 0)	

Parameter No.	Standard setting value	Description
8458	60	Region 4 override (\%) for the cutting load-based deceleration function) (needn't be specified if bit 4 of parameter No. 8451 = 0)
$8459 \# 0$	0	To be set to the standard setting value.
$8459 \# 1$	1	To be set to the standard setting value.
$8475 \# 2$	1	Automatic deceleration at corners is enabled.
$8475 \# 3$	1	Acceleration-dependent determination of speed during arc interpolation is enabled.
$8480 \# 4$	$0 / 1$	To be set to 1 if the software series on the RISC side is B435. Otherwise, to be reset to 0.
$8480 \# 5$	0	To be set to the standard setting value. $8480 \# 6$To be set to the standard setting value. $8485 \# 0$Scaling/coordinate system rotation in high precision contour control mode is enabled/disabled. (An option is necessary.)
$8485 \# 1$	$1 / 0$	A canned cycle in high precision contour control mode is enabled/disabled. (An option is necessary.)
$8485 \# 2$	$1 / 0$	A helical interpolation in high precision contour control mode is enabled/disabled. (An option is necessary.)
$8485 \# 4$	$1 / 0$	A involute interpolation in high precision contour control mode is enabled/disabled. (An option is necessary.)
$8485 \# 5$	$1 / 0$	A smooth interpolation in high precision contour control mode is enabled/disabled. (An option is necessary.)

(6) AI high precision contour control, AI nano high precision contour control

- Parameters that need tuning based on the machine type

Parameter No.	Standard setting value			Description
	Standard setting	Speed priority I	Speed priority II	
1432	-	-	-	Maximum cutting feedrate ($\mathrm{mm} / \mathrm{min}$) for individual axes
1620	-	-	-	Time constant (msec) for linear-shaped acc./dec. in rapid-traverse for individual axes
1621	-	-	-	Time constant T2 (msec) for bell-shaped acc./dec. in rapid-traverse for individual axes
1768	24	16	16	Time constant (msec) for acc./dec. after cutting feed interpolation
8400	10000	10000	10000	Maximum cutting feedrate ($\mathrm{mm} / \mathrm{min}$) during acc./dec. before interpolation
19510	240	80	40	Time (msec) allowed before a maximum cutting feedrate is reached for an individual axis during acc./dec. before interpolation. If this parameter is 0 , a setting in parameter No. 8401 is used.
8410	400	500	1000	Allowable speed difference ($\mathrm{mm} / \mathrm{min}$) in acceleration-dependent on speed difference at corners
8416	64	48	32	Time constant (msec) for bell-shaped acc./dec. before interpolation (portion with the time fixed)
8470	320	112	56	Parameter (msec) for determining an allowable acceleration in determining acceleration-dependent speed. The parameter is to be set with the time allowed before a maximum cutting feedrate (1432) is reached. A maximum cutting feedrate of $10000 \mathrm{~mm} / \mathrm{min}$ is used as the standard setting value.

- Parameters that do not usually need tuning so often and can be left at fixed values

Parameter No.	Standard setting value	Description
$1602 \# 6, \# 3$	1,0	
	1,1	Acc./dec. after interpolation is of a linear type (if bell-shaped acc./dec. before interpolation is used)
$1802 \# 7$	$0 / 1$	Acc./dec. after interpolation is of a bell-shaped type (if linear-shaped acc./dec. before interpolation is used)
7510	-	To be set to 1 if the CMR setting is 2 or greater (parameter No. 1820 setting is 4 or greater).
$8402 \# 7, \# 1$	1,1	Largest of controlled-axis numbers for which high precision contour control is performed
$8403 \# 1$	1	Acc./dec. before interpolation is of a bell-shaped type (with the acceleration change fixed)
$8451 \# 4$	$0 / 1$	No alarm is raised on an M, S, T, B, or rapid traverse command. 19516
80	Set this parameter to 1 if cutting load-dependent override is to be used. (This parameter is used if the mechanical rigidity of the Z-axis is low.)	
8456	80	Region 1 override (\%) for the cutting load-based deceleration function (needn't be specified if bit 4 of parameter No. 8451 = 0)
8457	70	Region 2 override (\%) for the cutting load-based deceleration function (needn't be specified if bit 4 of parameter No. 8451 = 0)
8458	60	Region 3 override (\%) for the cutting load-based deceleration function (needn't be specified if bit 4 of parameter No. 8451 = 0)
$8480 \# 4$	0	Region 4 override (\%) for the cutting load-based deceleration function) (needn't be specified if bit 4 of parameter No. 8451 = 0)

Parameter No.	Standard setting value	Description
$8480 \# 5$	0	To be set to the standard setting value.
$8480 \# 6$	0	To be set to the standard setting value.
$19501 \# 6$	$1 / 0$	To be set to 1 if a function of changing the time constant for bell-shaped acc./dec. before interpolation is to be used.
$19504 \# 0$	1	Bell-shaped rapid traverse acc./dec. is used.
19520	mm / inch $10000 / 3937$	Reference speed (mm/min / inch/min) for a function of changing the time constant for bell-shaped acc./dec. before interpolation
$19600 \# 0$	$0 / 1$	Scaling is performed on the CNC side or, as 5-axis control mode, on the RISC side. (An option is necessary.)
$19600 \# 1$	$0 / 1$	Programmable mirror image is performed on the CNC side or, as 5-axis control mode, on the RISC side. (An option is necessary.)
$19600 \# 2$	$0 / 1$	Rotary dynamic fixture offset is performed on the CNC side or, as 5-axis control mode, on the RISC side. (An option is necessary.)
$19600 \# 3$	$0 / 1$	Coordinate rotation is performed on the CNC side or, as 5-axis control mode, on the RISC side. (An option is necessary.)
$19600 \# 4$	$0 / 1$	Three-dimensional coordinate conversion is performed on the CNC side or, as $5-a x i s ~ c o n t r o l ~ m o d e, ~ o n ~ t h e ~ R I S C ~ s i d e . ~(A n ~ o p t i o n ~ i s ~ n e c e s s a r y) ~$.
$19600 \# 5$	$0 / 1$	Cutter compensation C is performed on the CNC side or, as 5-axis control mode, on the RISC side. (An option is necessary.)

D.1.3 Series 30i/31i/32i-A, 31i-A5

[Functions related to high-speed and high precision operations]

High-speed and high precision function	Al contour control I	Al contour control II ${ }^{\text {(Note 1) }}$	\qquad
Series30i-A	\bigcirc	\bigcirc	\bigcirc
Series31i-A/A5	\bigcirc	\bigcirc	\bigcirc
Series32i-A	\bigcirc	\bigcirc	\times
Acc./dec. before interpolation			
Type	Linear/ Bell-shaped	Linear/ Bell-shaped/ Smooth bell-shaped	Linear/ Bell-shaped/ Smooth bell-shaped
Acceleration setting for each axis	\bigcirc	\bigcirc	\bigcirc
Velocity control			
Velocity control by speed difference among axes	\bigcirc	\bigcirc	\bigcirc
Velocity control by acceleration in circular interpolation	\bigcirc	\bigcirc	\bigcirc
Acceleration-based velocity control	O	\bigcirc	\bigcirc
Cutting load-based velocity control	\times	\bigcirc	\bigcirc
Jerk control	\times	\bigcirc	\bigcirc
Optimum torque acc./dec.	\bigcirc	\bigcirc	\bigcirc
Other functions			
Nano interpolation	\bigcirc	\bigcirc	\bigcirc
5-axis machining functions ${ }^{\text {(Note 3) }}$	\bigcirc	\bigcirc	\bigcirc
Smooth interpolation ${ }^{\text {(Note 4) }}$	\bigcirc	\bigcirc	\bigcirc
NURBS ${ }^{\text {(Note 4) }}$	\bigcirc	\bigcirc	\bigcirc
Nano smoothing ${ }^{\text {(Note 4) }}$	\bigcirc	\bigcirc	\bigcirc

NOTE

1 In FS30i systems controlling more than four paths and more than 20 axes, this function cannot be used.
2 In FS30i and FS31i systems controlling more than two paths and more than 12 axes, this function cannot be used.
3 These functions can be used with the FS30i-A and FS31i-A5 only.
4 These functions cannot be used with the FS32i.

[Parameters]

Described below are the parameters that must be specified for individual high-speed and high precision cutting machines separately.
Use the standard setting values included in the parameter tables as reference data for initialization. If a parameter needs tuning based on the machine type, determine a final setting for the parameter according to the characteristic of the machine and how to use it.

- \quad Standard settings (precision priority)

When there is vibration or significant impact, or when machining is to be performed more precisely, make settings based on the standard settings.

- Cutting time-first setting

To reduce machining time, make settings for speed priority I then for speed priority II in stages. The settings for speed priority II can reduce much more machining time than the settings for speed priority I.

(1) Al high precision contour control, AI nano high precision contour control

- Parameters that need tuning based on the machine type

Parameter No.	Standard setting value		Description	
	Speed priority I	Speed priority II		
1432	-	-	-	Maximum cutting feedrate (mm/min) for individual axes
1620	-	-	-	Time constant (msec) for linear-shaped acc./dec. in rapid-traverse for individual axes
1621	-	-	-	Time constant T2 (msec) for bell-shaped acc./dec. in rapid-traverse for individual axes
1769	24	16	16	Time constant (msec) for acc./dec. after cutting feed interpolation 1660
700.0	2000.0	4000.0	Acceleration in acc./dec. before interpolation (for constant-acceleration part) (Acceleration is specified in mm/sec ${ }^{2}$ for individual axes.)	
1772	64	48	32	Time constant of bell-shaped acc./dec. before interpolation (msec) (for constant-acceleration part)
1783	400.0	500.0	1000.0	Allowable speed difference (mm/min) in acceleration-dependent on speed difference at corners
1737	525.0	1500.0	3000.0	Permissible acceleration in deceleration by acceleration (Acceleration is specified in mm/sec ${ }^{2}$ for individual axes.)
1735	525.0	1500.0	3000.0	Permissible acceleration in deceleration by acceleration in circular interpolation (Acceleration is specified in $\mathrm{mm}^{2} / \mathrm{sec}^{2}$ for individual axes.)

Parameters that do not usually need tuning so often and can be left at fixed values

Parameter No.	Standard setting value	Description
1602\#6,\#3	\#6,\#3	
	1,0	Acc./dec. after interpolation is of a linear type
	1,1	Acc./dec. after interpolation is of a bell-shaped type ${ }^{(\text {Note 1) }}$
7055\#3	1/0	To be set to 1 if a function of changing the time constant for bell-shaped acc./dec. before interpolation is to be used.
7066	$\begin{gathered} \hline \mathrm{mm} / \text { inch } \\ 10000.0 / 3937.0 \\ \hline \end{gathered}$	Reference speed ($\mathrm{mm} / \mathrm{min} / \mathrm{inch} / \mathrm{min}$) for a function of changing the time constant for bell-shaped acc./dec. before interpolation
19503\#0	0/1	When using smooth velocity control as velocity control by acceleration, set 1. ${ }^{\text {(Note 2) }}$
8451\#4	0/1	Set this parameter to 1 if cutting load-dependent override is to be used. (This parameter is used if the mechanical rigidity of the Z-axis is low.) ${ }^{\text {(Note 2) }}$
19515\#1	0/1	When using the slant type for override by cutting load, set 1. ${ }^{\text {(Note 2) }}$
19516	80	Region 1 override (\%) for the cutting load-based deceleration function (needn't be specified if bit 4 of parameter No. 8451 or bit 1 of parameter No. $19515=0$) ${ }^{(\text {Note 2) }}$
8456	80	Region 2 override (\%) for the cutting load-based deceleration function (needn't be specified if bit 4 of parameter No. $8451=0$) ${ }^{\text {(Note 2) }}$
8457	70	Region 3 override (\%) for the cutting load-based deceleration function (needn't be specified if bit 4 of parameter No. $8451=0)^{(\text {Note } 2)}$
8458	60	Region 4 override (\%) for the cutting load-based deceleration function (needn't be specified if bit 4 of parameter No. $8451=0)^{(\text {Note } 2)}$

NOTE

1 To perform bell-shaped acc./dec. after cutting feed interpolation, the option for bell-shaped acc./dec. after cutting feed interpolation is required.
2 These functions cannot be used with AI contour control I.

D. 2 SERVO PARAMETERS RELATED TO HIGH-SPEED AND HIGH PRECISION OPERATIONS

Described below are the servo parameters that need setting and tuning for high-speed and high precision operations.
To specify parameters, follow this procedure.

1. First specify one of items (1) to (3) about fixed parameters that are dependent on the CNC model and mode to be used.
2. Specify item (4) about parameters to be tuned in common to all CNC models and modes. (See Chapters 3 and 4 of this parameter manual for explanations about how to tune the parameters and detailed descriptions of the related functions.)
3. If you want to use SERVO HRV control, specify item (5).
(1) When HRV2 and fine ACC./Dec. is used (Series 16i/18i/21i/20i/0i)

- Using advanced preview control in the Series $16 i / 18 i / 21 i$
- Using AI advanced preview control in the Series $21 i / 20 i / 0 i$ (servo software Series 90B0)
For the above cases, make the following settings for using HRV2 control and fine acc./dec.
- Parameters that do not usually need tuning so often and can be left at fixed values

Parameter No. FS16i, etc.	Standard setting value	Description
2003\#3	1	Enables PI control function
2003\#5	1	Enables backlash acceleration
2004	$\begin{gathered} 0 \times 000011 \\ \text { (Note 1) } \end{gathered}$	HRV2 current control
2005\#1	1	Enables feed-forward
2006\#4	1	Uses the latest feedback data for velocity feedback.
2007\#6	1	Enables FAD (Fine acc./dec.)
2015\#6	1	Enables stage-2 backlash acceleration.
2016\#3	1	Enables variable proportional gain in the stop state
2017\#7	1	Enables velocity loop high cycle management function
2018\#2	1	Changes the second override format for stage-2 backlash acceleration.
2040	Standard parameter for HRV2 ${ }^{\text {(Note 2) }}$	Current integral gain
2041	Standard parameter for HRV2 ${ }^{\text {(Note 2) }}$	Current proportional gain
2092	10000	Advanced preview (position) feed-forward coefficient
2119	2 (detection unit of $1 \mu \mathrm{~m}$) 20 (detection unit of $0.1 \mu \mathrm{~m}$)	For variable proportional gain function in the stop state : judgment level for stop state (specified in detection units)
2146	50	Stage-2 backlash acceleration end timer
2202\#1	1	Cutting/rapid traverse velocity loop gain variable
2209\#2	1	Enables FAD of linear type.

NOTE

1 Keep the bit indicated with X (bit 6) at the standard setting.
2 For motors not supporting the HRV2 standard parameters, change the parameter settings to the settings for HRV2 according to the instructions described in Section G.4.

- Parameters whose settings must be changed according to the size of the machine but needn't tuning once set up

Parameter No.	Standard setting value			Description
	Standard setting	Speed priority I	Speed priority II	
2109	24	16	16	FAD time constant

(2) When HRV2 is used, but fine acc./dec. is not (Series 30i/31i/32i/15i/16i/18i/21i/0i)

When using AI contour control I, AI contour control II, look-ahead acc./dec. before interpolation, Fine HPCC, AI nano high precision contour control, AI high precision contour control, AI nano contour control, AI contour control, or high precision contour control, make the following settings.

- Parameters that do not usually need tuning so often and can be left at fixed values

Parameter No. FS30i,16i, etc. FS15i	Standard setting value	Description
$\begin{aligned} & \hline 2003 \# 3 \\ & \text { 1808\#3 } \\ & \hline \end{aligned}$	1	Enables PI control function
$\begin{aligned} & \hline 2003 \# 5 \\ & 1808 \# 5 \\ & \hline \end{aligned}$	1	Enables backlash acceleration
$\begin{aligned} & \hline 2004 \\ & 1809 \\ & \hline \end{aligned}$	$0 \times 000011^{(\text {Note 1) }}$	HRV2 current control
$\begin{aligned} & \hline 2005 \# 1 \\ & 1883 \# 1 \\ & \hline \end{aligned}$	1	Enables feed-forward
$\begin{aligned} & \text { 2006\#4 } \\ & \text { 1884\#4 } \end{aligned}$	1	Uses the latest feedback data for velocity feedback.
$\begin{aligned} & 2015 \# 6 \\ & 1957 \# 6 \\ & \hline \end{aligned}$	1	Enables two-stage backlash acceleration
$\begin{aligned} & 2016 \# 3 \\ & \text { 1958\#3 } \\ & \hline \end{aligned}$	1	Enables variable proportional gain in the stop state
$\begin{aligned} & 2017 \# 7 \\ & 1959 \# 7 \end{aligned}$	1	Enables velocity loop high cycle management function
$\begin{aligned} & \hline 2018 \# 2 \\ & 1960 \# 2 \end{aligned}$	1	Changes the second override format for stage-2 backlash acceleration.
$\begin{aligned} & 2040 \\ & 1852 \end{aligned}$	Standard parameter for HRV2 ${ }^{\text {(Note 2) }}$	Current integral gain
$\begin{aligned} & 2041 \\ & 1853 \end{aligned}$	Standard parameter for HRV2 ${ }^{\text {(Note 2) }}$	Current proportional gain
$\begin{aligned} & 2092 \\ & 1985 \end{aligned}$	10000	Advanced preview (position) feed-forward coefficient
$\begin{aligned} & 2119 \\ & 1730 \end{aligned}$	2 (detection unit of $1 \mu \mathrm{~m}$) 20 (detection unit of $0.1 \mu \mathrm{~m}$)	For variable proportional gain function in the stop state : judgment level for stop state (specified in detection units)
$\begin{aligned} & \hline 2146 \\ & 1769 \\ & \hline \end{aligned}$	50	Stage-2 backlash acceleration end timer
$\begin{aligned} & 2202 \# 1 \\ & 1742 \# 1 \end{aligned}$	1	Cutting/rapid traverse velocity loop gain variable

NOTE

1 Keep the bit indicated with X (bit 6) at the standard setting.
2 For motors not supporting the HRV2 standard parameters, change the parameter settings to the settings for HRV2 according to the instructions described in Section G.4.
(3) When using HRV1 and FAD (Series 21i/0i)

To use AI advanced preview control in the Series $21 i / 0 i$ (servo software Series 9096), make the following settings for using HRV1 control and fine acc./dec.

Parameters that do not usually need tuning so often and can be left at fixed values

Parameter No. FS21i	Standard setting value	Description
$2003 \# 3$	1	Enables PI control function
$2003 \# 5$	1	Enables backlash acceleration
2004	Standard parameter for HRV1	HRV1 current control
$2005 \# 1$	1	Enables feed-forward
$2006 \# 4$	1	Uses the latest feedback data for velocity feedback.
$2007 \# 6$	1	Enables FAD (Fine acc./dec.)
$2015 \# 6$	1	Enables two-stage backlash acceleration
$2016 \# 3$	1	Enables variable proportional gain in the stop state
$2017 \# 7$	1	Enables velocity loop high cycle management function
$2018 \# 2$	1	Changes the second override format for stage-2 backlash acceleration.
2040	Standard parameter for HRV1	Current integral gain
2041	Standard parameter for HRV1	Current proportional gain
2092	10000	Advanced preview (position) feed-forward coefficient
2119	2 (detection unit of $1 \mu \mathrm{~m})$	For variable proportional gain function in the stop state $:$ judgment level for stop state (specified in detection units)
2146	20 (detection unit of $0.1 \mu \mathrm{~m}$)	50
$2202 \# 1$	1	Stage-2 backlash acceleration end timer
$2209 \# 2$	1	Cutting/rapid traverse velocity loop gain variable

- Parameters whose settings must be changed according to the size of the machine but needn't tuning once set up

Parameter No.	Standard setting value			Description
	Standard setting	Speed priority I	Speed priority II	
	24	16	16	FAD time constant

(4) Parameters common to all CNC models (requiring tuning)

- Parameters requiring tuning for finding optimum values

Parameter No. FS30i, 16i, etc. FS15i	Setting at tuning start	Description	Items to be referenced in tuning
$\begin{aligned} & 2021 \\ & 1875 \end{aligned}$	300	Load inertia ratio (velocity gain) * When the cutting/rapid velocity gain switching function is used, this parameter is applied to rapid traverse.	While checking vibration at stop, abnormal sound during low-speed movement, vibration during high-speed rotation, and so on, find the vibration limit, and set about 70% of the limit. \rightarrow See 3.3.1(6)
$\begin{aligned} & 2107 \\ & 1700 \end{aligned}$	150	Cutting load inertia ratio override (in \% units) * When the cutting/rapid velocity gain switching function is used, the gain magnified by this parameter setting is applied to cutting.	While checking vibration at stop, abnormal sound during low-speed movement, vibration during high-speed rotation, and so on, find the vibration limit, and set about 70% of the limit. \rightarrow See 3.3.1(6) and 4.3.
1825	Standard: 3000 Speed priority I: 5000 Speed priority II: 10000	Position gain	After determining the velocity loop gain, find the upper limit of the range in which hunting (low frequency vibration) does not occur. \rightarrow See 3.3.1(6).
$\begin{aligned} & 2069 \\ & 1962 \end{aligned}$	Standard: 50 When nano interpolation is used, see Note 2. 200	Velocity feed-forward coefficient	Make adjustment while observing the shape of rounded corners. $\rightarrow \text { See 3.3.1(11). }$
$\begin{aligned} & 2047 \\ & 1859 \end{aligned}$	Standard parameter	Observer parameter	Make adjustment while observing estimated disturbance value on the check board. \rightarrow See 4.12.1.
$\begin{aligned} & 2087 \\ & 1980 \end{aligned}$	0	Torque offset	Make adjustment while measuring positive and negative torque commands at a constant low feedrate.
$\begin{aligned} & 2048 \\ & 1860 \end{aligned}$	30	Stage-1 acceleration amount for 2-stage backlash acceleration	Make adjustment while observing the quadrant protrusion size. $\rightarrow \text { See 4.6.7. }$
$\begin{aligned} & \hline 2039 \\ & 1724 \end{aligned}$	100	2nd-stage acceleration amount	Make adjustment while observing the quadrant protrusion size.
$\begin{aligned} & 2082 \\ & 1975 \\ & \hline \end{aligned}$	10	Stage-2 start distance (detection unit)	Make adjustment while observing the quadrant protrusion size.
$\begin{aligned} & 2089 \\ & 1982 \end{aligned}$	50	Stage-2 end distance (set with a ratio to the start distance specified in 10% units)	Make adjustment while observing the quadrant protrusion size.
$\begin{aligned} & 2114 \\ & 1725 \end{aligned}$	10	Stage-2 override	Make adjustment while observing the quadrant protrusion size.

NOTE

1 There is the following relationship between the load inertia ratio and velocity loop gain (\%).
Velocity loop gain (\%) = ($1+$ load inertia ratio/256) $\times 100$
2 The phrase "using nano interpolation" means using AI contour control I, AI contour control II, Fine HPCC, look-ahead acc./dec. before interpolation, AI nano high precision contour control, or AI nano contour control.
(5) Parameters common to all CNC models (parameters needed to use HRV3)

- Parameters that do not usually need tuning so often and can be left at fixed values

Parameter No. FS30i, 16i, etc. FS15i	Standard setting value	Description
$\begin{aligned} & 2004 \\ & 1809 \\ & \hline \end{aligned}$	$0 \times 000011^{(\text {Note 1) }}$	HRV2 current control (in a mode other than high-speed HRV control)
$\begin{aligned} & \hline 2013 \# 0 \\ & 1707 \# 0 \\ & \hline \end{aligned}$	1	In the G05.4Q1 command, high-speed HRV control (HRV3 current control)
$\begin{aligned} & \hline 2202 \# 1 \\ & 1742 \# 1 \end{aligned}$	1	Cutting/rapid velocity loop gain switching function
$\begin{aligned} & 2040 \\ & 1852 \end{aligned}$	Standard parameter for HRV2 ${ }^{\text {(Note 2) }}$	Current integral gain
$\begin{aligned} & \hline 2041 \\ & 1853 \\ & \hline \end{aligned}$	Standard parameter for HRV2 ${ }^{\text {(Note 2) }}$	Current proportional gain
$\begin{aligned} & \hline 2334 \\ & 2747 \\ & \hline \end{aligned}$	150	Current loop gain magnification for high-speed HRV current control

NOTE

1 Keep the bit indicated with X (bit 6) at the standard setting.
2 For motors not supporting the HRV2 standard parameters, change the parameter settings to the settings for HRV2 according to the instructions described in Section G.4.

- Parameters that need tuning

Parameter No. FS30i,16i, etc. FS15i	Setting	Description	Items to be referenced in tuning
2107	150	Cutting load inertia ratio override (in \% units)	While checking vibration at stop, abnormal sound during low-speed movement, vibration during high-speed rotation, and so on, find the vibration limit, and set about 70% of the limit.
2335	200	Cutting load inertia ratio override (in \% units) when high-speed HRV current control is in use	While checking vibration at stop, abnormal sound during low-speed movement, vibration during high-speed rotation, and so on, find the vibration limit, and set about 70% of the limit.

(6) Parameters for Series $30 i$ and $31 i$ (parameters needed to use HRV4)

- Parameters that do not usually need tuning so often and can be left at fixed values

Parameter No. FS30 i	Standard setting value	Description
2004	0X000011 (Note 1)	HRV3 current control (in a mode other than high-speed HRV control)
$2014 \# 0$	1	In the G05.4Q1 command, high-speed HRV control (HRV4 current control)
$2300 \# 0$	1	Extended HRV function
$2202 \# 1$	1	Cutting/rapid velocity loop gain switching function
2040	Standard parameter for HRV2	Current integral gain
2041	Standard parameter for HRV2	Current proportional gain
2334	150	Current loop gain magnification for high-speed HRV current control

NOTE

1 Keep the bit indicated with X (bit 6) at the standard setting.

Parameters that need tuning

Parameter No. FS30, etc.	Setting	Description	Items to be referenced in tuning
2107	150	Cutting load inertia ratio override (in \% units)	While checking vibration at stop, abnormal sound during low-speed movement, vibration during high-speed rotation, and so on, find the vibration limit, and set about 70% of the limit.
2335	200	Cutting load inertia ratio override (in \% units) when high-speed HRV current control is in use	While checking vibration at stop, abnormal sound during low-speed movement, vibration during high-speed rotation, and so on, find the vibration limit, and set about 70\% of the limit.

VELOCITY LIMIT VALUES IN SERVO SOFTWARE

(1) Overview

The feed axis velocity is subject to the feedrate limits that depend on the internal processing of the system itself and that of the servo software. These velocity limit values on the feed axis are explained below.

NOTE

The permissible speeds listed below do not take detector hardware limitations into account. For the maximum permissible speed of a detector itself, refer to the specifications of the detector.

(2) Velocity feedback (rotation speed) limit

The following limits apply to the rotation speed of motors according to the type of motor speed detector.

Detector type	Resolution	Allowable rotation speed
αi Pulsecoder	$2^{20}, 2^{24} \mathrm{pulse} / \mathrm{rev}$	$7500 \mathrm{~min}^{-1}$
HEIDENHAIN RCN220	$2^{20} \mathrm{pulse} / \mathrm{rev}$	$7500 \mathrm{~min}^{-1}$
HEIDENHAIN RCN223, 723	$2^{23} \mathrm{pulse} / \mathrm{rev}$	$937 \mathrm{~min}^{-1}(\mathrm{HRV} 1,2)$ $1875 \mathrm{~min}^{-1}(\mathrm{HRV} 3)$ $3750 \mathrm{~min}^{-1}(\mathrm{HRV} 4)$
HEIDENHAIN RCN727	$2^{27} \mathrm{pulse} / \mathrm{rev}$	

Even if any of the above detectors is used as a position detector, the same speed limits as those given above apply as the speed limits on the detector.

* Limit values related to linear motors

If a linear motor is used, its speed detector is a linear scale. So, a velocity rather than a rotation speed is involved, but the same limits as stated above are applied.

Detector type	Resolution	Allowable speed
HEIDENHAIN LS486 (incremental) with high-resolution serial output circuit	$20 / 512$ $\mu \mathrm{~m} / \mathrm{pulse}$	$300 \mathrm{~m} / \mathrm{min}$
Sony BS75A (incremental) with high-resolution serial output circuit	$0.1379 / 512$ $\mu \mathrm{~m} / \mathrm{pulse}$	$4.2 \mathrm{~m} / \mathrm{min}(\mathrm{HRV} 1,2)$ $8.4 \mathrm{~m} / \mathrm{min}$ (HRV3) $17 \mathrm{~m} / \mathrm{min}$ (HRV4)
HEIDENHAIN LC191F (absolute)	$0.1 \mu \mathrm{~m} / \mathrm{pulse}$	$786 \mathrm{~m} / \mathrm{min}$
HEIDENHAIN LC491F (absolute)	$0.05 \mu \mathrm{~m} / \mathrm{pulse}$	$393 \mathrm{~m} / \mathrm{min}$

(3) Position feedback (axis feedrate) limits

The following feedrate limits may be applied according to each of the functions because of a weight on data that is handled in detection units within the servo software.

- When ordinary position control is exercised
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 20 i-\mathrm{B}, 0 i-\mathrm{B} / \mathrm{C}, 0 i$ Mate-B/C, Power Mate i)

Function used			Allowable feedrate	
Hi -speed and high precision function	Feed-forward	Fine acc./dec.	Detection unit of \qquad $1 \mu \mathrm{~m}$	Detection unit of $0.1 \mu \mathrm{~m}$
None	None	None	IS-B : $240 \mathrm{~m} / \mathrm{min}$ IS-C : $100 \mathrm{~m} / \mathrm{min}$	$\begin{aligned} & \text { IS-B : } 196 \mathrm{~m} / \mathrm{min} \\ & \text { IS-C : } 100 \mathrm{~m} / \mathrm{min} \end{aligned}$
None	Performed (conventional type)	None		$24 \mathrm{~m} / \mathrm{min}^{(41)}$
None	Not performed/ performed (conventional type)	Performed		$98 \mathrm{~m} / \mathrm{min}$
Advanced preview control	Performed (advanced preview type)	Not performed/ performed		
Al contour control High precision contour control	Performed (advanced preview type)	Automatically switched off		
AI nano contour control Al high precision contour control Al nano high precision contour control	Performed (advanced preview type)	Automatically switched off		98m/min ${ }^{(* 2)}$
Fine HPCC	Performed (advanced preview type)	Automatically switched off	IS-B : $999 \mathrm{~m} / \mathrm{min}$ IS-C : $100 \mathrm{~m} / \mathrm{min}$	$\begin{aligned} & \text { IS-B : } 196 \mathrm{~m} / \mathrm{min} \\ & \text { IS-C }: 100 \mathrm{~m} / \mathrm{min} \end{aligned}$
Electric gear box	Performed (conventional type)	None	IS-B : $240 \mathrm{~m} / \mathrm{min}$ IS-C : $100 \mathrm{~m} / \mathrm{min}$	24m/min (*1)

- When speed control based on a PMC axis is exercised using a position command
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 20 i-\mathrm{B}, 0 i-\mathrm{B} / \mathrm{C}, 0 i$ Mate-B/C, Power Mate i)

Function used	Allowable feedrate	
	Detection unit of $1 / 1000 \mathrm{deg}$	Detection unit of $1 / 10000 \mathrm{deg}$
PMC-axis-based speed control (position command)	$5461 \mathrm{~min}^{-1}$	$\left.546 \mathrm{~min}^{-1}\right]$

- When ordinary position control is exercised

(Series 30i,31i,32i)

Function used		Allowable feedrate			
Hi -speed and high precision function	Feed-forward	Detection unit of $1 \mu \mathrm{~m}$	$\begin{array}{\|c\|} \hline \text { Detection unit } \\ \text { of } 0.1 \mu \mathrm{~m} \end{array}$	$\begin{array}{\|c\|} \hline \text { Detection unit } \\ \text { of } 0.01 \mu \mathrm{~m} \\ \hline \end{array}$	$\begin{aligned} & \hline \text { Detection unit } \\ & \text { of } 0.001 \mu \mathrm{~m} \\ & \hline \end{aligned}$
None	Not performed/ performed (advanced preview type)	IS-B:999m/min	IS-B:999m/min	IS-D:10m/min	IS-E:1m/min
Al contour control I Al contour control II	Not performed/ performed (advanced preview type)	IS-C:100m/min	IS-C: $100 \mathrm{~m} / \mathrm{min}$	$\rightarrow 100 \mathrm{~m} / \mathrm{min}\left({ }^{*} 3\right)$	$\rightarrow 100 \mathrm{~m} / \mathrm{min}\left({ }^{*} 3\right)$
Electric gear box	Performed (conventional type)	$\begin{aligned} & \text { IS-B: } 240 \mathrm{~m} / \mathrm{min} \\ & \text { IS-C: } 100 \mathrm{~m} / \mathrm{min} \end{aligned}$	24m/min (*1)	$\underset{\rightarrow 100 \mathrm{~m} / \mathrm{min}(* 3)}{ }$	$\begin{array}{\|c} 0.24 \mathrm{~m} / \mathrm{min} \\ \rightarrow 100 \mathrm{~m} / \mathrm{min}\left({ }^{*} 3\right) \end{array}$

- When rotary tool control based on a servo motor is used
(Series 30i,31i,32i)

Function used	Allowable feedrate			
Rotary tool control based on a servo motor	Detection unit of 1/1000 deg	Detection unit of 1/10000 deg	Detection unit of 1/100000 deg	Detection unit of 1/1000000 deg
Performed (No.1408\#3=0)	$\begin{aligned} & \text { IS-B: } 2777 \mathrm{~min}^{-1} \\ & \text { IS-C: } 277 \mathrm{~min}^{-1} \end{aligned}$	$\begin{aligned} & \text { IS-B: } 2777 \mathrm{~min}^{-1} \\ & \text { IS-C: } 277 \mathrm{~min}^{-1} \end{aligned}$	IS-D:27min ${ }^{-1}$	IS-E:2min ${ }^{-1}$
Performed (No.1408\#3=1)	$\begin{aligned} & \text { IS-B: } 27777 \mathrm{~min}^{-1} \\ & \text { IS-C: } 2777 \mathrm{~min}^{-1} \end{aligned}$	$\begin{aligned} & \text { IS-B: } 27777 \mathrm{~min}^{-1} \\ & \text { IS-C: } 2777 \mathrm{~min}^{-1} \end{aligned}$	IS-D:277min ${ }^{-1}$	IS-E: $27 \mathrm{~min}^{-1}$

* In the table, the values enclosed in a box are the limits due to the internal processing of the servo software. For the limits due to the internal processing of the servo software, if CMR is increased to decrease the detection unit, the permissible feedrate decreases in proportion to the detection unit. (Reducing the detection unit from $0.1 \mu \mathrm{~m}$ to $0.05 \mu \mathrm{~m}$ causes the permissible feedrate to be halved.)
* If a semi-closed system (rotary or linear motor) where a detector with a high resolution is used, using also nano interpolation enables these functions to be used for position control at the highest limit to the detector resolution even if the detection unit is not subdivided.
* If you are using these functions with a larger detection unit because of feedrate limits placed by the detection units stated above, velocity feedback data that can seriously affect velocity loop control is used for control at the highest limit to the detector resolution.
(*1) If conventional feed-forward is used, the permissible feedrate is decreased.
To avoid this, take one of the following actions:
- Disable feed-forward when not using the high precision function.
- Use fine acc./dec. at the same time.
(*2) For AI nano contour control, AI high precision contour control, and AI nano high precision contour control, the limit is $98 \mathrm{~m} / \mathrm{min}$ on the NC and $196 \mathrm{~m} / \mathrm{min}$ on the servo software. If CMR is increased to further decrease the detection unit, the feedrate limit on the NC is invariable, but the feedrate limit on the servo software decreases in proportion to the detection unit. If the detection unit is decreased, therefore, the feedrate limit will be the smaller one.
Detection unit Limit on the NC Limit on the servo
software

$0.1 \mu \mathrm{~m}$	$98 \mathrm{~m} / \mathrm{min}$	$196 \mathrm{~m} / \mathrm{min}$
$0.05 \mu \mathrm{~m}$	$98 \mathrm{~m} / \mathrm{min}$	$98 \mathrm{~m} / \mathrm{min}$
$0.02 \mu \mathrm{~m}$	$98 \mathrm{~m} / \mathrm{min}$	$39 \mathrm{~m} / \mathrm{min}$
$0.01 \mu \mathrm{~m}$	$98 \mathrm{~m} / \mathrm{min}$	$19.6 \mathrm{~m} / \mathrm{min}$

(*3) With the servo software and system software indicated below, the allowable feedrate value applicable when an increment system is selected from IS-D and IS-E is extended. A feedrate of up to $100 \mathrm{~m} / \mathrm{min}$ can be specified with the increment system IS-D or IS-E by using matching servo software and system software and setting the following parameters:

- Series and editions of applicable servo software (Series 30i,31i,32i)
Series 90D0/J(10) and subsequent editions
Series $90 \mathrm{E} 0 / \mathrm{J}(10)$ and subsequent editions
- Series and editions of applicable system software Series 30i-A:
Series G002, G012, and G022/04.0 and subsequent editions
Series 31i-A:
Series G101, G111/04.0 and subsequent editions
Series 31i-A5:
Series G121, G131/04.0 and subsequent editions
Series 32i-A:
Series G201/04.0 and subsequent editions (IS-E is not supported.)
- Parameter setting method

To extend the feedrate with the increment system IS-D or IS-E, both of parameter No. 1013 and No. 2282 must be set to 1 . (The increment systems IS-D and IS-E are optional functions.)

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
IESP							

1013 (FS30i)
IESP(\#7)

When the increment system IS-D or IS-E is used, the function that can set a value range wider than the conventionally allowed one for speed and acceleration parameters is:
0 : Not used.
1: Used.
With an axis for which this parameter is set, a value range wider than the conventionally allowed one can be set for parameters to be set in speed and acceleration units when the increment system IS-D or IS-E is selected.
Moreover, a movement can be made at a parameter-set speed.
The number of fractional digits displayed on the parameter input screen for an axis with this parameter set is also modified. When IS-D is used, the number of fractional digits is reduced by 1 from the conventional number of fractional digits. When IS-E is used, the number of fractional digits is reduced by 2 from the conventional number of fractional digits.

NOTE

When this parameter has been modified, the power must be turned off before operation is continued.

ISE64(\#3) The speed limit on feed-forward (bit 1 (FEED) of parameter No. 2005 $=1$) is:
0: Applied as conventionally done.
1: Extended.
When feed-forward is enabled, the speed limit on an axis for which this parameter is set is extended if the increment system is IS-D or IS-E.

SERVO FUNCTIONS

Servo software series Name of function	9 0 9 6	9 0 B 0	$\begin{aligned} & 99 \\ & 00 \\ & \text { B B } \\ & 65 \end{aligned}$	9 0 B 1	9 0 D 0	9 0 E 0	Reference items in this manual
[Servo initial setting]							
Flexible feed gear function	A	A	A	A	A	A	2.1
Position feedback pulses conversion coefficient	-	A	A	A	A	A	2.1.8 Supplementary 3
Supporting a fraction in reference counter setting	-	A	A	A	A	A	2.1.3
Supporting serial-type separate detectors	-	A	A	A	A	A	2.1.4
Supporting high-resolution serial output circuits H and C	-	Q	A	A	A	A	2.1.4
Supporting linear motor position detection circuits H and C	-	Q	A	A	A	A	4.14.1
Improving the reference counter when the RCN723 or RCN223 is used	-	Q	A	A	A	A	2.1.4
Supporting analog input separate detector interface unit	-	-	-	-	J	J	2.1.5
Supporting CZi sensor (serial separate detector)	-	A	A	A	A	A	2.1.6
Supporting CZi sensor (synchronous built-in servo motor)	-	-	-	-	A	A	2.1.6
Supporting PWM distribution module (PDM)	-	-	-	A	-	-	2.1.7
Illegal parameter setting alarm detail output	A	A	A	A	A	A	2.1.8
Automatic format change for position gain	-	A	A	A	A	A	2.1.8 Supplementary 5
Expanding the position gain setting range	A	A	A	A	A	A	2.1.8 Supplementary 5
[Servo functions]							
SERVO HRV control	A	A	A	A	-	-	4.1
SERVO HRV2 control	-	A	A	A	A	A	4.1.1
SERVO HRV3 control (high-speed HRV current control)	-	A	A	A	A	A	4.2.1
SERVO HRV4 control (high-speed HRV current control)	-	-	-	-	A	-	4.2.2
Cutting/rapid velocity loop gain switching function	A	A	A	A	A	A	4.3
$1 / 2 \mathrm{Pl}$ is always enabled for cutting/rapid velocity gain	-	A	A	A	A	A	4.3
Upper limit to cutting/rapid velocity loop gain loop of 400\%	-	A	A	A	A	A	4.3
Velocity loop high cycle management function	A	A	A	A	A	A	4.4.1
Supporting the tandem velocity loop high cycle management function	-	A	A	A	A	A	4.4.1, 4.18.9
Acceleration feedback function	A	A	A	A	A	A	4.4.2
Variable proportional gain function in the stop state	A	A	A	A	A	A	4.4.3
Variable proportional gain function in the stop state : supporting 50\%	A	A	A	A	A	A	4.4.3
Variable proportional gain function in the stop state : supporting arbitrary magnification	-	A	A	A	A	A	4.4.3
Addition of N pulses suppression function	A	A	A	A	A	A	4.4.4
TCMD filter	A	A	A	A	A	A	4.5.1
TCMD filter (cutting/rapid)	A	A	A	A	A	A	4.5.1
Resonance elimination filter : stage 1	-	A	A	A	A	A	4.5.2
Resonance elimination filter : stage 4	-	J	A	A	A	A	4.5.2
Active resonance elimination filter	-	P	A	A	A	A	4.5.2
Disturbance elimination filter	-	A	A	A	A	A	4.5.3
Observer function	A	A	A	A	A	A	4.5.4
Observer function (with the disable function for observer in the stop state added)	A	A	A	A	A	A	4.5.4
Current loop 1/2 PI control function	A	A	A	A	A	A	4.5.5

\qquad	9 0 9 6	9 0 B 0	$\begin{array}{\|l\|} \hline 99 \\ 00 \\ \text { B B } \\ 65 \\ \hline \end{array}$	9 0 B 1	9 0 D 0	9 0 E 0	Reference items in this manual
Current loop 1/2 PI control function always enabled	A	A	A	A	A	A	4.5 .5
Current loop PI control function current control PI ratio variable	-	A	A	A	A	A	4.5 .5
Vibration damping control function	A	A	A	A	A	A	4.5.6
Dual position feedback function	A	A	A	A	A	A	4.5.7
Machine speed feedback function	A	A	A	A	A	A	4.5.8
Machine speed feedback function (normalization)	A	A	A	A	A	A	4.5.8
Feed-forward function	A	A	A	A	A	A	4.6.1
Advanced preview feed-forward function	A	A	A	A	A	A	4.6.2
RISC feed-forward function	A	A	A	A	-	-	4.6 .3
Feed-forward timing adjustment	A	A	A	A	A	A	4.6 .5
Feed-forward timing adjustment (for supporting FAD)	-	J	A	A	-	-	4.6.5
Cutting/rapid feed-forward switching function	-	B	A	A	A	A	3.4, 4.6.4
Backlash acceleration function	A	A	A	A	A	A	4.6 .6
Supporting backlash acceleration override function	-	W	A	A	J	J	4.6 .6
Backlash acceleration stop function	A	A	A	A	A	A	4.6.6
2-stage backlash acceleration function	A	A	A	A	A	A	4.6.7
2-stage backlash acceleration function : second stage acceleration limit	-	J	A	A	A	A	4.6.7
2-stage backlash acceleration function : second stage acceleration direction-specific setting	-	J	A	A	A	A	4.6.7
Two-stage backlash acceleration function: second stage acceleration (type 2)	-	X	A	A	A	A	4.6.7
Backlash acceleration function : enabled only for cutting	A	A	A	A	A	A	4.6.7
Backlash acceleration function : improvement on "enabled only for cutting"	-	C	A	A	A	A	4.6.7
Static friction compensation function	A	A	A	A	A	A	4.6 .8
Torsion preview control	-	W	A	A	-	-	4.6 .9
Overshoot compensation function	A	A	A	A	A	A	4.7
Overshoot compensation function type 2	A	A	A	A	A	A	4.7
Position gain switching function	A	A	A	A	A	A	4.8.1
position gain switching function type 2	A	A	A	A	A	A	4.8.1
Expanding the velocity setting range for high-speed positioning function	A	A	A	A	A	A	4.8.1
Low-speed integral function	A	A	A	A	A	A	4.8.2
Fine acc./dec. function	A	A	A	A	-	-	4.8.3
Cutting/rapid fine acc./dec. switching function	A	A	A	A	-	-	3.4, 4.8.3
Synchronization in rigid tapping mode when the FAD function is used	A	A	A	A	-	-	4.8.3
Serial feedback dummy function	-	A	A	A	A	A	4.9.1
Dummy function for separate detector	-	A	A	A	A	A	4.9.1
Brake control function	A	A	A	A	A	A	4.10
Quick stop type 1 at emergency stop	A	A	A	A	A	A	4.11.1
Quick stop type 2 at emergency stop	A	A	A	A	A	A	4.11.2
Lifting function against gravity at emergency stop	-	P	A	A	A	A	4.11 .3
Quick stop function for hardware disconnection of separate detector	A	A	A	A	A	A	4.11.4
Quick stop function at the OVC and OVL alarm	A	A	A	A	A	A	4.11 .5
Unexpected disturbance torque detection function	A	A	A	A	A	A	4.12.1
Improvement on dynamic friction compensation for estimated disturbance	-	E	A	A	A	A	4.12.1
2-axes simultaneous retract function related to unexpected disturbance torque detection	-	E	A	A	A	A	4.12.1

| Servo software series | $\mathbf{9}$ | $\mathbf{9}$ | $\mathbf{9} \mathbf{9}$ | $\mathbf{9}$ | $\mathbf{9}$ | $\mathbf{9}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | | | | |
| Reference items in | | | | | | |
| this manual | | | | | | |$)$

PARAMETERS FOR α AND OTHER SERIES

The motor ID numbers necessary to automatically set parameters for the α series, β series, and conventional linear motors are explained below.
Search for the motor ID number of the motor used, based on the motor model and the drawing number (4-digit number in the middle of A06B-****-B***).

NOTE

The motor ID numbers for consecutive (odd and even) servo controlled axis numbers must be for one of servo HRV1, servo HRV2, or servo HRV3.

G. 1
 MOTOR ID NUMBERS OF α SERIES MOTORS

- α series servo motor

Motor model	Motor specification	Motor ID No.	90B0	9096
$\alpha 1 / 3000$	0371	61	A	A
$\alpha 2 / 2000$	0372	46	A	A
$\alpha 2 / 3000$	0373	62	A	A
$\alpha 3 / 3000$	0123	15	A	A
$\alpha 6 / 2000$	0127	16	A	A
$\alpha 6 / 3000$	0128	17	A	A
$\alpha 12 / 2000$	0142	18	A	A
$\alpha 12 / 3000$	0143	19	A	A
$\alpha 22 / 1500$	0146	27	A	A
$\alpha 22 / 2000$	0147	20	A	A
$\alpha 22 / 3000$	0148	21	A	A
$\alpha 30 / 1200$	0151	28	A	A
$\alpha 30 / 2000$	0152	22	A	A
$\alpha 30 / 3000$	0153	23	A	A
$\alpha 40 / 2000$	0157	30	A	A
$\alpha 40 / 2000 \mathrm{FAN}$	0158	29	A	A
$\alpha 65 / 2000$	0331	39	A	A
$\alpha 100 / 2000$	0332	40	A	A
$\alpha 150 / 2000$	0333	41	A	A
$\alpha 300 / 1200$	0135	113	A	A
$\alpha 300 / 2000$	0137	115	A	A
$\alpha 400 / 1200$	0136	114	A	A
$\alpha 400 / 2000$	0138	116	A	A
$\alpha 1000 / 2000$	0131	117	S	S

The motor ID numbers are for servo HRV1.
$\alpha \mathrm{M}$ series servo motor

Motor model	Motor specification	Motor ID No.	90B0	$\mathbf{9 0 9 6}$
$\alpha / 3000$	0376	98	A	A
$\alpha \mathrm{M} 2.5 / 3000$	0377	99	A	A
$\alpha \mathrm{M} 3 / 3000$	0161	24	A	A
$\alpha \mathrm{M} 6 / 3000$	0162	25	A	A
$\alpha \mathrm{M} 9 / 3000$	0163	26	A	A
$\alpha \mathrm{M} 22 / 3000$	0165	100	A	A
$\alpha \mathrm{M} 30 / 3000$	0166	101	A	A
$\alpha \mathrm{M} 40 / 3000$	0169	110	A	A
$\alpha \mathrm{M} 40 / 3000 \mathrm{FAN}$	0170	$108(360-\mathrm{A}$ driving) $109(240-\mathrm{A}$ driving $)$	A A	A
A				

The motor ID numbers are for servo HRV1.
$\alpha \mathrm{L}$ series servo motor

Motor model	Motor specification	Motor ID No.	90B0	9096
$\alpha \mathrm{L} 3 / 3000$	0561	68	A	A
$\alpha \mathrm{~L} 6 / 3000$	0562	69	A	A
$\alpha \mathrm{~L} 9 / 3000$	0564	70	A	A
$\alpha \mathrm{~L} 25 / 3000$	0571	59	A	A
$\alpha \mathrm{~L} 50 / 2000$	0572	60	A	A

The motor ID numbers are for servo HRV1.
α C series servo motor

Motor model	Motor specification	Motor ID No.	90B0	9096
$\alpha / 2000$	0121	7	A	A
$\alpha \mathrm{C} / 2000$	0126	8	A	A
$\alpha \mathrm{C} 12 / 2000$	0141	9	A	A
$\alpha \mathrm{C} 22 / 1500$	0145	10	A	A

The motor ID numbers are for servo HRV1.

- HV series servo motor

Motor model	Motor specification	Motor ID No.	90B0	$\mathbf{9 0 9 6}$
$\alpha 3 / 3000 \mathrm{HV}$	0171	1	A	A
$\alpha 6 / 3000 \mathrm{HV}$	0172	2	A	A
$\alpha 12 / 3000 \mathrm{HV}$	0176	3	A	A
$\alpha 22 / 3000 \mathrm{HV}$	0177	$4(40-\mathrm{A} \mathrm{driving})$ $102(60-\mathrm{A}$ driving)	A	A
$\alpha 30 / 3000 \mathrm{HV}$	0178	$5(40-\mathrm{A} \mathrm{driving})$ $103(60-\mathrm{A} \mathrm{driving)}$	A	A
$\alpha 40 / 3000 \mathrm{HV}$	0179	118	A	A

The motor ID numbers are for servo HRV1.

- MHV series servo motor

Motor model	Motor specification	Motor ID No.	90B0	9096
$\alpha \mathrm{M} 6 / 3000 \mathrm{HV}$	0182	104	A	A
$\alpha \mathrm{M} 9 / 3000 \mathrm{HV}$	0183	105	A	A
$\alpha \mathrm{M} 22 / 3000 \mathrm{HV}$	0185	106	A	A
$\alpha \mathrm{M} 30 / 3000 \mathrm{HV}$	0186	107	A	A
$\alpha \mathrm{M} 40 / 3000 \mathrm{HV}$	0189	119	A	A

The motor ID numbers are for servo HRV1.

G. 2
 MOTOR ID NUMBERS OF β SERIES MOTORS

- β series servo motor

Motor model	Motor specification	Motor ID No.	90B0	$\mathbf{9 0 9 6}$
$\beta 0.5 / 3000$	0113	$14(20-A$ driving $)$	N	D
$\beta 1 / 3000$	0031	$11(20-\mathrm{A}$ driving $)$	N	D
$\beta 2 / 3000$	0032	$12(20-\mathrm{A}$ driving $)$	N	D
$\beta 3 / 3000$	0033	33	A	A
$\beta 6 / 2000$	0034	34	A	A

The motor ID numbers are for servo HRV1.
β M series servo motor

Motor model	Motor specification	Motor ID No.	90B0	9096
$\beta \mathrm{M} 0.2 / 4000$	0111	${ }^{*}(260)$	N	$*$
$\beta \mathrm{M} 0.3 / 4000$	0112	${ }^{*}(261)$	N	$*$
$\beta \mathrm{M} 0.4 / 4000$	0114	${ }^{*}(280)$	N	$*$
$\beta \mathrm{M} 0.5 / 4000$	0115	$181(281)$	N	D
$\beta \mathrm{M} 1 / 4000$	0116	$182(282)$	N	D

The motor ID numbers not enclosed in parentheses are for servo HRV1, and the motor ID numbers enclosed in parentheses are for servo HRV2 and HRV3.

* For $\beta \mathrm{M} 0.2, \beta \mathrm{M} 0.3$, and $\beta \mathrm{M} 0.4$, HRV1 control cannot be used. It cannot, therefore, be used in Series 9096.

(Reference)

In the parameter table in item 4, two motor ID numbers are assigned to the same β series servo motor. One of them is the parameter for driving the motor with an α / β series servo amplifier (12A). Use caution not to use the wrong type number.

Motor model	α servo amplifier drive		αi servo amplifier drive	
	Maximum amplifier current [A]	Motor ID No.	Maximum amplifier current [A]	Motor ID No.
$\beta 0.5 / 3000$	12	13	20	14
$\beta 1 / 3000$	12	35	20	11
$\beta 2 / 3000$	12	36	20	12

G. 3
 MOTOR ID NUMBERS OF CONVENTIONAL LINEAR MOTORS

Linear motor

Motor model	Motor specification	Motor ID No.	90B0	$\mathbf{9 0 9 6}$
$300 \mathrm{D} / 4$	0421	124	A	A
$600 \mathrm{D} / 4$	0422	125	A	A
$900 \mathrm{D} / 4$	0423	126	A	A
$1500 \mathrm{~A} / 4$	0410	90	A	A
$3000 \mathrm{~B} / 2$	0411	91	A	A
$3000 \mathrm{~B} / 4$	$0411-\mathrm{B} 811$	120	A	A
$6000 \mathrm{~B} / 2$	0412	92	A	A
$6000 \mathrm{~B} / 4$	$0412-\mathrm{B} 811$	$127(160-\mathrm{A}$ driving $)$	R	D
$9000 \mathrm{~B} / 2$	0413	$128(160-\mathrm{A}$ driving $)$	N	D
$9000 \mathrm{~B} / 4$	$0413-\mathrm{B} 811$	$129(360-\mathrm{A}$ driving $)$	Q	D
$15000 \mathrm{C} / 2$	0414	$130(360-\mathrm{A}$ driving $)$	Q	D
$15000 \mathrm{C} / 3$	$0414-\mathrm{B} 811$	123	A	A

The motor ID numbers are for servo HRV1. Loading is possible with the servo software of the series and edition listed above or subsequent editions.

(Reference)

In the parameter table in item 4, two motor ID numbers are assigned to the same linear motor. One of them is the parameter for driving the motor with an α series servo amplifier (130A or 240A). Use caution not to use the wrong type number.

Motor modelα servo amplifier drive αi servo amplifier drive amplifier current [A]	Motor ID No.	Maximum amplifier current [A]	Motor ID No.	
	240	121	160	127
$9000 \mathrm{~B} / 2$	130	93	160	128
$9000 \mathrm{~B} / 4$	240	122	360	129
15000C/2	240	94	360	130

G. 4 PARAMETERS FOR SERVO HRV2 CONTROL

By converting parameter settings as shown below, servo HRV1 control parameters can be changed to parameters for servo HRV2 control.

NOTE

This section explains the conversion method to be applied when only servo HRV1 control parameters are provided. For motors for which servo HRV2 control parameters are provided, use these servo HRV2 control parameters.
$<1>$ To set the current control period to $125 \mu \mathrm{~s}$, set the following:

	Conventional setting	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
1809 (FS15i)		DLY1	DLYO	TIB1	DLY2	TRW1	TRW0	TIB0	TIAO
2004 (FS30i, 16i)		0	X	0	0	0	1	1	0

The standard setting at the bit marked by X (bit 6) must be left unchanged.
$<2>$ Changing the current loop gain (integral)

1852 (FS15i)
$2040(F S 30 i, 16 i)$

Current integral gain

Set a value obtained by multiplying the standard parameter value by 0.8.
$<3>$ Changing the current loop gain (proportional)

1853 (FS15i)
2041 (FS30i, 16i)

Current proportional gain

Set a value obtained by multiplying the standard parameter value by 1.6.

G. 5 HRV1 CONTROL PARAMETERS FOR α SERIES, β SERIES, AND CONVENTIONAL LINEAR MOTORS

The HRV1 control parameters for the α series, β series, and conventional linear motors are given in the table below.
9096 series
90B0 series

	Motor moder	odel	$\begin{aligned} & \alpha \text { M3 } \\ & 0161 \end{aligned}$	$\begin{aligned} & \alpha \text { M6 } \\ & 0162 \end{aligned}$	$\begin{aligned} & \alpha \text { M9 } \\ & 0163 \end{aligned}$	$\begin{gathered} \alpha 22 / 1.5 \\ 0146 \end{gathered}$	$\begin{gathered} \alpha 30 / 1.2 \\ 0151 \end{gathered}$	$\begin{gathered} \alpha \text { 40/FAN } \\ 0158 \end{gathered}$	$\begin{gathered} \alpha 40 / 2 \\ 0157 \end{gathered}$	$\begin{aligned} & \beta 3 / 3 \\ & 0033 \end{aligned}$	$\begin{aligned} & \beta 6 / 2 \\ & 0034 \end{aligned}$	$\begin{aligned} & \beta 1 / 3 \\ & 0031 \end{aligned}$	$\begin{aligned} & \beta 2 / 3 \\ & 0032 \end{aligned}$
	Motor ID	No.	24	25	26	27	28	29	30	33	34	35	36
Symbol	$\begin{gathered} \text { FS15i } \\ 1808 \end{gathered}$	$\begin{gathered} \text { FS16i,etc } \\ 2003 \end{gathered}$	00001000	00001000	00001000	00000000	00000000	00000000	00000000	00001000	00001000	00001000	00001000
	1809	2004	00000110	00000110	00000110	00000110	00000110	00000110	00000110	00000110	00000110	00000110	00000110
	1883	2005	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1884	2006	01000100	01000100	01000100	01000000	01000000	01000100	01000100	01000000	01000000	01000000	01000000
	1951	2007	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1952	2008	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1953	2009	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1954	2010	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1955	2011	00100000	00100000	00000000	00000000	00000000	00100000	00100000	00100000	00100000	00000000	00100000
	1956	2012	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1707	2013	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1708	2014	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1750	2210	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1751	2211	00000000	00000000	00000010	00000000	00000000	00000010	00000010	00000010	00000010	00000000	00000010
	2713	2300	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	2714	2301	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
PK1	1852	2040	538	950	748	2330	5060	1649	1649	629	990	359	704
PK2	1853	2041	-1652	-2582	-2402	-6381	-9923	-5395	-5395	-2093	-3544	-1129	-2401
PK3	1854	2042	-3052	-3052	-2632	-2694	-2705	-2700	-2700	-2622	-2632	-2564	-2596
PK1V	1855	2043	53	38	61	271	147	201	201	144	144	102	62
PK2V	1856	2044	-471	-328	-550	-2426	-1313	-1801	-1801	-2587	-2587	-916	-1111
PK3V	1857	2045	0	0	0	0	0	0	0	0	0	0	0
PK4V	1858	2046	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235
POA1	1859	2047	-806	-1156	-690	1564	2891	2107	2107	1467	1467	4141	3415
BLCMP	1860	2048	0	0	0	0	0	0	0	0	0	0	0
DPFMX	1861	2049	0	0	0	0	0	0	0	0	0	0	0
POK1	1862	2050	956	956	956	956	956	956	956	956	956	956	956
POK2	1863	2051	510	510	510	510	510	510	510	510	510	510	510
RESERV	1864	2052	0	0	0	0	0	0	0	0	0	0	0
PPMAX	1865	2053	21	21	21	21	21	21	21	21	21	21	21
PDDP	1866	2054	1894	1894	1894	1894	1894	1894	1894	1894	1894	1894	1894
PHYST	1867	2055	319	319	319	319	319	319	319	319	319	319	319
EMFCMP	1868	2056	2500	3500	3000	4000	8000	-12820	-12820	3000	3200	2500	3300
PVPA	1869	2057	2400	-3590	-6407	-3872	-2078	-3855	-3855	-10250	-6420	2100	-10250
PALPH	1870	2058	70	-1440	-1600	-2800	-1800	-2400	-2400	-1600	-1600	71	-1600
PPBAS	1871	2059	5	5		5	5	5	5	5	5	5	5
TQLIM	1872	2060	7282	7282	7282	7282	7282	7282	7282	7282	7282	7282	7282
EMFLMT	1873	2061	120	120	120	120	120	120	120	120	120	120	120
POVC1	1877	2062	32697	32727	32692	32370	32665	32361	32579	32456	32456	32617	32540
POVC2	1878	2063	886	516	955	4981	1283	5090	2358	3897	3897	1884	2850
TGALMLV	1892	2064	4	4	4	4	4	4	4	4	4	4	4
POVCLMT	1893	2065	2627	1529	2832	14847	3809	15175	7007	11600	11600	5594	8474
PK2VAUX	1894	2066	0	0	0	0	0	0	0	0	0	0	0
FILTER	1895	2067	0	0	0	0	0	0	0	0	0	0	0
FALPH	1961	2068	0	0	0	0	0	0	0	0	0	0	0
VFFLT	1962	2069	0	0	0	0	0	0	0	0	0	0	0
ERBLM	1963	2070	0	0	0	0	0	0	0	0	0	0	0
PBLCT	1964	2071	0	0	0	0	0	0	0	0	0	0	0
SFCCML	1965	2072	0	0	0	0	0	0	0	0	0	0	0
PSPTL	1966	2073	0	0	0	0	0	0	0	0	0	0	0
AALPH	1967	2074	3000	31672	12288	12288	12288	14288	14288	0	0	0	0
OSCTPL	1970	2077	0	0	0	0	0	0	0	0	0	0	0
PDPCH	1971	2078	0	0	0	0	0	0	0	0	0	0	0
PDPCL	1972	2079	0	0	0	0	0	0	0	0	0	0	0
DPFEX	1973	2080	0	0	0	0	0	0	0	0	0	0	0
DPFZW	1974	2081	0	0	0	0	0	0	0	0	0	0	0
BLENDL	1975	2082	0	0	0	0	0	0	0	0	0	0	0
MOFCTL	1976	2083	0	0	0	0	0	0	0	0	0	0	0
RTCURR	1979	2086	1193	910	1238	2836	1436	2867	1948	2506	2506	1740	2142
TDPLD	1980	2087	0	0	0	0	0	0	0	0	0	0	0
MCNFB	1981	2088	0	0	0	0	0	0	0	0	0	0	0
BLBSL	1982	2089	0	0	0	0	0	0	0	0	0	0	0
ROBSTL	1983	2090	0	0	0	0	0	0	0	0	0	0	0
ACCSPL	1984	2091	0	0	0	0	0	0	0	0	0	0	0
ADFF1	1985	2092	0	0	0	0	0	0	0	0	0	0	0
VMPK3V	1986	2093	0	0	0	0	0	0	0	0	0	0	0
BLCMP2	1987	2094	0	0	0	0	0	0	0	0	0	0	0
AHDRTL	1988	2095	0	0	0	0	0	0	0	0	0	0	0
RADUSL	1989	2096	0	0	0	0	0	0	0	0	0	0	0
SMCNT	1990	2097	0	0	0	0	0	0	0	0	0	0	0
DEPVPL	1991	2098	25	5145	0	12800	12800	12800	12800	-1476	30	80	-2786
ONEPSL	1992	2099	400	400	400	400	400	400	400	400	400	400	400
INPA1	1993	2100	0	0	0	0	0	0	0	0	0	0	0
INPA2	1994	2101	0	0	0	0	0	0	0	0	0	0	0
DBLIM	1995	2102	15000	15000	0	0	0	15000	15000	15000	12000	0	12000
ABVOF	1996	2103	0	0	0	0	0	0	0	0	0	0	0
ABTSH	1997	2104	0	0	0	0	0	0	0	0	0	0	0
TRQCST	1998	2105	221	581	653	684	1842	1756	1756	107	215	51	83
LP24PA	1999	2106	0	0	0	0	0	0	0	0	0	0	0
VLGOVR	1700	2107	0	0	0	0	0	0	0	0	0	0	0
RESERV	1701	2108	0	0	0	0	0	0	0	0	0	0	0
BELLTC	1702	2109	0	0	0	0	0	0	0	0	0	0	0
MGSTCM	1703	2110	24	24	32	24	28	20	20	0	0	0	0
DETQLM	1704	2111	5220	5220	5220	2660	0	3920	3920	2640	3890	7784	7740
AMRDML	1705	2112	0	0	0	0	0	0	0	0	0	0	0
NFILT	1706	2113	0	0	0	0	0	0	0	0	0	0	0
NINTCT	1735	2127	1990	2729	853	3298	7846	3326	3326	0	0	0	0
MFWKCE	1736	2128	2000	2500	2000	7000	9500	7000	7000	0	5000	0	3000
MFWKBL	1752	2129	2588	1298	2570	1042	788	1300	1300	0	2064	0	4128
LP2GP	1753	2130	0	0	0	0	0	0	0	0	0	0	0
LP4GP	1754	2131	0	0	0	0	0	0	0	0	0	0	0
LP6GP	1755	2132	0	0	0	0	0	0	0	0	0	0	0
PHDLY1	1756	2133	0	0	5140	0	0	20	20	6164	2573	0	5140
PHDLY2	1757	2134	0	0	12840	0	0	12840	12840	12840	12850	0	12840
DGCSMM	1782	2159	0	0	0	0	0	0	0	0	0	0	0
TRQCUP	1783	2160	0	0	0	0	0	0	0	0	0	0	0
OVCSTP	1784	2161	0	0	0	0	0	0	0	0	0	0	0
POVC21	1785	2162	0	0	0	0	0	0	0	0	0	0	0
POVC22	1786	2163	0	0	0	0	0	0	0	0	0	0	0
POVCLMT2 MAXCRT	1787 1788	2164 2165	0	80	0 85	$4{ }^{0}$	8	135	135	0 25	0 25	12	12

	Motor moder	odel pecification	$\begin{gathered} \alpha 65 / 2 \\ 0331 \end{gathered}$	$\begin{gathered} \alpha \text { 100/2 } \\ 0332 \end{gathered}$	$\begin{gathered} \alpha 150 / 2 \\ 0333 \end{gathered}$	$\begin{aligned} & \alpha 2 / 2 \\ & 0372 \end{aligned}$	$\begin{aligned} & \alpha \text { L25 } \\ & 0571 \end{aligned}$	$\begin{aligned} & \alpha \text { L50 } \\ & 0572 \end{aligned}$	$\begin{aligned} & \alpha 1 / 3 \\ & 0371 \end{aligned}$	$\begin{aligned} & \alpha 2 / 3 \\ & 0373 \end{aligned}$	$\begin{gathered} \alpha L 3 \\ 0561 \end{gathered}$	$\begin{gathered} \alpha \mathrm{L} 6 \\ 0562 \end{gathered}$	$\begin{array}{r} \alpha L 9 \\ 0564 \end{array}$
Symbol	Motor ID FS15i	No. FS16i,etc.	39	40	41	46	59	60	61	62	68	69	70
	1808	2003	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000
	1809	2004	01000110	01000110	01000110	00000110	00000110	00000110	00000110	00000110	00000110	00000110	00000110
	1883	2005	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1884	2006	00010000	00010000	00010000	00000000	00000000	00000000	01000100	01000100	00000000	00000000	00000000
	1951	2007	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1952	2008	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1953	2009	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1954	2010	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1955	2011	00100000	00100000	00100000	00100000	00100000	00100000	00100000	00100000	00100000	00100000	00100000
	1956	2012	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1707	2013	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1708	2014	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1750	2210	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1751	2211	00000000	00000000	00000000	00000000	00000000	00000000	00000010	00000110	00000000	00000000	00000000
	2713	2300	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	2714	2301	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
PK1	1852	2040	790	1578	1574	1170	574	700	390	530	757	855	737
PK2	1853	2041	-3473	-4761	-4809	-2289	-2254	-2000	-1053	-1653	-3394	-3610	-2588
PK3	1854	2042	-2714	-2714	-2718	-2485	-2700	-2701	-2480	-2490	-2652	-2676	-2673
PK1V	1855	2043	121	102	120	91	92	116	111	128	18	17	35
PK2V	1856	2044	-1085	-916	-1072	-812	-825	-1035	-997	-1146	-158	-155	-309
PK3V	1857	2045	0	0	0	0	0	0	0	0	0	0	0
PK4V	1858	2046	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235
POA1	1859	2047	3498	4141	3541	4674	4599	3666	3806	3311	-2395	-2455	-1227
BLCMP	1860	2048	0	0	0	0	0	0	0	0	0	0	0
DPFMX	1861	2049	0	0	0	0	0	0	0	0	0	0	0
POK1	1862	2050	956	956	956	956	956	956	956	956	956	956	956
POK2	1863	2051	510	510	510	510	510	510	510	510	510	510	510
RESERV	1864	2052	0	0	0	0	0	0	0	0	0	0	0
PPMAX	1865	2053	21	21	21	21	21	21	21	21	21	21	21
PDDP	1866	2054	3787	3787	3787	1894	1894	1894	1894	1894	1894	1894	1894
PHYST	1867	2055	319	319	319	319	319	319	319	319	319	319	319
EMFCMP	1868	2056	4444	4884	6668	2147	4500	4800	2800	2520	2000	2000	1240
PVPA	1869	2057	-4617	-4617	-3849	-7690	-7692	-6430	2330	-6156	0	0	-10249
PALPH	1870	2058	-1620	-1620	-1890	-1000	-2200	-3300	57	-1200	0	0	-800
PPBAS	1871	2059	20	20	20	0	5	5	5	5	5	5	5
TQLIM	1872	2060	7282	7282	7282	7282	7282	7282	7282	7282	7282	7282	7282
EMFLMT	1873	2061	120	120	120	120	120	120	120	120	120	120	120
POVC1	1877	2062	32482	32529	32332	32627	32476	32214	32623	32519	32693	32696	32607
POVC2	1878	2063	3569	2987	5452	1766	3644	6929	1811	3112	940	894	2010
TGALMLV	1892	2064	4	4	4	4	4	4	4	4	4	4	4
POVCLMT	1893	2065	10622	8881	16262	5245	10844	20705	5377	9256	2787	2653	5970
PK2VAUX	1894	2066	0	0	0	0	0	0	0	0	0	0	0
FILTER	1895	2067	1100	1100	1100	0	0	0	0	0	0	0	0
FALPH	1961	2068	0	0	0	0	0	0	0	0	0	0	0
VFFLT	1962	2069	0	0	0	0	0	0	0	0	0	0	0
ERBLM	1963	2070	0	0	0	0	0	0	0	0	0	0	0
PBLCT	1964	2071	0	0	0	0	0	0	0	0	0	0	0
SFCCML	1965	2072	0	0	0	0	0	0	0	0	0	0	0
PSPTL	1966	2073	0	0	0	0	0	0	0	0	0	0	0
AALPH	1967	2074	28672	20480	20480	0	24576	0	1680	8194	16384	28672	20480
OSCTPL	1970	2077	0	0	0	0	0	0	0	0	0	0	0
PDPCH	1971	2078	0	0	0	0	0	0	0	0	0	0	0
PDPCL	1972	2079	0	0	0	0	0	0	0	0	0	0	0
DPFEX	1973	2080	0	0	0	0	0	0	0	0	0	0	0
DPFZW	1974	2081	0	0	0	0	0	0	0	0	0	0	0
BLENDL	1975	2082	0	0	0	0	0	0	0	0	0	0	0
MOFCTL	1976	2083	0	0	0	0	0	0	0	0	0	0	0
RTCURR	1979	2086	2398	2193	2968	1685	2423	3349	1706	2239	1228	1198	1798
TDPLD	1980	2087	0	0	0	0	0	0	0	0	0	0	0
MCNFB	1981	2088	0	0	0	0	0	0	0	0	0	0	0
BLBSL	1982	2089	0	0	0	0	0	0	0	0	0	0	0
ROBSTL	1983	2090	0	0	0	0	0	0	0	0	0	0	0
ACCSPL	1984	2091	0	0	0	0	0	0	0	0	0	0	0
ADFF1	1985	2092	0	0	0	0	0	0	0	0	0	0	0
VMPK3V	1986	2093	0	0	0	0	0	0	0	0	0	0	0
BLCMP2	1987	2094	0	0	0	0	0	0	0	0	0	0	0
AHDRTL	1988	2095	0	0	0	0	0	0	0	0	0	0	0
RADUSL	1989	2096	0	0	0	0	0	0	0	0	0	0	0
SMCNT	1990	2097	0	0	0	0	0	0	0	0	0	0	0
DEPVPL	1991	2098	0	0	0	0	50	0	50	0	0	0	0
ONEPSL	1992	2099	400	400	400	400	400	400	400	400	400	400	400
INPA1	1993	2100	0	0	0	0	0	0	0	0	0	0	0
INPA2	1994	2101	0	0	0	0	0	0	0	0	0	0	0
DBLIM	1995	2102	15000	15000	15000	15000	15000	15000	15000	15000	15000	15000	15000
ABVOF	1996	2103	0	0	0	0	0	0	0	0	0	0	0
ABTSH	1997	2104	0	0	0	0	0	0	0	0	0	0	0
TRQCST	1998	2105	2438	4103	4548	104	928	1343	51	74	219	450	450
LP24PA	1999	2106	0	0	0	0	0	0	0	0	0	0	0
VLGOVR	1700	2107	0	0	0	0	0	0	0	0	0	0	0
RESERV	1701	2108	0	0	0	0	0	0	0	0	0	0	0
BELLTC	1702	2109	0	0	0	0	0	0	0	0	0	0	0
MGSTCM	1703	2110	12	0	0	0	20	24	0	0	64	64	16
DETQLM	1704	2111	2148	0	0	6194	50	0	7715	7780	2650	2620	5160
AMRDML	1705	2112	0	0	0	0	0	0	0	0	0	0	0
NFILT	1706	2113	0	0	0	0	0	0	0	0	0	0	0
NINTCT	1735	2127	0	0	0	4800	0	2402	785	2300	2000	2500	2500
MFWKCE	1736	2128	3600	4800	3500	2500	2000	4000	0	3000	0	0	2500
MFWKBL	1752	2129	1551	1294	1033	1806	2567	2321	0	3088	0	0	2586
LP2GP	1753	2130	0	0	0	0	0	0	0	0	0	0	0
LP4GP	1754	2131	0	0	0	0	0	0	0	0	0	0	0
LP6GP	1755	2132	0	0	0	0	0	0	0	0	0	0	0
PHDLY1	1756	2133	0	0	0	0	0	0	7710	7710	0	0	0
PHDLY2	1757	2134	0	0	0	0	0	0	12830	12830	0	0	0
DGCSMM	1782	2159	0	0	0	0	0	0	0	0	0	0	0
TRQCUP	1783	2160	0	0	0	0	0	0	0	0	0	0	0
OVCSTP	1784	2161	0	0	0	0	0	0	0	0	0	0	0
POVC21	1785	2162	0	0	0	0	0	0	0	0	0	0	0
POVC22	1786	2163	0	0	0	0	0	0	0	0	0	0	0
POVCLMT2	1787	2164	0	0	0	0	0	0	0	0	0	0	0
MAXCRT	1788	2165	245	365	365	12	135	135	12	12	40	85	85

	Motor moder	odel ecification	$\begin{aligned} & 1500 \mathrm{~A} \\ & 0410 \end{aligned}$	$\begin{aligned} & 3000 \mathrm{~B} \\ & 0411 \end{aligned}$	$\begin{aligned} & \text { 6000B } \\ & 0412 \end{aligned}$	$\begin{aligned} & 9000 \mathrm{~B} \\ & 0413 \end{aligned}$	$\begin{aligned} & 15000 \mathrm{C} \\ & 0414 \end{aligned}$	$\begin{aligned} & \alpha \text { M2 } \\ & 0376 \end{aligned}$	$\underset{0377}{\alpha \text { M2.5 }}$	$\begin{gathered} \alpha \text { M22 } \\ 0165 \end{gathered}$	$\begin{gathered} \alpha \text { M30 } \\ 0166 \end{gathered}$	$\underset{0177}{\alpha \text { 22/3HV }}$	$\begin{gathered} \alpha 30 / 3 \mathrm{HV} \\ 0178 \end{gathered}$
Symbol	Motor ID FS15i	No. FS16ietc.	90	91	92	$\begin{gathered} 93 \\ (130 \mathrm{~A}) \end{gathered}$	$\begin{gathered} 94 \\ (240 \mathrm{~A}) \end{gathered}$	98	99	100	101	$\begin{gathered} 102 \\ (60 \mathrm{~A} \end{gathered}$	$\begin{gathered} 103 \\ (604) \end{gathered}$
	1808	2003	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000	00001000
	1809	2004	00000110	00000110	00000110	00000110	00000110	00000110	00000110	00000110	00000110	00000110	00000110
	1883	2005	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1884	2006	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	01000100	01000100
	1951	2007	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1952	2008	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1953	2009	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1954	2010	00000100	00000100	00000100	00000100	00000100	00000000	00000000	00000000	00000000	00000000	00000000
	1955	2011	00000000	00000000	00000000	00000000	00000000	00100000	00100000	00100000	00100000	00100000	00000000
	1956	2012	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1707	2013	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1708	2014	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	1750	2210	00000000	00000000	00000000	00000000	00000100	00000000	00000000	00000000	00000000	00000000	0000000
	1751	2211	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000010	00000000	00000000
	2713	2300	10000000	10000000	10000000	10000000	10000000	00000000	00000000	00000000	00000000	00000000	00000000
	2714	2301	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
PK1	1852	2040	1890	4804	4804	5036	1420	600	400	555	736	1050	1100
PK2	1853	2041	-7180	-14453	-13138	-16000	-5600	-1957	-1154	-2698	-2623	-3811	-4300
PK3	1854	2042	-2647	-2660	-2660	-2660	-2663	-2476	-2547	-2686	-2696	-2694	-2663
PK1V	1855	2043	19	16	16	14	10	31	56	97	128	181	195
PK2V	1856	2044	-260	-214	-214	-195	-131	-274	-500	-867	-1142	-1618	-1750
PK3V	1857	2045	0	0	0	0	0	0	0	0	0	0	0
PK4V	1858	2046	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235	-8235
POA1	1859	2047	-4371	-5321	-5321	-5849	-8681	-1383	-759	4378	3322	2346	2168
BLCMP	1860	2048	0	0	0	0	0	0	0	0	0	0	0
DPFMX	1861	2049	0	0	0	0	0	0	0	0	0	0	0
POK1	1862	2050	956	956	956	956	956	956	956	956	956	956	956
POK2	1863	2051	510	510	510	510	510	510	510	510	510	510	510
RESERV	1864	2052	0	0	0	0	0	0	0	0	0	0	0
PPMAX	1865	2053	21	21	21	21	21	21	21	21	21	21	21
PDDP	1866	2054	1894	1894	1894	1894	1894	1894	1894	1894	1894	1894	1894
PHYST	1867	2055	319	319	319	319	319	319	319	319	319	319	319
EMFCMP	1868	2056	0	0	0	0	0	0	0	0	0	0	0
PVPA	1869	2057	0	0	0	0	0	-9230	-8722	-7695	-3870	-6412	-3856
PALPH	1870	2058	0	0	0	0	0	-1400	-1800	-2700	-2240	-2240	-3000
PPBAS	1871	2059	0	0	0	0	0	0	0	0	0	0	0
TQLIM	1872	2060	7282	7282	7282	7282	7282	7282	7282	7282	7282	7282	7282
EMFLMT	1873	2061	120	120	120	120	120	0	0	0	0	0	0
POVC1	1877	2062	32670	32670	32670	32685	32712	32685	32645	32587	32567	32590	32586
POVC2	1878	2063	1222	1222	1222	1041	703	1041	1535	2260	2514	2221	2279
TGALMLV	1892	2064	4	4	4	4	4	4	4	4	4	4	4
POVCLMT	1893	2065	3626	3626	3626	3087	2086	3089	4556	6714	7473	6599	6771
PK2VAUX	1894	2066	0	0	0	0	0	0	0	0	0	0	0
FILTER	1895	2067	0	0	0	0	0	0	0	0	0	0	0
FALPH	1961	2068	0	0	0	0	0	0	0	0	0	0	0
VFFLT	1962	2069	0	0	0	0	0	0	0	0	0	0	0
ERBLM	1963	2070	0	0	0	0	0	0	0	0	0	0	0
PBLCT	1964	2071	0	0	0	0	0	0	0	0	0	0	0
SFCCML	1965	2072	0	0	0	0	0	0	0	0	0	0	0
PSPTL	1966	2073	0	0	0	0	0	0	0	0	0	0	0
AALPH	1967	2074	0	0	0	0	0	20480	8192	12288	8192	20480	12288
OSCTPL	1970	2077	0	0	0	0	0	0	0	0	0	0	0
PDPCH	1971	2078	0	0	0	0	0	0	0	0	0	0	0
PDPCL	1972	2079	0	0	0	0	0	0	0	0	0	0	0
DPFEX	1973	2080	0	0	0	0	0	0	0	0	0	0	0
DPFZW	1974	2081	0	0	0	0	0	0	0	0	0	0	0
BLENDL	1975	2082	0	0	0	0	0	0	0	0	0	0	0
MOFCTL	1976	2083	0	0	0	0	0	0	0	0	0	0	0
RTCURR	1979	2086	1402	1402	1402	1293	1063	1293	1730	1907	2012	1890	1915
TDPLD	1980	2087	0	0	0	0	0	0	0	0	0	0	0
MCNFB	1981	2088	0	0	0	0	0	0	0	0	0	0	0
BLBSL	1982	2089	0	0	0	0	0	0	0	0	0	0	0
ROBSTL	1983	2090	0	0	0	0	0	0	0	0	0	0	0
ACCSPL	1984	2091	0	0	0	0	0	0	0	0	0	0	0
ADFF1	1985	2092	0	0	0	0	0	0	0	0	0	0	0
VMPK3V	1986	2093	0	0	0	0	0	0	0	0	0	0	0
BLCMP2	1987	2094	0	0	0	0	0	0	0	0	0	0	0
AHDRTL	1988	2095	0	0	0	0	0	0	0	0	0	0	0
RADUSL	1989	2096	0	0	0	0	0	0	0	0	0	0	0
SMCNT	1990	2097	0	0	0	0	0	0	0	0	0	0	0
DEPVPL	1991	2098	0	0	0	0	0	0	0	0	0	0	0
ONEPSL	1992	2099	400	400	400	400	400	400	400	400	400	400	400
INPA1	1993	2100	0	0	0	0	0	0	0	0	0	0	0
INPA2	1994	2101	0	0	0	0	0	0	0	0	0	0	0
DBLIM	1995	2102	0	0	0	0	0	15000	15000	15000	15000	15000	0
ABVOF	1996	2103	0	0	0	0	0	0	0	0	0	0	0
ABTSH	1997	2104	0	0	0	0	0	0	0	0	0	0	0
TRQCST	1998	2105	227	455	911	1481	3104	139	143	943	1341	1026	1381
LP24PA	1999	2106	0	0	0	0	0	0	0	0	0	0	0
VLGOVR	1700	2107	0	0	0	0	0	0	0	0	0	0	0
RESERV	1701	2108	0	0	0	0	0	0	0	0	0	0	0
BELLTC	1702	2109	0	0	0	0	0	0	0	0	0	0	0
MGSTCM	1703	2110	0	0	0	0	0	2600	2584	40	24	2584	2592
DETQLM	1704	2111	0	0	0	0	0	6440	7780	5220	5220	5145	4658
AMRDML	1705	2112	0	0	0	0	0	0	0	0	0	0	0
NFILT	1706	2113	0	0	0	0	0	0	0	0	0	0	0
NINTCT	1735	2127	0	0	0	0	0	1322	625	1802	1756	4200	5885
MFWKCE	1736	2128	0	0	0	0	0	2000	2500	0	3000	2778	4000
MFWKBL	1752	2129	0	0	0	0	0	2578	3847	0	2577	1554	1287
LP2GP	1753	2130	0	0	0	0	0	0	0	0	0	0	0
LP4GP	1754	2131	0	0	0	0	0	0	0	0	0	0	0
LP6GP	1755	2132	0	0	0	0	0	0	0	0	0	0	0
PHDLY1	1756	2133	0	0	0	0	0	0	0	0	2590	0	0
PHDLY2	1757	2134	0	0	0	0	0	0	0	0	12815	0	0
DGCSMM	1782	2159	0	0	0	0	0	0	0	0	0	0	0
TRQCUP	1783	2160	0	0	0	0	0	0	0	0	0	0	0
OVCSTP	1784	2161	0	0	0	0	0	0	0	0	0	0	0
POVC21	1785	2162	0	0	0	0	0	0	0	0	0	0	0
POVC22	1786	2163	0	0	0	0	0	0	0	0	0	0	0
POVCLMT2 MAXCRT	1787 1788	2164 2165	- 45	0 45	85	135	\%	0 25	0 25	- ${ }^{0}$	135	60	0

	Motor model Motor specification		$\begin{gathered} 9000 \mathrm{~B} \\ 0413 \end{gathered}$	$\begin{aligned} & 9000 \mathrm{~B} / 4 \mathrm{~N} \\ & 0413-\mathrm{B} 811 \end{aligned}$	$\begin{gathered} 15000 \mathrm{C} \\ 0414 \end{gathered}$	$\begin{gathered} \beta \mathrm{MO} 0.5 \\ 0115 \end{gathered}$	$\begin{aligned} & \text { BM1 } \\ & 0116 \end{aligned}$
Symbol	Motor ID No. FS15i	FS16ietc.	Linear 128 (160A)	Linear 129 (360A)	Linear 130 (360A)	181	182
	1808	2003	00001000	00001000	00001000	00001000	00001000
	1809	2004	00000110	00000110	00000110	00000110	00000110
	1883	2005	00000000	00000000	00000000	00000000	00000000
	1884	2006	00000000	00000000	00000000	00000000	00000000
	1951	2007	00000000	00000000	00000000	00000000	00000000
	1952	2008	00000000	00000000	00000000	00000000	00000000
	1953	2009	00000000	0000000	00000000	00000000	00000000
	1954	2010	00000100	00000100	00000100	00000000	00000000
	1955	2011	00000000	00000000	00000000	00000000	00000000
	1956	2012	00000000	00000000	00000000	00000000	00000000
	1707	2013	00000110	00001010	00001010	00000000	00000000
	1708	2014	00000110	00001010	00001010	00000000	00000000
	1750	2210	00000000	00000000	00000100	00000000	00000000
	1751	2211	00000000	00000000	00000000	00000010	00000010
	2713	2300	10000000	10000000	10000000	00000000	00000000
	2714	2301	00000000	00000000	00000000	00000000	00000000
PK1	1852	2040	6198	7416	2130	141	398
PK2	1853	2041	-19692	-17747	-8400	-511	-1137
PK3	1854	2042	-2660	-2660	-2663	-2415	-2388
PK1V	1855	2043	12	10	7	7	6
PK2V	1856	2044	-158	-141	-87	-59	-53
PK3V	1857	2045	0	0	0	0	0
PK4V	1858	2046	-8235	-8235	-8235	-8235	-8235
POA1	1859	2047	-7199	-8099	-13022	-6462	-7176
BLCMP	1860	2048	0	0	0	0	0
DPFMX	1861	2049	0	0	0	0	0
POK1	1862	2050	956	956	956	956	956
POK2	1863	2051	510	510	510	510	510
RESERV	1864	2052	0	0	0	0	0
PPMAX	1865	2053	21	21	21	21	21
PDDP	1866	2054	1894	1894	1894	1894	1894
PHYST	1867	2055	319	319	319	319	319
EMFCMP	1868	2056	0	0	0	-12850	-12850
PVPA	1869	2057	0	0	0	0	-11530
PALPH	1870	2058	0	0	0	0	-1000
PPBAS	1871	2059	0	0	0	0	0
TQLIM	1872	2060	5917	4855	4855	6918	7282
EMFLMT	1873	2061	120	120	120	0	0
POVC1	1877	2062	32713	32737	32743	32674	32695
POVC2	1878	2063	687	388	313	1178	915
TGALMLV	1892	2064	4	4	4	4	4
POVCLMT	1893	2065	2038	1151	927	3497	2714
PK2VAUX	1894	2066	0	0	0	0	0
FILTER	1895	2067	0	0	0	0	0
FALPH	1961	2068	0	0	0	0	0
VFFLT	1962	2069	0	0	0	0	0
ERBLM	1963	2070	0	0	0	0	0
PBLCT	1964	2071	0	0	0	0	0
SFCCML	1965	2072	0	0	0	0	0
PSPTL	1966	2073	0	0	0	0	0
AALPH	1967	2074	0	0	0	20480	20480
OSCTPL	1970	2077	0	0	0	0	0
PDPCH	1971	2078	0	0	0	0	0
PDPCL	1972	2079	0	0	0	0	0
DPFEX	1973	2080	0	0	0	0	0
DPFZW	1974	2081	0	0	0	0	0
BLENDL	1975	2082	0	0	0	0	0
MOFCTL	1976	2083	0	0	0	0	0
RTCURR	1979	2086	1050	789	708	1376	1212
TDPLD	1980	2087	0	0	0	0	0
MCNFB	1981	2088	0	0	0	0	0
BLBSL	1982	2089	0	0	0	0	0
ROBSTL	1983	2090	0	0	0	0	0
ACCSPL	1984	2091	0	0	0	0	0
ADFF1	1985	2092	0	0	0	0	0
VMPK3V	1986	2093	0	0	0	0	0
BLCMP2	1987	2094	0	0	0	0	0
AHDRTL	1988	2095	0	0	0	0	0
RADUSL	1989	2096	0	0	0	0	0
SMCNT	1990	2097	0	0	0	0	0
DEPVPL	1991	2098	0	0	0	0	0
ONEPSL	1992	2099	400	400	400	400	400
INPA1	1993	2100	0	0	0	0	0
INPA2	1994	2101	0	0	0	0	0
DBLIM	1995	2102	0	0	0	0	0
ABVOF	1996	2103	0	0	0	0	0
ABTSH	1997	2104	0	0	0	0	0
TRQCST	1998	2105	1823	2051	4656	42	89
LP24PA	1999	2106	0	0	0	0	0
VLGOVR	1700	2107	0	0	0	0	0
RESERV	1701	2108	0	0	0	0	0
BELLTC	1702	2109	0	0	0	0	0
MGSTCM	1703	2110	0	0	0	30	30
DETQLM	1704	2111	0	0	0	10290	10290
AMRDML	1705	2112	0	0	0	0	0
NFILT	1706	2113	0	0	0	0	0
NINTCT	1735	2127	0	0	0	1009	1763
MFWKCE	1736	2128	0	0	0	0	0
MFWKBL	1752	2129	0	0	0	0	0
LP2GP	1753	2130	0	0	0	0	0
LP4GP	1754	2131	0	0	0	0	0
LP6GP	1755	2132	0	0	0	0	0
PHDLY1	1756	2133	0	0	0	7690	11560
PHDLY2	1757	2134	0	0	0	12820	12880
DGCSMM	1782	2159	0	0	0	0	0
TRQCUP	1783	2160	0	0	0	0	0
OVCSTP	1784	2161	0	0	0	0	0
POVC21	1785	2162	0	0	0	32767	32767
POVC22	1786	2163	0	0	0	16	12
POVCLMT2 MAXCRT	1787 1788	2164 2165	165	0 365	0 365	3015 25	2340 25

G. 6 HRV2 CONTROL PARAMETERS FOR β M SERIES MOTORS

December, 2002
The HRV2 control parameters for the $\beta \mathrm{M}$ series motors are given in the table below. 90B0 series

NOTE

The parameters cannot be used with Series 9096.

		Motor model Motor specification Motor ID No.	$\begin{gathered} \beta \mathrm{MO} .2 \\ 0111 \\ 260 \end{gathered}$	$\begin{gathered} \beta \text { M0. } 3 \\ 0112 \\ 261 \end{gathered}$	$\begin{gathered} \beta \text { M0.4 } \\ 0114 \\ 280 \end{gathered}$	$\begin{gathered} \beta \text { MO.5 } \\ 0115 \\ 281 \end{gathered}$	$\begin{gathered} \beta \mathrm{M} 1 \\ 0116 \\ 282 \end{gathered}$
Symbol	$\begin{gathered} \text { FS15i } \\ 1808 \end{gathered}$	$8 \begin{gathered} \text { FS16i,etc. } \\ 2003 \end{gathered}$	00001000	00001000	00001000	00001000	00001000
	1809	92004	00000011	00000011	00000011	00000011	00000011
	1883	2005	00000000	00000000	00000000	00000000	00000000
	1884	42006	00000000	00000000	00000000	00000000	00000000
	1951	12007	00000000	00000000	00000000	00000000	00000000
	1952	2008	00000000	00000000	00000000	00000000	00000000
	1953	3009	00000000	00000000	00000000	00000000	00000000
	1954	42010	00000000	00000000	00000000	00000000	00000000
	1955	2011	00000000	00000000	00000000	00000000	00000000
	1956	6 2012	00000000	00000000	00000000	00000000	00000000
	1707	2013	00000000	00000000	00000000	00000000	00000000
	1708	2014	00000000	00000000	00000000	00000000	00000000
	1750	2210	00000000	00000000	00000000	00000000	00000000
	1751	2211	00000010	00000010	00000010	00001010	00001010
	2713	32300	00000000	00000000	00000000	00000000	00000000
	2714	4301	00000000	00000000	00000000	00000000	00000000
PK1	1852	2040	123	210	100	138	312
PK2	1853	32041	-510	-970	-430	-673	-1360
PK3	1854	42042	-1069	-1146	-2463	-1205	-1203
PK1V	1855	52043	4	4	7	7	6
PK2V	1856	6 2044	-36	-33	-61	-59	-53
PK3V	1857	72045	0	0	0	0	0
PK4V	1858	82046	-8235	-8235	-8235	-8235	-8235
POA1	1859	92047	-10638	-11550	-6249	-6462	-7176
BLCMP	1860	2048	0	0	0	0	0
DPFMX	1861	12049	0	0	0	0	0
POK1	1862	2050	956	956	956	956	956
POK2	1863	32051	510	510	510	510	510
RESERV	1864	42052	0	0	0	0	0
PPMAX	1865	52053	21	21	21	21	21
PDDP	1866	2054	1894	1894	1894	1894	1894
PHYST	1867	72055	319	319	319	319	319
EMFCMP	1868	2056	0	0	-12850	-12850	-12850
PVPA	1869	92057	0	0	0	0	-15420
PALPH	1870	2058	0	0	0	0	-1000
PPBAS	1871	12059	0	0	0	0	0
TQLIM	1872	2060	7282	7282	5826	7282	7282
EMFLMT	1873	3061	0	0	0	0	0
POVC1	1877	72062	32725	32725	32640	32674	32695
POVC2	1878	82063	533	533	1603	1178	915
TGALMLV	1892	2064	4	4	4	4	4
POVCLMT	1893	32065	3163	3163	4759	3497	2714
PK2VAUX	1894	42066	0	0	0	0	0
FILTER	1895	52067	0	0	0	0	0
FALPH	1961	12068	0	0	0	0	0
VFFLT	1962	2069	0	0	0	0	0
ERBLM	1963	2070	0	0	0	0	0
PBLCT	1964	42071	0	0	0	0	0
SFCCML	1965	52072	0	0	0	0	0
PSPTL	1966	62073	0	0	0	0	0
AALPH	1967	72074	20480	20480	20480	20480	20480
OSCTPL	1970	- 2077	0	0	0	0	0
PDPCH	1971	2078	0	0	0	0	0
PDPCL	1972	2079	0	0	0	0	0
DPFEX	1973	32080	0	0	0	0	0
DPFZW	1974	42081	0	0	0	0	0
BLENDL	1975	2082	0	0	0	0	0
MOFCTL	1976	2083	0	0	0	0	0
RTCURR	1979	2086	1929	1929	1605	1376	1212
TDPLD	1980	2087	0	0	0	0	0
MCNFB	1981	12088	0	0	0	0	0
BLBSL	1982	2089	0	0	0	0	0
ROBSTL	1983	32090	0	0	0	0	0
ACCSPL	1984	42091	0	0	0	0	0
ADFF1	1985	2092	0	0	0	0	0
VMPK3V	1986	- 2093	0	0	0	0	0
BLCMP2	1987	72094	0	0	0	0	0
AHDRTL	1988	82095	0	0	0	0	0
RADUSL	1989	92096	0	0	0	0	0
SMCNT	1990	- 2097	0	0	0	0	0
DEPVPL	1991	12098	0	0	0	0	0
ONEPSL	1992	2099	400	400	400	400	400
INPA1	1993	32100	0	0	0	0	0
INPA2	1994	42101	0	0	0	0	0
DBLIM	1995	52102	0	0	0	0	0
ABVOF	1996	6 2103	0	0	0	0	0
ABTSH	1997	72104	0	0	0	0	0
TRQCST	1998	2105	7	14	22	42	89
LP24PA	1999	92106	0	0	0	0	0
VLGOVR	1700	- 2107	0	0	0	0	0
RESERV	1701	- 2108	0	0	0	0	0
BELLTC	1702	2109	0	0	0	0	0
MGSTCM	1703	32110	1	1	30	25	1556
DETQLM	1704	42111	7710	7700	10290	10290	10290
AMRDML	1705	52112	0	0	0	0	0
NFILT	1706	- 2113	0	0	0	0	0
NINTCT	1735	2127	379	852	400	504	881
MFWKCE	1736	- 2128	0	3000	0	0	1500
MFWKBL	1752	2129	0	3880	0	0	5135
LP2GP	1753	32130	0	0	0	0	0
LP4GP	1754	42131	0	0	0	0	0
LP6GP	1755	$5 \quad 2132$	0	0	0	0	0
PHDLY1	1756	- 2133	7700	7695	7690	7690	15400
PHDLY2	1757	72134	12825	12840	12820	12820	12840
DGCSMM	1782	2159	0	0	0	0	0
TRQCUP	1783	3160	0	0	0	0	0
OVCSTP	1784	2161	0	0	0	0	0
POVC21	1785	- 2162	0	0	32766	32767	32767
POVC22	1786	- 2163	0	0	22	16	12
POVCLMT2	1787	2164	0	0	4104	3015	2340
MAXCRT	1788	8165	4	4	25	25	25

DETAILS OF HIGH-SPEED AND HIGH-PRECISION ADJUSTMENT

(1) Overview

Appendix H explains in detail the adjustment procedure described in Section 3.3, "ADJUSTING PARAMETERS FOR HIGH-SPEED AND HIGH-PRECISION MACHINING".

(2) Feed-forward coefficient adjustment (using an arc of R10/F4000)

[Purpose of adjustment]
In a conventional position control loop where feed-forward control is not exercised, a velocity command is output based on (positional deviation) \times (position loop gain). This means that the machine moves only when there is a difference between the specification of a command and the machine position. When the position gain is $30[1 / \mathrm{s}]$, for example, a feedrate of $10 \mathrm{~m} / \mathrm{min}$ generates a positional deviation of 5.56 mm . In linear feed, this positional deviation does not cause a figure error. For an arc or corner, however, this positional deviation causes a large figure error.
A function for eliminating such a positional deviation is feed-forward. Feed-forward converts the position command from the CNC to a velocity command for velocity command compensation. Feed-forward can reduce a positional deviation (to almost 0, theoretically). Accordingly, feed-forward can reduce arc and corner figure errors. However, the servo response is improved, so that a shock can occur. To prevent a shock from occurring, acc./dec. before interpolation must be used at the same time.
[Guideline for adjustment value setting]
Theoretically, a feed-forward coefficient of 100% leads to a positional deviation of 0 , and eliminates figure errors. Actually, however, there is a delay in velocity loop response. So, a value slightly less than 100% produces a specified figure. Usually, a value between 95% to 99% (settings of 9500 to 9900) is optimum. As the default, use 9800.
First, adjust the feed-forward coefficient while viewing an arc figure. (Set a velocity feed-forward coefficient of 50% before starting adjustment.)
[Actual adjustment]
Create a program as indicated below for circular movement by R10/F4000, and measure the path with SERVO GUIDE or SD. G08P1 and G08P0 in the program are G codes for starting and ending the advanced preview control mode in Series $16 i$ and so on, respectively. For a mode to be used, select the corresponding G codes from Table H (a).

```
G91;
G08P1;
G17G02I-10.F4000.;
I-10.;
I-10.;
G08PO;
G04X3.;
M99;
```

Table H (a) Codes for starting and ending each mode

	Start	End
FS16 $i, 18 i, 21 i+$ Advanced preview control	G08P1	G08P0
FS16 + High-precision contour control		
FS16 + Al high-precision contour control	G05P10000	G05P0
FS16 $i+$ AI nano high-precision contour control		
FS15 i Fine HPCC		
FS30 + AI contour control I		
FS30 $i+$ AI contour control II	G05.1Q1	G05.1Q0
FS16 i AI contour control		
FS16 + AI nano-contour control		
FS15 + Fine HPCC		
FS21 $i+$ AI advanced preview control		

In Fig. H (a), the feed-forward coefficient is insufficient, resulting in a radius reduction of about $5 \mu \mathrm{~m}$. In addition, the velocity loop gain is low, so that swells and quadrant protrusions are observed. By adjusting the feed-forward coefficient as shown in Fig. H (b), the arc radius reduction can be reduced to nearly 0 .

Fig. H (a) Feed-forward adjustment Velocity loop gain: 100\%
Advanced preview feed-forward coefficient: 95\% FAD time constant: 24 ms (linear type)

Fig. H (b) Feed-forward adjustment Velocity loop gain: 100\%
Advanced preview feed-forward coefficient: 98\% FAD time constant: 24 ms (linear type)

In the figures above, a low velocity loop gain is used for measurement. By using an increased velocity loop gain, swells and quadrant protrusions can be reduced (Fig. H (c)). Increase the velocity loop gain to 70% to 80% of the limit. Adjust the feed-forward coefficient finely, and apply quadrant protrusion compensation (backlash acc./dec.) to reduce the quadrant protrusions and improve the roundness (Fig. H (d)),

Fig. $\mathrm{H}(\mathrm{c})$ Effect of velocity loop gain Velocity loop gain: 200\%
Advanced preview feed-forward coefficient: 98\% FAD time constant: 24 ms (linear type)

Fig. H (d) Effect of velocity loop gain Velocity loop gain: 300\%
Advanced preview feed-forward coefficient: 99\% FAD time constant: 24 ms (linear type)

(3) Velocity feed-forward coefficient adjustment (example using a square figure with $1 / 4$ arcs)

[Purpose of adjustment]
Feed-forward coefficient adjustment can reduce positional deviation and figure errors. If the response of the velocity loop for executing a velocity command is low, velocity control cannot be exercised as specified where the specified acceleration varies to a large extent, thus causing a figure error. The response of the velocity loop can be improved by increasing the velocity loop gain and by adjusting the velocity feed-forward coefficient.
Velocity feed-forward multiplies a specified rate of variation (acceleration) by an appropriate coefficient for torque command compensation. In the servo velocity loop (PI control), a compensation torque occurs only when a difference (velocity deviation) between a specified velocity and actual velocity actually occurs. On the other hand, velocity feed-forward performs torque command compensation according to an acceleration value specified beforehand. So, a figure error that occurs due to a velocity loop delay can be reduced.
[Guideline for adjustment value setting]
The formula below is applicable. In actual adjustment, however, make an adjustment starting with a velocity feed-forward coefficient of 100 .
$($ Velocity feed-forward coefficient $)=$
$100 \times($ Motor rotor inertia + load inertia $) /$ Motor rotor inertia
[Actual adjustment]
Make a velocity feed-forward coefficient adjustment by using a square figure with four $1 / 4$ arcs of a $5-\mathrm{mm}$ radius. In this adjustment, disable the velocity clamp function based on an arc radius. (Disable the function, or in the example below, ensure that a velocity equal to or greater than F4000 can be specified.)


```
G91;
G08P1;
G01X10.F4000;
G02X5.Y-5.R5.;
G01Y-20.;
G02X-5.Y-5.R5.;
G01X-20.;
G02X-5.Y5.R5.;
G01Y20.;
G02X5.Y5.R5.;
G01X10.;
G08P0;
G04X3.;
M99;
```

Fig. H (e) Programmed figure

When the actual path is measured in a mode for displaying a reference path, the actual path and reference path are plotted at the same time as shown below:

Fig. H (f) Specified path and actual path
When advanced preview feed-forward is disabled, a figure error of hundreds $\mu \mathrm{m}$ occurs as shown in Fig. H (f), and therefore can be viewed even in the XY mode. However, if advanced preview feed-forward is enabled for figure error reduction, it is difficult to evaluate a figure error correctly unless the error is enlarged.
In such a case, use the figure comparison mode (contour mode) for enlarging errors only for display (Ctrl O).
In addition, set an error display magnification with F3 (scale change). For Fig. H (g), a display magnification of 100 is set.

Fig. H (g) Velocity feed-forward adjustment Velocity loop gain: 100\%
Advanced preview feed-forward coefficient: 99\% FAD time constant: 24 ms (linear type)
Velocity feed-forward: 0\%

Fig. H (h) Velocity feed-forward adjustment Velocity loop gain: 100\%
Advanced preview feed-forward coefficient: 99\% FAD time constant: 24 ms (linear type)
Velocity feed-forward: X100\%

In Fig. H (g), the velocity feed-forward coefficient is not specified, so that the movement along each axis delays where acceleration changes to a large extent. As the result, a protrusion occurs at the joint of a straight line with an arc, and a cut occurs at the joint of an arc with a straight line. In Fig. H (h), a velocity feed-forward coefficient is set for the X -axis only. The response of the X -axis has improved, so that a figure improvement can be seen in the areas where acceleration changes to a large extent along the X -axis.

In Fig. H (i), excessively large velocity feed-forward coefficients are specified, so that the protrusions shown in Fig. H (g) have changed to cuts, and the cuts have changed to protrusions. This means that optimum velocity feed-forward coefficients exist and they are less than the values of Fig. H (i). Fig. H (j) shows the result of adjustment to the optimum values. Fig. H (k) enlarges the errors only for display.

Fig. H (i) Velocity feed-forward adjustment Velocity loop gain: 100\%
Advanced preview feed-forward coefficient: 99\% FAD time constant: 24 ms (linear type) Velocity feed-forward: X200\%, Y200\%

Fig. H (j) Velocity feed-forward adjustment Velocity loop gain: 100\%
Advanced preview feed-forward coefficient: 99\% FAD time constant: 24 ms (linear type) Velocity feed-forward: X120\%, Y180\%

When the enlarged range is viewed, it is seen that the machine is vibrating in the arc areas. This vibration is caused by a low velocity loop gain. To reduce this vibration, two methods are available. One method increases the velocity loop gain. (This method cannot be used when the velocity loop gain has already been increased to the oscillation limit.) The other method decreases the feedrate in the arc areas with the arc radius based feedrate clamp function as described in Item H (4).

Fig. H (k) Velocity feed-forward adjustment

Swells in the arc areas can be reduced by increasing the velocity loop gain (Fig. H (1)). However, figure errors that occur at the joints of straight lines and arcs cannot be fully eliminated. Swells can be additionally reduced by fine adjustment of the velocity feed-forward coefficient or by using the arc radius based feedrate clamp function described in Item H (6).

Figure errors in this area cannot be fully eliminated by increasing the velocity loop gain.

Swells can be reduced by increasing the velocity loop gain.

Fig. H (I) Velocity feed-forward adjustment Velocity loop gain: 300\% Advanced preview feed-forward coefficient: 99\% FAD time constant: 24 ms (linear type) Velocity feed-forward: X120\%, Y180\%

(4) Adjustment of the parameters for arc radius based feedrate clamping

[Purpose of adjustment]
As mentioned above, velocity feed-forward coefficient adjustment can improve a velocity loop response delay, thus reducing figure errors in areas where specified acceleration changes to a large extent. However, velocity feed-forward coefficient adjustment alone cannot fully eliminate figure errors. Moreover, if the rigidity of a machine itself is low, the machine may vibrate due to a change in acceleration.

To reduce variation in specified acceleration in areas where acceleration changes to a large extent, the specified feedrate in the tangent direction is reduced. In part machining (advanced preview control), the arc radius based feedrate clamp function performs this feedrate reduction. By adjusting the parameter of this function, an acceleration value in the normal direction allowable with a machine can be found. As detailed below, such an acceleration value can be used as a guideline for setting the parameter for feedrate reduction by acceleration in high-precision contour control (small successive blocks).

In the above figure, let R be the radius of the arc, and F be the feedrate. Then, the acceleration in the normal direction is F^{2} / R. The arc radius based feedrate clamp function specifies R and F as its parameters to ensure that the acceleration in the normal direction at a specified arc does not exceed the specified value.

For example, suppose that when $R=5 \mathrm{~mm}$ and $\mathrm{F}=4000 \mathrm{~mm} / \mathrm{min}$ are specified as the parameters of the arc radius based feedrate clamp function, the acceleration in the normal direction at the arc is:

$$
\mathrm{F}^{2} / \mathrm{R}=(4000 / 60)^{2} / 5=889 \mathrm{~mm} / \mathrm{sec}^{2}
$$

When using the high-precision contour control function, set about the same value as this acceleration as the parameter for feedrate reduction function based on acceleration in small blocks. In the example above, if a cutting feedrate of $\mathrm{F} 4000(\mathrm{~mm} / \mathrm{min})$ is set, the time required to reach this feedrate is calculated as follows:
$4000 / 60 / 889 \times 1000=75 \mathrm{msec}$

When the feedrate at an arc is reduced using the arc radius based feedrate clamp function, figure precision improves. However, a longer machining time is required as a side effect. Fig. H (m) shows a tangent feedrate and processing time when the arc radius based feedrate clamp function is not used with the adjustment program used in (5) and later. Fig. H (m) indicates that the tangent feedrate remains to be F4000. On the other hand, when feedrate reduction to F3000 at R5 mm is specified with the arc radius based feedrate clamp function, the tangent feedrate is reduced to F3000 at corners as shown in Fig. H (n), but the machining time has increased by 200 msec .

Fig. $\mathrm{H}(\mathrm{m})$ When the arc radius based feedrate clamp function is not used

Fig. $\mathrm{H}(\mathrm{n})$ When the arc radius based feedrate clamp function is used
[Guideline for adjustment value setting]
Empirically, the values below are adequate. For the parameter numbers, refer to the parameter manual of each CNC.
Standard: F3060 for R5 ($527 \mathrm{~mm} / \mathrm{sec}^{2}$)
Speed priority I: F5150 for R5 ($1473 \mathrm{~mm} / \mathrm{sec}^{2}$)
Speed priority II: F7275 for R5 ($2940 \mathrm{~mm} / \mathrm{sec}^{2}$)
[Actual adjustment]
Fig. H (o) shows the results of setting R5 mm and F3000 with the arc radius based feedrate clamp function for Fig. H (k). Fig. H (o) indicates that the figure errors at the entries and exits of the arc areas have been reduced.

The figure errors at the entries and exits of each arc area have been reduced.

Fig. H (o) Arc radius based feedrate clamping

(5) Adjustment of an allowable feedrate difference of the feedrate difference based corner deceleration function

[Purpose of adjustment]
In the program shown in Fig. H (p), the feedrate along each axis changes to a great extent at each block joint. With a high-precision high-speed system, the CNC reads programmed figures beforehand. If the feedrate along each axis changes at a block joint, such a system can decrease the feedrate by a parameter-specified allowable feedrate difference to reduce a shock and figure error at the block joint. Acc./dec. is performed based on the time constant for acc./dec. before interpolation. A more reduced corner feedrate makes a figure error improvement to a greater extent, but requires a longer machining time. Set a reduced corner feedrate to a highest possible value as long as an allowable figure error is obtained.
[Guideline for setting]
For the parameter number, refer to the parameter manual of each CNC.
Standard: F400 for R5
Speed priority I: F500 for R5
Speed priority II: F1000 for R5
[Actual adjustment procedure]
Execute the following program, and measure the actual path.

Fig. H (p) Programmed figure
The XY mode (Ctrl-X) is used for drawing. To observe an overshoot along an axis to be stopped, the figure is enlarged in the direction of the axis to be stopped. Corner 1 and corner 3 in Fig. H (p) are enlarged in the X -axis direction, and corner 2 and corner 4 are enlarged in the Y -axis direction. In the examples below, corner 1 is displayed using $0.01 \mathrm{~mm} / \mathrm{div}$ in the X -axis direction and $0.1 \mathrm{~mm} / \mathrm{div}$ in the Y -axis direction.
In Fig. H (q) where a reduced corner feedrate of F1000 is set, an overshoot of $10 \mu \mathrm{~m}$ or more has occurred. In Fig. H (r), however, the overshoot is reduced to about $3 \mu \mathrm{~m}$.

If an overshoot cannot be removed by setting a reduced corner feedrate close to 0 , the acceleration of acc./dec. before interpolation may be too large. In such a case, set a longer time for acc./dec. before interpolation. (In this case, a longer machining time results.)
Fig. $\mathrm{H}(\mathrm{s})$ shows the feedrate along the X -axis and Y -axis (corner 1) when the corner deceleration function is used.

Fig. H (q) Reduced corner feedrate F1000

Fig. H (r) Reduced corner feedrate F300

Fig. H (s) Time and feedrate relationship for reduced corner feedrate F1000

(6) Frequency characteristic measurement method (a) Using SERVO GUIDE

To measure the frequency characteristic, follow this procedure.

NOTE
 1 Basically, no CNC parameter setting is required.

1 On the graph window menu, select $[\operatorname{Tool}(\mathrm{T})] \rightarrow$ [Frequency Response] \rightarrow [Measure...] to display the "Frequency measurement" dialog box.

2 Select an axis on which you want to measure frequency characteristics, and click the [Start] button. The axis is automatically vibrated, and frequency characteristics (board line chart) are displayed.

3 Click the [Detail] button. It becomes possible to specify options. Make option settings as required.

4 To re-draw, select [Draw Bode diagram] from [Frequency Response] on the [Tool(T)] menu.

(b) When SERVO GUIDE is not used

Using the disturbance input function enables you to get frequency characteristics.

Disturbance input function

The disturbance input function is a function that lets you apply vibration to axes by entering sinusoidal disturbance wave as a torque command. With this function, you can get the frequency characteristics of the velocity loop of the system (including machine sections).

Series and editions of applicable servo software

(Series 15i-B,16i-B,18i-B,21i-B,0i-B,0i Mate-B,Power Mate i)
Series $90 B 0 / A(01)$ and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
(Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B)
Series 90B5/A(01) and subsequent editions

Parameter setting method

$<1>$ Specify the following parameters.

2270 (FS30i, 16i)
DSTIN(\#7) DISTURBANCE INPUT
0 : Stop
1: Start (a change of $0 \rightarrow 1$ triggers disturbance input.)
DSTTAN(\#6) A disturbance input type is specified as follows:
0 : Input for only one axis
1: Input for both L and M axes (for synchronous and tandem axes, setting is to be made only for the L axis.)
DSTWAV(\#5) The input waveform of disturbance input is:
0 : Sine wave. (Usually, select the sine wave.).
1: Square wave.

[Default value] [Valid data range]

Disturbance input gain
0
0 to 7282 (to be set in Tcmd units; a value of 7282 corresponds to an amplifier maximum current.)
Usually, specify 500 to apply vibration to the machine so that it will sound lightly.
\square
Disturbance input function start frequency (Hz)

2740 (FS15i)
2327 (FS30i, 16i)

[Valid data range] 1 to 2000
[Recommended value] 10

2741 (FS15i)
2328 (FS30i, 16 i)

\square
[Default value]
200
[Valid data range]
1 to 2000 (Unit : Hz)

2329 (FS30i, 16i)
[Default value] [Valid data range]

3
SWEPT SINE MODE 1 to 32767
Continuous sine mode Less than 0
Usually, specify 0 or greater to make the machine vibrate in swept sine mode.
$<2>$ Cautions

- Turn off the functions that work only when the machine is at a halt, such as the variable proportional gain function in the stop state and the overshoot compensation function.
- When measuring cutting characteristics, pay attention to which function type, cutting or rapid traverse, is in use.
- Decrease the position gain to about 1000 .
$<3>$ How to use
The default disturbance input setting is the swept sine mode.
When the rising edge of the disturbance input bit is detected, application of vibration is started. Vibration is automatically stopped when sine sweeping from the start frequency to the end frequency is completed. A reset or an emergency stop makes the machine stop operating. After the emergency stop is released, turning the function bit off and on again restarts disturbance input.
- Example of setting

$$
\begin{array}{ll}
\text { No2326 }=500 & \rightarrow \text { gain }=500 \\
\text { No2327 }=0 & \rightarrow \text { start frequency }=10 \mathrm{~Hz} \\
\text { No2328 }=0 & \rightarrow \text { end frequency }=200 \mathrm{~Hz} \\
\text { No2329 }=0 & \rightarrow \text { repetition }=3 \text { times }
\end{array}
$$

$<4>$ Setting for outputting input/output data to the check board Make the following settings so that the disturbance input frequency and current command can be observed on the check board.

1726 (FS15i)
2115 (FS30i, 16i)

\square
[Setting value] 4

1774 (FS15i)
2151 (FS30i, 16i)

\square
[Setting value] 2629 for the L axis and 2757 for the M axis
2108 for the L axis and 2236 for the M axis (for the Series 90B3 and 90B7)

$1775(\mathrm{FS} 15 i)$
2152 (FS30i, 16i)

\square
[Setting value] 2

1776 (FS15i)
2153 (FS30 $i, 16 i$)

\qquad
[Setting value]
268 for the L axis and 396 for the M axis
2372 for the L axis and 2500 for the M axis (for the Series 90 B 3 and 90B7)
<5> SD software setting
On the F9 screen of the SD software, specify data conversion for each channel. Select $2: T \mathrm{Tcm}$. Specify 7282 for the current command channel and 1820 for the disturbance input frequency channel. For channel data settings on the check board, the disturbance input frequency and the current command are set, respectively, to 5 (for a DIP switch, 12) and 6 (for a DIP switch, 13).

Entering a trigger at the same time as the start of disturbance input collects the data shown below.

The envelope of the current command amplitude indicates the gain characteristic of the velocity loop.

(7) Adjustment of backlash acceleration

NOTE

The examples given below show the adjustment of backlash acceleration in the Series $30 i$ and $16 i$.
Even with other CNCs, the adjustment procedure is the same. When using the Series $15 i$, however, replace parameter Nos. according to the table given below.

(a) Backlash acceleration function

A simple figure as shown below is formed by the compensation value of backlash acceleration. The acceleration compensation value is added to the velocity command to help inversion of the velocity integral gain when the motor is reversed. This effect can reduce the path error in the reverse operation.
(Standard backlash acceleration)

Basically, the above two parameters are considered. Parameter No. 2071 is the backlash acceleration time, and its recommended value is 20. Normally, this value need not be adjusted. Parameter No. 2048 is the backlash acceleration amount. In the initial adjustment stage, set 100 in this parameter. Adjust this value while observing the arc figure.

(b) Setting initial parameters for backlash acceleration

Before starting backlash acceleration adjustment, set the following initial parameters:
[Basic parameters for backlash acceleration]

Parameter No.		Recommended value	Description
15i	30i,16i,etc.		
1851	1851	1 or greater	Backlash compensation
1808\#5	2003 \#5	1	Enables backlash acceleration function
1884\#0	2006 \#0	0/1	0: Semi-closed loop, 1: Full-closed loop
1953\#7	2009 \#7	1	Stop of backlash acceleration
2611\#7	2223 \#7	1	Enables backlash acceleration during cutting only.
1957\#6	2015 \#6	0	Disables the 2-stage backlash acceleration function.
1860	2048	100	Backlash acceleration amount
1975	2082	5 ($1 \mu \mathrm{~m}$ detection) 50 ($0.1 \mu \mathrm{~m}$ detection)	Backlash acceleration stop distance (in detection unit)
1964	2071	20	Backlash acceleration time

These parameters can be set in the parameter window of SERVO GUIDE.

P Param - init16.prm(OFF-LINE)			
Eile Edit Move Window Help			
C SV C SP Group(G)	Group(G) ++Backlash Acceleration \square Axis X \triangle P Parameter Hint		
Backlash acceleration \mid 2-stage backlash acceleration \mid 2-stage backlash acceleration 2 \| Static Friction $11 / \pm$			
Backlash acceleration enable			
「 2-stage acceleration enable			
- Acceleration enable only on cutting			
Backlash comp.			
Backlash Comp.	1 -	1.000um	
- Backlash comp. disable for position			
Backlash acceleration			
Backlash acceleration amount	1003		
Acceleration $(-\rightarrow+)$	03		
Count number	203	40 ms	
V Acceleration stop			
Acceleration stop timing	53	0.763um	

(c) Adjusting backlash acceleration

The following figure shows an arc figure before servo adjustment. Quadrant protrusions of about $4 \mu \mathrm{~m}$ appear on the X - and Y -axes.

R10/F2500 PG30 / VG200\%
№2048=0

The figure below shows the result of a backlash acceleration adjustment made according to the parameter settings in item (b). By setting recommended values for backlash acceleration, quadrant protrusions can be suppressed.

R10/F2500 PG30 / VG200\%
No2048=100
R: 10.000

(c)-1 Determining the end of adjustment

First, it is necessary to understand when the backlash acceleration adjustment is ended. The figure below shows the result of an adjustment made by setting parameter No. 2048 to 200. An undercut occurs at the reverse points. Undercuts damage the surface of the machined workpiece, so they must be avoided. Therefore, it is necessary to end the adjustment of parameter No. 2048 just when no undercut occurs.

R10/F2500 PG30 / VG200 \%
№2048=200

By enlarging the positional deviation at a reverse point, the generation of an undercut can be determined easily. Pressing z widens the figure while pressing Z shrinks the width. Pressing u decreases one grid size while pressing d increases the grid size.

When z and u are pressed, a figure as shown below is obtained:

(c)-2 Effect of gain adjustment

According to the description in item (c)-3 - (1), the final value of parameter No. 2048 must be determined to be 100. However, small protrusions are still left at the reverse points. This is because the gain adjustment is insufficient in this example. The power to suppress the position gain and velocity loop gain protrusions is strong and stable. Therefore, it is necessary to make gain adjustments thoroughly before the backlash acceleration adjustment.

R10/F2500 PG30 / VG200\%
No2048=100

The figure shown below is the result of the gain adjustment, where backlash acceleration is not used. Even when backlash acceleration is not used, protrusions are almost eliminated. Therefore, the importance of gain adjustment can be understood.
(Adjustment items)

- Application of high-speed HRV current control
- Velocity loop gain: 600% (200% in the above example)
- Position gain: $100 / \mathrm{s}$ ($30 / \mathrm{s}$ in the above example)

R10/F2500 PG100 / VG300 **2(HRV3) No2048=0

After a thorough gain adjustment, backlash acceleration can be adjusted easily. The figure shown below is the result obtained after the initial parameters of backlash acceleration listed in item (c)-3-(2) are set. Thanks to the effect of the gain adjustment and a little backlash acceleration, protrusions are completely eliminated.

$$
\begin{aligned}
& \text { R10/F2500 PG100 / VG3008*2(HRV3) } \\
& \text { No2048=100 }
\end{aligned}
$$

As indicated by this figure, the most important item to eliminate quadrant protrusions is gain adjustment. If gain adjustment is made successfully, backlash acceleration can be adjusted easily. Therefore, backlash acceleration does not play the leading role for suppressing quadrant protrusions.

(c)-3 Override function

The two figures shown below indicate the difference by feedrate. In this example, the same acceleration amount (parameter No. 2048 is set to 100) is used, but the results are completely reversed. This example shows that a low feedrate requires a small backlash acceleration amount and that a high feedrate requires a large acceleration amount. This means that the backlash acceleration amount must be changed according to the feedrate.
An actually optimum acceleration amount is almost proportional to the acceleration. Therefore, an override function is required to change the acceleration amount according to the acceleration.

* In this chapter, PG is assumed to be 50 , and VG is assumed to be 400%.

The override function has two parameters. Parameter No. 2114 specifies an override coefficient, and parameter No. 2338 specifies a limit. These parameters may be adjusted easily if steps (1) through (3) explained below are followed.
[Parameters for the override function]

Parameter No.		Standard value	Description	
$\mathbf{1 5 i}$	$\mathbf{3 0 i , 1 6 i , \text { etc. }}$			
1860	2048	100	Backlash acceleration amount	
1725	2114	0	Backlash acceleration override coefficient	
2751	2338	0	acklash acceleration limit	

Backlash acceleration amount

(1) Determining parameter No. 2048

To determine parameter No. 2048, an adjustment must be made at low feedrate. This example assumes a feedrate of F500 $\mathrm{mm} / \mathrm{min}$ and a radius of 10 mm . Adjust an optimum value at a low feedrate, and set it in parameter No. 2048. The figure below shows the result of setting 30 in parameter No. 2048. Here, this value is set in parameter No. 2048.

> R10/F500 PG50 / VG2008*2
> No2048=30

(2) Determining parameter No. 2114

Parameter No. 2114 must be set after the adjustment of parameter No. 2048. About a half of the maximum cutting feedrate is used to determine the value to be set in parameter No. 2114. In this example, F2500 mm/min is used. By increasing the value in parameter No. 2114, determine an optimum value that does not cause undercuts. Increasing the value in parameter No. 2114 increases the actual acceleration amount.

The following figure shows the result of the adjustment of parameter No. 2114. Quadrant protrusions can be suppressed satisfactory.

No2048=30 OVR35

(3) Determining parameter No. 2338

Finally, set parameter No.2338. With an override coefficient determined using a middle feedrate, a large acceleration amount is output when the feedrate is set to a high feedrate. For this reason, the acceleration amount must be limited for high feedrate. In this example, F5000 mm/min is used.

R10/F5000 PG50 / VG200\%*2
No2048=30 OVR35 LIM0

The following shows the result of the adjustment of parameter No. 2338 at high speed. Quadrant protrusions are suppressed well.

R10/F5000 PG50 / VG200\%*2
No2048=30 OVR35 LIM225/250

(d) Acceleration amount for each direction

There may be difference in size between the right and left quadrant protrusions or between the top and bottom quadrant protrusions. In such a case, an acceleration amount must be set separately.
If parameter No. 2094 is not 0, parameter No. 2094 is used for the left and bottom reverse points. Parameter No. 2340 is used as the override coefficient for parameter No. 2094, and parameter No. 2341 is used as the limit for parameter No. 2094.
[Parameters of acceleration amount for each direction]

Parameter No.		Standard value	Description
$15 i$	30i,16i,etc.		
1860	2048	50	Backlash acceleration amount
1725	2114	0	Backlash acceleration override coefficient
2751	2338	0	Backlash acceleration limit
1987	2094	0	Backlash acceleration amount (- to +)
2753	2340	0	Backlash acceleration override coefficient (- to +)
2754	2341	0	Backlash acceleration limit (- to +)

R10/F2500 Difference of Protrusion

(e) Disabling backlash acceleration after stop

The optimum acceleration amount after a long stop may slightly be different from that at the time of adjustment using an arc. This phenomenon is due to the difference in friction, backlash, and machine torsion in the stopped state. The figure given below shows the bad effect of backlash acceleration, where a $3-\mu \mathrm{m}$ overshoot is generated at the time of $10-\mu \mathrm{m}$ step movement. As a solution to this problem, the following servo software can disable backlash acceleration after a stop:

Series and editions of applicable servo software
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}, 0 i-\mathrm{B}, 0 i$ Mate-B,Power Mate i)
Series 90B0/W(23) and subsequent editions Series 90B1/A(01) and subsequent editions Series 90B6/A(01) and subsequent editions (Series $0 i-\mathrm{C}, 0 i$ Mate-C,20i-B) Series $90 B 5 / A(01)$ and subsequent editions
[Parameters for the function for disabling backlash acceleration after a stop]

Parameter No.		Standard value	Description
$15 i$	30i,16i,etc.		
1883\#7	2005\#7	1	Static friction compensation function
2696\#7	2283\#7	1	Function for disabling backlash acceleration after a stop
1966	2073	5	Judgment parameter for stop state (ITP)
1964	2071	0	Static friction compensation function enable time
1965	2072	0	Static friction compensation value

(*) This function uses the parameters for the static friction compensation function.

SERVO CHECK BOARD OPERATING PROCEDURE

(1) Overview

The servo check board enables digital control values used in a digital servo section to be observed from the outside. The digital control values can be observed in either analog or digital form. Analog outputs can be observed directly with an oscilloscope, and digital outputs can be observed with a personal computer.

(2) Servo check board configuration

The following table lists the signals that can be observed with the servo check board, and the number of supported axes.

Table I (a) Servo check board specification

Name	Specification	Output interface	Number of supported axes	Number of output channels
A	A06B-6057-H630	Analog and digital	8	4 (optional)
B	A06B-6057-H620	Digital only	4	4 (optional)
(*)	(*)			
C	A06B-6057-H602	Analog only	2	8 (fixed)
$\left(\begin{array}{l}\text { (*) }\end{array}\right.$				

* Servo check board A (one-piece analog/digital type) is upward-compatible, that is, can be replaced, with digital check board B and analog check board C.

The method for connecting the servo check board with a CNC varies with the type of the CNC.
The method may also vary with the name of a connectable terminal. The following table lists the ordering information for adapters and cables required to connect the check board.

Table I (b) Adapters and cables required to connect the servo check
board to each CNC

CNC	Required adapters and cables	Ordering information
Series 16i, 18i, 21i, 0i	Dedicated i-B adapter board + dedicated i-B cable Straight cable	A02B-0281-K822
Series 15i, Power Mate i	Adapter board + dedicated i series cable Straight cable	A02B-0236-K872

NOTE

With the Series $30 i, 31$, and $32 i$, the check board cannot be connected.

(3) Servo check board connection

CAUTION
When connecting the servo check board to an NC, keep the NC power supply switched off. When the servo check board is directly connected not via an adapter board, the circuitry of both of the CNC and check board can be damaged.
(a) Connection between check board A (one-piece analog/digital type) and each CNC

Fig. I (a) Connector layout on servo check board A (A06B-6057-H630)
Series $16 i, 18 i, 21 i, 0 i$

* A dedicated i-B cable is used to connect the CA69 connector of the CNC with the adapter.

Series $15 i$, Power Mate i

* A dedicated cable is used to connect the CA54 connector of the CNC with the adapter.

Adapter board + dedicated i series cable

(b) Connection between servo check board B (interface board supporting automatic adjustment) and each CNC

Fig. I (b) Connector layout on servo check board B (A06B-6057-H620)

* The connection method for servo check board C is the same as for servo check board A
A straight cable is used to connect the dedicated adapter board with the check board, and TESTA or TESTB of the dedicated adapter board is connected to CBI3 on the check board. In this case, the data of axes 1 to 4 and the data of axes 5 to 8 cannot be observed at the same time.
(c) Connection between servo check board C (analog check board) and each CNC

NOTE
Install a jumper pin on the 5 MHz side at S1 (clock) on the check board.

Do not use check pins TSAL and TSAM.

Fig. I (c) Connector layout on servo check board C (A06B-6057-H602)

* The connection method for servo check board B is the same as for servo check board A
A reverse-insertion protection cable is used to connect the dedicated adapter board with the check board, and one of TEST0 through TEST3 of the dedicated adapter board is connected to the connector CN 2 on the check board.

(4) Selecting signals for observation

(a) Servo check board A (one-piece analog/digital type)

On servo check board A, a pair of two 7-segment LED digits is used to select the axis and data type for signals to be observed.
Set the AXIS digit with the axis number $(1$ to 8$)$ set in parameter No. 1023.
Also set the DATA digit with the type of data to be observed (the table below).
Data is not output for an axis unless the RECV LED lights for that axis.

DATA	Data type
0	Velocity command (VCMD)
1	Torque command (TCMD) or estimated load torque
2	Speed (SPEED)
4	Position (POS)
5	Automatic adjustment data
6	Automatic adjustment data 2
7	Servo-spindle synchronization error (updated every 8 ms)

(b) Servo check board B (digital type)

Set the DIP switches as explained below.

Set DIP switches 1 and 0 according to the directions printed on the printed-circuit board.

Example of setting with the DIP switches on your side as shown at the right.

Data for the third and fourth axis is selected.

Data for the first and second axis is selected.

NOTE

The terms "L axis" and " M axis" refer to an axis assigned an odd number specified in parameter No. 1023 and an axis assigned an even number that follows directly that odd number, respectively.

Data type	L axis	M axis		Data type	L axis	M axis	
Velocity command (VCMD)	0000	000	1	Position (POS)	0	00^{0}	1 0
Torque command/ estimated load	000	$00^{0} 0$	$\begin{array}{\|l\|} \hline 1 \\ 0 \\ \hline \end{array}$	Adjustment	$0 \begin{array}{lll}0 & 0 & \\ 0 & 0\end{array}$	$00^{0} 0$	1 0
Speed (SPEED)	$\mathrm{O}_{0} \mathrm{O}$	0 0 0 0	1 0	Adjustment 2	0 O	$\mathrm{OOO}_{0} \mathrm{O}$	1 0

(c) Servo check board C (analog type)

Output data is permanently assigned to each check pin as listed below.
The rotary switch on the printed-circuit board is kept at 0 for usual use.

* The terms "L axis" and "M axis" refer to an axis assigned an odd number specified in parameter No. 1023 and an axis assigned an even number that follows directly that odd number, respectively.

(5) VCMD signal

No. 1956 (FS15i)
No. 2012 (FS16i)

When the feed-forward function is not used, the VCMD signal conveys a velocity command.
With this signal, it is possible to measure very slight vibration in the motor and its motion irregularity.
When the feed-forward function is used, the VCMD signal represents a positional deviation rather than a velocity command. So the signal can be used to measure vibration in the motor and irregularity in the feed distance of the tool driven by the motor.
The signal conversion type for the VCMD signal can be switched using parameters.
This switching is used, if the signal waveform is hard to observe because of the VCMD signal being reciprocating within $\pm 5 \mathrm{~V}$.

Parameters for rotary motor

VCM2	VCM1	Specified rotation speed/5 V
0	0	$0.9155 \mathrm{~min}^{-1}$
0	1	$14 \mathrm{~min}^{-1}$
1	0	$234 \mathrm{~min}^{-1}$
1	1	$3750 \mathrm{~min}^{-1}$

Parameters for linear motor (Incremental type: $\mathrm{P}=$ signal pitch[$\mu \mathrm{m}]$)
(Absolute type : $\mathrm{P}=$ resolution $[\mu \mathrm{m}] \times 512$)

VCM2	VCM1	Specified velocity/5 V
0	0	$0.00375 \times \mathrm{P} \mathrm{m} / \mathrm{min}$
0	1	$0.006 \times \mathrm{P} \mathrm{m} / \mathrm{min}$
1	0	$0.96 \times \mathrm{P} / \mathrm{min}$
1	1	$15.36 \times \mathrm{P} \mathrm{m} / \mathrm{min}$

Using an oscilloscope to see the movement of the entire signal in DC mode, then its magnified image in AC mode enables you to check very slight vibration in the motor and its motion irregularity.

Fig. I (d) Waveform of the VCMD signal

The following table lists the number of positional deviation pulses for a VCMD voltage of 5 V .

Table I (c) Number of positional deviation pulses for a VCMD voltage of 5 V for semi-closed loop

VCM2	VCM1	Number of positional deviation pulses for a VCMD voltage of 5 V
0	0	$15,258 \times \mathrm{FFG} / \mathrm{Kp}$
0	1	$244,133 \times \mathrm{FFG} / \mathrm{Kp}$
1	0	$3,906,133 \times \mathrm{FFG} / \mathrm{Kp}$
1	1	$62,498,133 \times \mathrm{FFG} / \mathrm{Kp}$

Kp: Position gain (s^{-1})
FFG: Flexible feed gear (numerator/denominator)
Table I (d) Number of positional deviation pulses for a VCMD voltage of 5 V for full-closed loop

VCM2	VCM1	Number of positional deviation pulses for a VCMD voltage of $5 \mathbf{~ V}$
0	0	$0.0153 \times($ number of positional feedback occurrences per motor revolution) $/ K p$
0	1	$0.2441 \times($ number of positional feedback occurrences per motor revolution) $/ K p$
1	0	$3.96061 \times($ number of positional feedback occurrences per motor revolution) $/ K p$
1	1	$62.5 \times($ number of positional feedback occurrences per motor revolution) $/ K p$

$\mathrm{Kp}: \quad$ Position gain $\left(\mathrm{s}^{-1}\right)$
Table I (e) Number of positional deviation pulses for a VCMD voltage of 5 V when a linear motor is in use

VCM2	VCM1	Number of positional deviation pulses for a VCMD voltage of 5 $\mathbf{~ V}$
0	0	$32,000 \times$ FFG $/ \mathrm{Kp}$
0	1	$512,000 \times \mathrm{FFG} / \mathrm{Kp}$
1	0	$8,192,000 \times \mathrm{FFG} / \mathrm{Kp}$
1	1	$131,072,000 \times \mathrm{FFG} / \mathrm{Kp}$

Kp: Position gain (s^{-1})
FFG: Flexible feed gear (numerator/denominator)
(Example)
Assume the following conditions:
Position gain $=30\left(\mathrm{~s}^{-1}\right)$, semi-closed loop, detection unit of 1 $\mu \mathrm{m} /$ pulse, flexible feed gear $=1 / 100$,
VCM2 $=0, \mathrm{VCM} 1=1$ (VCMD waveform signal calculation parameters)
If a waveform with $\mathrm{E}=0.3 \mathrm{~V}$ and $\mathrm{I} / \mathrm{f}=20 \mathrm{~ms}$ is observed:
Number of positional deviation pulses for a VCMD voltage of 5 $\mathrm{V}=244133 / 100 / 30=81$ pulses

Table vibration $=81 \times 0.3 / 5=4.88 \mu \mathrm{~m}$
Vibration frequency $=50 \mathrm{~Hz}$

(6) TCMD signal

The TCMD signal conveys a torque command for the motor.
When a motor is running at high speed, its actual currents (IR and IS) may differ from the rating because of back electromotive force.
The output voltage of the signal becomes 4.44 V at maximum current. A higher signal voltage may be observed in a motor in which the actual current limit function is enabled, however.

Table I (f) TCMD waveform conversion

Maximum current	Ap/V	Applicable servo motor
4Ap	0.9	及iS0.2/5000, β iS0.3/5000
10Ap	2.3	$\alpha i S 2 / 5000 \mathrm{HV}, \alpha i S 2 / 6000 \mathrm{HV}$, $\alpha i S 4 / 5000 \mathrm{HV}$, BiS2/4000HV, $\beta i S 4 / 4000 \mathrm{HV}, \beta i \mathrm{~S} 8 / 3000 \mathrm{HV}$
20Ap	4.5	$\begin{aligned} & \alpha i S 2 / 5000, \alpha i S 2 / 6000, \alpha i S 4 / 5000, \alpha i F 1 / 5000, \\ & \alpha i F 2 / 5000, \alpha i F 4 / 4000 \mathrm{HV}, \alpha i F 8 / 3000 \mathrm{HV}, \\ & \alpha \mathrm{C} 4 / 3000 \mathrm{i}, \alpha \mathrm{C} 8 / 2000 i, \alpha \mathrm{C} 12 / 2000 i, \\ & \beta i S 0.4 / 5000, \beta i \mathrm{~S} 0.5 / 5000, \beta i \mathrm{~S} 0.5 / 6000, \beta i \mathrm{~S} 1 / 5000, \beta i \mathrm{~S} 1 / 6000, \\ & \beta i \mathrm{~S} 2 / 4000, \beta i \mathrm{~S} 4 / 4000, \beta i \mathrm{~S} 8 / 3000, \beta i \mathrm{~S} 12 / 3000 \mathrm{HV}, \\ & \beta i S 22 / 2000 \mathrm{HV}, \\ & \mathrm{LiS} 300 \mathrm{~A} 1 / 4, \mathrm{LiS} 1500 \mathrm{~B} 1 / 4(400 \mathrm{~V}) \\ & \hline \end{aligned}$
40Ap	9	बiF4/4000, $\alpha i F 8 / 3000$, $\alpha i S 8 / 4000 \mathrm{HV}$, $\alpha i S 8 / 6000 \mathrm{HV}$, aiS12/4000HV, α iF12/3000HV, α F22/3000HV, α C22/2000i, BiS2/4000(40A-driven), $\beta i S 4 / 4000(40 \mathrm{~A}$-driven), $\beta i S 8 / 3000(40 \mathrm{~A}$-driven), $\beta i S 12 / 3000, \beta i \mathrm{~S} 22 / 2000$, LiS600A1/4, LiS900A1/4, LiS1500B1/4, LiS3000B2/2, LiS4500B2/2HV
80Ap	18	人iS8/4000, $\alpha i S 8 / 6000, \alpha i S 12 / 4000$, $\alpha i F 12 / 3000$, aiF22/3000, $\alpha i S 22 / 4000 \mathrm{HV}$, $\alpha i S 30 / 4000 \mathrm{HV}$, $\alpha i S 40 / 4000 \mathrm{HV}$, аC30/1500i, LiS3000B2/4, LiS4500B2/2, LiS6000B2/2, LiS6000B2/2HV, LiS7500B2/2HV, LiS3300C1/2, LiS11000C2/2HV
160Ap	36	$\begin{aligned} & \alpha i S 22 / 4000, \alpha i S 30 / 4000, \alpha i S 40 / 4000, \\ & \alpha i F 30 / 3000, \alpha i F 40 / 3000, \alpha i F 40 / 3000 \text { FAN, } \\ & \text { LiS6000B2/4, LiS7500B2/2, LiS9000B2/2, LiS9000C2/2, } \\ & \text { LiS11000C2/2, LiS10000C3/2 } \end{aligned}$
180Ap	41	$\begin{aligned} & \alpha i S 50 / 3000 \mathrm{HV}, \alpha i S 50 / 3000 \mathrm{HV} \text { FAN, } \alpha i S 100 / 2500 \mathrm{HV}, \\ & \alpha i S 200 / 2500 \mathrm{HV}, \mathrm{LiS} 7500 \mathrm{~B} 2 / 2(400 \mathrm{~V}), \mathrm{LiS} 9000 \mathrm{~B} 2 / 2(400 \mathrm{~V}), \\ & \mathrm{LiS} 9000 \mathrm{C} 2 / 2(400 \mathrm{~V}), \mathrm{LiS} 11000 \mathrm{C} 2 / 2(400 \mathrm{~V}), \text { LiS15000C2/3HV, } \\ & \mathrm{LiS} 10000 \mathrm{C} 3 / 2(400 \mathrm{~V}) \end{aligned}$
360Ap	82	$\alpha i S 50 / 3000, ~ \alpha i S 50 / 3000 F A N, \alpha i S 100 / 2500, ~ \alpha i S 200 / 2500$, aiS300/2000, $\alpha i S 500 / 2000, \alpha i S 300 / 2000 H V, \alpha i S 500 / 2000 H V$, aiS1000/2000HV, LiS7500B2/4, LiS9000B2/4, LiS15000C2/2, LiS15000C2/3, LiS17000C3/2
1440Ap	328	<iS2000/2000HV
Effective current (RMS $)=$ TCMD signal output $(\mathrm{Ap}) \times 0.71$		

The SPEED signal conveys the rotation speed of the motor.

Signal conversion	$3750 \mathrm{~min}^{-1} / 5 \mathrm{~V}$
Linear motor	(Incremental : $\mathrm{P}=$ signal pitch $[\mu \mathrm{m}])$
	$($ Absolute $: \mathrm{P}=$ resolution $[\mu \mathrm{m}] \times 512)$
Signal conversion	$15.36 \times \mathrm{P}(\mathrm{m} / \mathrm{min}) / 5 \mathrm{~V}$

When the SPEED signal is latched at 5 V , check whether the following parameter is set with a value.

No. 1726 (FS15i)
No. 2115 (FS16 i)

Must be kept at 0 .

* Setting this parameter with a value other than 0 disables the SPEED signal output.

(8) Changing the check board output magnification for the TCMD and SPEED signals

Conventionally, the measured waveforms of the TCMD signal (torque command) and SPEED signal (actual feedrate) were folded at 5 V in some cases and difficult to read if the torque command value is large or the actual feedrate exceeds $3750 \mathrm{~min}^{-1}$, because the ranges of these signals were fixed when output to the check board. An improvement was made so that the output ranges of measured waveforms can be changed according to parameter settings.
Series and editions of applicable servo software
Series $90 \mathrm{~B} 0 / \mathrm{N}(14)$ and subsequent editions
Series 90B1/A(01) and subsequent editions
Series 90B6/A(01) and subsequent editions
Series 90B5/A(01) and subsequent editions

No. 2613 (FS15i)

No. 2225 (FS16i)
TCMD05(\#1) The voltage of the TCMD signal output to the check board is:
0 : Unchanged (default)
1: Halved

* The actual output voltage is affected by the following function bit (TCMD4X).
TSA05(\#2) The voltage of the SPEED signal output to the check board is:
0 : Unchanged ($3750 \mathrm{~min}^{-1} / 5 \mathrm{~V}$) (default)
1: Halved ($7500 \mathrm{~min}^{-1} / 5 \mathrm{~V}$)
Conventionally, there has been the following function bit (TCMD4X) for multiplying the output voltage weight of TCMD by 4 . This bit can be used along with the newly added function bit (TCMD05).

TCMD4X(\#5) The voltage of the TCMD signal output to the check board is:
0 : Unchanged (default)
1: Multiplied by 4
Using these function bits changes the output ranges of the TCMD and SPEED signals as listed in Table I (g) and Table I (h).

- TCMD signal output range

Table I (g) TCMD signal conversion (improved)

TCMD4X	TCMD05	TCMD value/4.4 V	Remark
0	1	Amplifier maximum current $\times 2(\mathrm{~A})$	
0	0	Amplifier maximum current (A)	Conventional mode
1	1	Amplifier maximum current/2 (A)	
1	0	Amplifier maximum current/4 (A)	$\times 4$ mode

Example:
Relationships between the output voltage and TCMD value [A] when an $80-\mathrm{A}$ amplifier is used

TCMD4X	TCMD05	TCMD value/4.4 V
0	1	$160[\mathrm{~A}]$
0	0	$80[\mathrm{~A}]$
1	1	$40[\mathrm{~A}]$
1	0	$20[\mathrm{~A}]$

- SPEED signal output range

Table I (h) SPEED signal conversion (improved)

TSA05	Actual feedrate per 5 V Rotary motor	Actual feedrate per 5 V Linear motor	Remark
0	$3750\left[\mathrm{~min}^{-1}\right]$	$15.36 \times \mathrm{P}\left[\mathrm{min}^{-1}\right]$	Conventional mode
1	$7500\left[\mathrm{~min}^{-1}\right]$	$30.72 \times \mathrm{P}\left[\mathrm{min}^{-1}\right]$	

* Letter P in the linear motor column has a different meaning depending on the type of the scale.
- When the FANUC high-resolution serial conversion circuit is used
(Incremental scale) $\rightarrow \mathrm{P}=$ signal pitch $[\mu \mathrm{m}]$
- When a scale that matches the FANUC serial interface is used.

$$
(\text { Absolute scale) } \rightarrow \mathrm{P}=\text { resolution }[\mu \mathrm{m}] \times 512
$$

(9) Acquiring signals using a personal computer

Servo check boards A and B, listed in Table I (a), have a digital output interface. Using the servo adjustment software (SD) enables them to collect servo data such as position and speed through the interface into a personal computer.
(a) Connection between a servo check board and a personal computer (IBM PC/AT compatible)
Connect servo check board connector CNA1 to the printer port of a personal computer. The printer port must support bidirectional communication mode. (Measurement is impossible in ECP mode.)
Windows ${ }^{\circledR}$ does not support the servo adjustment software (SD).
Use it in full-screen mode or MS-DOS mode.
(b) Basic operating instructions
$<1>$ Enter "SD INIT" at a DOS prompt. The software starts with all its states initialized, and its main screen appears (if the name of the software's executable file is "SD.EXE").
The main screen lets you measure and view data.
Entering "CTRL + letter" switches the drawing mode. Select a drawing mode suitable for the data to be observed. (Pressing the ? key displays a list of the available drawing modes.)
Drawing mode examples:
CTRL $+\mathrm{X}: ~ X Y$ mode (XY display)
CTRL + T: XTYT mode (time axis display)

F1: Measure data
F2: Change the number of measurement points
F3: Change the display range
F4: Edit comments

F7: Save data
F8: Read data

F10: End

Fig. I (e) Servo adjustment software basic configuration and key manipulation
$<2>$ To change the type of data to be measured and the unit of conversion for it, press the F9 key on the main screen to display the system setting screen.

Fig. I (f) System setting screen

Data output on CH1 to CH4 of the check board corresponds to channels 0 to 3 on the SD software. To change the setting, press numeric key 0 to 3 . Select a data type (0 : position, 1 : velocity command, 2 : torque command, 3 : rotation speed) from the display at the bottom of the screen, then specify the unit of conversion for the data.
Conversion values (except for position data) can be set up according to descriptions in (5) to (8).

Table I (i) Meaning of measurement data conversion values and example setting

Type	Display at the bottom of the screen	Meaning of conversion values	Example	Input value
POS	1 pulse = X ?	Detection unit (in mm units)	$1 \mu \mathrm{~m}$	0.001
VCMD	$5 \mathrm{~V}=\mathrm{X} \mathrm{min}^{-1}$?	What min^{-1} corresponds to VCMD of 5 V ?	$\begin{aligned} & \hline \mathrm{VCM} 2=1 \\ & \mathrm{VCM} 1=1 \\ & \hline \end{aligned}$	$3750{ }^{\text {(Note) }}$
TCMD	X Ap. Amp.?	Maximum amplifier current (A)	40 A	40
SPEED (number of revolutions)	$5 \mathrm{~V}=\mathrm{X} \mathrm{min}^{-1}$?	What min^{-1} corresponds to SPEED of 5 V ?	-	Constantly 3750 (rotary motor)

NOTE

To observe the VCMD signal as the number of positional deviation pulses, input conversion values listed in Tables I (c) to (e).

To exit the system setting screen, press the F10 key.
$<3>$ To specify measurement intervals, press the F5 key to display the parameter setting screen.
Pressing numeric keys $1,2,5$, and 0 can change the setting. Usually select 1 ms .

Fig. I (g) Parameter setting screen
To return to the main screen after parameter setting, press the F10 key.

INDEX

<A>

ABBREVIATIONS OF THE NC MODELS COVERED BY THIS MANUAL 4
Acceleration Feedback Function 142
ACTIONS FOR ALARMS 67
Actions for Illegal Servo Parameter Setting Alarms 51
ADJUSTING PARAMETERS FOR HIGH-SPEED AND HIGH-PRECISION MACHINING 76
Adjustment 381
Advanced Preview Feed-forward Function 183
ANALOG SERVO INTERFACE SETTING PROCEDURE 457

Backlash Acceleration Function. 193
Before Servo Parameter Initialization 8
Block Diagrams 387
BRAKE CONTROL FUNCTION 251
<C>
Cautions for Controlling One Axis with Two Motors 385
CONTOUR ERROR SUPPRESSION FUNCTION 179
Current Loop 1/2 PI Control Function 166
Cutting/Rapid Feed-forward Switching Function 188
CUTTING/RAPID SWITCHING FUNCTION 134
Cutting/Rapid Unexpected Disturbance Torque Detection Switching Function 277
<D>
Damping Compensation Function 375
DEFINITION OF WARNING, CAUTION, AND NOTE s-1
DETAILS OF HIGH-SPEED AND HIGH-PRECISION ADJUSTMENT 530
DETAILS OF PARAMETERS 400
DETAILS OF THE SERVO PARAMETERS FOR
Series 30i, 31i, 32i, 15i, 16i, 18i, 21i, 0i, 20i,Power Mate i (SERIES 90D0, 90E0, 90B0, 90B1,90B6, 90B5, AND 9096)401
Detection of an Overheat Alarm by Servo Software when a Linear Motor and a Synchronous Built-in ServoMotor are Used.307
Detection of an Overheat Alarm by Servo Software when a Synchronous Built-in Servo Motor are Used 346
Disturbance Elimination Filter Function(Low-Frequency Resonance Elimination Filter)158
Dual Position Feedback Function (Optional function).. 170

<F>
Feed-forward Function 179
Feed-forward Timing Adjustment Function. 190
Fine Acceleration/Deceleration (FAD) Function 239
Full-closed Feedback Sharing Function 380
FUNCTION FOR OBTAINING CURRENT
OFFSETS AT EMERGENCY STOP 279
FUNCTION-SPECIFIC SERVO PARAMETERS 473
<H>
HIGH-SPEED HRV CURRENT CONTROL 122
High-speed HRV Current Control 133
High-Speed Positioning Adjustment Procedure 99
HIGH-SPEED POSITIONING FUNCTION 233
How to Use the Dummy Feedback Functions for aMultiaxis Servo Amplifiers when an Axis is not inUse250
HRV1 CONTROL PARAMETERS FOR α SERIES, β SERIES, AND CONVENTIONAL LINEAR MOTORS 519
HRV2 CONTROL PARAMETERS FOR β M SERIES MOTORS 528
</>
INITIALIZING SERVO PARAMETERS 8
<L>
Lifting Function Against Gravity at Emergency Stop 258
LINEAR MOTOR PARAMETER SETTING 280
Low-speed Integral Function. 237
<M>
MACHINE RESONANCE ELIMINATION
FUNCTION. 150
Machine Speed Feedback Function 176
MODEL-SPECIFIC INFORMATION 482
Motor Feedback Sharing Function 379
MOTOR ID NUMBERS OF α SERIES MOTORS 514
MOTOR ID NUMBERS OF β SERIES MOTORS 516
MOTOR ID NUMBERS OF CONVENTIONAL LINEAR MOTORS 517
<N>
N Pulses Suppression Function 148
<O>
Observer Function 162
Overall Use of the Quick Stop Functions 265
Overshoot. 112
OVERSHOOT COMPENSATION FUNCTION. 227
OVERVIEW 1
<P>
Parameter Initialization Flow 9
PARAMETER LIST 427
PARAMETERS FOR α AND OTHER SERIES 513
PARAMETERS FOR HRV1 CONTROL 428
PARAMETERS FOR HRV1 CONTROL (FOR Series 0i-A) 451
PARAMETERS FOR HRV2 CONTROL 438
PARAMETERS FOR Series $15 i$ 465
PARAMETERS FOR Series $16 i, 18 i$, AND $21 i$ 467
PARAMETERS FOR Series $30 i, 31 i$, AND $32 i$ 471
PARAMETERS FOR SERVO HRV2 CONTROL 518
PARAMETERS FOR THE Power Mate i 469
PARAMETERS RELATED TO HIGH-SPEED AND HIGH PRECISION OPERATIONS. 481
PARAMETERS SET WITH VALUES IN DETECTION UNITS 464
Position Gain Switching Function. 233
Preload Function 372
Procedure for Setting the Initial Parameters of LinearMotors280
Procedure for Setting the Initial Parameters of Synchronous Built-in Servo Motors. 320
<Q
QUICK STOP FUNCTION 255
Quick Stop Function at OVL and OVC Alarm 264
Quick Stop Function for Hardware Disconnection of Separate Detector 262
Quick Stop Type 1 at Emergency Stop 255
Quick Stop Type 2 at Emergency Stop 257
$<R$
Rapid Traverse Positioning Adjustment Procedure. 102
RELATED MANUALS 5
Resonance Elimination Filter Function
(High-Frequency Resonance Elimination Filter) 152
RISC Feed-forward Function 186
<S>
SERIAL FEEDBACK DUMMY FUNCTIONS 248
Serial Feedback Dummy Functions 248
Series 15i-MB 482
Series $16 i / 18 i / 21 i / 0 i / 0 i$ Mate-MB, $0 i / 0 i$ Mate-MC/ 20i-FB 485
Series 30i/31i/32i-A, 31i-A5 495
Servo Alarm 2-axis Simultaneous Monitor Function. 377
SERVO CHECK BOARD OPERATING
PROCEDURE 555
SERVO FUNCTION DETAILS 113
SERVO FUNCTIONS 510
SERVO GUIDE 388
SERVO HRV CONTROL 114
Servo HRV Control Adjustment Procedure 76
Servo HRV2 Control 117
Servo HRV3 Control 122
Servo HRV4 Control 128
Servo Parameter Initialization Procedure 10
SERVO PARAMETERS RELATED TO HIGH-SPEED AND HIGH PRECISION OPERATIONS 498
SERVO SOFTWARE AND SERVO CARDS SUPPORTED BY EACH NC MODEL 2
SERVO TUNING SCREEN 64
SERVO TUNING TOOL SERVO GUIDE 388
SETTING aiS/aiF/biS SERIES SERVO PARAMETERS 7
Setting Parameters when an aiCZ Sensor is Used. 42
Setting Parameters when the PWM Distribution Module is Used. 48
Setting Servo Parameters when a Separate Detector for the Serial Interface is Used. 29
Setting Servo Parameters when an Analog Input Separate Interface Unit is Used 40
Smoothing Compensation for Linear Motor. 310
Smoothing Compensation for Synchronous Built-in Servo Motor 346
Static Friction Compensation Function 214
Stick Slip 111
SYNCHRONOUS AXES AUTOMATIC COMPENSATION. 362
SYNCHRONOUS BUILT-IN SERVO MOTOR
PARAMETER SETTING 320
<T>
TANDEM DISTURBANCE ELIMINATION
CONTROL (POSITION TANDEM)
(Optional function) 354
Torque Command Filter (Middle-Frequency
Resonance Elimination Filter)150
TORQUE CONTROL FUNCTION 351
TORQUE TANDEM CONTROL FUNCTION
(Optional function) 366
Torsion Preview Control Function 217
Two-stage Backlash Acceleration Function 199
<U>
Unexpected Disturbance Torque Detection Function 266
UNEXPECTED DISTURBANCE TORQUEDETECTION FUNCTION (Optional function)266
<V>
Variable Proportional Gain Function in the Stop State 144
Velocity Feedback Average Function 377
VELOCITY LIMIT VALUES IN SERVO SOFTWARE 505
Velocity Loop High Cycle Management Function 140
Vibration Damping Control Function 168
Vibration during Travel 109
Vibration in the Stop State 107
VIBRATION SUPPRESSION IN THE STOP
STATE 140

$<\alpha>$

 \(\alpha i \mathrm{~S} / \alpha i \mathrm{~F} / \beta i \mathrm{~S}\) SERIES PARAMETER ADJUSTMENT .. 63
 Revision Record

05	May., 2005	- Applied to Series $30 i / 31 i / 32 i$ - Addition of HRV4 control - Total revision of chapter of Parameter Adjustment - Addition of functions added after issue of Edition 04 - Correction of errors			
04	Oct., 2003	- Addition of the SERVO MOTOR β is series - Addition of functions added after issue of Edition 03 - Correction of errors			
03	Mar., 2003	- Addition of the SERVO MOTOR ais series - Addition of item for SERVO GUIDE(Ver 2.00) - Addition of functions added after issue of Edition 02 - Correction of errors			
02	Sep., 2002	- Addition of the parameter tables for $\alpha \mathrm{HV} i$ - Addition of item for SERVO GUIDE - Addition of functions added after issue of Edition 01 - Correction of errors			
01	May, 2001	-	05	Feb., 2006	- Model name change - Addition of the DiS series motor - Addition of functions added after issue of Edition 05 - Correction of errors
Edition	Date	Contents	Edition	Date	Contents

ADDITIONAL INFORMATION

1. Type of applied documents

Name	FANUC AC SERVO MOTOR αi S/ αi F/ßiS series Parameter manual
Spec. No./Ver.	B-65270EN/06

2. Summary of Change

Group	Name/ Outline	New, Add Correct, Del	Applicable Date
Basic Function	-Smoothing compensation for synchronous built-in servo motor Tandem speed difference alarm Machining point control Quick stop function for separate serial detector alarms	ADD ADD	2006.01
		ADD	2006.01
2006.01			
(-			
Optional Function			
Unit			
Maintenance Parts			
Notice			
Correction			
Another			

				$\begin{aligned} & \text { NTTLE } \\ & \text { Notice of the Update of Digital Servo } \\ & \text { Software for Series 30i/31i/32i } \\ & \text { (90D0/12 \& } 90 \mathrm{E} 0 / 12 \text {) } \end{aligned}$		
01	2006.02.17	Ma	Newly designed	DRAW. No. \quad B-65270EN/06-001		cust.
Ed.	Date	Design.	Description	FANUC LTD	Eet	1/12

1. Update Edition

ROM series	New edition	Available CNC
90 D 0	12	FS30i $/ 31 i / 32 i$ (For HRV4 control)
90 E 0	12	FS30i/31i/32i (For HRV2 and HRV3 control)

2. Contents of change

- Smoothing compensation function for synchronous built-in servo motor is added.
- Tandem speed difference alarm function is added.
- Machining point control function is newly added.
- Quick stop function for separate serial detector alarms is added.

3. Attachments

Attachment 1. Smoothing Compensation for Synchronous Built-In Servo Motor
Attachment 2. Tandem Speed Difference Alarm Function
Attachment 3. Machining Point Control Function
Attachment 4. Quick Stop Function for Separate Serial Detector Alarms

				${ }^{\text {TTLE }}$ Notice of the Update of Digital Servo Software for Series 30i/31i/32i (90D0/12 \& 90E0/12)		
01	2006.02.17	Ma	Newly designed	DRAW. .o. \quad B-65270EN/06-001		cust.
Ed.	Date	Design.	Description	FANUC LTD	SHEET	2/12

Attachment 1. Smoothing Compensation for Synchronous Built-in Servo Motor

(1) Overview

Smoothing compensation for synchronous built-in servo motor is a function used to improve the feed smoothness of a synchronous built-in servo motor by applying, to the current command, a sine wave compensation torque 1.5 times and 3 times per pole pair. By setting a compensation gain and phase with parameters for each component, a compensation torque matching each motor can be obtained. A value to be set in a parameter for compensation is automatically calculated using SERVO GUIDE.

Synchronous built-in servo motor

NOTE

- This function can be used only when an encoder with a minimum resolution of 2^{23} pulses/rev or $8,000,000$ pulses/rev or less (for example, RCN223 manufactured by HEIDENHAIN) is used.
- This function can only be used for synchronous built-in servo motor with encoder whose minimum resolution is lower than or equal to 2^{23} pulse/rev (EX. HEIDENHAIN RCN223). This function can only be used for synchronous built-in servo motor with encoder whose minimum resolution is lower than or equal to 2^{23} pulse/rev (EX. HEIDENHAIN RCN223). Though HEIDENHAIN RCN727 has 16 times higher resolution than that of RCN223, servo software treats it as same as RCN223 in the data point of view. (Of course, even if the servo software treats the data as above, you can use 2^{27} pulse/rev as the minimum resolution.) Therefore, HEIDENHAIN RCN727 is possible for using this function.

(2) Series and editions of applicable servo software

(Series 30i, 31i, 32i,)
Series 90D0/L(12) and subsequent editions
Series 90E0/L(12) and subsequent editions

				Notice of the Update of Digital Servo Software for Series 30i/31i/32i (90D0/12 \& 90E0/12)		
01	2006.02.17	Ma	Newly designed	B-65270EN/06-001		cust.
Ed.	Date	Design.	Description	FANUC LTD	SHEET	3/12

\#7		\#6	\#5	\#4	\#3	\#2	\#1	\#0
$2300(F S 30 i)$						DD		

DD(\#2) Synchronous built-in servo motor is:
0: Disabled.
1: Enabled. (Smoothing compensation for synchronous built-in servo motor is also enabled.)

Smoothing compensation performed 1.5 times per pole pair
Correction gain (high-order 8 bits) \quad Correction phase (low-order 8 bits)

Correction gain (high-order 8 bits) Correction phase (low-order 8 bits)
Setting the correction gain of the following parameters with a nonzero value can switch between the negative direction smoothing compensation and the positive direction smoothing compensation. In this case, the smoothing compensation parameter explained above applies only to feeding in the positive direction.

Smoothing compensation performed 1.5 times per pole pair (negative direction)
Correction gain (high-order 8 bits) Correction phase (low-order 8 bits)

Smoothing compensation performed three times per pole pair (negative direction)
Correction gain (high-order 8 bits) Correction phase (low-order 8 bits)

An optimal value varies from one motor to another (not from one motor model to another). So, compensation parameters need to be determined for each assembled motor. A torque command variation generated when the motor is fed at low speed is dependent on the position. The application of smoothing compensation cancels this position-dependent characteristic, allowing the motor to move smoothly.

The measuring instruments that can be used to determine these parameters include "SERVO GUIDE" (Ver. 3.20 or later).
By using SERVO GUIDE (Ver. 3.20 or later), these parameters can be determined easily. Follow the procedure below to measure the activating phase and torque command, which are required to determine the compensation parameters.

Measurement procedure

$<1>$ Set channels as follows:
Channel 1: Counter for smoothing compensation for synchronous built-in servo motor

				Notice of the Update of Digital Servo Software for Series $30 i / 31 i / 32 i$ (90D0/12 \& 90E0/12)		
01	2006.02.17	Ma	Newly designed	B-65270EN/06-001		cust.
Ed.	Date	Design.	Description	FANUC LTD	SHEET	4/12

Select the target axis for measurement, and set "ROTDD" as the data

Channel 2: Torque command
Select the target axis for measurement, and set "TCMD" as the data type.
As the conversion coefficient, set the maximum current of the amplifier
used for the target axis.

$<2>$ With this setting, make bidirectional movements by about $\pm 90 \mathrm{deg}$ at about F (14400/number of poles) deg/min for data measurement. At the time of data measurement, ensure that all smoothing compensation values are set to 0 . Smoothing compensation for linear motors may be used. Check this point as well.

Parameters for synchronous built-in servo motor:

$$
\text { No.2377, No.2378, No.2380, No. } 2381
$$

Parameters for linear motor:

$$
\text { No.2130, No.2131, No.2132, No.2369, No.2370, No. } 2371
$$

When making measurements, lower the velocity gain to such an extent that hunting does not occur.
$<3>$ From the "Tools" menu, select "Linear motor compensation calculation". (The shortcut is [Ctrl] + [L].)
$<4>$ Pressing the [ADD] button on the displayed dialog box analyzes waveform data and registers compensation parameter candidates. The " $2 /$ span" item and "4/span" item correspond to smoothing compensation performed 1.5 times per pole and smoothing compensation performed 3 times per pole, respectively. " $6 / \mathrm{span}$ " is not used for smoothing compensation for synchronous built-in servo motor.

				Notice of the Update of Digital Servo Software for Series 30i/31i/32i (90D0/12 \& 90E0/12)		
01	2006.02.17	Ma	Newly designed	DRAW. No. $\quad \mathrm{B}-65270 \mathrm{E}$	001	Cust.
Ed.	Date	Design.	Description	FANUC LTD	SHEET	5/12

$<5>$ The compensation parameters slightly vary depending on the
measurement situation. So, repeat a data measurement and a press of the [Add] button several times in a similar manner while keeping the dialog box open. (Up to five candidates can be registered.)
If the displayed values include an extremely different value, uncheck the corresponding check box on the leftmost side of the list so that the value is not taken into account in the final compensation calculation.
$<6>$ Finally, press the [Calc] button for each of the forward and backward directions. Then, smoothing compensation parameters are displayed.
$<7>$ By pressing the [Set param] button, the smoothing compensation parameters are set in the CNC.
$<8>$ Measure TCMD again to confirm the effect of smoothing compensation.

Before smoothing compensation adjustment

After smoothing compensation adjustment
(*) For details on the use of SERVO GUIDE, refer to the online help of SERVO GUIDE.

				TITLE Notice of the Update of Digital Servo Software for Series 30i/31i/32i (90D0/12 \& 90E0/12)		
01	2006.02.17	Ma	Newly designed	DRaw. No. \quad - 65270 E	001	cust.
Ed.	Date	Design.	Description	FANUC LTD	SHEET	6/12

Attachment 2. Tandem Speed Difference Alarm Function

(1) Overview

Tandem control is used for rigidly connected machine, which is driven by 2 servo motors. In torque tandem control, the speed of sub-axis is not controlled. In case that main axis and sub-axis's mechanical connection comes off, force on main axis may lead sub-axis to higher rotation speed than it really needs. In order to prevent this risk, "TANDEM SPEED DIFFERENCE ALARM" watchs the speed difference between main axis and sub-axis. When the speed difference becomes higher than maximum permitted speed difference set as servo parameter, " 641 Speed difference alarm" will occur.
※ In the case that NC software does not support "Tandem speed difference alarm", "448 UNMATCHED FEEDBACK ALARM" will occur.
(2) Series and editions of applicable servo software
(Series 30i,31i,32i)
Series 90D0/L(12) and subsequent editions
Series 90E0/L(12) and subsequent editions

(3) Setting parameters

(new parameters)

- All the below new parameters should be set only in main axis.

VLDALM(\#4) Tandem speed difference alarm function is
0: Enabled (The function is enabled in default)
1: Disabled

2357 (FS30i)
[Valid data range]
[Unit of data]

\quad Maximum permitted tandem speed difference
$0 \sim 2000$
$\min ^{-1} \quad(10 \mathrm{~mm} / \mathrm{min}$ for linear motor $)$

If No. $2357=0$, maximum permitted tandem speed difference will be 1000 (default value).

If No. $2357<0$, the function will be disabled.
(Related parameters)

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
1817 (FS30i)		TANDEM						

TANDEM(\#6) Tandem control (optional function)
0 : Disabled
1: Enabled
Specify this parameter for both main axis and sub-axis.

				${ }^{\text {TTLE }}$ Notice of the Update of Digital Servo Software for Series 30i/31i/32i (90D0/12 \& 90E0/12)		
01	2006.02.17	Ma	Newly designed	draw. No. B-65270EN/06-001		cust.
Ed.	Date	Design.	Description	FANUC LTD	stes	7/12

Attachment 3. Machining Point Control Function

(1) Overview

Machining point control function uses acceleration feedback information from acceleration sensor unit installed on machine point to suppress machine point's vibration.
(2) Series and editions of applicable servo software
(Series 30i,31i,32i)
Series 90D0/L(12) and subsequent editions
Series 90E0/L(12) and subsequent editions

(3) Setting parameters

$<1>$ set the direction of acceleration feedback.

ACC1ON(\#7)

use 1st direction acceleration feedback
0 : No
1: Yes
ACC2ON(\#6) use 2nd direction acceleration feedback
0 : No
1: Yes
ACC3ON(\#5) use 3rd direction acceleration feedback
0 : No
1: Yes

※ When machine accelerates toward the arrows' direction, positive acceleration will be detected. The sign of acceleration can be reversed by setting ACCNEG(No.2277\#4) as mentioned in <3> later.

NOTE

- Acceleration sensor is connected to NC through separate interface unit. Normal FSSB setting for separate interface unit is needed.
- One axis can use only one direction of acceleration feedback. Please do not set 2 directions for one axis.

				titLe Notice of the Update of Digital Servo Software for Series 30i/31i/32i (90D0/12 \& 90E0/12)		
01	2006.02.17	Ma	Newly designed	B-65270EN/06-001		CUST.
Ed.	Date	Design.	Description	FANUC LTD	SHEET	8/12

$<2>$ set position feedback detection unit.

2263 (FS30i)	Position feedback detection unit					
[Unit of date]	1 nm					
Unit of data	10um	1um	0.1 um	0.01um	0.001um	0.05um
Parameter setting	10000	1000	100	10	1	50

$<3>$ set sign of acceleration feedback.

| | \#7 | \#6 | \#5 | \#4 | \#3 | \#2 | \#1 | \#0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2277 (FS30i) | | | | | | | | |
| | | | ACCNEG | | | | | |

ACCNEG(\#4) Reverse sign of acceleration feedback
0 : No
1: Yes
Set above bit to let 2-order derivative of position feedback (measure POSFB by SERVO GUIDE and show the measured data with Diff2(AT) operation) and acceleration feedback from acceleration sensor have same sign.
For the method of measuring acceleration feedback, please refer supplementation at the end of this attachment.

※ Acceleration feedback can be measured using SERVO GUIDE (Ver3.20 or later). Please set "ACC" as data type and maximum detectable acceleration of acceleration sensor as Conv. Coef. (ex. if maximum detectable acceleration of acceleration sensor is 0.1 G , set $0.1 \times 9.8=0.98$ as Conv. Coef.)

< $4>$ Adjust acceleration offset.

				${ }^{\text {TTLE }}$ Notice of the Update of Digital Servo Software for Series 30i/31i/32i (90D0/12 \& 90E0/12)		
01	2006.02.17	Ma	Newly designed	${ }^{\text {draw. No. }}$ B-65270E	001	cust.
Ed.	Date	Design.	Description	FANUC LTD	SHEET	9/12

Acceleration offset

Set acceleration offset value for acceleration information from acceleration sensor.

- For 90E0 series

No. $2115=0$
No. $2151=4356$ (No.1023 $=4 \mathrm{n}+1$)

$$
=4484(\text { No. } 1023=4 n+2)
$$

$$
=10500(\text { No. } 1023=4 \mathrm{n}+3)
$$

$$
=10628(\text { No. } 1023=4 \mathrm{n}+4)
$$

$$
(\mathrm{n}=0,1,2, \ldots)
$$

Set above values to No. 2115 and No. 2151 considering the setting of No.1023. Then set the value No. 353 in Diagnosis screen under emergence stop to No.2264.

- For 90D0 series

No. $2115=0$
No. $2151=4356$ (odd axis), 4484(even axis)
Set above values to No. 2115 and No. 2151 considering the setting of No.1023. Then set the value No. 353 in Diagnosis screen under emergence stop to No. 2264 .
$<5>$ set MPC (Machining Point Control) function bit

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
2288 (FS30i)	MPCEF							

MPCEF(\#7)

Machining point control is
0 : disabled
1: enabled
$<6>$ set MPC timing adjustment parameter

[Valid data range]
[Recommended data range]
\square
$0 \sim 32767$
$3000 \sim 4000$ (HRV2, HRV3), 3500~4100(HRV4)
Firstly please set No. 2268 as " 0 " to use default value for MPC timing adjustment parameter. The default value for MPC timing adjustment parameter is shown in below Table. 1.
Table1. Default value for MPC timing adjustment parameter

	HRV2\&HRV3	HRV4
Default Value	3273	3854

< 7 > Adjust MPC gain 1

Adjust MPC gain 1 to decrease acceleration of the vibration occurred after Acc/Dec, as shown in the circled area of below figures. For safety, please adjust MPCK1 from 200.

2266 (FS30i)

[Valid data range] \square

				${ }^{\text {TrTE }}$ Notice of the Update of Digital Servo Software for Series 30i/31i/32i (90D0/12 \& 90E0/12)		
01	2006.02.17	Ma	Newly designed	draw. No. B-65270EN/06-001		cust.
Ed.	Date	Design.	Description	FANUC LTD	SHEET	10/12

MPC is enabled (After adjustment of MPCK1)

$<8>$ Adjust MPC timing adjustment parameter

Adjust MPC timing parameter No. 2268 to decrease acceleration of the vibration during Acc/Dec. For HRV2 control and HRV3 control, please adjust No. 2268 between 3000~4000. For HRV4 control, please adjust No. 2268 between $3500 \sim 4100$.

For low frequency vibrations around 20 Hz , smaller No. 2268 value than its default value is usually effective for vibration suppression. After adjusting No.2268, MPC gain 1 should be re-adjusted. In order to have an optimum vibration suppression performance, please adjust MPC timing parameter and MPC gain 1 continuously until a satisfied result is achieved.

MPC is enabled (After adjustment of MPCK1 and MPCTIM)

※ In some cases, adjust MPC gain 2 can give a good vibration suppression for low frequency vibration. Before adjusting MPC gain 2, please set MPC timing adjustment parameter No. 2268 to " 0 ". Then adjusting MPC gain 1 and MPC gain 2 until a satisfied result is achieved. For safety, please adjust MPCK2 from 100.

2265 (FS30i)

MPC gain2 (MPCK2)
[Valid data range] $0 \sim 32767$

				${ }^{\text {TTLE }}$ Notice of the Update of Digital Servo Software for Series 30i/31i/32i (90D0/12 \& 90E0/12)		
01	2006.02.17	Ma	Newly designed	DRaw. No. \quad B-65270EN/06-001		cust.
Ed.	Date	Design.	Description	FANUC LTD	SHET	11/12

Attachment 4. Quick Stop Function for Separate Serial Detector Alarms

(1) Overview

Quick stop function for separate serial detector alarms is newly added.

Alarm Number	Message
SV0380	BROKEN LED (EXT)
SV0381	ABNORMAL PHASE (EXT)
SV0382	COUNT MISS (EXT)
SV0383	PULSE MISS (EXT)
SV0384	SOFT PHASE ALARM (EXT)
SV0385	SERIAL DATA ERROR (EXT)
SV0386	DATA TRANS. ERROR (EXT)
SV0387	ABNORMAL ENCODER (EXT)

(2) Series and editions of applicable servo software

(Series $30 i, 31 i, 32 i$)
Series 90D0/L(12) and subsequent editions
Series 90E0/L(12) and subsequent editions
(3) Setting parameters
(new parameters)

No. 2282 (FS30i)
FSAQS(\#5)

Specifies whether the quick stop function for separate serial detector alarms is applied or not.
0 : not apply
1: apply
(Related parameters)

No.2205(FS30i)

HD2O(\#3)
Specifies whether the quick stop function for hardware disconnection of separate detector axes subjected to synchronous control is applied or not.
0: not apply
1: apply
※ This parameter No. $2205 \# 3$ can be used both for quick stop function for hardware disconnection of separate detector (No.2205\#4=1) and quick stop function for separate serial detector alarms (No.2282\#5=1).

				${ }^{\text {TTrLE }}$ Notice of the Update of Digital Servo Software for Series 30i/31i/32i (90D0/12 \& 90E0/12)		
01	2006.02.17	Ma	Newly designed	draw. No. B-65270EN/06-001		cust.
Ed.	Date	Design.	Description	FANUC LTD	SHEET	12/12

1. Type of applied documents

Name	FANUC AC SERVO MOTOR $\alpha i / \beta i$ series, LINEAR MOTOR LiS series, SYNCHRONOUS BUILT-IN SERVO MOTOR DiS series Parameter manual
Spec. No./Ver.	B-65270EN/06

2. Summary of Change

Group	Name / Outline	New, Add Correct, De	Applicable Date
Basic Function	1. Machining point control 2. PDM current monitoring function and PDM current unbalance alarm 3. RCN727 for synchronous built-in servo motor	$\begin{aligned} & \hline \mathrm{ADD} \\ & \mathrm{ADD} \\ & \mathrm{ADD} \end{aligned}$	$\begin{aligned} & \hline 06.06 \\ & 06.06 \\ & 06.06 \end{aligned}$
Optional Function			
Unit			
Maintenance Parts			
Notice			
Correction			
Another			

				TTLL Notice of the update of Digital Servo Software for Series $16 i$ etc. ($90 \mathrm{~B} 1 / \mathrm{F}$)		
01	2006.6.20	J.Tezuka	Newly designed	Draw. No. B-65270E	-002	cust.
Ed.	Date	Design.	Description	FANUC LTD	SHEET	1/12

1. Update Edition

ROM series	New edition	Available CNC
90 B 1	06	$\mathrm{FS} 15 i, 16 i, 18 i, 21 i, 0 i-\mathrm{B}, 0 i$ Mate $-\mathrm{B}, \mathrm{PM} i-\mathrm{D}, \mathrm{PM} i-\mathrm{H}$ (with servo card equipped with 320 C 5410)

2. Contents of change

- Machining point control, which suppresses a vibration at the machine point by acceleration sensor feedback, has been added.
- In case that one servo motor is driven by two or more servo amplifiers, it requires PWM distribution module (PDM), which distributes PWM command to each amplifier.
Concerning PDM, PDM current monitoring function and PDM current unbalance alarm has been added.
- Detector of HEIDENHAIN, RCN727 has been newly applied to the synchronous built-in servo motor.

3. Attached

Attached 1 Machining point control
Attached 2 PDM current monitoring function and PDM current unbalance alarm
Attached 3 RCN727 for synchronous built-in servo motor

				${ }^{\text {TrLE }}$ Notice of the update of Digital Servo Software for Series $16 i$ etc. ($90 \mathrm{~B} 1 / \mathrm{F}$)		
01	2006.6.20	J.Tezuka	Newly designed	Draw. No. B-65270E	-002	cust.
Ed.	Date	Design.	Description	FANUC LTD	SHEET	2/12

Attached 1. Machining point control

(1) Overview

Machining point control(MPC) function uses acceleration feedback information from acceleration sensor unit installed on machine point to suppress machine point's vibration.
(2) Series and editions of applicable servo software
(Series $30 i, 31 i, 32 i$)
Series 90D0/L(12) and subsequent editions
Series 90E0/L(12) and subsequent editions
(Series 15i, 16i, 18i, 21i, $0 i-\mathrm{B}, 0 i$ Mate-B, PM $i-\mathrm{D}, \mathrm{PM} i-\mathrm{H}$)
Series $90 B 1 / F(06)$ and subsequent editions
(3) Setting parameters
$<1>$ set the direction of acceleration feedback.

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
2690 (FS15i)	ACC1ON	ACC2ON	ACC3ON					
2277 (FS30i, 16i)								
ACC1ON(\#7)	use 1st direction acceleration feedback							
	0 : No							
	1: Yes							
ACC2ON(\#6)	use 2nd direction acceleration feedback							
	0 : No							
	1: Yes							
ACC3ON(\#5)	use 3rd direction acceleration feedback							
	0 : No							
	1: Yes							
		3 rd direc	ction (+)					2nd direction (+)

※ When machine accelerates toward the arrows' direction, positive acceleration will be detected. The sign of acceleration can be reversed by setting ACCNEG(No.2277\#4) as mentioned in <3> later.

NOTE

- Acceleration sensor is connected to NC through separate interface unit. Normal FSSB setting for separate interface unit is needed.
- One axis can use only one direction of acceleration feedback. Please do not set 2 directions for one axis.

				${ }^{\text {TTLE }}$ Notice of the update of Digital Servo Software for Series $16 i$ etc. ($90 \mathrm{~B} 1 / \mathrm{F}$)		
01	2006.6.20	J.Tezuka	Newly designed	Draw. No. B-65270E	002	cust.
Ed.	Date	Design.	Description	FANUC LTD	SHEET	3/12

$<2>$ set position feedback detection unit.

2676 (FS15i)	Position feedback detection unit					
2263 (FS30i, 16i)	1 nm					
[Unit of date]						
Unit of data	10um	1 um	0.1 um	0.05um	0.01um	0.001um
Parameter setting	10000	1000	100	50	10	1

$<3>$ set sign of acceleration feedback.

2690 (FS15i)

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
			ACCNEG				

2277 (FS30i, 16i)
ACCNEG(\#4) Reverse sign of acceleration feedback
0 : No
1: Yes
Set above bit to let 2 -order derivative of position feedback (measure "POSF" by SERVO GUIDE and show the measured data with Diff2(AT) operation) and acceleration feedback from acceleration sensor have same sign.

Unit is $\mathrm{m} / \mathrm{s}^{2}$
※ Acceleration feedback can be measured by using SERVO GUIDE (Ver3.20 or later). Please set "ACC" as data type and maximum detectable acceleration of acceleration sensor as Conv. Coef. (ex. if maximum detectable acceleration of acceleration sensor is 0.1 G , set $0.1 \times 9.8=0.98$ as Conv. Coef.)

				TTLLE Notice of the update of Digital Servo Software for Series $16 i$ etc. (90B1/F)		
01	2006.6.20	J.Tezuka	Newly designed	Draw. No. \quad B-65270	002	cust.
Ed.	Date	Design.	Description	FANUC LTD	SHEET	4/12

< $4>$ Adjust acceleration offset.

2677 (FS15i)
$2264(F S 30 i, 16 i)$

\square

Set acceleration offset value for acceleration information from acceleration sensor.

- In case of 90E0 series

Considering the setting of No.1023, please set No. 2115 and No. 2151 as follows.

$$
\begin{aligned}
\text { No. } 2115 & =0 \\
\text { No. } 2151 & =4356(\text { No. } 1023=4 n+1) \\
& =4484(\text { No. } 1023=4 n+2) \\
& =10500(\text { No. } 1023=4 n+3) \\
& =10628(\text { No. } 1023=4 n+4) \quad(n=0,1,2, \ldots)
\end{aligned}
$$

Then set the value displayed in No. 353 on Diagnosis screen under emergency stop to No. 2264 .

- In case of 90D0 series

Considering the setting of No.1023, please set No. 2115 and No. 2151 as follows.

$$
\begin{aligned}
\text { No. } 2115 & =0 \\
\text { No. } 2151 & =4356(\text { No. } 1023 \text { is odd number }) \\
& =4484 \text { (No. } 1023 \text { is even number })
\end{aligned}
$$

Then set the value displayed in No. 353 on Diagnosis screen under emergency stop to No.2264.

- In case of 90B1 series

Considering the setting of No.1023, please set No. 2115 and No. 2151 as follows.

$$
\begin{aligned}
\text { No. } 2115 & =0 \\
\text { No. } 2151 & =4357 \text { (No. } 1023 \text { is odd number) } \\
& =4485 \text { (No. } 1023 \text { is even number) }
\end{aligned}
$$

Then set the value displayed in No. 353 on Diagnosis screen under emergency stop to No. 2264 .
$<5>$ set MPC (Machining Point Control) function bit

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
2701 (FS15i)	MPCEF							

MPCEF(\#7)
Machining point control is
0: disabled
1: enabled

				${ }^{\text {TTLE }}$ Notice of the update of Digital Servo Software for Series $16 i$ etc. ($90 \mathrm{~B} 1 / \mathrm{F}$)		
01	2006.6.20	J.Tezuka	Newly designed	Draw. No. B-65270E		cust.
Ed.	Date	Design.	Description	FANUC LTD	SHEET	5/12

$<6>$ set MPC timing adjustment parameter

```
    2681 (FS15i)
    2268 (FS30i, 16i)
\(\square\)
Valid data range]
\(0 \sim 32767\)
[Recommended data range]
\(3000 ~ 4000\) (HRV2, HRV3), 3500~4100(HRV4)
Firstly please set No. 2268 as " 0 " to use default value for MPC timing adjustment parameter. The default value for MPC timing adjustment parameter is shown in below Table. 1.
```

Table1. Default value for MPC timing adjustment parameter

	HRV2\&HRV3	HRV4
Default Value	3273	3854

Note) As for tuning method of this parameter, please refer to <8> later.

$<7>$ Adjust MPC gain 1

Adjust MPC gain 1 to decrease acceleration of the vibration occurred after Acc/Dec, as shown in the circled area of below figures. For safety, please adjust MPCK1 from 200.

2679 (FS15i)
2266 (FS30i, 16i)

\square MPC gain 1 (MPCK1)
[Valid data range] $0 \sim 32767$

				${ }^{\text {TrTLE }}$ Notice of the update of Digital Servo Software for Series $16 i$ etc. ($90 \mathrm{~B} 1 / \mathrm{F}$)		
01	2006.6.20	J.Tezuka	Newly designed	Draw. No. ${ }^{\text {d }}$-65270E	002	cust.
Ed.	Date	Design.	Description	FANUC LTD	Sheet	6/12

$<8>$ Adjust MPC timing adjustment parameter

Adjust MPC timing parameter No. 2268 to decrease acceleration of the vibration during Acc/Dec. For HRV2 control and HRV3 control, please adjust No. 2268 between 3000~4000. For HRV4 control, please adjust No. 2268 between $3500 \sim 4100$.

For low frequency vibrations around 20 Hz , smaller No. 2268 value than its default value is usually effective for vibration suppression. After adjusting No.2268, MPC gain 1 should be re-adjusted. In order to have an optimum suppression performance against vibration, please adjust MPC timing parameter and MPC gain 1 step by step until a satisfied result is achieved.

※ In some cases, adjust MPC gain 2 can give a good suppression against vibration for low frequency vibration. Before adjusting MPC gain 2, please set MPC timing adjustment parameter No. 2268 to " 0 ". Then adjusting MPC gain 1 and MPC gain 2 until a satisfied result is achieved. For safety, please adjust MPCK2 from 100.

2678 (FS15i)
2265 (FS30i, 16i)

\square
2265 (FS30i, 16i)
MPC gain2 (MPCK2)
[Valid data range] $0 \sim 32767$

				${ }^{\text {TTLE }}$ Notice of the update of Digital Servo Software for Series $16 i$ etc. ($90 \mathrm{~B} 1 / \mathrm{F}$)		
01	2006.6.20	J.Tezuka	Newly designed	B-65270EN/06-002		cust.
Ed.	Date	Design.	Description	FANUC LTD	SHEET	7/12

Attached 2. PDM current monitoring function and PDM current unbalance alarm

(1) Overview

In a large servo system, in cases that it drives using PDM ($\underline{\mathrm{P} W M} \underline{\text { Distribution }} \underline{\text { Module }}$), two or more servo amplifiers are controlled as a single control axis by CNC.
When a fault occurs in such the system, it is difficult to specify in which part a problem is, because there are many numbers of the power cables.
Then, the following functions are prepared in order to make troubleshooting easier.

- PDM current monitoring function
- PDM current unbalance alarm

For details of troubleshooting method, please refer to the following technical report.

TROUBLE SHOOTING METHOD FOR THE LARGE SERVO WITH PDM (A-72562EN-034)

(2) The system configuration of the large servo using PDM

The following figures are composition figure in the case of driving one set of a large servo motor by four sets of servo amplifier using PDM.

PWM DISTRIBUTION MODULE

(PDM)
Handled as a single amplifier by CNC

CNC * option required	DSA, 16i, 18i, 21 i, PM i-D, PM i-H
Servo Soft	90B2(DSA), 90B1 (others)
Control	HRV2
FSSB slave	4 axes / FSSB
Motors	Motor with multiple windings, Tandem Linear motors with single scale

CNC recognizes the axis used PDM as a single axis. The single command (PWM command) from CNC is distributed to four servo amplifiers by PDM. The power cables of each servo amplifier are connected to each winding (electrically independent winding) of a large servo motor, and the current according to a PWM command flows.
Moreover, the current feedback datum is made of the current values detected by each amplifier, and is transmitted to CNC as one current feedback value by averaging.

				${ }^{\text {TTLE }}$ Notice of the update of Digital Servo Software for Series $16 i$ etc. ($90 \mathrm{~B} 1 / \mathrm{F}$)		
01	2006.6.20	J.Tezuka	Newly designed	Draw. No. B-65270E	002	cust.
Ed.	Date	Design.	Description	FANUC LTD	SHEET	8/12

(2) PDM current monitoring function

The real current of each amplifier connected to PDM can be measured. The data updating cycle is 1 ms and resolution is 0.24% of maximum current.

- Servo Soft Series / Editions

90B1 / F or later

- The number of editions of PDM

Total editions number is "C" or later

- The number of editions of SERVO GUIDE

Ver 3.20 or later

SETTING METHOD for SERVO GUIDE

Select IRn which you want to measure, in the "kind" combo box. (IRn means R phase current of Slave n, and ISn means S phase current of Slave n.)

Example) In case that R phase current of Slave 1 (IR1) is measured.

Note) This data is renewed every 1 msec .

				${ }^{\text {TTLE }}$ Notice of the update of Digital Servo Software for Series $16 i$ etc. (90B1/F)		
01	2006.6.20	J.Tezuka	Newly designed	B-65270EN/06-002		cust.
Ed.	Date	Design.	Description	FANUC LTD	SHET	9/12

R相 slave1 slyave2 slave3 slave4

				Notice of the update of Digital Servo Software for Series $16 i$ etc. ($90 \mathrm{~B} 1 / \mathrm{F}$)		
01	2006.6.20	J.Tezuka	Newly designed	DRAW. No. B-65270	002	cust.
Ed.	Date	Design.	Description	FANUC LTD	SHEET	10/12

(3) PDM current unbalance alarm

Unbalance alarm is detected in cases that the difference of the average value of the current of all slaves and the current of each slave becomes beyond the value set up with the following parameters. This function is applied to the following Servo Software and PDM.

- Servo Soft Series / Editions

90B1 / F or later

- The number of editions of PDM

Total editions number is "C" or later

- Alarm

Alarm Number	LED indication	Alarm message	Contents (Cause and trouble shooting)
624	1	PDM CURRENT UNBALANCE ALARM (S1)	The value of the current feedback which returned from the servo amplifier of the n n-th slave connected to PDM is greatly shifted from average value. \rightarrow In the servo amplifier applicable to the n-th slave, connection (the order of connection of U, V and W) of a power line is wrong, or servo amplifier is out of order.
625	2	PDM CURRENT UNBALANCE ALARM (S2)	

				${ }^{\text {TTLLE }}$ Notice of the update of Digital Servo Software for Series $16 i$ etc. ($90 \mathrm{~B} 1 / \mathrm{F}$)		
01	2006.6.20	J.Tezuka	Newly designed	B-65270EN/06-002		cust.
Ed.	Date	Design.	Description	FANUC LTD	SHEET	11/12

Attached 3. RCN727 for synchronous built-in servo motor

(1) Overview

Detector of HEIDENHAIN, RCN727 has been newly applied to the synchronous built-in servo motor.
(2) Series and editions of applicable servo software

Series 90B1/F(06) and subsequent editions
(3) Setting parameters (example)

Table) Parameter list for RCN727

Parameter number		Parameter setting		Contents
FS16i	FS15i	Detection unit 1/1000deg	Detection unit 1/10000deg	
2112	1705	0	0	-4
2138	1761	-4	1	AMR conversion coefficient 1
$2000 \# 0$	$1804 \# 0$	1	AMR conversion coefficient 2	
2001	1806	Number of poles(binary)	Number of the number of velocity pulses and poles(binary)	
2023	1876	6554	6554	Setting for AMR pulses by 10

Note 1) Parameter setteing way for RCN727 is the same as RCN723. The difference between RCN723 and RCN727 is the maximum available value for FFG as shown below.

In case of RCN723 : maximum value for $\mathrm{FFG}=1 / 1$
In case of RCN 727 : maximum value for $\mathrm{FFG}=8 / 1$

Note 2) In the system of Dual Check Safety with FS 16i, $18 i$ or $21 i$, it requires the monitor software, 90B9 series. 90B9 series has not supported RCN727 as a detector for synchronous built-in servo motor, yet. (as of June, 2006)

In the above mentioned case, it requires servo software 90B1 serires edition E or earlier than E and a special parameter setting. For more detailed information, call to FANUC.

				${ }^{\text {TrTL }}$ Notice of the update of Digital Servo Software for Series $16 i$ etc. ($90 \mathrm{~B} 1 / \mathrm{F}$)		
01	2006.6.20	J.Tezuka	Newly designed	draw. no. B-65270E	-002	cust.
Ed.	Date	Design.	Description	FANUC LTD	SHEET	12/12

1. Type of applied documents

Name	FANUC AC SERVO MOTOR $\alpha i / \beta i$ series, LINEAR MOTOR LiS series, SYNCHRONOUS BUILT-IN SERVO MOTOR DiS series Parameter manual
Spec. No./Ver.	B-65270EN/06

2. Summary of Change

Group	Name / Outline	New, Add Correct, Del	Applicable Date
Basic Function	1. Upgrade of lifting function against gravity at emergency stop 2. Display of PDM's slave ready output status 3. Standard parameter table has been changed	Add Add Add	$\begin{array}{\|l} \hline 2006.07 \\ 2006.07 \\ 2006.07 \end{array}$
Optional Function			
Unit			
Maintenance Parts			
Notice			
Correction			
Another			

				${ }^{\text {TTLE }}$ Notice of the update of Digital Servo Software 90B1 series		
02	2005.09.28	S.Ikai	3,9,10,11 page were changed.			
011	2006.07.25	C. Ma	Newly designed	B-65270EN/06-003		cust.
Ed.	Date	Design.	Description	FANUC LTD	SHEET	1/11

1. Update Edition

ROM series	New edition	Available CNC
90 B 1	08	FS15i, 16i, 18i, 21i, PM $i-\mathrm{D}, \mathrm{PM} i-\mathrm{H}$ (with servo card equipped with 320 C 5410)

2. Contents of change

- Lifting function against gravity at emergency stop is upgraded.
- Display of PDM's slave ready output Status is added.
- Parameter table has been changed.

3. Attached

Attached 1 Upgrade of Lifting Function against Gravity at Emergency Stop
Attached 2 Display of PDM's Slave Ready Output Status
Attached 3 Changes of Standard Parameter Table

				${ }^{\text {TTLE }}$ Notice of the update of Digital Servo Software 90B1 series		
02	2005.09.28	S.Ikai				
011	2006.07.25	C. Ma	Newly designed	Draw. No. B-65270E	003	cust.
Ed.	Date	Design.	Description	FANUC LTD	SHE	2/11

Attached 1. Upgrade of Lifting Function against Gravity at Emergency Stop

(1) Overview

From 90B1 Series edition A(01), "Lifting Function Against Gravity at Emergency Stop" is applied for lifting and stoping the vertical axis of a vertical machining center when the machine comes to an emergency stop or power failure. However, based on cutting conditons (postion relationship between work and tool) in compound machines, mechanical interference may occur due to the lifting motion by using this function.

In 90B1 Series edition $G(07)$, additional parameter for lifting distance is added. The additional and original lifting distance paramters can be switched based on DI signal. When lifting distance paramter is set to be 0 , the lifting motion can be disabled by using this setting.

(2) Series and editions of applicable servo software

(Series $16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}$, Power Mate i)
90B1 Series edition $G(07)$ and subsequent editions

When this function is used, the following system software is required: B0H1/BDH1/DDH1-24 and subsequent editions (Series $16 i / 18 i-\mathrm{MB}$) B1H1/BEH1/DEH1-24 and subsequent editions (Series 16i/18i-TB) BDH5-14 and subsequent editions (Series 18i-MB5) DDH1-24 and subsequent editions (Series 21i-MB) (PMC-SB7 required) DEH1-24 and subsequent editions (Series 21i-TB) (PMC-SB7 required) 88E1-03 and subsequent editions (Power Mate i-D) (PMC-SB6 required) 88E3-01 and subsequent editions (Power Mate i-D) (PMC-SB6 required) 88F2-10 and subsequent editions (Power Mate $i-\mathrm{H}$) (PMC-SB6 required) 88F3-01 and subsequent editions (Power Mate $i-\mathrm{H}$) (PMC-SB6 required) ※This function is not supported by Series $15 i$.
※ 02 were modified in edition 02 .

(3) Switching signal

Switching signal for lifting function against gravity at emergence stop

\#7	\#6	\#5	\#4	\#3	\#2		\#1		\#0
SWDBS8	SWDBS7	SWDBS6	SWDBS5	SWDBS4	SWDBS3	SWDBS2	SWDBS1		

Classification
[Function] Switch valid lifting distance paremter of lifting function against gravity at emergency stop. The end numbers of signal names means control axes' numbers.

Details:

- When SWDBSx=0, No. 2373 will be used in lifting function against gravity in emergency stop.
- When SWDBSx=1, No. 2173 will be used in lifting function against gravity in emergency stop.

				Notice of the update of Digital Servo Software 90B1 series		
02	2005.09.28	S.Ikai	Modify (02).			
011	2006.07.25	C. Ma	Newly designed	DRaw. No. \quad - 65270 E	003	cust.
Ed.	Date	Design.	Description	FANUC LTD	SHEET	3/11

- The lifting distance is decided by SWDBSx status when emergency stop occurs. (After the occurrence of emergency stop, the change of SWDBSx status will not be immediately effective until the lifting motion is over and motor excitation is turned off.)
- Except the lifting distance parameters, the other parameters for lifting function against gravity at emergency stop are common and aren't affected by SWDBSx status.

(4) Setting parameters

Since this function uses quick stop type 2 at emergency stop, the following function bit must be set to 1 .
(The setting of quick stop type 1 at emergency stop (No.2017\#0) is not necessary.)

DBS2(\#7) 0: Quick stop type 2 at emergency stop is disabled.
1: Quick stop type 2 at emergency stop is enabled.

This parameter determines the lifting time as measured from the time of an emergency stop. The distortion easing function is executed after the lifting time has elapsed. This function is intended to decrease the amount of machine elastic strain that is caused by lifting a vertical axis just when the brake is effective. Executing this function can reduced the shock that may occur when the excitation of amplifier is turned off. The initial value of the function is a quarter of the distance to lift.
[Unit of data] ms
[Valid data range] 8 to 32767
[Recommended value] Approximately 16 or 24 ms

NOTE

1 Specify an integer multiple of 8 as the lifting time.
2 To use the lifting function against gravity at emergency stop, specify 8 ms or longer as the lifting time.

3 If the distortion easing function is not used, specify the time longer than or equal to the one set in the brake control timer as the lifting time.

				Notice of the update of Digital Servo Software 90B1 series		
02	2005.09.28	S.Ikai				
011	2006.07.25	C. Ma	Newly designed	DRAW. No. \quad - 65270 E	003	cust.
Ed.	Date	Design.	Description	FANUC LTD	SHEET	4/11

This parameter is for determining a distance to lift at an emergency stop.The larger the value is, the larger the distance to lift becomes.
[Unit of data]
[Valid data range]
[Recommended value]
ection unit
-32767 to 32767
Detection unit $1 \mu \mathrm{~m} \quad$: Approximately 500 to -500
Detection unit $0.1 \mu \mathrm{~m}$: Approximately 5000 to -5000

This paramter is only valid for SWDBSx=0. SWDBSx is switching signal for lifting distance against gravity at emergency stop. Setting the above paramter to 0 will enable lifting when $\operatorname{SWDBSx}=0$.

2173(FS30i,16i)

Distance to lift (for SWDBSx=1)

This parameter is for determining a distance to lift at an emergency stop.The larger the value is, the larger the distance to lift becomes.
$\begin{array}{rll}\text { [Unit of data] } & \text { Detection unit } & \\ \text { [Valid data range] } & -32767 \text { to } 32767 & \\ \text { [Recommended value] } & \text { Detection unit } 1 \mu \mathrm{~m} & \text { : Approximately } 500 \text { to }-500 \\ & \text { Detection unit } 0.1 \mu \mathrm{~m} & \text { : Approximately } 5000 \text { to }-5000\end{array}$

This paramter is only valid for SWDBSx=1. SWDBSx is switching signal for lifting distance against gravity at emergency stop.

NOTE

1 If the brake is in use, the brake starts working while the vertical axis is being lifted. So the actual lifted distance might be different from setting value.
2 The sign of paramter is as same as the sign of machine's mechanical coordinates.
3 Please use this function only in the case that mechanical interference does not occur even if the liftting motion is executed.

In order to use this function, below setting of brake control function is necessary.

Brake cotnrol function enable/disable bit

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
	BRKC						

BRKC(\#6) Brake control function is
1: enable

				$\begin{aligned} & \text { TTTLE } \\ & \text { Notice of the update of Digital Servo } \\ & \text { Software 90B1 series } \end{aligned}$		
02	2005.09.28	S.Ikai				
011	2006.07.25	C. Ma	Newly designed	Draw. No. B-65270E		cust.
Ed.	Date	Design.	Description	FANUC LTD	SHEET	5/11

0: disable

Activation delay
Brake control timer
[Unit of data] ms
[Recommended value] 100 ms

NOTE

When vertical axis is connected with multi-axis amplifier, brake control function must be enable for all the axes connected to muliti-axis amplifier.

Setting the period of time from the input of the emergency stop signal into the PSM until emergency stop operation is actually performed in the servo amplifier.

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
	ESPTM1	ESPTM0					

ESPTM1	ESPTM0	Delay time
0	0	50 ms (default)
0	1	100 ms
1	0	200 ms
1	1	400 ms

When using brake control, set delay time equal or longer than the setting of brake control timer.

Ex. when set brake control timer is 100 ms ,
$\operatorname{ESPTM} 1(\# 6), \operatorname{ESPTM} 0(\# 5)=0,1(100 \mathrm{~ms})$ should be set.

NOTE

For multi-axis amplifier, the dealy time should be the longest setting value among axes connected to multi-axis amplifier.

				Notice of the update of Digital Servo Software 90B1 series		
02	2005.09.28	S.Ikai				
011	2006.07.25	C. Ma	Newly designed	draw. no. B-65270	003	cust.
Ed.	Date	Design.	Description	FANUC LTD	SHEET	6/11

Attached 2. Display of PDM's Slave Ready Output Status

(1) Overview

For axes using PDM^{*}, if only one amplifier connected to PDM can not become ready status, all the amplifiers will be VRDY OFF alarm. For a easy troubleshooting, the ready status of each amplifier during VRDY OFF alarm is displayed in diagnostic screen of CNC. Function for specifying the amplifier, which causes VRDY OFF alarm, is provided.
*(PDM: PWM Distribution Module)
(2) Series and editions of applicable servo software
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}$, Power Mate i)
90B1 Series edition G(07) and subsequent editions

(3) Editions of applicable PDM

PDM's total edition alphabet should be "C" or later.

- The total edition alphabet is written in PDM's label.

PDM body
EXAMPLE OF LABEL CONTENT

(4) Setting parameters

After setting below parameters, the ready status of each amplifier during VRDY OFF alarm can be displayed in No. 353 of diagnostic screen. Please set parameter values based on whether No. 1023 setting is odd number or even number.

		Parameter No.		The number of No. 1023 is odd		The number of No. 1023 is even		
		No2115		0		0		
		No2151		3094		3222		
					$\begin{aligned} & \text { Notice of the update of Digital Servo } \\ & \text { Software 90B1 series } \end{aligned}$			
02	2005.09.28	S.Ikai						
011	2006.07.25	C. Ma	Newly designed		${ }^{\text {draw. No. }}$	B-65270EN/06-003		cust.
Ed.	Date	Design.	Description			FANUC LTD	Shet $\quad 7 / 11$	

(5) Diagnose Display
DGN 353
\qquad Amplifier Ready Status during VRDY OFF (Decimal)

Confirming decimal number displayed in DGN353 can specify the amplifier that causes VRDY OFF alarm.

DGN353	Ready Status for amplifiers of slave 1 to 4 (\downarrow : Ready status, \times : Unready status)			
	Slave1	Slave2	Slave3	Slave4
0	\checkmark	\checkmark	\checkmark	\checkmark
1	\times	\checkmark	\checkmark	\checkmark
2	\checkmark	\times	\checkmark	\checkmark
3	\times	\times	\checkmark	\checkmark
4	\checkmark	\checkmark	\times	\checkmark
5	\times	\checkmark	\times	\checkmark
6	\checkmark	\times	\times	\checkmark
7	\times	\times	\times	\checkmark
8	\checkmark	\checkmark	\checkmark	\times
9	\times	\checkmark	\checkmark	\times
10	\checkmark	\times	\checkmark	\times
11	\times	\times	\checkmark	\times
12	\checkmark	\checkmark	\times	\times
13	\times	\checkmark	\times	\times
14	\checkmark	\times	\times	\times
15	\times	\times	\times	\times

				Notice of the update of Digital Servo Software 90B1 series		
02	2005.09.28	S.Ikai				
011	2006.07.25	C. Ma	Newly designed	DRAW. No. \quad - 65270	003	cust.
Ed.	Date	Design.	Description	FANUC LTD	SHEET	8/11

Attached 3. Changes of Standard Parameter Table

- The standard parameters of HRV2 and HRV3 control for synchronous built-in servo motors (DiS series) are added.
- Series and editions of applicable servo software
(Series $15 i-\mathrm{B}, 16 i-\mathrm{B}, 18 i-\mathrm{B}, 21 i-\mathrm{B}$, Power Mate i)
90B1 Series edition $H(08)$ and subsequent editions
- List of Motor Model and ID No. for newly added Motors (HRV2, 3 Control):

* Please refer to Table 1 about the standard parameters.
* 02 were added in edition 02.
*Parameters for OVC alarm of DiS260/600 in Parameter Manual (B-65270EN/06) are changed.
- DiS260/600 (200V Drive) [Motor ID No. 429]

Symbol	FS15i	FS16i,18i,21i,PM i	Before Change	After Change
POVC1	No.1877	No.2062	32722	$\mathbf{3 2 7 0 5}$
POVC2	No.1878	No.2063	578	$\mathbf{7 8 6}$
POVCLMT	No.1893	No.2065	1714	$\mathbf{2 3 3 1}$

- DiS260/600 (400V Drive) [Motor ID No. 430]

Symbol	FS15i	FS16i,18i,21i,PMi	Before Change	After Change
POVC1	No.1877	No.2062	32731	$\mathbf{3 2 7 0 5}$
POVC2	No.1878	No.2063	457	$\mathbf{7 8 6}$
POVCLMT	No.1893	No.2065	1354	$\mathbf{2 3 3 1}$

				Notice of the update of Digital Servo Software 90B1 series		
02	2005.09.28	S.Ikai	Add (02).			
011	2006.07.25	C. Ma	Newly designed	DRAW. No. \quad B-65270E	003	cust.
Ed.	Date	Design.	Description	FANUC LTD	SHEET	9/11

1. Type of applied documents

Name	FANUC AC SERVO MOTOR $\alpha i / \beta i$ series, LINEAR MOTOR LiS series, SYNCHRONOUS BUILT-IN SERVO MOTOR DiS series Parameter manual
Spec. No./Ver.	B-65270EN/06

2. Summary of Change

Group	Name/ Outline	New, Add Correct, Del	Applicable Date		
Basic Function	1. Standard parameter table has been changed 2. Pole Position Detection for detach has been available. 3. Synchronous Axes Automatic Compensation has been available.	Add	New		2006.09
:---:					

				${ }^{\text {TTLE }}$ Notice of the Update of Digital Servo Software for Series 30i/31i/32i (90D0 \& 90E0)		
1	2006.09.19	Tang	Newly designed	DRAW. No. B-65270EN/06-004		cust.
Ed.	Date	Design.	Description	FANUC LTD	SHEET	1/8

1. Update Edition

ROM series	New edition	Available CNC
90 D 0	14	FS30i $/ 31 i / 32 i$ (For HRV4 control)
90E0	14	FS30i $/ 31 i / 32 i$ (For HRV2 and HRV3 control)

2. Contents of change

- Standard parameter table has been changed
- Pole Position Detection for detach has been available.
- Synchronous Axes Automatic Compensation has been available.

Attached 1 Changes of Standard Parameter Table

Attached 2 Pole Position Detection for Detach
Attached 3. About Synchronous Axes Automatic Compensation

				${ }^{\text {TTLE }}$ Notice of the Update of Digital Servo Software for Series 30i/31i /32i (90D0 \& 90E0)		
1	2006.09.19	Tang	Newly designed	- B-65270EN/06-004		cust.
Ed.	Date	Design.	Description	FANUC LTD	SHEET	2/8

Attached 1. Changes of Standard Parameter Table

- The standard parameters of HRV2 and HRV3 control for synchronous built-in servo motors (Dis series) are added.
- Series and editions of applicable servo software
(Series 30i, 31i, 32i)
90D0 Series edition $N(14)$ and subsequent editions
90E0 Series edition N(14) and subsequent editions
- List of Motor Model and ID No. for newly added Motors (HRV2, 3 Control):

Motor Model	Motor ID No.	Reference	Motor Model	Motor ID No.	Reference
DiS260/300	427	200V Drive	Dis260/300	428	400V Drive
DiS1200/250	435		DiS1200/250	436	
DiS1500/200	437		DiS1500/200	438	
DiS2100/150	439		DiS2100/150	440	
Dis3000/150	441		Dis3000/150	442	

* Please refer to Table 1 about the standard parameters.
- Parameters for OVC alarm of DiS260/600 of synchronous built-in servo motors (DiS series) are changed.
- Series and editions of applicable servo software
(Series 30i, 31i, 32i)
90D0 Series edition N(14) and subsequent editions
90 E0 Series edition $\mathrm{N}(14)$ and subsequent editions
* Please refer to Table 1 about the changes of standard parameters.
- Dis260/600 (200V Drive) [Motor ID No. 429]

Symbol	FS30i,31i,32i	Before Change	After Change
POVC1	No.2062	32722	$\mathbf{3 2 7 0 5}$
POVC2	No.2063	578	$\mathbf{7 8 6}$
POVCLMT	No.2065	1714	$\mathbf{2 3 3 1}$

- DiS260/600 (400V Drive) [Motor ID No. 430]

Symbol	FS30i,31i,32i	Before Change	After Change
POVC1	No.2062	32731	$\mathbf{3 2 7 0 5}$
POVC2	No.2063	457	$\mathbf{7 8 6}$
POVCLMT	No.2065	1354	$\mathbf{2 3 3 1}$

				${ }^{\text {TrLE }}$ Notice of the Update of Digital Servo Software for Series 30i/31i/32i (90D0 \& 90E0)		
1	2006.09.19	Tang	Newly designed	draw. No. B-65270EN/06-004		cust.
Ed.	Date	Design.	Description	FANUC LTD	Sheet	3/8

Table1) Standard parameter table for changes and new models instrudaction of synchronous built-in servo motor Dis series $\begin{array}{lllllllllllll}\text { Motor Model } & \text { DiS260/ } & \text { DiS1200/ } & \text { DiS1200/ } & \text { DiS1500/ } & \text { DiS1500/ } & \text { DiS2100/ } & \text { DiS2100/ } & \text { DiS3000/ } & \text { DiS3000/1 } \\ & 300 & 300 & 600 & 600 & 250 & 250 & 200 & 200 & 150 & 150 & 150 & 50(400 \mathrm{~V})\end{array}$ Motor 484-B30x 0484-B30x 0484-B31x 0484-B31x 0485-B50x 0485-B50x 0486-B30x 0486-B30x 0487-B30x 0487-B30x 0487-B40x 0487-B40x
 Motor ID No.
FS30i, 16iet

Attached 2. Pole Position Detection for Detach

(1) Outline

Untill now the axis which was using Pole Position Detection function in Synchronous Built-in Servo Motor was not able to change motor by using detach function. From this revision, it is availble to use pole position detection function and detach function together.
Moreover, the function to assure the safety of the axis, in which the Pole Position Detection is not finished, has also been added.
(2) Software version
(Series 30i, 31i, 32i,)
Series 90D0/N(14) and subsequent editions
Series $90 \mathrm{E} 0 / \mathrm{N}(14)$ and subsequent editions

(3) Caution

1) In the motor which requires pole position detection, it is necessary that each motor and encoder are the same type when motor and encoder are replaced by using detach.
2) This function is only available with the following CNC software. If you use CNC software except the following version, you can't use detach with axis appling pole position detection.
```
(version 20.2 or later)
FS30i-A : G002, G012, G022, G032
FS31i-A5 : G121, G131
FS31i-A : G101, G111
FS32i-A : G201
(version 03.2 or later)
FS30i-A : G003, G013, G023, G033
FS31i-A5 : G123, G133
FS31i-A : G103, G113
FS32i-A : G203
```

				${ }^{\text {TrLE }}$ Notice of the Update of Digital Servo Software for Series 30i/31i/32i (90D0 \& 90E0)		
1	2006.09.19	Tang	Newly designed	DRAW. No. B-65270EN/06-004		cust.
Ed.	Date	Design.	Description	FANUC LTD	Sheet	5/8

(4) Procedure for detach

In case of using detach, it is nesseccery that Pole Position Detection is re-executed or AMR offset (No.2139) is rewritten to appropriate value, because the relation between pole position of motor and Z-signal position of encoder is changed. In the before specification, however, NC power off/on operation was required in order to re-execute pole position detection or to rewrite AMR offset after the completion of Pole Position Detection.
From this version, in order to use detach and Pole Position Detection together, re-executing of Pole Position Detection or rewriting of AMR offset after the completion of Pole Position Detection is available without requiring NC power off/on operation.

In the axis applying Pole Position Detection, the detection is executed according to the following procedure.

1) Start detach by G124 or parameter No.12\#7 (Completion signal Fn159="0")
2) Rewrite AMR offset (No.2139) to appropriate value using manual or G10. *1)
3) Release detach
4) Display alarm DS0650 for a request of pole position detection. *2)
5) If abusolute encoder is applied and AMR offset isn't " 0 ", after releasing alarm by reset, command is acceptable.
(Completion signal Fn159="1")
6) If abusolute encoder is applied and AMR offset is " 0 ", after detection and releasing alarm by reset, command is acceptable. (Completion signal Fn159="0", after detection, completion signal Fn159="1")
7) If incremental encoder is applied, after detection and releasing alarm by reset, command is acceptable. (Completion signal Fn159="0", after detection, completion signal Fn159="1")

If AMR offset is rewritten except during detach, power off request appears.
If abusolute encoder is applied and you require pole position detection after releasing detach, AMR offset should be set to " 0 ".
The setting which alarm DS0650 dosen't appear is possible by parameter. Refer to next section (5).

(5) Enhanced safety

As specification of Pole Position Detection function, torque is not be generated in the axis until Pole Position Detection has finished. (Servo-off state) Therefore, customs need to prepare the ladder program to watch Pole Position Detection completion signal, in order to judge the timing to take off the brake of an axis, or to give moving command to the axis.

When pole position detection is unfinished (No.2213\#7=1 and Fn159="0"), the following operation is performed, and even though customs don't process ladder program, the safty still can be assured.

1) Changed into inter lock state. (Each axis is stated in inter lock. To display "inter lock/start lock" $=1$ on diagnosis display No.0000.)
2) Servo preparation completion signal SA is OFF. (for all axes, SA is off.)
3) Display alarm for request of Pole Position Detection (possible to clear by reset.)

				${ }^{\text {TTLE }}$ Notice of the Update of Digital Servo Software for Series 30i/31i/32i (90D0 \& 90E0)		
1	2006.09.19	Tang	Newly designed	Draw. No. B-65270E	004	cust.
Ed.	Date	Design.	Description	FANUC LTD	SHEET	6/8

Note1) By using the parameter showing in this page, when pole position detection is unfinished, it is possible to make servo preparation completion signal SA OFF.
Note2) By using the parameter showing in this page, even if pole position detection is unfinished, it is possible not to display alarm DS0650.
Alarm number and message

Alarm No.	Message	Cause
DS0650	Pole Detection Request	Pole position detection is unfinished (Fn159=0) in absolute axis (No.1815\#5=1). Pole position detection has just changed unfinished $($ Fn159=0) after detection completed once in incremental axis (No.1815\#5=0).

Parameter

$\#$	$\# 1$	$\# 6$	$\# 4$	$\# 3$	$\# 2$	\#1	$\# 0$
						PAD	SAN

SAN (\#0) In pole position detection, if there is the axis which pole position detection is unfinished (No.2213\#7=1 and Fn159="0"), servo preparation completion signal $\mathrm{SA}<\mathrm{Fn} 000.6>$ for the path belonging to the axis and servo preparation completion signal for each axis SA8-SA1<Fn186.7-Fn186.0> belonging to the path are;
0 : Not set to " 0 "
1: Set to "0"

Caution

In case that pole position detection is applied to gravity axis, basically a brake should be released depending on detection completion signal (Fn159=1) and servo preparation completion signal SA. If you unavoidably want to release a brake by servo preparation completion signal SA only, set this parameter.

PAO (\#1) In pole position detection, if there is the axis which pole position detection is unfinished (No.2213\#7=1 and Fn159="0"),
0: Display alarm DS0650 (Pole detection request)
1: \quad Not display alarm DS0650 (Pole detection request)

Note

1) The appearance condition of this alarm is deferent as follows.

On condition that pole position detection is unfinished (Fn159=0) in absolute axis (No.1815\#5=1).
On condition that pole position detection has just changed unfinished (Fn159=0) after detection completed once in incremental axis (No.1815\#5=0).
2) If this alarm occurs, pole position detection should be re-executed.

After detection, alarm can he cleared by reset

				${ }^{\text {TTILE }}$ Notice of the Update of Digital Servo Software for Series 30i/31i/32i (90D0 \& 90E0)		
1	2006.09.19	Tang	Newly designed	Draw. No. B-65270E	-004	cust.
Ed.	Date	Design.	Description	FANUC LTD	Sheet	$7 / 8$

Attached 3. About Synchronous Axes Automatic Compensation

(1) Outline

Synchronous Axes Automatic Compensation Function is the function to compensate slowly a commanded position of slave axis to reduce a difference of torque command between master axis and slave axis by observing it. By applying this function, the current generated by pulling axes each other can be reduced and the heat produced as the result also can be reduced.

From this version, Synchronous Axes Automatic Compensation Function is available for servo soft of FS 30i, $31 i, 32 i$. Please refer parameter manual B-65270EN/06 [4.18 SYNCHRONOUS AXES AUTOMATIC COMPENSATION] for details.

Moreover, Compensation Maintenance Function to stop update the compensation by DI signal has been added. Please use this function when you need to stop update of compensation temporarily and to give priority to the stability of axis feed, like at the time of finish cutting.
(2) Software version
(Series 30i, 31i, 32i,)
Series 90D0/N(14) and subsequent editions
Series $90 \mathrm{E} 0 / \mathrm{N}(14)$ and subsequent editions

(3)Parameter Setting

In order to use Compensation Maintenance Function of Synchronous Axes Automatic Compensation Function, you need to set the following bit parameter SYNDI and use the PMC signal G323. And you have to set these parameters to even-axis only (slave-axis).

		\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
2289 (FS30i)									SYNDI
SYNDI(\#0) Co	Compe Func 0: Di 1: En	ation	ena	unc	of Sy	onou	xes A	matic	Compensation

PMC input signal

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
G0323	SVDI38	SVDI37	SVDI36	SVDI35	SVDI34	SVDI33	SVDI32	SVDI31
SVDI3n as SYNDI=1								
0: Compensation in Synchronous Axes Automatic Compensation Function is updated.								
1: Compensation in Synchronous Axes Automatic Compensation Function is nupdated.								

				TTTLE Notice of the Update of Digital Servo Software for Series 30i/31i /32i (90D0 \& 90E0)		
1	2006.09.19	Tang	Newly designed	draw. No. B -65270EN/06-004		cust.
Ed.	Date	Design.	Description	FANUC LTD	SHEET	8/8

[^0]: . CAUTION
 When all the three accelerations are not used, set 0 in the parameter of the acceleration not used.

[^1]: WARNING
 1 A synchronous built-in servo motor can make an unpredictable movement or vibration if the basic parameters for pole detection and so forth are not set correctly.
 2 It is recommended to take the following actions until normal operation is confirmed:

 - Lower the excessive error level so that an alarm is issued immediately when an unpredictable movement is made.
 - Lower the torque limit value to disable abrupt acceleration.
 - Ensure that the emergency stop switch can be pressed immediately.

