GE Fanuc Automation

Computer Numerical Control Products

Series 16 / 18 / 160 / 180 - Model C

Operation and Maintenance Handbook

Warnings, Cautions, and Notes as Used in this Publication

Warning

Warning notices are used in this publication to emphasize that hazardous voltages, currents, temperatures, or other conditions that could cause personal injury exist in this equipment or may be associated with its use.

In situations where inattention could cause either personal injury or damage to equipment, a Warning notice is used.

Caution

Caution notices are used where equipment might be damaged if care is not taken.

Note

Notes merely call attention to information that is especially significant to understanding and operating the equipment.

This document is based on information available at the time of its publication. While efforts have been made to be accurate, the information contained herein does not purport to cover all details or variations in hardware or software, nor to provide for every possible contingency in connection with installation, operation, or maintenance. Features may be described herein which are not present in all hardware and software systems. GE Fanuc Automation assumes no obligation of notice to holders of this document with respect to changes subsequently made.

GE Fanuc Automation makes no representation or warranty, expressed, implied, or statutory with respect to, and assumes no responsibility for the accuracy, completeness, sufficiency, or usefulness of the information contained herein. No warranties of merchantability or fitness for purpose shall apply.

SAFETY PRECAUTIONS

This section describes the safety precautions related to the use of CNC units. It is essential that these precautions be observed by users to ensure the safe operation of machines equipped with a CNC unit (all descriptions in this section assume this configuration). Note that some precautions are related only to specific functions, and thus may not be applicable to certain CNC units.
Users must also observe the safety precautions related to the machine, as described in the relevant manual supplied by the machine tool builder. Before attempting to operate the machine or create a program to control the operation of the machine, the operator must become fully familiar with the contents of this manual and relevant manual supplied by the machine tool builder.

CONTENTS

1. DEFINITION OF WARNING, CAUTION, AND NOTEs-2
2. GENERAL WARNINGS AND CAUTIONS s-3
3. WARNINGS AND CAUTIONS RELATED

TO PROGRAMMING s-5
4. WARNINGS AND CAUTIONS RELATED TO HANDLING s-8
5. WARNINGS RELATED TO DAILY MAINTENANCE s-11

1. DEFINITION OF WARNING, CAUTION, AND NOTE

This manual includes safety precautions for protecting the user and preventing damage to the machine. Precautions are classified into Warning and Caution according to their bearing on safety. Also, supplementary information is described as a Note. Read the Warning, Caution, and Note thoroughly before attempting to use the machine.

WARNING

Applied when there is a danger of the user being injured or when there is a damage of both the user being injured and the equipment being damaged if the approved procedure is not observed.

CAUTION

Applied when there is a danger of the equipment being damaged, if the approved procedure is not observed.

NOTE

The Note is used to indicate supplementary information other than Warning and Caution.

Read this manual carefully, and store it in a safe place.

$$
\mathrm{s}-2
$$

2. GENERAL WARNINGS AND CAUTIONS

WARNING

1. Never attempt to machine a workpiece without first checking the operation of the machine. Before starting a production run, ensure that the machine is operating correctly by performing a trial run using, for example, the single block, feedrate override, or machine lock function or by operating the machine with neither a tool nor workpiece mounted. Failure to confirm the correct operation of the machine may result in the machine behaving unexpectedly, possibly causing damage to the workpiece and/or machine itself, or injury to the user.
2. Before operating the machine, thoroughly check the entered data.
Operating the machine with incorrectly specified data may result in the machine behaving unexpectedly, possibly causing damage to the workpiece and/or machine itself, or injury to the user.
3. Ensure that the specified feedrate is appropriate for the intended operation. Generally, for each machine, there is a maximum allowable feedrate. The appropriate feedrate varies with the intended operation. Refer to the manual provided with the machine to determine the maximum allowable feedrate. If a machine is run at other than the correct speed, it may behave unexpectedly, possibly causing damage to the workpiece and/or machine itself, or injury to the user.
4. When using a tool compensation function, thoroughly check the direction and amount of compensation.
Operating the machine with incorrectly specified data may result in the machine behaving unexpectedly, possibly causing damage to the workpiece and/or machine itself, or injury to the user.
5. The parameters for the CNC and PMC are factory-set. Usually, there is not need to change them. When, however, there is not alternative other than to change a parameter, ensure that you fully understand the function of the parameter before making any change.
Failure to set a parameter correctly may result in the machine behaving unexpectedly, possibly causing damage to the workpiece and/or machine itself, or injury to the user.
6. Immediately after switching on the power, do not touch any of the keys on the MDI panel until the position display or alarm screen appears on the CNC unit,
Some of the keys on the MDI panel are dedicated to maintenance or other special operations. Pressing any of these keys may place the CNC unit in other than its normal state. Starting the machine in this state may cause it to behave unexpectedly.

7. The operator's manual and programming manual supplied with a CNC unit provide an overall description of the machine's functions, including any optional functions. Note that the optional functions will vary from one machine model to another. Therefore, some functions described in the manuals may not actually be available for a particular model. Check the specification of the machine if in doubt.
8. Some functions may have been implemented at the request of the machine-tool builder. When using such functions, refer to the manual supplied by the machine-tool builder for details of their use and any related cautions.

NOTE

Programs, parameters, and macro variables are stored in nonvolatile memory in the CNC unit. Usually, they are retained even if the power is turned off. Such data may be deleted inadvertently, however, or it may prove necessary to delete all data from nonvolatile memory as part of error recovery. To guard against the occurrence of the above, and assure quick restoration of deleted data, backup all vital data, and keep the backup copy in a safe place.

3. WARNINGS AND CAUTIONS RELATED TO PROGRAMMING

This section covers the major safety precautions related to programming. Before attempting to perform programming, read the supplied operator's manual and programming manual carefully such that you are fully familiar with their contents.

WARNING

1. Coordinate system setting

If a coordinate system is established incorrectly, the machine may behave unexpectedly as a result of the program issuing an otherwise valid move command.
Such an unexpected operation may damage the tool, the machine itself, the workpiece, or cause injury to the user.
2. Positioning by nonlinear interpolation

When performing positioning by nonlinear interpolation (positioning by nonlinear movement between the start and end points), the tool path must be carefully confirmed before performing programming.
Positioning involves rapid traverse. If the tool collides with the workpiece, it may damage the tool, the machine itself, the workpiece, or cause injury to the user.
3. Function involving a rotation axis

When programming polar coordinate interpolation or normal-direction (perpendicular) control, pay careful attention to the speed of the rotation axis. Incorrect programming may result in the rotation axis speed becoming excessively high, such that centrifugal force causes the chuck to lose its grip on the workpiece if the latter is not mounted securely.
Such mishap is likely to damage the tool, the machine itself, the workpiece, or cause injury to the user.
4. Inch/metric conversion

Switching between inch and metric inputs does not convert the measurement units of data such as the workpiece origin offset, parameter, and current position. Before starting the machine, therefore, determine which measurement units are being used. Attempting to perform an operation with invalid data specified may damage the tool, the machine itself, the workpiece, or cause injury to the user.

5. Constant surface speed control

When an axis subject to constant surface speed control approaches the origin of the workpiece coordinate system, the spindle speed may become excessively high. Therefore, it is necessary to specify a maximum allowable speed. Specifying the maximum allowable speed incorrectly may damage the tool, the machine itself, the workpiece, or cause injury to the user.

6. Stroke check

After switching on the power, perform a manual reference position return as required. Stroke check is not possible before manual reference position return is performed. Note that when stroke check is disabled, an alarm is not issued even if a stroke limit is exceeded, possibly damaging the tool, the machine itself, the workpiece, or causing injury to the user.
7. Tool post interference check

A tool post interference check is performed based on the tool data specified during automatic operation. If the tool specification does not match the tool actually being used, the interference check cannot be made correctly, possibly damaging the tool or the machine itself, or causing injury to the user.
After switching on the power, or after selecting a tool post manually, always start automatic operation and specify the tool number of the tool to be used.

8. Absolute/incremental mode

If a program created with absolute values is run in incremental mode, or vice versa, the machine may behave unexpectedly.

9. Plane selection

If an incorrect plane is specified for circular interpolation, helical interpolation, or a canned cycle, the machine may behave unexpectedly. Refer to the descriptions of the respective functions for details.
10. Torque limit skip

Before attempting a torque limit skip, apply the torque limit. If a torque limit skip is specified without the torque limit actually being applied, a move command will be executed without performing a skip.

11. Programmable mirror image

Note that programmed operations vary considerably when a programmable mirror image is enabled.

SAFETY PRECAUTIONS

WARNING

12. Compensation function

If a command based on the machine coordinate system or a reference position return command is issued in compensation function mode, compensation is temporarily canceled, resulting in the unexpected behavior of the machine.
Before issuing any of the above commands, therefore, always cancel compensation function mode.

4. WARNINGS AND CAUTIONS RELATED TO HANDLING

This section presents safety precautions related to the handling of machine tools. Before attempting to operate your machine, read the supplied operator's manual and programming manual carefully, such that you are fully familiar with their contents.

WARNING

1. Manual operation

When operating the machine manually, determine the current position of the tool and workpiece, and ensure that the movement axis, direction, and feedrate have been specified correctly. Incorrect operation of the machine may damage the tool, the machine itself, the workpiece, or cause injury to the operator.
2. Manual reference position return

After switching on the power, perform manual reference position return as required. If the machine is operated without first performing manual reference position return, it may behave unexpectedly. Stroke check is not possible before manual reference position return is performed. An unexpected operation of the machine may damage the tool, the machine itself, the workpiece, or cause injury to the user.

3. Manual numeric command

When issuing a manual numeric command, determine the current position of the tool and workpiece, and ensure that the movement axis, direction, and command have been specified correctly, and that the entered values are valid.
Attempting to operate the machine with an invalid command specified may damage the tool, the machine itself, the workpiece, or cause injury to the operator.

4. Manual handle feed

In manual handle feed, rotating the handle with a large scale factor, such as 100, applied causes the tool and table to move rapidly. Careless handling may damage the tool and/or machine, or cause injury to the user.

5. Disabled override

If override is disabled (according to the specification in a macro variable) during threading, rigid tapping, or other tapping, the speed cannot be predicted, possibly damaging the tool, the machine itself, the workpiece, or causing injury to the operator.

SAFETY PRECAUTIONS

WARNING

6. Origin/preset operation

Basically, never attempt an origin/preset operation when the machine is operating under the control of a program. Otherwise, the machine may behave unexpectedly, possibly damaging the tool, the machine itself, the tool, or causing injury to the user.
7. Workpiece coordinate system shift

Manual intervention, machine lock, or mirror imaging may shift the workpiece coordinate system. Before attempting to operate the machine under the control of a program, confirm the coordinate system carefully.
If the machine is operated under the control of a program without making allowances for any shift in the workpiece coordinate system, the machine may behave unexpectedly, possibly damaging the tool, the machine itself, the workpiece, or causing injury to the operator.
8. Software operator's panel and menu switches

Using the software operator's panel and menu switches, in combination with the MDI panel, it is possible to specify operations not supported by the machine operator's panel, such as mode change, override value change, and jog feed commands.
Note, however, that if the MDI panel keys are operated inadvertently, the machine may behave unexpectedly, possibly damaging the tool, the machine itself, the workpiece, or causing injury to the user.
9. Manual intervention

If manual intervention is performed during programmed operation of the machine, the tool path may vary when the machine is restarted. Before restarting the machine after manual intervention, therefore, confirm the settings of the manual absolute switches, parameters, and absolute/incremental command mode.
10. Feed hold, override, and single block

The feed hold, feedrate override, and single block functions can be disabled using custom macro system variable \#3004. Be careful when operating the machine in this case.

11. Dry run

Usually, a dry run is used to confirm the operation of the machine. During a dry run, the machine operates at dry run speed, which differs from the corresponding programmed feedrate. Note that the dry run speed may sometimes be higher than the programmed feed rate.

12. Cutter and tool nose radius compensation in MDI mode

Pay careful attention to a tool path specified by a command in MDI mode, because cutter or tool nose radius compensation is not applied. When a command is entered from the MDI to interrupt in automatic operation in cutter or tool nose radius compensation mode, pay particular attention to the tool path when automatic operation is subsequently resumed. Refer to the descriptions of the corresponding functions for details.
13. Program editing

If the machine is stopped, after which the machining program is edited (modification, insertion, or deletion), the machine may behave unexpectedly if machining is resumed under the control of that program. Basically, do not modify, insert, or delete commands from a machining program while it is in use.

SAFETY PRECAUTIONS

5. WARNINGS RELATED TO DAILY MAINTENANCE

WARNING

1. Memory backup battery replacement

When replacing the memory backup batteries, keep the power to the machine (CNC) turned on, and apply an emergency stop to the machine. Because this work is performed with the power on and the cabinet open, only those personnel who have received approved safety and maintenance training may perform this work.
When replacing the batteries, be careful not to touch the
high-voltage circuits (marked and fitted with an insulating cover).
Touching the uncovered high-voltage circuits presents an extremely dangerous electric shock hazard.

NOTE

The CNC uses batteries to preserve the contents of its memory, because it must retain data such as programs, offsets, and parameters even while external power is not applied
If the battery voltage drops, a low battery voltage alarm is displayed on the machine operator's panel or CRT screen. When a low battery voltage alarm is displayed, replace the batteries within a week. Otherwise, the contents of the CNC's memory will be lost.
Refer to the maintenance section of the operator's manual or programming manual for details of the battery replacement procedure.

2. Absolute pulse coder battery replacement

When replacing the memory backup batteries, keep the power to the machine (CNC) turned on, and apply an emergency stop to the machine. Because this work is performed with the power on and the cabinet open, only those personnel who have received approved safety and maintenance training may perform this work.
When replacing the batteries, be careful not to touch the high-voltage circuits (marked and fitted with an insulating cover).
Touching the uncovered high-voltage circuits presents an extremely dangerous electric shock hazard.

NOTE

The absolute pulse coder uses batteries to preserve its absolute position.
If the battery voltage drops, a low battery voltage alarm is displayed on the machine operator's panel or CRT screen. When a low battery voltage alarm is displayed, replace the batteries within a week. Otherwise, the absolute position data held by the pulse coder will be lost.
Refer to the maintenance section of the operator's manual or programming manual for details of the battery replacement procedure.

3. Fuse replacement

For some units, the chapter covering daily maintenance in the operator's manual or programming manual describes the fuse replacement procedure.
Before replacing a blown fuse, however, it is necessary to locate and remove the cause of the blown fuse.
For this reason, only those personnel who have received approved safety and maintenance training may perform this work.
When replacing a fuse with the cabinet open, be careful not to touch the high-voltage circuits (marked and fitted with an insulating cover).
Touching an uncovered high-voltage circuit presents an extremely dangerous electric shock hazard.

GENERAL
The Operation and Maintenance Handbook is for persons who are familiar with NC programs and operations. It is used to refer to necessary information quickly in operating or maintaining NC machine tools at a work site.
The Handbook only contains reference information. It does not contain other types of information, such as essential information or notes. Read the following manuals first.
The Handbook assumes that the reader is familiar with the information in the following manuals.

Name of Manual		Specification Number
FANUC Series $16 / 18 / 160 / 180-M O D E L ~ C ~$	DESCRIPTIONS	B-62752EN
FANCU Series $16 / 18 / 160 / 180-M O D E L ~ C ~$	CONNECTION MANUAL (Hardware)	B-62753EN
FANUC Series $16 / 18 / 160 / 180-M O D E L ~ C ~$	CONNECTION MANUAL (Function)	B-62753EN-1
FANUC Series $16 / 18 / 160 / 180-T C ~$	OPERATOR'S MANUAL	B-62754EN
FANUC Series $16 / 18 / 160 / 180-M C ~$	OPERATOR'S MANUAL	B-62764EN
FANUC Series $16 / 18 / 160 / 180-M O D E L ~ C ~$	MAINTENANCE MANUAL	B-62755EN
FANUC Series $16 / 18 / 160 / 180-M O D E L ~ C ~$	PARAMETER MANUAL	B-62760EN
FANUC AC SERVO MOTOR α series	DESCRIPTIONS	B-65142E
FANUC AC SPINDLE MOTOR α series	DESCRIPTIONS	B-65152E
FANUC CONTROL MOTOR AMPLIFIER α series	DESCRIPTIONS	B-65162E
FANUC CONTROL MOTOR $\alpha ~ s e r i e s ~$	MAINTENANCE MANUAL	B-65165E
FANUC AC SERVO MOTOR α series	PARAMETER MANUAL	B-65150E
FANUC AC SPINDLE MOTOR α series	PARAMETER MANUAL	B-65160E

The Operation and Maintenance Handbook provides information about the following CNC units. The following symbols and system names are used in the Handbook.

Product Name	Abbreviations	System
FANUC Series 16-TC	16-TC	T series or T series (two-path control) ${ }^{* 1}$
FANUC Series 160-TC	160-TC	
FANUC Series 16-MC	16-MC	M series or M series (two-path control) *1
FANUC Series 160-MC	160-MC	
FANUC Series 18-TC	18-TC	T series or T series (two-path control) ${ }^{* 1}$
FANUC Series 180-TC	180-TC	
FANUC Series 18-MC	18-MC	M series
FANUC Series 180-MC	180-MC	

*1) In the case of two-path control is added.

CONTENTS

CONTENTS

1. CRT/MDI OR LCD/MDI PANEL 1
1.1 Keyboard Layout and Names 1
1.2 Operation of MDI Panel 7
1.2.1 Screen transition chart 7
1.2.2 Displaying the current position 11
1.2.3 Display for handle interrupt 13
1.2.4 Displaying the program 14
1.2.5 Program restart screen 16
1.2.6 Editing the program 18
1.2.7 Displaying the program list 21
1.2.8 Operation in the conversational programming menu 22
1.2.9 Transferring data to and from the floppy disk 23
1.2.10 Displaying and setting the tool compensation values 25
1.2.11 Displaying and setting the data 26
1.2.12 Displaying and setting the offset values for the workpiece coordinate system 28
1.2.13 Displaying and setting the custom macro variables 29
1.2.14 Displaying and setting the data for the software operator's panel. 30
1.2.15 Displaying and setting the parameters 33
1.2.16 Displaying the internal state of the NC (diagnostic screen) 34
1.2.17 Displaying the system configuration 35
1.2.18 Displaying and setting the pitch error compensation values 36
1.2.19 Displaying the alarm messages 36
1.2.20 Displaying the operator messages 37
1.2.21 Displaying the alarm history 37
1.3 Help Function 38
1.3.1 Alarm detail screen 38
1.3.2 Operation method screen 39
1.3.3 Parameter contents 39
1.4 BOOT SYSTEM 40
2. OPERATION LIST 53
3. G CODE 65
3.1 T series 65
3.2 M series 68
4. PROGRAM FORMAT 71
5. CUSTOM MACRO 109
5.1 Types of Variables 109
5.2 System Variable 109
5.3 Argument Assignment I/II 113
5.4 Arithmetic Commands 114
5.5 Control Command 115
5.6 Macro Call 115
5.7 Command Range 116

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY 117
6.1 Displaying CNC Internal State 117
6.1.1 Procedure for displaying diagnostic screen 117
6.1.2 Display of status in which command is not apparently executed (No. 000 - 015) 117
6.1.3 Information indicating automatic operation stop, automatic idle statuses (No. 020 - 025) 118
6.1.4 TH alarm statuses (No. 030, 031) 118
6.1.5 Digital servo system alarm (No. 200, 201) 119
6.1.6 Serial pulse coder alarm (No. 202, 203) 119
6.1.7 Positional error display (No. 300) 120
6.1.8 Machine position display (No. 301) 120
6.1.9 Reference position shift function display (No. 302) 121
6.1.10 Inductosyn display (No. 380 and No. 381) 121
6.1.11 Spindle data (No. 400-420) 121
6.1.12 Rigid tapping display (No. 450-457) 123
6.1.13 Polygon synchronization mode status (No. 470-478) 124
6.1.14 Remote buffer protocol A status (No. 500-502) 126
6.1.15 Display lated to MMC-IV (No. 510-513) 126
6.1.16 Small-diameter peck drilling cycle display (No. 520-523) 127
6.1.17 Display of ATC for FD alpha (No. 530-531) 127
6.1.18 Simplified synchronous control display (No. 540) 128
6.1.19 Display related to the dual position feedback function (No. 550-553) 128
6.2 Waveform Diagnosis Display 129
6.3 Screen Display at Power On 138
6.4 System Configuration Screen 140
6.5 Interface between CNC and PMC/MT and Displaying I/O Signals 142
6.5.1 I/O signal list 143
6.5.2 Address list 161
7. HARDWARE 193
7.1 Configuration of CNC Machine Tool 193
7.2 Configuration of the Control Unit 195
7.3 Total Connection 199
7.4 Configuration of the Printed Circuit Boards and LED Display 216
7.4.1 Power unit configuration and LED display 216
7.4.2 Configuration main CPU board and LED display 217
7.4.3 Configuration of the option 1 board and LED display 219
7.4.4 Configuration of option 2 board and LED display 221
7.4.5 Configuration of the option 3 board and LED display 224
7.4.6 Configuration of the loader control board and LED display 227
7.4.7 Configuration of I/O card 229

7.4.8 Configuration of the I/O card with power supply (for power supply C) and LED display 230
7.4.9 Configuration of the background graphic board and LED display 231
7.4.10 Configuration of the 64-bit RISC board and LED display 233
8. PARAMETERS 235
8.1 How to Enter the Parameters 235
8.2 Parameter List 237
9. ERROR CODE LIST 365
9.1 Alarms Displayed on NC Screen 365
9.1.1 Program errors (P/S alarm) 365
9.1.2 Background edit alarm (BP/S alarm) 389
9.1.3 Absolute pulse coder (APC) alarm 389
9.1.4 Serial pulse coder (APC) alarm 390
9.1.5 Servo alarms 391
9.1.6 Overtravel alarms 394
9.1.7 Overheat alarms 395
9.1.8 Rigid tapping alarms 395
9.1.9 Serial spindle alarms 396
9.1.10 System alarms 398
9.1.11 Alarms displayed on spindle servo unit 399
10. PMC 403
10.1 Dynamic Display of Sequence Program 403
10.2 Display of PMC Diagnosis Screen 408
10.2.1 Title screen (TITLE) 408
10.2.2 Status screen (STATUS) 409
10.2.3 Alarm screen (ALARM) 409
10.2.4 Trace screen (TRACE) 410
10.2.5 Displaying memory data (M.SRCH) 411
10.2.6 Signal waveform display function screen (ANALYS) 411
10.3 PMC Parameter 414
10.3.1 Input of PMC parameter from MDI 414
10.3.2 Timer screen (TIMER) 414
10.3.3 Counter screen (COUNTER) 415
10.3.4 Keep relay screen (KEEPRL) 415
10.3.5 Data table screen (DATA) 418
10.3.6 Setting screen 419
10.4 Input/Output of PMC Data 420
10.4.1 Start of the built-in type PMC programmer 420
10.4.2 Input/output method 420
10.4.3 Copy function (COPY) 421
10.5 Functional Instruction 422
10.5.1 Functional instruction list 422
10.5.2 Detail of function command 425
11. CORRESPONDENCE BETWEEN ENGLISH KEY
AND SYMBOLIC KEY 434

1. CRT/MDI OR LCD/MDI PANEL

1.1 Keyboard Layout and Names

(1) T series

Fig. 1.1 (a) $9^{\prime \prime}$ CRT/MDI Panel (Standard) (T series)
(2) M series

Fig. 1.1 (b) 9" CRT/MDI Panel (Standard) (M series)

1

1. CRT/MDI OR LCD/MDI PANEL

(3) MDI keyboard of T series CNC

0 p	N。	G_{B}	7 A	81
x_{0}	z_{r}	F_{L}	4	5
M ${ }_{\text {I }}$	S_{k}	T	1	2
U_{H}	W_{v}	${ }^{\left[00_{E}\right.}$	-	0.
Pos	Proos		Strer	can
,	csase	$\underbrace{\text { cosem }}$	ALTO	veer
	-	$+$	\rightarrow	

Fig. 1.1 (c) MDI Keyboard of 9" Small CRT/MDI Panel or 8.4" Small LCD/MDI Panel

Fig. 1.1 (d) MDI Keyboard of 9.5" LCD/MDI Panel (Horizontal)

Fig. 1.1 (e) MDI Keyboard of 9.5" LCD/MDI Panel (Vertical) or 14" CRT/MDI Panel (Vertical)

Fig. 1.1 (f) MDI Keyboard of 14" LCD/MDI Panel (Horizontal)
3

(4) MDI keyboard of M series CNC

O_{p}	N	G_{R}	\cdots	81	,
x_{0}	Yv	Z_{*}	4	$5{ }_{3}$	\%
M I	S.	T_{k}	!	2	3
F_{L}	H_{0}	${ }_{\text {E08 }}{ }_{\text {cos }}$,	0.	
Pos	Proos	Prixim	Suris	an	
5 sixim	Hese		${ }^{2+148}$	Neser	
	$-$	4	\rightarrow		Hers

Fig. 1.1 (g) MDI Keyboard of 9" Small CRT/MDI Panel or 8.4" Small LCD/MDI Panel

Fig. 1.1 (h) MDI Keyboard of 9.5" LCD/MDI Panel (Horizontal)

Fig. 1.1 (i) MDI Keyboard of 9.5" LCD/MDI Panel (Vertical) or 14" CRT/MDI Panel (Vertical)

Fig. 1.1 (j) MDI Keyboard of 14" LCD/MDI Panel (Horizontal)

1. CRT/MDI OR LCD/MDI PANEL

(5) Functions of MDI keyboard

No.	Name	Functions
(1)	<Power> ON/OFF button I ON O OFF	Press this button to turn CNC power ON and OFF.
(2)	<RESET> key RESET	Press this key to reset the CNC, to cancel an alarm, etc.
(3)	<HELP> key HELP	Press this button to use the help function when uncertain about the operation of an MDI key.
(4)	Soft key	The soft key has various functions, according to the Applications. The soft key functions are displayed at the bottom of the CRT screen.
(5)	Address/numerical key	Press these keys to input alphabetic, numeric, and other characters.
(6)	<SHIFT> key SHIFT	Some keys have two characters on their keytop. Pressing the \square key switches the characters. Special character $£$ is displayed on the screen when a character indicated at the bottom right corner on the keytop can be entered.
(7)	<INPUT> key INPUT	When an address or a numerical key is pressed, the data is input to the buffer, and it is displayed on the CRT screen. To copy the data in the key input buffer to the offset register, etc., press the \square input key. This key is equivalent to the [INPUT] key of the soft keys, and either can be pressed to produce the same result.
(8)	Cancel <CAN> key CAN	Press this key to delete the last character or symbol input to the key input buffer. The contents of the key input buffer are displayed on the CRT screen. Example: When the key input buffer displays N001X100Z and the cancel \square CAN key is pressed, Z is canceled and N001X100 is displayed.
(9)	Program edit key ALTER INSERT DELETE	Press this key when editing the program. alter : Alter msert : Insert DELETE : Delete
(10)	Function key	Press this key to switch display screens for each function.

5

1. CRT/MDI OR LCD/MDI PANEL
1.2 Operation of MDI Panel
1.2.1 Screen transition chart

MONITOR
SCREEN

7

8

1. CRT/MDI OR LCD/MDI PANEL

9

1. CRT/MDI OR LCD/MDI PANEL

1.2.2 Displaying the current position

(1) Displaying the position using absolute coordinates
(a) Press soft key [ABS].

(b) Operation

Soft key [(OPRT)] $-\quad \begin{aligned} & \text { [PTSPRE] [EXEC] } \\ & {[\text { RUNPRE] }]}\end{aligned}$
(c) Related parameters

Parameter NDP (bit 0 of No.3115) : 0: The current position is displayed for each axis.
1: The current position is not displayed for each axis.
Parameter PCM (bit 0 of No.6700) : The total number of machined parts and the number of machined parts are incremented when the following M codes are specified.
0: M02, M03, and the M codes specified with parameter No. 6710
1: The M codes specified with parameter No. 6710
Parameter No. 6710: M code that counts the total number of machined parts and the number of machined parts in the current operation
Parameter No. 6711: Number of machined parts
Parameter No. 6751: Operation time (integrated time value during automatic operation) [ms]
Parameter No. 6752: Operation time (integrated time value during automatic operation) [min]
NOTE Hours and minutes are displayed on the screen.
Parameter No. 6757: Operation time (integrated value in one automatic operation) [ms]
Parameter No. 6758: Operation time (integrated value in one automatic operation) [min]
NOTE Hours, minutes, and seconds are displayed on the screen.

(2) Displaying the position using relative coordinates
(a) Press soft key [REL].

(b) Operation

(3) Overall display
(a) Press soft key [ALL].

Distance from the reference position
(b) Operation

1. CRT/MDI OR LCD/MDI PANEL

1.2.3 Display for handle interrupt

(1) Press soft key [HNDL].

The distance traveled due to a handle interrupt is displayed.

(2) Operation

Soft key [(OPRT)] $\quad \square \begin{aligned} & \text { [PTSPRE] [EXEC] } \\ & {[\text { RUNPRE] }[\text { [EXEC }]}\end{aligned}$
(3) Related signals

DGN	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
G041	HS2ID	HS2IC	HS21B	HS2IA	HS1ID	HS1IC	HS11B	HS1IA

DGN
G042

NOTE HS3In is effective only in the M series.

1.2.4 Displaying the program
(1) Program contents screen
(a) Press soft key [PRGRM].

(b) Operation

(c) Related parameter
Parameter No.7310: The sequence of the axes along which the machine moves to the restart point after the program is restarted
(d) Related signal SRN (G006\#0): Program restart

1. CRT/MDI OR LCD/MDI PANEL

(2) Program checking screen
(a) Press soft key [CHECK].

(b) Operation

(c) Related parameter

Parameter No.7310: The sequence of the axes along which the machine moves to the restart point after the program is restarted
(d) Related signal SRN (G006\#0): Program restart
(3) Screen displaying the contents of the program currently running
(a) Press soft key [CURRNT].

15

(b) Operation

Soft key [(OPRT)] [BG-EDT] \rightarrow See the EDIT mode screen.
(4) Screen displaying the current and next blocks
(a) Press soft key [NEXT].

(b) Operation

Soft key [(OPRT)] [BG-EDT] \rightarrow See the EDIT mode screen.
1.2.5 Program restart screen
(1) Press soft key [RSTR].

(2) Operation

The program restart function restarts machining from the block whose sequence number is specified when a tool is damaged or when the power is turned on.
(a) P type (when a tool is damaged)

1 Press the feed hold button. Move the tool away from the workpiece in the manual mode and replace it with a new one. Change the tool compensation value, if necessary.
2 Set the SRN signal to 1 .
3 Display the program contents screen.
4 Press soft key [REWIND] to move the cursor to the top of the program.

1. CRT/MDI OR LCD/MDI PANEL

5 Enter N followed by the sequence number of the program to be restarted. Press soft key [P TYPE] to search for the sequence number.
6 The program restart screen is displayed. The position at which machining is restarted and the specified M, S, T, and B codes are shown on the screen.

7 Set the SRN signal to 0 .
8 Specify M, S, T, or B codes in the MDI mode, if necessary.
9 Return to the automatic operation mode and press the cycle start button.
(b) Q type (When machining is restarted after being stopped for some reason)

Used when machining is restarted after the power is turned off, the emergency stop button is pressed, or the operation is stopped to change the coordinate system.
1 Return the machine to the reference position, if necessary, after the power is turned on.
2 Move the machine to the restart point in the manual mode and set the restarting data and coordinate system.
3 Ensure that the offset value is correct.
4 Set the SRN signal to 1.
5 Display the program contents screen. Press soft key [REWIND] to move the cursor to the start of the program.

6 Enter N followed by the sequence number of the program to be restarted. Press soft key [Q TYPE] to search for the sequence number.
7 The program restart screen is displayed. The position at which machining is restarted and the specified $\mathrm{M}, \mathrm{S}, \mathrm{T}$, and B codes are shown in the screen

8 Set the SRN signal to 0 .
9 Specify M, S, T, or B codes in the MDI mode, if necessary.
10 Return to the automatic operation mode and press the cycle start button.

1. CRT/MDI OR LCD/MDI PANEL

1. CRT/MDI OR LCD/MDI PANEL

1.2.7 Displaying the program list
(1) Press soft key [LIB].
(a) When parameter NAM (bit 0 of No. 3107) $=0$

(b) When parameter NAM (bit 0 of No. 3107) $=1$

(2) Operation

| Soft key [(OPRT)] | $\begin{array}{l}\text { [BG-EDT] }]\end{array} \rightarrow$ Same as PRGRM |
| :--- | :--- | :--- |
| | $-\mathrm{O} \quad$ Program number |

(3) Related parameters

Parameter NAM (No. 3107\#0): Only program numbers are listed/ Program numbers and program names are listed.
Parameter SOR (No. 3107\#4): Programs are listed in the order of registration/in the order of program number.
21

1.2.8 Operation in the conversational programming menu
(1) Press soft key [C.A.P.].

(2) Operation

1. CRT/MDI OR LCD/MDI PANEL

1.2.9 Transferring data to and from the floppy disk
(1) Press soft key [FLOPPY].

(2) Operation
(a) Soft key configuration

(b) To list the files

(c) To read the program
[READ] File number [F SET] Program number [O SET]

23

(d) To output the program

(f) To rename the program
[RENAME] File number [F SET] New file name [F NAME]
$-\underline{[\text { [CAN] }}$
(3) Related parameters

Channel	$\mathrm{I} / \mathrm{O}=0$	$\mathrm{I} / \mathrm{O}=1$	$\mathrm{I} / \mathrm{O}=2$	$\mathrm{I} / \mathrm{O}=3$ (remote buffer)		
Common	Parameter (No. 0100)					
Output format	Parameter $($ No. 0101)	Parameter (No. 0111)	Parameter $($ No. 0121)	Parameter (No. 0131)		
Specifica- tion number	Parameter (No. 0102)	Parameter (No. 0112)	Parameter (No. 0122)	Parameter (No. 0132)		
Transfer rate	Parameter (No. 0103)	Parameter (No. 0113)	Parameter (No. 0123)	Parameter (No. 0133)		
Transfer method	Not defined				Parameter R42 (No. 0135\#3)=0	Parameter R42 (No. 0135\#2)=1
Connector	JD5A	JD5A	JD5B	JD5C	JD6A	

0020

I/O channel selection

0: Channel 1 (J5DA on the main CPU board)
1: Channel 1 (J5DA on the main CPU board)
2: Channel 2 (J5DB on the main CPU board)
3: Channel 3 (J5DC on the option 1 board)

0101

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
NFD				ASI			SB2

\#7(NFD) 0: The feed code is output when data is punched out.
1: The feed code is not output when data is punched out.
\#3(ASI) 0: EIA or ISO code is used when data is input.
1: ASCII code is used when data is input.
\#0(SB2) 0: The number of stop bits is one.
1: The number of stop bits is two.

1. CRT/MDI OR LCD/MDI PANEL

0	RS-232-C (for devices other than those below)
1	FANUC Bubble Cassette B1/B2
2	FANUC Floppy Cassette F1
3	PROGRAM FILE Mate FANUC FA Card adapter FANUC Floppy Cassette adapter, FSP-H
4	Not used
5	Portable tape reader
6	FANUC PPR, FSP-G, FSP-H

0103
Baud rate (set transfer rate)

7: 600 9: 2400 11: 9600
8: 1200 10: 4800 12: 19200 [BPS]

NOTE This screen is displayed when the floppy disk drive is specified as the input/output device for the unit for which the optional function for controlling the reader/punch interface is provided.
1.2.10 Displaying and setting the tool compensation values
(1) Press soft key [OFFSET].

For tool compensation memory C

(2) Operation
(a) For tool length compensation (H code)
[(OPRT)]

25

(b) For cutter compensation (D code)

(3) Related parameters
Parameter WOE (bit 0 of No. 3290): Entering tool wear compensation values from the MDI panel is allowed/inhibited.
Parameter GOF (bit 1 of No. 3290): Entering tool geometry compensation values from the MDI panel is allowed/inhibited.
(4) Related signal
KEY1 (G046\#3): Tool compensation values and offset values from the workpiece reference point can be input.
1.2.11 Displaying and setting the data
(1) Press soft key [SETING].

1. CRT/MDI OR LCD/MDI PANEL

NOTE *1 Cannot be changed on this screen (but can be changed on the parameter screen).)

PARAMETER (SETTING)									O0000 N00000		
0000	SEQ								$\begin{gathered} \text { ISO } \\ 0 \end{gathered}$		
	0		0			0					
									FC	V	
	0	0	0			0		0		O	0
0012											MIR
X	0	0	0			0		0		0	0
Y	0	0	0			0		0		O	0
Z	0	0	0			0		0		0	0
0020	O	AN									0
0022											0
>-											
MDI **	*						5:4	3:11			
W.DG	NS]]							[$(0$	(PRT)

(2) Operation

Soft key [(OPRT)]	Setting number	[NO.SR
	- [ON:1]	
	- [OFF:0]	
	- Numerical value	[+INPUT]
	- Numerical value	[INPUT]

1.2.12 Displaying and setting the offset values for the workpiece coordinate system
(1) Press soft key [WORK].

(2) Operation

(3) Related parameters

Parameter WZO (bit 3 of No. 3290): Entering shift values of the coordinate system (T series) or offsets from the workpiece reference point (M series) from the MDI panel is allowed/inhibited.
Parameter No.1220: External shift value of the workpiece coordinate system (T series).
External offset from the workpiece reference point (M series)
Parameter No.1221: Offset from the workpiece reference point for G54
Parameter No.1222: Offset from the workpiece reference point for G55
Parameter No.1223: Offset from the workpiece reference point for G56
Parameter No.1224: Offset from the workpiece reference point for G57
Parameter No.1225: Offset from the workpiece reference point for G58
Parameter No.1226: Offset from the workpiece reference point for G59

1. CRT/MDI OR LCD/MDI PANEL

1.2.13 Displaying and setting the custom macro variables
(1) Press soft key [MACRO].

NOTE (*) When the Pattern data input function is provided
(2) Operation

(3) Related parameter

Parameter MCV (bit 2 of No. 3290): Entering macro variables from the MDI panel is allowed/inhibited.
(4) Related signal

KEY2 (G046\#4): Data and macro variables can be input.

29

1.2.14 Displaying and setting the data for the software operator's panel
(1) Press soft key [OPR].

1. CRT/MDI OR LCD/MDI PANEL

(2) Related signals

DGN	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
F072	OUT7	OUT6	OUT5	OUT4	OUT3	OUT2	OUT1	оито
DGN								
F073				ZRNO		MD40	MD2O	MD10

DGN

| F075 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | SPO | KEYO | DRNO | MLKO | SBKO | BDTO |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |

F076		Rov20	Rov10			MP20	MP10
DGN							
F077	RTO			HS1DO	HSICO	HS1BO	HSIAO

DGN

| F078 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad| $*$ | *FV70 | *FV6O | *FV50 | *FV4O | *FV30 | *FV2O |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| *FV1O | *FV00 | | | | | |

DGN

| F079 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | *JV70 | *JV6O | *JV50 | *JV4O | *JV3O | *JV2O |
| :--- | :--- | :--- | :--- | :--- | :--- |
| *JV1O | *JV00 | | | | |

DGN

| F080 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

DGN

| F081 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | -J 40 | +J 40 | -J 30 | +J 30 | -J 20 | +J 20 |
| :--- | :--- | :--- | :--- | :--- | :--- |

(3) Related parameters

| Parameter \#7 | \#6 | \#5 | \#4 | \#3 | \#2 | \#1 | \#0 |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7200 | | | | | | | |
| | OP7 | OP6 | OP5 | OP4 | OP3 | OP2 | OP1 |

Selects the operations performed on the software operator's panel.
\#6(OP7) Feed hold
\#5(OP6) Program protection
\#4(OP5) Optional block skip, single block operation, machine lock, and dry run
\#3(OP4) Manual feedrate override and rapid traverse override
\#2(OP3) Selecting the axis and magnification for the manual pulse generator
\#1(OP2) Manual feed axis selection and manual rapid traverse \#0(OP1) Mode selection

Decimals converted from ASCII codes are set as character codes.

$$
\begin{aligned}
& \text { Parameters No. } 7220 \text { to No. 7227: Name of general-purpose switch } 1 \\
& \text { Parameters No. } 7228 \text { to No. 7235: Name of general-purpose switch } 2 \\
& \text { Parameters No. } 7244 \text { to No. 7251: Name of general-purpose switch } 4 \\
& \text { Parameters No. } 7252 \text { to No. 7259: Name of general-purpose switch } 5 \\
& \text { Parameters No. } 7268 \text { to No. } 7275 \text { : Name of general-purpose switch } 7 \\
& \text { Parameters No. } 7276 \text { to No. } 7283 \text { : Name of general-purpose switch } 8
\end{aligned}
$$

To set "FANUC" as the name of general-purpose switch 1, set the parameters as follows: No. $7220=70$, No. $7221=65$, No. $7212=78$, No. $7213=85$, and No. $7214=67$.

1. CRT/MDI OR LCD/MDI PANEL

1.2.15 Displaying and setting the parameters
(1) Press soft key [PARAM]

PARAMETER (SETTING)						O0010 N00002		
0000		SEQ				INI	ISO	TVC
	0	0	0	0	0	0	0	
0001							FCV	
	0	0	0	0	0	0	0	0
0012								MIR
X	0	0	0	0	0	0	0	0
Y	0	0	0	0	0	0	0	0
Z	0	0	0	0	0	0	0	0
0020	O	IANN						0
0022								0
>-								
MDI **	* *					43:11		
[PARA	M]	DGN		PMC		STEM]	[PRT)]

(2) Entering values from the MDI panel

1 Enter the MDI mode or emergency stop state.
2 Set PARAMETER WRITE to 1 in the setting screen.
3 Alarm 100 occurs. Press the CAN and RESET keys simultaneously to temporarily stop the alarm.

4 Press soft key [(OPRT)] to display the operation menu including the following:
a) Enter a parameter number and press [NO.SRH]: Searches for the specified number.
b) Soft key [ON:1]: Sets the value at which the cursor is positioned to 1. (Only for bit parameters)
c) Soft key [OFF:0]: Sets the value at which the cursor is positioned to 0 . (Only for bit parameters)
d) Soft key [+INPUT]: Adds the entered value to the value at which the cursor is positioned. (Only for word parameters)
e) Soft key [INPUT]: Sets the value at which the cursor is positioned to theentered value. (Only for word parameters)
f) Soft key [READ]: Inputs parameters from the reader/punch interface.
g) Soft key [PUNCH]: Outputs parameters to the reader/punch interface.
(3) Convenient methods for entering data
(a) To change data in units of bits

Pressing \longleftarrow or \rightarrow changes the cursor to 1-bit size, which enables setting in units of bits (only for bit parameters).

(b) Use EOB to continuously set data starting from the cursor position.

(c) Use $=$ to enter the same data.

(d) For bit parameters
(Example)

1.2.16 Displaying the internal state of the NC (diagnostic screen) See Chapter 6 for details of self-diagnosis.
(1) Press soft key[DGNOS].

1. CRT/MDI OR LCD/MDI PANEL

1.2.17 Displaying the system configuration
(1) Press soft key [SYSTEM].

(2) Software configuration screen

(3) Module configuration screen

Displays the configuration of a module mounted on a printed circuit board.

Pressing $\begin{gathered}\text { PAGE } \\ \mathbf{L}\end{gathered}$ or $\begin{gathered}\mathbf{t} \\ \text { PAGE }\end{gathered}$ displays the system configuration for another printed circuit board.
NOTE See the section on the configuration of the printed circuit boards in the control unit for the correspondence between each module and displayed item.
35

1.2.18 Displaying and setting the pitch error compensation values
(1) Press soft key [PITCH].

(2) Operation

1.2.19 Displaying the alarm messages
(1) Press soft key [ALARM]

(2) Related parameter

Parameter NPA (No. 3117\#7): Switches/does not switch to the alarm screen when an alarm occurs.

1. CRT/MDI OR LCD/MDI PANEL

1.2.20 Displaying the operator messages

(1) Press soft key [MSG].

1.2.21 Displaying the alarm history
(1) Press soft key [HISTRY]

(2) Deleting the alarm history

Press soft key [(OPRT)] and then [CLEAR]
(3) About alarms

- When the parameter (No. 3112\#3)=0

1 Alarms generated by a custom macro
The alarms have numbers in the range of 3000 to 3999 and are referred to as macro alarms in the message.
(Example) \#3000=1(ERROR1)
\rightarrow Found as 3001 macro alarm in the history
2 Alarms generated by a DISP or DISPB instruction in the PMC
The alarms have numbers in the range of 1000 to 1999 and are referred to as external alarms in the message.
(Example) DISP instruction A000.0 1000 ERROR1

$$
\rightarrow \text { Found as } 1000 \text { external alarm in the history }
$$

37

1.3 Help Function

1 Pressing HELP in any screen displays the help screen (except in the
PMC screen).

1.3.1 Alarm detail screen

1 Pressing soft key [ALARM] while an alarm is generated displays the help message for the alarm.

2 Press soft key [(OPRT)], enter the alarm number, and then press soft key [SELECT] to display the help message for the alarm corresponding to the entered number.

1. CRT/MDI OR LCD/MDI PANEL

1.3.2 Operation method screen

1 Pressing soft key [OPERAT] displays the operation help message.

2 Press soft key [(OPRT)], enter the number of the item to be displayed, and then press soft key [SELECT] to display the operation method.
Use $\left.\begin{array}{c}\text { PAGE } \\ \mathbf{t}\end{array}\right]$ and $\underset{\text { PAGE }}{\mathbf{t}}$ to select another page.

1.3.3 Parameter contents

Pressing soft key [PARAM] displays the parameter contents.

39

1.4 BOOT SYSTEM

- The BOOT system of the Series $16 / 18$-C loads NC control software and P-CODE programs from the FROM (flash ROM) into the DRAM when the power is turned on, subsequently operating according to that data.
- In addition to the above, the BOOT system supports the following functions:
- Writing files from a memory card to the FROM
- Displaying a directory of files in the FROM
- Deleting files from the FROM
- Writing user files, stored in the FROM, to a memory card
- Inputting/outputting data to and from the SRAM as a batch
- Deleting files stored on a memory card
- Formatting a memory card

Data can be read from and written to a SRAM memory card. A FROM card is a read-only device.

- Displaying the SYSTEM MONITOR MAIN MENU screen

1 Turn on the power while holding down both the rightmost soft key(continuation key) and the soft key to its left.

\rightarrow Use the same soft keys, for the $9.5^{\prime \prime}$ LCD as well as the $14^{\prime \prime}$ CRT.
2 The SYSTEM MONITOR MAIN MENU screen appears.

3 Using the [UP] or [DOWN] soft key, position the cursor to the desired item.

1. CRT/MDI OR LCD/MDI PANEL

- The functions of the items are as follows.

1	SYSTEM DATA LOADING	Reads ROM data from a memory card and writes it into the FROM.
2	SYSTEM DATA CHECK	Displays the file directory for the FROM.
3	SYSTEM DATA DELETE	Deletes user files, such as ladder programs, stored in the FROM.
4	SYSTEM DATA SAVE	Writes user files, such as ladder programs, stored in the FROM to a memory card.
5	SRAM DATA BACKUP	Writes parameters, machining programs, and macro variables to a memory card.
6	MEMORY CARD FILE DELETE	Deletes files stored on a memory card.
7	MEMORY CARD FORMAT	Formats a memory card.
8	END	Terminates the system monitor.

4 Press the [SELECT] soft key.
The selected item is executed.
When the basic NC software has not been written into the FROM, the SYSTEM MONITOR MAIN MENU screen automatically appears at power on.

- Selecting the board to be accessed (BOOT SLOT CONFIGURATION screen)
(1) When the BOOT SLOT CONFIGURATION screen is displayed

1 When the CNC is fitted with the OPT2 or LCB board, it needs to access the flash memory and SRAM mounted on a board other than the main board. The system displays a screen enabling the selection of the board to be accessed. (This function is supported by edition 60M1/02 and later.)
2 Using the [UP] or [DOWN] key, position the cursor to the board to be accessed, then press the [SELECT] key.

The name of the selected board is displayed on the screen.

(2) From the file directory, select the file to be read by following the procedure below.
1 Using the [UP] or [DOWN] soft key, position the cursor to the file to be read.

- When the file directory is too large to fit on the screen, the screen can be scrolled by pressing the \qquad or \triangle soft key.
- To return to the SYSTEM MONITOR MAIN MENU screen, position the cursor to END, then press the [SELECT] soft key.

1. CRT/MDI OR LCD/MDI PANEL

2 Press the [SELECT] soft key.

Any file name can be assigned to the files stored on a memory card. The system automatically determines the type of a file from its contents when reading that file.
(3) A confirmation sign appears at the bottom of the screen. To continue the operation, press the [YES] soft key. To abandon the operation, press the [NO] soft key.
(4) While a file is being read, the following message is displayed on the screen.

\rightarrow When reading is terminated, the message, "HIT SELECT KEY," appears at the bottom of the screen.
(5) Press the [SELECT] soft key to return to the SYSTEM DATA LOADING screen.

- Displaying the FROM file list (SYSTEM DATA CHECK screen)
(1) Select the SYSTEM DATA CHECK screen.

1 Using the [UP] or [DOWN] soft key, position the cursor to 2 . SYSTEM DATA CHECK on the SYSTEM MONITOR MAIN MENU screen.
2 Press the [SELECT] soft key. When more than one board is connected to the NC, the SLOT CONFIGURATION screen appears.
\rightarrow FROM files are listed on the screen as follows:

```
SYSTEM DATA CHECK
[BOARD : MAIN]
FILE DIRECTORY (FLASH ROM : 4MB)
1. NC BASIC(10)
2. DG SERVO(1)
2. DG SERVO(1)
4. PMC-RB(1)
4. PMC-RB(1)
6. END
***MESSAGE***
SELECT FILE AND HIT SELECT KEY.
[SELECT] [ YES ] [ NO ] [ UP ] [DOWN ]
```


- The names and applications of the FROM files are as follows:

File name	Application	Attribute
NC BASIC	NC system software	System file - The file can be typed over, but cannot be deleted or output.
DG SERVO	Digital servo software	
GRAPHIC	Graphic software	
NCn OPTN	Optional function	
PMCnxxxx	PMC control software	
PCD $x x x x$	Macro P-CODE program	User file - The file can be typed over, deleted, and output.
CEX $x x x x$	C executor	
PMC-xxxx	Ladder program	
PMC@xxxx	Loader control ladder program	

n : Numeric character x : Alphabetic character

- The object files of the macro P-CODE program and the C executor can be saved to the memory card, but cannot be decompiled into their corresponding source code.
(2) To obtain detailed information about a particular system file, such as its software series and edition, perform the following:
1 Using the [UP] or [DOWN] soft key, position the cursor to the desired file name.
2 Press the [SELECT] soft key.
Note that this function is valid for system files only.
Example screen (when NC BASIC has been selected)

- Any non-ASCII code, or the symbol @, appearing in the displayed file name indicates that the contents of FROM or the data in the read file has been destroyed. In this case, attempt to read the file again.
3 Press the [SELECT] soft key to return to the SYSTEM DATA CHECK screen.
(3) Return to the SYSTEM MONITOR MAIN MENU screen.

1 Position the cursor to END.
2 Press the [SELECT] soft key.

1. CRT/MDI OR LCD/MDI PANEL

Deleting a FROM file (SYSTEM DATA DELETE screen)
NOTE Only user files, such as the ladder and macro P-code programs, can be deleted. System files, such as NC BASIC, cannot be deleted.
(1) Select the SYSTEM DATA DELETE screen.

1 Using the [UP] or [DOWN] soft key, position the cursor to 3 . SYSTEM DATA DELETE.
2 Press the [SELECT] soft key.
When more than one board is connected to the NC, the SLOT CONFIGURATION screen appears.
\rightarrow FROM files are listed on the screen as follows:

```
SYSTEM DATA CHECK
[ BOARD : MAIN ]
FILE DIRECTOR
1. NC BASIC(10)
2. DG SERVO(1)
3. PMCOBSC(2)
4. PMC-RB(1)
5. NC1 OPTN(8)
6. END
***MESSAGE***
SELECT FILE AND HIT SELECT KEY
[SELECT] [ YES ] [ NO ] [ UP ] [ DOWN ]
```

(2) Select the file to be deleted.

1 Using the [UP] or [DOWN] soft key, position the cursor to the desired file name.
2 Press the [SELECT] soft key.

- To quit and return to the SYSTEM MONITOR MAIN MENU screen, position the cursor to END, then press the [SELECT] soft key.
3 A confirmation message appears at the bottom of the screen. To delete the file, press the [YES] soft key. To abandon the deletion, press the [NO] soft key.
Upon pressing the [YES] soft key, the specified file is deleted
\rightarrow Once the file has been deleted, "HIT SELECT KEY" appears at the bottom of the screen.
(3) Press the [SELECT] soft key to return to the SYSTEM DATA CHECK screen.

- Saving a FROM file to a memory card (SYSTEM DATA SAVE screen)

NOTE Only user files, such as the ladder and macro P-code programs, can be saved to a memory card. System files, such as NC BASIC, cannot be saved.
(1) Select the SYSTEM DATA SAVE screen.

1 Using the [UP] or [DOWN] soft key, position the cursor to 4 . SYSTEM DATA SAVE.
2 Press the [SELECT] soft key. When more than one board is connected to the NC, the SLOT CONFIGURATION screen appears.
\rightarrow FROM files are listed on the screen as follows:

(2) Select the file to be saved.

1 Using the [UP] or [DOWN] soft key, position the cursor to the desired file name.
2 Press the [SELECT] soft key.

- To quit and return to the SYSTEM MONITOR MAIN MENU screen, position the cursor to END, then press the [SELECT] soft key.
3 A confirmation message appears at the bottom of the screen. To save the file, press the [YES] soft key. To abandon the saving, press the [NO] soft key.
Upon pressing the [YES] soft key, the specified file is saved to the memory card.
\rightarrow Once the file has been saved, "HIT SELECT KEY" appears at the bottom of the screen, together with the name assigned to that saved file.

$$
\left.\begin{aligned}
& \text { FILE SAVE COMPLETE. HIT SELECT KEY. } \\
& \text { SAVE FILE NAME:PCD_05M. } 000 \\
& \hline
\end{aligned} \begin{aligned}
& \text { Name assigned to } \\
& \text { the saved file }
\end{aligned} \right\rvert\,
$$

1. CRT/MDI OR LCD/MDI PANEL

- Saved files are named as follows:

File	FROM file name	Memory card file name
Ladder program	PMC-RB	PMC-RB. $x x x$
Macro P-code program	PCD 0.5M	PCD_05M. $x x x$
	PCD 1.0M	PCD_10M. xxx
	PCD 1.5M	PCD_15M. xxx

- A three-digit number (000 to 031) is automatically assigned to a saved file as the file extension. The file extension will be 000 when no other files having the same file name have been saved to the memory card. When a file having the same file name has already been saved to the memory card, the lowest number currently available will be assigned.
- The most recently saved file need not necessarily have the highest extension number because it may be assigned a number that was previously skipped. Carefully check the file name, displayed at the bottom of the screen, once saving has been completed.
(3) Press the [SELECT] soft key to return to the SYSTEM DATA SAVE screen.
- Dumping SRAM data to a memory card (SRAM DATA BACKUP screen)
(1) Select the SRAM DATA BACKUP screen.

1 Using the [UP] or [DOWN] soft key, position the cursor to 5. SRAM DATA BACKUP.
2 Press the [SELECT] soft key.
When more than one board is connected to the NC, the SLOT CONFIGURATION screen appears.
\rightarrow The SRAM DATA BACKUP screen is displayed.

(2) Select whether to dump data to the memory card (BACKUP), or to load data from the memory card (RESTORE).
1 Using the [UP] or [DOWN] soft key, position the cursor to the desired function.
2 Press the [SELECT] soft key.

- To quit and return to the SYSTEM MONITOR MAIN MENU screen, position the cursor to END, then press the [SELECT] soft key.
3 A confirmation message appears at the bottom of the screen. To perform the selected operation, press the [YES] soft key. To abandon the operation, press the [NO] soft key.
Upon pressing the [YES] soft key, data transfer between the SRAM and memory card starts.
\rightarrow During data transfer, the name of the file being transferred blinks as follows:
When dumping data to the memory card
FILE NAME : SRAM0_5A. FDB \rightarrow MEMORY CARD

When loading data from the memory card

$$
\text { FILE NAME : SRAMO_5A. FDB } \rightarrow \text { CNC }
$$

- Backup file data is dumped to the memory card in blocks of 520KB. Backup file data can also be dumped to multiple memory cards.
- A backup file is named as follows:

SRAMxxx ■. FDB

An alphabetic character, representing the file size in units of 512 KB , is assigned sequentially, starting from A
SRAM size allocated to NC $0.5 \mathrm{MB}: \mathrm{O}_{-} 5$
1.0MB:1-
1.5MB:1-5
2.0MB:2_0
2.5MB:2_5

When a board (OPT2 or LCB) other than the main board is connected to the CNC, one of the following extensions will be assigned to an SRAM backup file:

Board type	Main board	OPT2	LCB
Extension	FDB	OP2	LCB

(3) Press the [SELECT] soft key to return to the SRAM DATA BACKUP screen.

- Deleting a file from a memory card (MEMORY CARD FILE DELETE screen)
(1) Select the MEMORY CARD FILE DELETE screen.

1 Using the [UP] or [DOWN] soft key, position the cursor to 6 . MEMORY CARD FILE DELETE on the SYSTEM MONITOR MAIN MENU screen.
2 Press the [SELECT] soft key.
\rightarrow Files stored on the memory card are listed on the screen as follows:
MEMORY CARD FILE DELETE
FILE DIRECTORY
MACRO1. MEM
MACRO2. MEM
LADDER. ROM
END
MESSAGE
SELECT FILE AND HIT SELECT KEY.

[SELECT] [YES] [

1. CRT/MDI OR LCD/MDI PANEL

(2) Select the file to be deleted.

1 Using the [UP] or [DOWN] soft key, position the cursor to the desired file name.

- When the file list is too large to be displayed on one screen, the previous and subsequent pages can be viewed by using the \square and \triangle soft keys
- To return to the SYSTEM MONITOR MAIN MENU screen, position the cursor to END, then press the [SELECT] soft key.
2 Press the [SELECT] key.
(3) A confirmation message appears at the bottom of the screen. To delete the file, press the [YES] soft key. To abandon the deletion, press the [NO] soft key.
- Once the file has been deleted, "HIT SELECT KEY" appears at the bottom of the screen.
(4) Press the [SELECT] soft key to return to the MEMORY CARD FILE DELETE screen.
- Formatting a memory card (MEMORY CARD FORMAT screen)
- A newly purchased memory card must be formatted before it can be used. Also, a memory card must be formatted if its contents are destroyed or lost due to battery failure.
(1) Select the MEMORY CARD FORMAT screen.

1 Using the [UP] or [DOWN] soft key, position the cursor to 7 . MEMORY CARD FORMAT on the SYSTEM MONITOR MAIN MENU screen.

2 Press the [SELECT] key.
(2) A confirmation message appears at the bottom of the screen. To format the memory card, press the [YES] soft key. To abandon the formatting, press the [NO] soft key.

- While the memory card is being formatted, the message "FORMATTING MEMORY CARD" is displayed at the bottom of the screen.
- Once formatting has been completed, "FORMATTING COMPLETE HIT. SELECT KEY" appears at the bottom of the screen.

(3) Press the [SELECT] soft key to return to the SYSTEM MONITOR MAIN MENU screen.
- Quit system monitoring
(1) Quit system monitoring.

1 Using the [UP] or [DOWN] soft key, position the cursor to 9. END on the SYSTEM MONITOR MAIN MENU.
2 Press the [SELECT] soft key.

(2) To quit system monitoring, press the [YES] soft key.

To continue system monitoring, press the [NO] soft key.
\rightarrow The NC system starts in the same way as when the power is first turnedon. The following messages are displayed on the screen:

```
"CHECK CNC BASIC SYSTEM"
            \downarrow
"LOADING BASIC CNC TO DRAM"
```


1. CRT/MDI OR LCD/MDI PANEL

- Error message list
- The following table lists and describes the error messages which may be output by the system.

	Message	Cause and Response
D	DELETE ERROR. HIT SELECT KEY.	An attempt to delete a file from flash memory failed. Retry the deletion. If the second attempt also fails, the flash memory may have been de- stroyed. Replace the flash memory module.
DEVICE ERROR (CNC x)	An attempt to write data to flash memory failed. Briefly turn the system power off, then on again. If the same message appears, the flash memory may have been destroyed. Re- place the flash memory module.	
F	FILE SAVE ERROR. HIT SELECT KEY.	An attempt to write a file to a memory card failed. Check that the memory card is normal. (Note) A normal memory card should have a serviceable battery, have no failed circuitry, and be correctly inserted into its slot.
	FLASH MEMORY NO SPACE	There is insufficient flash memory to enable the reading of a selected file. Delete any unnecessary files from flash memory. If this message continues to be dis- played and the file still cannot be read, even though callalations indicate that there is suf- ficient flash memory.
I	ILLEGAL FORMAT FILE FLASH ROM MOODULE No flash memory module is mounted on the board. Mount a module.The selected file cannot be read into flash memory. The selected file itself or the flash memory header information may have been de- stroyed.	
HIT SELECT KEY.	An error occurred while data was being loaded into flash memory. Do not touch the memory card while data is being loaded into flash memory.	

	Message	Cause and Response
M	MAX EXTENSION OVER. HIT SELECT KEY.	The extension number added to a file name exceeds 31. Delete any unnecessary backup files from the memory card.
	MEMORY CARD BATTERY ALARM. HIT SELECT.	The memory card battery is exhausted. Replace the memory card's battery.
MEMORY CARD FULL. HIT SELECT KEY.	The memory card is full. Delete any unnec- essary files from the memory card or use a memory card with sufficient capacity.	
MEMORY CARD MOUNT ERROR. HIT SELECT KEY.	The memory card could not be accessed. Check that the memory card is normal.	
MEMORY CARD NOT EXIST. HIT SELECT KEY.	No memory card is mounted in the slot. Or, the memory card may not be correctly seated in its socket.	
MEMORY CARD PROTECTED. HIT SELECT KEY.	Although writing to a memory card was se- lected, the card's write inhibit switch is en- abled. Disable the memory card's write inhibit switch.	
MEMORY CARD RESET ERROR. HIT SELECT KEY.	A memory card could not be accessed. Check that the memory card is normal.	
MEMORY CARD WRITE ERROR. HIT SELECT KEY.	An attempt to write a backup file to a memory card failed. Check that the memory card is normal.	
R	ROM PARITY ERROR: NC BASIC. HIT SELECT.	An NC BASIC parity error has occurred. Check that NC BASIC has been loaded into the flash memory module.
S	SRAM DATA BACKUP ERROR. HIT SELECT KEY.	An attempt to write a backup file to a memory card failed. Check that the memory card is normal.

- If an error occurs, the corresponding error message appears on the screen, together with the message "HIT SELECT KEY." (Note that the [SELECT] soft key is disabled for errors whose clearing requires that the power be turned off.)

2. OPERATION LIST

Reset

Function	$\begin{aligned} & \text { KEY } \\ & \text { SW } \end{aligned}$	$\begin{gathered} \text { PWE } \\ =1 \end{gathered}$	Mode	Function key	Operation
Operating time			-	POS	[(OPRT)] [TIME: 0] \rightarrow [EXEC]
Number of machined parts			-	POS	[(OPRT)] [PART: 0] \rightarrow [EXEC]
OT alarm			At pow-er-up	-	P and CAN
Alarm 100			-	-	RESET while pressing CAN

Registration from MDI

Function	$\begin{aligned} & \text { KEY } \\ & \text { SW } \end{aligned}$	$\begin{gathered} \text { PWE } \\ =1 \end{gathered}$	Mode	Function key	Operation
Parameter		\bigcirc	MDI or emergency stop	system	[PARAM] \rightarrow Parameter No. $\begin{aligned} & \rightarrow \text { [NO.SRH }] \rightarrow \text { Data }{ }^{\text {inPut }} \\ & \rightarrow \text { or }[\text { INPUT }] \rightarrow \text { PWE }=0 \rightarrow \\ & \text { RESET } \end{aligned}$
Offset	\bigcirc		-	OFFSET	[OFFSET] \rightarrow Offset No. \rightarrow [NO. SRH] \rightarrow Offset value \rightarrow wnout or [INPUT]
Setting data	\bigcirc		MDI	STS	[SETTING] \rightarrow Setting No. \rightarrow $[$ NO. SRH $] \rightarrow$ Data \rightarrow \square invut or [INPUT]
PMC parameter (Counter, data table)			MDI or emergency stop	system (PMC)	$[\mathrm{PMC}] \rightarrow[\mathrm{PMCPRM}] \rightarrow$ [COUNTR] or [DATA] \rightarrow $\text { Data } \rightarrow \text { INPut }$
PMC pa- rameter (timer, keep relay)		\bigcirc	MDI or emergency stop	system (PMC)	$[\mathrm{PMC}] \rightarrow[\mathrm{PMCPRM}] \rightarrow$ [TIMER] or [KEEPRL] \rightarrow $\text { Data } \rightarrow$ \square
Tool length measurement			JOG		coordinate system display) $\rightarrow \text { Axis } \rightarrow \text { [ORIGIN }] \rightarrow \begin{gathered} \text { OFFSET } \\ \text { SETTING } \end{gathered}$ \rightarrow [OFFSET] \rightarrow Offset number \rightarrow [NO.SRH $] \rightarrow$ Axis \rightarrow [C INPUT]

NOTE \bigcirc mark shows the corresponding key is " 1 ".

Registration/input from external I/O device

Function	$\begin{aligned} & \text { KEY } \\ & \text { SW } \end{aligned}$	$\begin{gathered} \text { PWE } \\ =1 \end{gathered}$	Mode	Function key	Operation
Parameter		\bigcirc	EDIT or emergency stop	sstrem	$\begin{gathered} {[\text { [PARAM }] \rightarrow[(\text { OPRT })] \rightarrow} \\ \Delta \rightarrow[\text { READ }] \rightarrow[\text { EXEC }] \end{gathered}$
PMC parameter		\bigcirc	Emergency stop	sstrem	$[\mathrm{PMC}] \rightarrow \triangle \rightarrow[/ \mathrm{O}] \rightarrow$ (CANNEL NO.) wput \rightarrow [FDCAS] \rightarrow [READ] \rightarrow File No. \rightarrow wour \rightarrow [EXEC]
Offset	\bigcirc		EDIT	$\begin{aligned} & \text { OFFSET } \\ & \text { SETING } \\ & \hline \end{aligned}$	$\begin{gathered} {[\text { [OFFSET }] \rightarrow[(\text { OPRT })] \rightarrow} \\ \Delta \rightarrow[\mathrm{READ}] \rightarrow[\mathrm{EXEC}] \end{gathered}$
Custom macro variable	\bigcirc		EDIT	PROG	Read by assigning a temporary program number \rightarrow Execute in MEM mode \rightarrow Delete program
Program	\bigcirc		EDIT	PROG	$[(\text { OPRT })] \rightarrow \bowtie \rightarrow$ \square Program number) \rightarrow [READ] \rightarrow [EXEC]

NOTE mark shows the corresponding key is " 1 ".

Output to external I/O device

Function	$\begin{aligned} & \mathrm{KEY} \\ & \mathrm{SW} \end{aligned}$	$\begin{gathered} \text { PWE } \\ =1 \end{gathered}$	Mode	Function key	Operation
Parameter			EDIT	sstrem	[PARAM] $\rightarrow[($ OPRT $)] \rightarrow$ $\triangleright \rightarrow[\mathrm{PUNCH}] \rightarrow[\mathrm{EXEC}]$
PMC parameter			EDIT	sstrem	$[\mathrm{PMC}] \rightarrow \square \rightarrow[/ / \mathrm{O}] \rightarrow$ \square \rightarrow [FDCAS] \rightarrow [WRITE] \rightarrow (FILE NO) \rightarrow \square wput \rightarrow [EXEC]
Offset			EDIT	$\begin{gathered} \left.\begin{array}{c} \text { OFFSEST } \\ \text { SETINS } \\ \hline \end{array}\right) \\ \hline \end{gathered}$	[OFFSET] \rightarrow [(OPRT)] \rightarrow $\triangleright \rightarrow[\mathrm{PUNCH}] \rightarrow[\mathrm{EXEC}]$
Custom macro variables			EDIT	$\begin{gathered} \text { OFFSETET} \\ \text { SETINO } \\ \hline \end{gathered}$	$\begin{aligned} & \nabla \rightarrow[\mathrm{MACRO}] \rightarrow \\ & {[(\mathrm{OPRT})] \rightarrow \boxtimes \rightarrow} \\ & {[\mathrm{PUNCH}] \rightarrow[\mathrm{EXEC}]} \end{aligned}$
All programs			EDIT	PROG	$\begin{aligned} & {[(\mathrm{OPRT})] \rightarrow \infty \rightarrow} \\ & {[\mathrm{PUNCH}] \rightarrow \mathrm{O}^{-9999} \rightarrow} \\ & {[\mathrm{EXEC}]} \end{aligned}$
One program			EDIT	PROG	$\begin{aligned} & {[(\mathrm{OPRT})] \rightarrow \square \rightarrow} \\ & {[\mathrm{PUNCH}] \rightarrow \bigcirc} \\ & \text { Program number } \rightarrow[\mathrm{EXEC}] \end{aligned}$

54

2. OPERATION LIST

Search

Function	$\begin{aligned} & \text { KEY } \\ & \text { SW } \end{aligned}$	$\begin{gathered} \text { PWE } \\ =1 \end{gathered}$	Mode	Function key	Operation
Program number			MEMor EDIT	PROG	\rightarrow Program No. \rightarrow
Sequence number			MEM	PROG	\rightarrow Sequence No. \rightarrow [N SRH]
Address/ word			EDIT	PROG	Word to be searched for \rightarrow [SRH \uparrow] or [SRH \downarrow]
Address only			EDIT	PROG	Address to be searched for $\rightarrow[\mathrm{SRH} \uparrow$] or [SRH \downarrow]
Offset number			-		$\begin{aligned} & {[\text { OFFSET] } \rightarrow \text { Offset No. } \rightarrow} \\ & {[\text { NO.SRH] }} \end{aligned}$
Diagnostic number			-	ssstem	[DGNOS] \rightarrow Diagnosis No. \rightarrow [NO.SRH]
Parameter number			-	svstem	[PARAM] \rightarrow Parameter No. \rightarrow [NO.SRH]

Collation

Function	KEY SW	PWE $\mathbf{= 1}$	Mode	Function key	Operation
Memory collation			EDIT	PROG	$[($ OPRT $)] \rightarrow \square$ $[$ READ $] \rightarrow[E X E C]$

NOTE \bigcirc mark shows the corresponding key is " 1 ".

Program editing

Function	$\begin{array}{\|l\|} \hline \text { KEY } \\ \text { SW } \end{array}$	$\begin{gathered} \text { PWE } \\ =1 \end{gathered}$	Mode	Function key	Operation
Deletion of all programs	\bigcirc		EDIT	PROG	$\bigcirc \rightarrow-9999 \rightarrow$ OetIIE
Deletion of one program	\bigcirc		EDIT	PROG	$\underset{\text { O }}{\substack{\text { Otere }}} \rightarrow$ Program No. \rightarrow
Deletion of multiple blocks	\bigcirc		EDIT	PROG	
Deletion of one block	\bigcirc		EDIT	PROG	EOB \rightarrow OELIETE
Word deletion	\bigcirc		EDIT	PROG	Search for word to be deleted \rightarrow \square Delete
Word alteration	\bigcirc		EDIT	PROG	Search for word to be changed \rightarrow New data \rightarrow
Word insertion	\bigcirc		EDIT	PROG	Search for word immediately before insertion location \rightarrow New data \rightarrow \square insert

NOTE \bigcirc mark shows the corresponding key is " 1 ".
I/O to and from FANUC Cassette

Function	$\begin{aligned} & \hline \text { KEY } \\ & \text { SW } \end{aligned}$	$\begin{gathered} \text { PWE } \\ =1 \end{gathered}$	Mode	Function key	Operation
File head search			EDIT	PROG	\square \rightarrow FLIE No. \rightarrow \square \rightarrow [F SRH] \rightarrow [EXEC]
File deletion	\bigcirc		EDIT	PROG	N \rightarrow FLE No. \rightarrow \square \rightarrow [F DELETE] \rightarrow [EXEC]
Program registration	\bigcirc		EDIT	PROG	\square \rightarrow [READ] \rightarrow [EXEC]
Output of all programs			EDIT	PROG	
Output of one program			EDIT	PROG	\rightarrow Program No. \rightarrow
Program collation			EDIT	PROG	File head search \rightarrow Program No. \rightarrow [READ] \rightarrow [EXEC]

NOTE \bigcirc mark shows the corresponding key is " 1 ".

2. OPERATION LIST

Play-back

Function	$\begin{array}{\|l\|} \hline \text { KEY } \\ \text { SW } \end{array}$	$\begin{gathered} \text { PWE } \\ =1 \end{gathered}$	Mode	Function key	Operation
NC data input	\bigcirc		$\begin{aligned} & \hline \text { TJOG } \\ & \text { THND } \end{aligned}$	PROG	$\begin{aligned} & \text { Move machine. } \rightarrow \\ & \mathrm{X} \mathrm{Y} \text { or } \mathrm{Z} \\ & \rightarrow \text { meser } \rightarrow \text { NC data } \rightarrow \text { meser } \\ & \rightarrow \text { EoB } \rightarrow \text { meser } \end{aligned}$

NOTE O mark shows the corresponding key is " 1 ".
Clear

Function	$\begin{gathered} \hline \text { KEY } \\ \text { SW } \end{gathered}$	$\begin{gathered} \text { PWE } \\ =1 \end{gathered}$	Mode	Function key	Operation
Memory all clear			At pow-er-up	-	RESET and oeleit
					Only for sub side of twopath control
					$\text { CAN and } 2$
					Only for loader side
					$\text { CAN and } 5$
Parameters/offset	-	\bigcirc	At pow-er-up	-	RESET
					Only for main side of twopath control
					and 1
					Only for sub side of twopath control
					and 2
					Only for loader side
					$\text { RESET and } 5$
Program clear	-	\bigcirc	At pow-er-up	-	oetere
					Only for main side of twopath control
					$\text { ouere } \text { and } 1$
					Only for sub side of twopath control
					and 2
					Only for loader side
					$\text { ourre and } 5$

57

Function	KEY SW	PWE =1	Mode	Function key	Operation
Program being edited at power failure (PS101)			-	-	PRog and

NOTE O mark shows the corresponding key is " 1 ".

Manual operation

Function	KEY SW	PWE $=1$	Mode	Function key	Operation
Manual reference point return			JOG		Turn on Reference point re- turn switch $\rightarrow[+X][-X][+Z]$ or $[-Z] \rightarrow$ Reference point return LED lit.
Jog feed			JOG		$[+X][-X][+Z]$ or [-Z] \rightarrow Set jog feedrate \rightarrow (Rapid tra- verse button, if requred)
Incremen- tal feed			INC		(Move distance selection switch) $\rightarrow[+X][-X][+Z] ~ o r ~$ $[-Z] \rightarrow$ (Rapid traverse but- ton, if required)
Manual handle feed			HND		(Axis selection switch) \rightarrow (Turn manual pulse genera- tion) \rightarrow (Handle magnifica- tion selection)

2. OPERATION LIST

Registeration from NC tape

Function	$\begin{aligned} & \mathrm{KEY} \\ & \mathrm{SW} \end{aligned}$	$\begin{gathered} \text { PWE } \\ =1 \end{gathered}$	Mode	Function key	Operation
One program registeration	\bigcirc		EDIT	PROG	
Plural program registeration	\bigcirc		EDIT	PROG	$\begin{aligned} & {[(\text { OPRT })] \rightarrow \infty \rightarrow(\bigcirc)} \\ & \rightarrow \text { PProgram No. }) \rightarrow[\text { READ }] \\ & \rightarrow[\text { EXEC }] \end{aligned}$
Collation of program in memory and NC tape			EDIT	PROG	$\begin{aligned} & {[(\mathrm{OPRT})] \rightarrow \infty \rightarrow} \\ & {[\mathrm{READ}] \rightarrow[\mathrm{EXEC}]} \end{aligned}$

NOTE mark shows the corresponding key is " 1 ".
DISPLAY

Function	$\begin{gathered} \text { KEY } \\ \text { SW } \end{gathered}$	$\begin{gathered} \text { PWE } \\ =1 \end{gathered}$	Mode	Function key	Operation
Program memory used			EDIT	PROG	[LIB]
Command			$\begin{array}{\|c\|c\|} \hline \text { MEM or } \\ \text { MDI } \end{array}$	PROG	Current command, Modal command [CURRENT]
					Current command, Next command [NEXT]
					MDI command, Modal command [MDI]
					Current program in memory [PRGRM]
					Current block and Current position [CHECK]
Current position				POS	Position in workpiece coordinate [ABS]
					Position in relative coordinate [REL]
					Overall coordinate
					[ALL]
Alarm			-		[ALARM]

59

Function	$\begin{array}{l}\text { KEY } \\ \text { SW }\end{array}$	$\begin{array}{c}\text { PWE } \\ =\mathbf{1}\end{array}$	Mode	$\begin{array}{l}\text { Function } \\ \text { key }\end{array}$	Operation		
$\begin{array}{l}\text { Alarm } \\ \text { history }\end{array}$				wessace		$]$	[HISTRY]
:---							
Screen clear							

2

NOTE O mark shows the corresponding key is " 1 ".

GRAPHIC FUNCTION (T series)

Function	$\begin{array}{l}\text { KEY } \\ \text { SW }\end{array}$	$\begin{array}{c}\text { PWE } \\ \text { =1 }\end{array}$	Mode	$\begin{array}{c}\text { Function } \\ \text { key }\end{array}$	Operation		
$\begin{array}{l}\text { Parameter } \\ \text { setting }\end{array}$				GRAPH		$]$ [G.PRM]	Tool path
:---							

NOTE1 O mark shows the corresponding key is "1".
NOTE2 Function key $\begin{aligned} & \text { GRAPH }\end{aligned}$ is $\begin{aligned} & \text { cussom } \\ & \text { grape }\end{aligned}$ for small MDI.

2. OPERATION LIST

GRAPHIC FUNCTION (M series)

Function	$\begin{aligned} & \text { KEY } \\ & \text { SW } \end{aligned}$	$\begin{gathered} \hline \text { PWE } \\ =1 \end{gathered}$	Mode	Function key	Operation
Displaying of blank figure				GRAPH	$\begin{aligned} & \text { Press } \text { GAAPH } \text { several times } \\ & \rightarrow \text { PATH GRAPHIC screen } \\ & \rightarrow[\text { [LANK }] \rightarrow[[\text { OPRT) } \rightarrow \\ & {[\text { [ANEW } \rightarrow[+ \text { ROT }][- \text { ROT }]} \\ & {[+ \text { TILT }][-T \text { TILT }]} \end{aligned}$
Displaying solid graphic			MEM	GAAPH	Press ${ }^{\text {GRAPH }}$ several times \rightarrow PATH GRAPHIC screen $\rightarrow[$ EXEC $] \rightarrow[($ OPRT $)] \rightarrow$ $[$ A.ST] or [F.ST]
					Temporary stop of graph [STOP]
					Execu- tion af- ter tem- Execution after temporary stop porary [A.ST] or [F.ST]
					stop Display of head of part program after temporary stop
					[REWIND] \rightarrow [A.ST] or [F.ST]
In the solid graphic where it drew, the direction of displaying is changed and it draws again.				GRAPH	Press \square several times \rightarrow PATH GRAPHIC screen \rightarrow [REVIEW] \rightarrow [(OPRT)] \rightarrow [ANEW] \rightarrow [+ROT][-ROT] [+TILT][-TILT]
Tri-plane view displaying				GAPA	$\begin{aligned} & \text { Press } \begin{array}{l} \text { GRAPH } \\ \rightarrow \text { PATH GRAPHIC screen } \end{array} \\ & \rightarrow \infty \rightarrow[3-\mathrm{PLN}] \rightarrow \\ & \rightarrow \square \\ & {[(\mathrm{OPRT})] \rightarrow[\curvearrowleft][\leftarrow][\rightarrow]} \\ & {[\uparrow][\downarrow]} \end{aligned}$

NOTE1 O mark shows the corresponding key is " 1 ".
NOTE2 Function key GRAPH is $\begin{aligned} & \text { cissom } \\ & \text { oanaem }\end{aligned}$ for small MDI.

2. OPERATION LIST

HELP FUNCTION

Function	KEY SW	PWE $\mathbf{= 1}$	Mode	Function key	Operation
Displaying INITIAL MENU screen				HELP	HELP
Displaying ALARM DETAIL screen				HELP	[ALARM] \rightarrow Alarm No. \rightarrow [SELECT]
Displaying OPERA- TION METHOD screen				HELP	[OPERAT] \rightarrow Item No. of op- eration method \rightarrow [SELECT]
Displaying PARAME- TER TABLE Screen				HELP	[PARAM]

SELF DIAGNOSTIC FUNCTION

Function	$\begin{gathered} \text { KEY } \\ \text { SW } \end{gathered}$	$\begin{gathered} \text { PWE } \\ =1 \end{gathered}$	Mode	Function key	Operation
Displaying DIAGNOSTIC screen				system	[DGNOS] 1. Page change keys \square PAGE PAGE \downarrow 2. Number of the diagnostic data \rightarrow [NO.SRH]

BOOT

Function	$\begin{aligned} & \hline \text { KEY } \\ & \text { SW } \end{aligned}$	$\begin{gathered} \text { PWE } \\ =1 \end{gathered}$	Mode	Function key	Operation
Displaying system monitor screen			At powerup	-	and the soft key to its left
Reading file from memory card					Move cursor to 1. SYSTEM DATA LODING on system monitor screen \rightarrow [SELECT] \rightarrow Move cursor to file to be read \rightarrow [SELECT] \rightarrow [YES]
Displaying detail screen for flash ROM file list					Move cursor to 2. SYSTEM DATA CHECK on system monitor screen \rightarrow [SELECT] \rightarrow Move cursor to item of which to display details \rightarrow [SELECT]
Deleting file in flash ROM					Move cursor to 3. SYSTEM DATA DELETE on system monitor screen \rightarrow [SELECT] \rightarrow Move cursor to file to be deleted \rightarrow [SELECT] \rightarrow [YES]

63

| Function | KEY
 SW | PWE
 =1 | Mode | Function
 key | Operation |
| :--- | :--- | :--- | :--- | :--- | :--- |$|$| Outputting |
| :--- |
| file in flash
 ROM to
 memory
 card |

P-CODE LOADER

Function	KEY SW	PWE =1	Mode	Function key	Operation	
Starting P- CODE LOADER			At power- up	-	CAN	and

3. G CODE

3.1 T series

G code list (T series) (1/3)

G code			Group	Function
A	B	C		
G00	G00	G00	01	Positioning (Rapid traverse)
G01	G01	G01		Linear interpolation (Cutting feed)
G02	G02	G02		Circular interpolation CW or Helical interpolation CW
G03	G03	G03		Circular interpolation CCW or Helical interpolation CCW
G04	G04	G04	00	Dwell
G05	G05	G05		High speed cycle cutting
G07	G07	G07		Hypothetical axis interpolation
$\begin{gathered} \hline \text { G07.1 } \\ \text { (G107) } \end{gathered}$	$\begin{gathered} \hline \text { G07.1 } \\ \text { (G107) } \end{gathered}$	$\begin{gathered} \text { G07.1 } \\ \text { (G107) } \end{gathered}$		Cylindrical interpolation
G10	G10	G10		Programmable data input
G10.6	G10.6	G10.6		Tool retract \& recover
G11	G11	G11		Programmable data input cancel
$\begin{aligned} & \hline \text { G12.1 } \\ & \text { (G112) } \end{aligned}$	$\begin{aligned} & \hline \text { G12.1 } \\ & \text { (G112) } \end{aligned}$	$\begin{gathered} \hline \text { G12.1 } \\ \text { (G112) } \end{gathered}$	21	Polar coordinate interpolation mode
$\begin{aligned} & \text { G13.1 } \\ & \text { (G113) } \end{aligned}$	$\begin{aligned} & \text { G13.1 } \\ & \text { (G113) } \end{aligned}$	$\begin{gathered} \text { G13.1 } \\ \text { (G113) } \end{gathered}$		Polar coordinate interpolation cancel mode
G17	G17	G17	16	XpYp plane selection Xp: X axis or parallel axis
G18	G18	G18		ZpXp plane selection Yp: Y axis or parallel axis
G19	G19	G19		YpZp plane selection Zp: Z axis or parallel axis
G20	G20	G70	06	Input in inch
G21	G21	G71		Input in mm
G22	G22	G22	09	Stored stroke check function on
G23	G23	G23		Stored stroke check function off
G25	G25	G25	08	Spindle speed fluctuation detection off
G26	G26	G26		Spindle speed fluctuation detection on
G27	G27	G27	00	Reference position return check
G28	G28	G28		Return to reference position
G30	G30	G30		2nd, 3rd and 4th reference position return
G30.1	G30.1	G30.1		Floating reference position return
G31	G31	G31		Skip function, multi-step skip function, torque limit skip
G32	G33	G33	01	Thread cutting
G34	G34	G34		Variable-lead thread cutting
G35	G35	G35		Circular thread cutting CW
G36	G36	G36		Circular thread cutting CCW
G36	G36	G36	00	Automatic tool compensation X
G37	G37	G37		Automatic tool compensation Z
G39	G39	G39		Corner circular interpolation
G40	G40	G40	07	Tool nose radius compensation cancel
G41	G41	G41		Tool nose radius compensation left
G42	G42	G42		Tool nose radius compensation right

65

G code list (T series) (2/3)

G code			Group	Function
A	B	C		
G50	G92	G92	00	Coordinate system setting or max. spindle speed setting
G50.3	G92.1	G92.1		Workpiece coordinate system preset
$\begin{aligned} & \text { G50.2 } \\ & \text { (G250) } \end{aligned}$	$\begin{gathered} \hline \text { G50.2 } \\ \text { (G250) } \end{gathered}$	$\begin{gathered} \text { G50.2 } \\ \text { (G250) } \end{gathered}$	20	Polygonal turning cancel
$\begin{gathered} \hline \text { G51.2 } \\ \text { (G251) } \end{gathered}$	$\begin{gathered} \text { G51.2 } \\ \text { (G251) } \end{gathered}$	$\begin{gathered} \hline \text { G51.2 } \\ \text { (G251) } \end{gathered}$		Polygonal turning
G52	G52	G52	00	Local coordinate system setting
G53	G53	G53		Machine coordinate system setting

G54	G54	G54	14	Workpiece coordinate system 1 selection
G55	G55	G55		Workpiece coordinate system 2 selection
G56	G56	G56		Workpiece coordinate system 3 selection
G57	G57	G57		Workpiece coordinate system 4 selection
G58	G58	G58		Workpiece coordinate system 5 selection
G59	G59	G59		Workpiece coordinate system 6 selection
G65	G65	G65	00	Macro calling
G66	G66	G66	12	Macro modal call
G67	G67	G67		Macro modal call cancel
G68	G68	G68	04	Mirror image for double turrets ON or balance cut mode
G69	G69	G69		Mirror image for double turrets OFF or balance cut mode cancel
G70	G70	G72	00	Finishing cycle
G71	G71	G73		Stock removal in turning
G72	G72	G74		Stock removal in facing
G73	G73	G75		Pattern repeating
G74	G74	G76		End face peck drilling
G75	G75	G77		Outer diameter/internal diameter drilling
G76	G76	G78		Multiple threading cycle
G71	G71	G72	01	Traverse grinding cycle (for grinding machine)
G72	G72	G73		Traverse direct constant-dimension grinding cycle (for grinding machine)
G73	G73	G74		Oscilation grinding cycle (for grinding machine)
G74	G74	G75		Oscilation direct constant-dimension grinding cycle (for grinding machine)
G80	G80	G80	10	Canned cycle for drilling cancel
G83	G83	G83		Cycle for face drilling
G84	G84	G84		Cycle for face tapping
G86	G86	G86		Cycle for face boring
G87	G87	G87		Cycle for side drilling
G88	G88	G88		Cycle for side tapping
G89	G89	G89		Cycle for side boring

3. G CODE

G code list (T series) (3/3)

G code			Group	Function
A	B	C		
G90	G77	G20	01	Outer diameter/internal diameter cutting cycle
G92	G78	G21		Thread cutting cycle
G94	G79	G24		Endface turning cycle
G92.1	G92.1	G92.1	00	Workpiece coordinate system preset
G96	G96	G96	02	Constant surface speed control
G97	G97	G97		Constant surface speed control cancel
G98	G94	G94	05	Per minute feed
G99	G95	G95		Per revolution feed
-	G90	G90	03	Absolute programming
-	G91	G90		Incremental programming
-	G98	G98	11	Return to initial level
-	G99	G99		Return to R point level

Explanation

1. If the CNC enters the clear state (see bit 6 (CLR) of parameter 3402) when the power is turned on or the CNC is reset, the modal G codes change as follows.
(1) G codes marked with \square in the above table are enabled.
(2) When the system is cleared due to power-on or reset, whichever specified, either G20 or G21, remains effective.
(3) Bit 7 of parameter No. 3402 can be used to specify whether G22 or G23 is selected upon power-on. Resetting the CNC to the clear state does not affect the selection of G22 or G23.
(4) Setting bit 0 (G01) of parameter 3402 determines which code, either G00 or G01, is effective.
(5) Setting bit 3 (G91) of parameter 3402 determines which code, either G90 or G91, is effective.
2. G codes of group 00 except G10 and G11 are single-shot G codes.
3. G codes of different groups can be specified in the same block. If G codes of the same group are specified in the same block, the G code specified last is valid.

3.2 M series

G code list (M series) ($1 / 3$)

G code	Group	Function	
G00	01	Positioning	
G01		Linear interpolation	
G02		Circular interpolation/Helical interpolation CW	
G03		Circular interpolation/Helical interpolation CCW	
G02.2, G03.2		Involute interpolation	
G02.3, G03.3		Exponential interpolation	
G04	00	Dwell, Exact stop	
G05		High speed cycle machining	
G05.1		Smooth interpolation	
G07		Hypothetical axis interpolation	
G07.1 (G107)		Cylindrical interpolation	
G08		Look-ahead control	
G09		Exact stop	
G10		Programmable data input	
G10.6		Tool retract \& recover	
G11		Programmable data input mode cancel	
G12.1	25	Polar coordinate interpolation mode	
G13.1		Polar coordinate interpolation cancel mode	
G15	17	Polar coordinates command cancel	
G06		Polar coordinates command	
G17	02	XpYp plane selection	$\mathrm{Xp}: \mathrm{X}$ axis or its parallel axis Yp: Y axis or its parallel axis $\mathrm{Zp}: Z$ axis or its parallel axis
G18		ZpXp plane selection	
G19		YpZp plane selection	
G20	06	Input in inch	
G21		Input in mm	
G22	04	Stored stroke check function on	
G23		Stored stroke check function off	
G25	24	Spindle speed fluctuation detection off	
G26		Spindle speed fluctuation detection on	
G27	00	Reference position return check	
G28		Return to reference position	
G29		Return from reference position	
G30		2nd, 3rd and 4th reference position return	
G30.1		Floating reference position return	
G31		Skip function, Multi-step skip function	
G33	01	Thread cutting	
G37	00	Automatic tool length measurment	
G39		Corner offset circular interpolation	
G40	07	Cutter compensation cancel/Three dimentional tool offset cancel	
G41		Cutter compensation left/Three dimentional tool offset	
G42		Cutter compensation right	
G40.1 (G150)	19	Normal direction control cancel mode	
G41.1 (G151)		Normal direction control left side on	
G42.1 (G152)		Normal direction control right side on	

3. G CODE

G code list (M series) (2/3)

G code	Group	Function
G43	08	Tool length compensation + direction
G44		Tool length compensation - direction
G45	00	Tool offset increase
G46		Tool offset decrease
G47		Tool offset double increase
G48		Tool offset double decrease
G49	08	Tool length compensation cancel
G50	11	Scaling cancel
G51		Scaling
G50.1	22	Programmable mirror image cancel
G51.1		Programmable mirror image
G52	00	Local coordinate system setting
G53		Machine coordinate system selection
G54	14	Workpiece coordinate system 1 selection
G54.1		Additional workpiece coordinate system selection
G55		Workpiece coordinate system 2 selection
G56		Workpiece coordinate system 3 selection
G57		Workpiece coordinate system 4 selection
G58		Workpiece coordinate system 5 selection
G59		Workpiece coordinate system 6 selection
G60	00	Single direction positioning
G61	15	Exact stop mode
G62		Automatic corner override
G63		Tapping mode
G64		Cutting mode
G65	00	Macro call
G66	12	Macro modal call
G67		Macro modal call cancel
G68	16	Coordinate rotation/Three dimensional coordinate conversion
G69		Coordinate rotation cancel/Three dimensional coordinate conversion cancel
G72.1	00	Rotation copy
G72.2		Parallel copy
G73	09	Peck drilling cycle
G74		Counter tapping cycle
G75	01	Plunge grinding cycle (for grinding machine)
G76	09	Fine boring cycle
G77	01	Direct constant-dimension plunge grinding cycle (for grinding machine)
G78		Continuous-feed surface grinding cycle (for grinding machine)
G79		Intermittent-feed surface grinding cycle (for grinding machine)

G code list (M series) (3/3)

G code	Group	Function
G80	09	Canned cycle cancel/external operation function cancel
G81		Drilling cycle, spot boring cycle, external operation function, simple electric gear box
G81.1		Chopping function
G82		Drilling cycle or counter boring cycle
G83		Peck drilling cycle
G84		Tapping cycle
G85		Boring cycle
G86		Boring cycle
G87		Back boring cycle
G88		Boring cycle
G89		Boring cycle
G90	03	Absolute command
G91		Increment command
G92	00	Setting for work coordinate system or clamp at maximum spindle speed
G92. 1		Work coordinate system preset
G94	05	Feed per minute
G95		Feed per rotation
G96	13	Constant surface speed control
G97		Constant surface speed control cancel
G98	10	Return to initial point in canned cycle
G99		Return to R point in canned cycle
G160	20	In-feed control function cancel (for grinding machine)
G161		In-feed control function (for grinding machine)

Explanation

1. When the clear state (bit 6 (CLR) of parameter No. 3402) is set at power-up or reset, the modal G codes are placed in the states described below.
(1) The modal G codes are placed in the states marked with \square as indicated in the above table.
(2) G20 and G21 remain unchanged when the clear state is set at power-up or reset.
(3) Which status G22 or G23 at power on is set by parameter G23 (No.3402\#7). However, G22 and G23 remain unchanged when the clear state is set at reset.
(4) The user can select G00 or G01 by setting bit 0 (G01) of parameter No. 3402.
(5) The user can select G90 or G91 by setting bit 3 (G91) of parameter No. 3402.
(6) The user can select G17, G18, or G19 by setting bit 1 (parameter G18) and bit 2 (parameter G19) of parameter No. 3402.
2. G codes other than G10 and G11 are one-shot G codes.
3. Multiple G codes can be specified in the same block if each G code belongs to a different group. If multiple G codes that belong to the same group are specified in the same block, only the last G code specified is valid.

4. PROGRAM FORMAT

Function	Explanation
Positioning (G00)	
Linear interpolation (G01)	
Circular interpolation (G02, G03)	
Helical interpolation (G02, G03)	

4. PROGRAM FORMAT

Function	Explanation
Involute interpolation (G02.2, G03.2)	
Exponential interpolation (G02.3, G03.3)	
Dwell (G04)	(Example) G94 G04 P10; Dwell by 10 seconds G95 G04 X30; Dwell by 30 revolutions

4. PROGRAM FORMAT

Function	Explanation
$\begin{array}{l}\text { Exact stop } \\ \text { (G09, G61) }\end{array}$	$\begin{array}{l}\text { Speed } \\ \text { (Example) } \\ \text { Cycle 1: connection 2, repetition 1 }\end{array}$
Cycle 2: connection 3, repetition 3	
Cycle 3: connection 0, repetition 1	
G05P10001L2;	
Cycle is executed as 1, 2, 2, 2, 3, 1, 2, 2, 2, 3	

75

4. PROGRAM FORMAT

Function	Explanation
Smooth interpolation (G05.1)	Either of two types of machining can be selected, depending on the program command. - For those portions where the accuracy of the fig- ure is critical, such as at corners, machining is performed exactly as specified by the program command. - For those portions having a large radius of curva- ture where a smooth figure must becreated, points along the machining path are interpolated with a smooth curve, calculated from the polygo- nal lines specified with the program command (smooth interpolation).
Smooth interpolation can be specified in high-speed	
contour control mode.	

Tape format	T series	M series
G05.1 Q2X0YOZO; Starting of smooth interpolation mode		\bigcirc
G07 α 0; Hypothetical axis setting G07 α 1; Hypothetical axis cancel Where, α is any one of the addresses of the controlled axes.		
G07.1 Cr ; Cylindrical interpolation mode C: Rotary axis name r: Radius of cylinder G07. 1 C0; Cylindrical interpolation mode cancel	\bigcirc	\bigcirc
G08P_; P1: Turn on look-ahead control mode. PO: Turn off look-ahead control mode.		\bigcirc

4. PROGRAM FORMAT

Function	Explanation by program offset values (G10)
The tool compensation amount can be set or changed with the G10 command. When G10 is used in absolute input (G90), the com- pensation amount specified in the command be- comes the new tool compensation amount. When G10 is used in incremental input (G91), the com- pensation amount specified in the command is added to the amount currently set.	

4. PROGRAM FORMAT

Function	Explanation
Polar coordinate interpolation mode (G12.1, G13.1)	
Polar coordinate command mode (G15, G16)	
XpYp plane selection (G17) ZpXp plane selection (G18) YpZp plane selection (G19)	
Inch/metric conversion (G20, G21)	
Stored stroke limit check on (G22) Stored stroke limit check off (G23)	

81

4. PROGRAM FORMAT

Function	Explanation
Spindle speed fluctuation detection on (G26) Spindle speed fluctuation detection off (G25)	(Example) (1) When an alarm is raised after a specified spindle speed is reached pecified speed : (Speed specified by address S and five-digit value) \times (spindle override) Actual speed :Speed detected with a position coder p: Time elapses since the specified speed changes until a check starts. q : (Percentage tolerance for a check to start) \times (specified speed) \mathbf{r} : (Percentage fluctuation detected as an alarm condition) \times (specified speed) d : Fluctuation detected as an alarm (specified in parameter (No.4913)) An alarm is issued when the difference between the specified speed and the actual speed exceeds both r and d.
Reference position return check (G27)	
Reference position return (G28) 2nd, 3rd, 4th reference position return (G30) Floating reference position return (G30.1)	
Return to reference position return start position (G29)	Reference position

4. PROGRAM FORMAT

Function	Explanation
Skip function (G31)	
Multi-step skip function (G31)	
Torque limit skip function (G31)	
Equal lead thread cutting (G32) Thread cutting (G33)	
Variable lead thread cutting (G34)	
Circular thread cutting (G35, G36)	
Automatic tool compensation (G36, G37)	

Tape format	T series	M series
G31IP_F_;	\bigcirc	\bigcirc
Move command G31 IP_F_P_; F_: Feedrate P_: P1-P4 Dwell $\begin{aligned} & \text { G04X (U, P)_(Q_); } \\ & \text { X(U, P)_: Dwell time } \\ & \text { Q_: Q1-Q4 } \end{aligned}$	\bigcirc	\bigcirc
G31 P99 IP_F_; G31 P98 IP_F_; G31: One-shot G code (G code effective only in the block in which it is issued)	\bigcirc	
G32 IP_F_;	\bigcirc	
G33 IP_F_;		\bigcirc
G34 IP_FtKk ; f: longer axis lead at the start position k: increase/decrease value per spindle revolution	\bigcirc	
$\left\{\begin{array}{l} \text { G35 } \\ \text { G36 } \end{array}\right\} \text { IP_ }_{-}\left\{\begin{array}{l} I_{-} \mathrm{K}_{-} \\ \mathrm{R}_{-} \end{array}\right\} \mathrm{F}_{-} \mathrm{Q}_{-}$	\bigcirc	
G36X xa ; G37Z za ; Specified position	\bigcirc	

4. PROGRAM FORMAT

Function	Explanation
Automatic tool length measurement (G37)	Compensation value=(Current compensation value $)+[($ Coordinates of the point at which the tool is stopped)-(Coordinates of the programmed measurement position)]
Tool nose radius compensation (G40, G41, G42)	
Cutter compensation B (G39 to G42) Cutter compensation C (G40 to G42)	
Three dimensional tool compensation (G40, G41)	- Programmed path - Path after three-dimensional tool compensation \rightarrow Three-dimensional tool compensation vector The three-dimensional tool compensation vector is obtained from the following expressions: $\begin{aligned} & V x=\frac{i \cdot r}{p} \quad \begin{array}{l} \text { (Vector component along the } \\ \text { Xp-axis) } \end{array} \\ & V y=\frac{j \cdot r}{p} \quad \begin{array}{l} \text { (Vector component along the } \\ Y p-a x i s) \end{array} \\ & V z=\frac{k \cdot r}{p} \quad \begin{array}{l} \text { (Vector component along the } \\ \text { Zp-axis) } \end{array} \end{aligned}$ In the above expressions, i, j, and k are the values specified in addresses I, J, and K in the block. r is the offset value corresponding to the specified offset number. p is the value obtained from the following expression: $p=\sqrt{i^{2}+j^{2}+k^{2}}$

87

Tape format	T series	M series
G92 IP_; Sets the workpiece coordinate system. (It can be set with G54 to G59.) $\mathrm{H} \bigcirc$; \quad Specifies an offset number for tool length offset. G90 G37 IP_; Absolute command•G37 is valid only in the block in which it is specified. IP_ indicates the X -, Y -, Z --, or fourth axis.		\bigcirc
$\left\{\begin{array}{l} \text { G40 } \\ \text { G41 } \\ \text { G42 } \end{array}\right\} \text { IP_ }$	\bigcirc	
G39X(I)_Y(J)_; Corner offset circular interpolation $\left\{\begin{array}{l} \text { G17 } \\ \text { G18 } \\ \text { G19 } \end{array}\right\} \quad\left\{\begin{array}{c} \text { G40 } \\ \text { G41 } \\ \text { G42 } \end{array}\right\} \quad D(\mathrm{H})_{-} ;$ $D(H)$: Tool offset number		\bigcirc
G41 Xp_Yp_Zp_I_J_K_D_; (Start up)		\bigcirc

4. PROGRAM FORMAT

Function	Explanation
Normal direction control (G40.1, G41.1 G42.1)	
Tool length compensation A, B, C (G43, G44, G49)	
$\begin{aligned} & \hline \hline \text { Tool offset } \\ & \text { (G45 to G48) } \end{aligned}$	
Coordinate system setting Spindle speed setting (G50)	
Scaling (G50, G51)	P_{1} to P_{4} : Programmed shape P_{1} ' to P_{4} : Scaled chape PO : Scaling center

4. PROGRAM FORMAT

Function	Explanation
Programmable mirror image (G50.1, G51.1)	a / b : X-axis scaling magnification c / d : Y -axis scaling magnification 0 : Scaling center
Polygon turning (G51.2, G50.2)	
Local coordinate system setting (G52)	
Machine coordinate system setting (G53)	

4

4. PROGRAM FORMAT

Function	Explanation
Work coordinate system 1 to 6 selection (G54 to G59)	EXOFS:External workpiece zero point offset ZOFS1 to ZOFS6: Reference position offset for workpiece coordinate system 1 to 6
Additional work coordinate system selection (G54.1)	(Example) G54.1P12 ; Selecting additional work coordinate system 12
Single direction positioning (G60)	$\text { IP } \longleftrightarrow \longleftrightarrow$
Exact stop mode (G61)	
Automatic corner override (G62	Override is applied from a to b
Tapping mode (G63)	
Cutting mode (G64)	

Tape format	T series	M series
G54 IP_; Work coordinate system 1 selection G55 IP_; Work coordinate system 2 selection G56 IP_; Work coordinate system 3 selection G57 IP_; Work coordinate system 4 selection G58IP_; Work coordinate system 5 selection G59IP_; Work coordinate system 6 selection		0
G54.1 Pn; (n=1 to 300)		
G60IP_;		

4

4. PROGRAM FORMAT

| Function | Main program |
| :--- | :--- | :--- |
| Macro call | |
| (G65) | |

Tape format	T series	M series
G65 P_L_; P: Program number L: Repetition count (1 to 9999)	\bigcirc	\bigcirc
G66 P_L_; G67; Cancel P: Program number L: Repetition count (1 to 9999)	\bigcirc	\bigcirc
G68 ; Mirror image for double turrets G69 ; Mirror image cancel	\bigcirc	
$\left\{\begin{array}{l} \text { G17 } \\ \text { G18 } \\ \text { G19 } \end{array}\right\} \quad \text { G68 (G68.1) } \alpha _\beta _R_{-} \text {; }$ G69 ; (G69.1) $\alpha, \beta: 2$ axes corresponding to G17, G18, G19 R: Rotation angle	\bigcirc	\bigcirc
		\bigcirc

4

Function	Explanation
Figure copy (G72.1, G72.2)	Machining can be repeated after moving or rotating the figure using a subprogram.

Tape format	T series	M series
Rotational copy Xp-Yp plane (specified by G17): G72.1 P_L_Xp_Yp_R_; Zp-Xp plane (specified by G18): G72.1 P_L_Zp_Xp_R_; Yp-Zp plane (specified by G19): G72.1 P_L_Yp_Zp_R_; P : Subprogram number L : Number of times the operation is repeated Xp : Center of rotation on the Xp axis (Xp: X-axis or an axis parallel to the Xaxis) Yp : Center of rotation on the $Y p$ axis (Yp; Y-axis or an axis parallel to the Y axis) Zp : Center of rotation on the Zp axis (Zp: Z-axis or an axis parallel to the Zaxis) R : Angular displacement (A positive value indicates a counterclockwise angular displacement. Specify an incremental value.) Linear copy Xp-Yp plane (specified by G17): G72.2 P_L_I_J_; Zp-Xp plane (specified by G18): G72.2 P_L_K_I_; Yp-Zp plane (specified by G19): G72.2 P_L_J_K_; P : Subprogram number L : Number of times the operation is repeated I: Shift along the Xp axis J : Shift along the Yp axis K : Shift along the Zp axis		\bigcirc

4. PROGRAM FORMAT

Function	Explanation
Canned cycle for lathes (G70 to G76) (G90, G92, G94)	Canned cycle G90: Outer diameter/internal diameter cutting cycle G92: Thread cutting cycle G94: End face turning cycle Multiple repetitive cycle G70: Finishing G71: Stock removal in turning G72: Stock removal in facing G73: Pattern repeating G74: End face peck drilling cycle G75: Outer diameter/internal diameter drilling cycle G76: Multiple thread cutting cycle (Example) G92 (The chamfered angle in the left figure is 45 degrees or less because of the delay in the servo system.)
Canned cycle for grinding (G71 - G74)	G71: Traverse grinding cycle G72: Traverse direct fixed-dimension grinding cycle G73: Oscillation grinding cycle G74: Oscillation direct fixed-dimention grinding cycle (Example) G71 G71A_B_CW_U___K_H__; A: First depth of cut B: Second depth of cut W: Grinding range U: Dwell time Maximum specification time: 99999.999 seconds I: Feedrate of A and B K: Feedrate of W H: Number of repetitions Setting value: 1 to 9999

99

4. PROGRAM FORMAT

4. PROGRAM FORMAT

Function	Explanation
Canned grinding cycle (G75, G77, G78, G79)	G75: Plunge grinding cycle G77: Direct constant-dimension plunge grinding cycle
(Example)	G78: Continuous-feed surface grinding cycle G79: Intermittent-feed surface grinding cycle
G75 I_J_K_X (Z)_R_F_P_L_ ;	
I: Depth-of-cut 1 (A sign in the command specifies the direction of cutting.)	
J: Depth-of-cut 2 (A sign in the command specifies the direction of cutting.)	
K: Total depth of cut	
$X(Z)$: Range of grinding (A sign in the command specifies the direction of grinding.)	
R: Feedrate for I and J	
F: Feedrate for $\mathrm{X}(\mathrm{Z})$	
P: Dwell time	
L: Grinding-wheel wear compensation (Note 1)	

4. PROGRAM FORMAT

4. PROGRAM FORMAT

Function	Explanation
Workpiece coordinate system preset (G92.1)	The workpiece coordinate system preset function presets a workpiece coordinate system shifted by manual intervention to the pre-shift workpiece coordinate system. The latter system is displaced from the machine zero point by a workpiece zero point offset value.
Feed/minute, Feed/revolution (G94, G95)	
Constant surface speed control (G96, G97)	
Constant surface speed control (G96, G97)	
Initial point return/ R point return (G98, G99)	
$\begin{aligned} & \hline \hline \text { Infeed control } \\ & \text { (G160, G161) } \end{aligned}$	(Example)

5. CUSTOM MACRO

5.1 Types of Variables

Type of variable	Variable number
Local variable	$\# 1-\# 33$
Common variable	$\# 100-\# 149$ $\# 500-\# 531$
Additional common variable (Note 1)	$\# 100-\# 199$ $500-\# 999$
System variable (Note 2)	$\# 1000-\# 19099$

NOTE1 Common variables \#150 to \#199 and \#532 to \#999 can be added. Part program length reduces by 8.5 m .
NOTE2 Details are shown in 5.2.

5.2 System Variable

Variable number	Contents	Purpose	Series
\#1000-\#1015	Corresponds to UI000 to UI015	Interface input signal	T/M
\#1032	Unified input of UI000 to UO015		
\#1100-\#1115	Corresponds to UOOOO to UO015	Interface output signal	T/M
\#1132	Unified output of UOOOO to UO015		
\#1133	Unified output of UO100 to UO131		
\#2001-\#2064	Wear offset value (Offset No. 1-64)	X axis offset	T
\#2701-\#2749	Geometry offset value (Offset No. 1-49)		
\#10001-\#10099	Wear offset value (Offset No. 1-99)		
\#15001-\#15099	Geometry offset value (Offset No. 1-99)		
\#2101-\#2164	Wear offset value (Offset No. 1-64)	Z axis offset	T
\#2801-\#2849	Geometry offset value (Offset No. 1-49)		
\#11001-\#11099	Wear offset value (Offset No. 1-99)		
\#16001-\#16099	Geometry offset value (Offset No. 1-99)		
\#2201-\#2264	Wear offset value (Offset No. 1-64)	Tool nose radius compensation	T
\#2901-\#2969	Geometry offset value (Offset No. 1-64)		
\#12001-\#12099	Wear offset value (Offset No. 1-99)		
\#17001-\#17099	Geometry offset value (Offset No. 1-99)		

Variable number	Contents	Purpose	Series
\#2301-\#2364	Wear offset value (Offset No. 1-64)	Imaginary tool tip position	T
\#2301-\#2364	Geometry offset value (Offset No. 1-64)		
\#13001-\#13099	Wear offset value (Offset No. 1-99)		
\#13001-\#13099	Geometry offset value (Offset No. 1-99)		
\#2401-\#2449	Wear offset value (Offset No. 1-49)	Y axis offset	T
\#2451-\#2499	Geometry offset value (Offset No. 1-49)		
\#14001-\#14099	Wear offset value (Offset No. 1-99)		
\#19001-\#19099	Geometry offset value (Offset No. 1-99)		
\#2001-\#2200	Tool compensation (offset no. 1-200)	Tool compensation (offset memory A)	M
\#10001-\#10999	Tool compensation (offset no. 1-999)		
\#2001-\#2200	Wear offset value (offset no. 1-200)	Tool compensation (offset memory B)	M
\#2201-\#2400	Geometry offset value (offset no. 1-200)		
\#10001-\#10999	Wear offset value (offset no. 1-999)		
\#11001-\#11999	Geometry offset value (offset no. 1-999)		
\#2001-\#2200	Wear offset of H code (offset no. 1-200)	Tool compensation (offset memory C)	M
\#2201-\#2400	Geometry offset of H code (offset no. 1-200)		
\#10001-\#10400	Wear offset of H code (offset no. 1-999)		
\#11001-\#11999	Geometry offset of H code (offset no. 1-999)		
\#12001-\#12999	Wear offset of D code (offset no. 1-999)		
\#13001-\#13999	Geometry offset of D code (offset no. 1-999)		
\#3000		Alarm	T/M
\#3001	Clock 1 (unit: 1ms)	Clock	T/M
\#3002	Clock 2 (unit: 1 hour)		
\#3003		Control of single block stop, wait signal for FIN	T/M
\#3004		Control of feedhold, feedrate override, exact stop check	T/M
\#3005		Setting	T/M
\#3007	Mirror image check signal	Status of mikrror image	T/M

5. CUSTOM MACRO

Variable number	Contents	Purpose	Series
\#3011	Year, month, day	Clock	T/M
\#3012	Hour, minute, second		
\#3901	No. of parts machined	No. of parts	T/M
\#3902	No. of parts required		
\#4001-\#4022	G code (group 01-22)	Modal information	T/M
\#4102	B code		
\#4107	D code		
\#4109	F code		
\#4111	H code		
\#4113	M code		
\#4114	Sequence number		
\#4115	Program number		
\#4119	S code		
\#4120	T code		
\#4130	P code		
\#5001-\#5008	1st axis block end position to 8th axis block end position	Block end position (Workpiece coordinate)	T/M
\#5021-\#5028	1st axis current position to 8th axis current position	Machine coordinate	T/M
\#5041-\#5048	1st axis current position to 8th axis current position	Workpiece coordinate	T/M
\#5061-\#5068	1st axis skip signal position to 8th axis skip signal position	Skip signal position (Workpiece coordinate)	T/M
\#5081-\#5088	1st axis tool offset value to 8th axis tool offset value	Tool offset value	T/M
\#5101-\#5108	1st axis servo position deviation to 8th axis servo position deviation	Servo position deviation	T/M
$\begin{aligned} & \hline \hline \# 2500 \\ & \# 2600 \\ & \# 2700 \\ & \# 2800 \end{aligned}$	External workpiece zero point offset value	1st axis 2nd axis 3rd axis 4th axis	M
$\begin{aligned} & \text { \#2501 } \\ & \text { \#2601 } \\ & \text { \#2701 } \\ & \text { \#2801 } \end{aligned}$	G54 workpiece zero point offset value	1st axis 2nd axis 3rd axis 4th axis	M
$\begin{aligned} & \hline \text { \#2502 } \\ & \# 2602 \\ & \# 2702 \\ & \# 2802 \end{aligned}$	G55 workpiece zero point offset value	1st axis 2nd axis 3rd axis 4th axis	M
$\begin{aligned} & \hline \hline \text { \#2503 } \\ & \text { \#2603 } \\ & \# 2703 \\ & \# 2803 \end{aligned}$	G56 workpiece zero point offset value	1st axis 2nd axis 3rd axis 4th axis	M

111

Variable number	Contents	Purpose	Series
$\begin{aligned} & \# 2504 \\ & \# 2604 \\ & \# 2704 \\ & \# 2804 \end{aligned}$	G57 workpiece zero point offset value	1st axis 2nd axis 3rd axis 4th axis	M
$\begin{aligned} & \hline \text { \#2505 } \\ & \# 2605 \\ & \# 2705 \\ & \# 2805 \end{aligned}$	G58 workpiece zero point offset value	1st axis 2nd axis 3rd axis 4th axis	M
$\begin{aligned} & \hline \# 2506 \\ & \# 2606 \\ & \# 2706 \\ & \# 2806 \end{aligned}$	G59 workpiece zero point offset value	1st axis 2nd axis 3rd axis 4th axis	M
\#5201-\#5208	External workpiece zero point offset value	1st axis to 8th axis	T/M
\#5221-\#5228	G54 workpiece zero point offset value	1st axis to 8th axis	T/M
\#5241-\#5248	G55 workpiece zero point offset value	1st axis to 8th axis	T/M
\#5261-\#5268	G56 workpiece zero point offset value	1st axis to 8th axis	T/M
\#5281-\#5288	G57 workpiece zero point offset value	1st axis to 8th axis	T/M
\#5301-\#5308	G58 workpiece zero point offset value	1st axis to 8th axis	T/M
\#5321-\#5328	G59 workpiece zero point offset value	1st axis to 8th axis	T/M
\#7001-\#7008	G54.1 P1 workpiece zero point offset value	1st axis to 8th axis	M
\#7021-\#7028	G54.1 P2 workpiece zero point offset value	1st axis to 8th axis	M
:	:		
\#7941-\#7948	G54.1 P48 workpiece zero point offset value	1st axis to 8th axis	M
\#14001-\#14008	G54.1 P1 workpiece zero point offset value	1st axis to 8th axis	M
\#14021-\#14028	G54.1 P2 workpiece zero point offset value	1st axis to 8th axis	M
:	:		
\#19980-\#19988	G54.1 P48 workpiece zero point offset value	1st axis to 8th axis	M

5. CUSTOM MACRO

5.3 Argument Assignment I/II

Correspondence Table between Argument Assignment I Addresses and Macro Variables		Correspondence Table between Argument Assignment II Addresses and Macro Variables	
Argument Assignment I Addresses	Macro Variables	Argument Assignment II Addresses	Macro Variables
A	\#1	A	\#1
B	\#2	B	\#2
C	\#3	C	\#3
D	\#7	I_{1}	\#4
E	\#8	J_{1}	\#5
F	\#9	K_{1}	\#6
H	\#11	I_{2}	\#7
I	\#4	J_{2}	\#8
J	\#5	K_{2}	\#9
K	\#6	I_{3}	\#10
M	\#13	J_{3}	\#11
Q	\#17	K_{3}	\#12
R	\#18	I_{4}	\#13
S	\#19	J_{4}	\#14
T	\#20	K_{4}	\#15
U	\#21	I_{5}	\#16
V	\#22	J_{5}	\#17
W	\#23	K_{5}	\#18
X	\#24	I_{6}	\#19
Y	\#25	J_{6}	\#20
Z	\#26	K_{6}	\#21
		1_{7}	\#22
		J_{7}	\#23
		K_{7}	\#24
		18	\#25
		J_{8}	\#26
		K_{8}	\#27
		19	\#28
		J_{9}	\#29
		K_{9}	\#30
		l_{10}	\#31
		J_{10}	\#32
		K_{10}	\#33

5.4 Arithmetic Commands

Purpose	Expression	Contents
Definition and substitution of variables	\#i=\#j	Definition, substitution
Addition arithmetic	\#i=\#j+\#k	Sum
	\#i=\#j- \#k	Subtraction
	\#i=\#jOR\#k	Logical sum (at every bit of 32 bits)
	\#i=\#jXOR\#k	Exclusive OR (at every bit of 32 bits)
Multiplication arithmetic	\#i=\#j*\#k	Product
	\#i=\#j\|\#k	Quotient
	\#i=\#jAND\#k	Logical product (at every bit of 32 bits)
Functions	\#i=SIN [\#j]	Sine (degree unit)
	\#i=ASIN [\#j]	Arcsine (degree unit)
	\#i=COS [\#j]	Cosine (degree unit)
	\#i=ACOS [\#j]	Arccosine (degree unit)
	\#i=TAN [\#j]	Tangent (degree unit)
	\#i=ATAN [\#j][[\#k]	Arctangent (degree unit)
	\#i=SQRT [\#j]	Square root
	\#i=ABS [\#]]	Absolute value
	\#i=BIN [\#j]	Conversion from BCD to BIN
	\#i=BCD [\#j]	Conversion from BIN to BCD
	\#i=ROUND [\#j]	Rounding off
	\#i=FIX [\#]]	Discard fractions less than 1
	\#i=FUP [\#\#]	Add 1 for fractions less than 1
	\#i=LN [\#]]	Logarithm
	\#i=EXP [\#\#]	Index
Combination of arithmetic operations	-	The above arithmetic operations and functions can be combined. The order of priority in an arithmetic operation is function, multiplication arithmetic then addition arithmetic.

5. CUSTOM MACRO

5.5 Control Command

Purpose	Expression	Kind of operation
Conditional branch Conditional execution	IF [<conditional expression>] GOTO n Branch to sequence number n. IF [<conditional expression>] THEN st Execute macro statement st.	\#j EQ \#k (=)
		\#j NE \#k (\ddagger)
		\#j GT \#k (>)
		\#j LT \#k (<)
		\#j GE \#k (\geqq)
		\#j LE \#k (\leqq)
Iteration	WHILE [<conditional expres- sion>] DO m $(m=1,2,3)$ If omitted conditional expression, blocks from DO m to END mare executed eternally.	\#j EQ \#k (=)
		\#j NE \#k (\ddagger)
		\#j GT \#k (>)
		\#j LT \#k (<)
		\#j GE \#k (\geqq)
		\#j LE \#k (\leqq)

5.6 Macro Call

Name	Format	Program No.	Parameter No.	Remarks
Simple call	G65P (program number) L (repetition count) <argument assignment>			Refer to 5.3 for argument assignment.
Modal call	G66P (program number) L (repetition count) <argument assignment>			
Macro call by G code	$\begin{aligned} & \text { Gxx } \\ & \text { <argument assignment> } \end{aligned}$	9010	6050 to	Refer to 5.3 for argument assignment. Set G or M code that calls a program specified in the parameter.
	Max. 10 G codes from G01-G64 and G68-G9999		6059	
	Mxx <argument assignment>	$\begin{gathered} 9020 \\ \text { to } \\ 9029 \end{gathered}$	$\begin{gathered} 6080 \\ \text { to } \\ 6089 \end{gathered}$	
	Max. 10 M codes from M006 to M99999999			
Sub- pro- gram call by M code	Mxx ; Mxx ; Max. 9 M codes from M006-M99999999	$\begin{gathered} \hline 9001 \\ \text { to } \\ 9009 \end{gathered}$	$\begin{gathered} \hline 6071 \\ \text { to } \\ 6079 \end{gathered}$	Displayed on program check screen but no MF nor M code is sent. Set an M code that calls a sub-program specified by the parameter.

Name	Format	Program No.	Parameter No.	Remarks
Sub-program call by T code	Tt ;	$\begin{gathered} \hline \text { P9000 } \\ \text { (Sub- } \\ \text { pro- } \\ \text { gram) } \end{gathered}$	$\begin{gathered} \hline 6001 \# 5 \\ \text { TCS } \end{gathered}$	Calls sub-program P9000. T code t is stored in common variable \#149 as an argument.
Multi- plex call				Can be called up to 4 loops including simple call and modal call.

5.7 Command Range

Item	Contents
Variables	Local variable: \#1-\#33 Common variable: $\# 100-\# 149, \# 500-\# 531$ Additional common variable: \#100-\#199, \#500-\#999 System variable: $\# 1000-\# 19099$
Value of variables	Maximum value $\pm 10^{47}$ Minimum value $\pm 10^{-29}$
Constant in expression	Maximum value ± 99999999 Minimum value ± 0.0000001 Decimal point possible
Arithmetic precision	Decimal 8 digits
Macro call duplex	Max. 4 loops
Iteration classification no.	1 to 3
Nesting	Max. 5 loops
Nesting of subprograms	Max. 4 loops (8 loops including macro calls)

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY

6.1 Displaying CNC Internal State

6.1.1 Procedure for displaying diagnostic screen

Display the CNC internal state as below:

SYSTEM		
$\begin{gathered} \Downarrow \\ {[D G N O S]} \end{gathered}$		
\downarrow		
\sqrt{V}		V
		Input a diagnostic data No. to be displayed.
Change by page change key		[NO.SRH]

6.1.2 Display of status in which command is not apparently executed (No. 000 - 015)

No.	Display	Internal status when 1 is displayed
000	WATING FOR FIN SIGNAL	M, S, T function is being executed
001	MOTION	Move command in automatic operation is being executed
002	DWELL	Dwell is being executed
003	IN-POSITION CHECK	In-position check is being performed
004	FEEDRATE OVER- RIDE 0\%	Override 0\%
005	INTERLOCK/ START-LOCK	Interlock is on. SPINDLE SPEED ARRIVAL CHECK
006	WUNCHING for spindle speed arrival signal to turn on	
011	READING	Data is being output via reader puncher inter- face
012	WAITING FOR (UN)CLAMP	Waiting for index table clamp/unclamp before B axis index table indexing start/after B axis index table indexing end to complete
013	JOG FEEDRATE OVERRIDE 0\%	Jog override 0\% 014 BACKGROUND ACTIVE SET, ESP, RRW OFF
EXTERNAL PRO- GRAM NUMBER	One of the emergency stop, external reset, re- set \& rewind or MDI panel reset key is on.	
015	External program number search is active.	
016		

6.1.3 Information indicating automatic operation stop, automatic idle statuses (No. 020 - 025)

No.	Display	Internal status when 1 is displayed
020	CUT SPEED UP/ DOWN	Set when emergency stop turns on or when servo alarm occurs
021	RESET BUTTON ON	Set when reset key turns on
022	RESET AND REWIND ON	Reset and rewind turned on
023	EMERGENCY STOP ON	Set when emergency stop turns on
024	RESET ON	Set when external reset, emergency stop, reset or reset \& rewind key is on.
025	STOP MOTION OR DWELL	A flag which stops pulse distribution. It is set to 1 in the following cases. (1) External reset is set to on. (2) Reset \& rewind is set to on. (3) Emergency stop is set to on. (4) Feed hold is set to on. (5) The MDI panel reset key turned on. (6) Switched to the manual mode (JOG/HANDLE/INC). (7) Other alarm occurred. (There is also an alarm which is not set.)

Causes for cycle start LED turned off

020	CUT SPEED UP/DOWN	1	0	0	0	1	0	0
021	RESET BUTTON ON	0	0	1	0	0	0	0
022	RESET AND REWIND ON	0	0	0	1	0	0	0
023	EMERGENCY STOP ON	1	0	0	0	0	0	0
024	RESET ON	1	1	1	1	0	0	0
025	STOP MOTION OR DWELL	1	1	1	1	1	1	0
Emer Exter MDI Rese Servo Chan Singl	ency stop signal input al reset signal input set button turned on \qquad \& rewind input \qquad alarm generation \qquad ed to another mode or feed hold block stop \qquad							

6.1.4 TH alarm statuses (No. 030, 031)

No.	Display	Internal status when 1 is displayed
030	CHARACTER NUMBER TH DATA	The position of the character which turned TH alarm on is displayed in the number of charac- ters from the beginning of the block at TH alarm.
031	TH DATA	Read code of character which turned TH alarm on

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY
6.1.5 Digital servo system alarm (No. 200, 201)

Diagnostic display of the detailed content of digital servo system alarm No. 414

No.	$\# 7$	$\# 6$	\#5	\#4	\#3	\#2	\#1	\#0						
200										OVL	LV	OVC	HCA	HVA
:---:	:---:	:---:	:---:	:---:										

OFA : Overflow alarm has occurred.
FBA : Wire breakage alarm has occurred. (See No. 201.)
DCA : Regenerative discharge circuit alarm has occurred.
HVA : Overvoltage alarm has occurred.
HCA : Abnormal current alarm has occurred.
OVC : Overcurrent alarm has occurred.
LV : Undervoltage alarm has occurred.
OVL : Overload alarm has occurred. (See No. 201.)

The detailed content of wire breakage alarm, overload alarm is displayed.

No.	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
201	ALD			EXP				

When No. 200 OVL = 1:
$\begin{array}{ll}\text { ALD } & \text { 1: Motor overheat } \\ & 0: \text { Amplifier overheat }\end{array}$
When No. 200 FBA $=1$:

ALD	EXP	Detail of alarm
1	0	Built-in pulse coder wire breakage (hard)
1	1	Separately installed pulse coder wire breakage (hard)
0	0	Pulse coder wire breakage (soft)

6.1.6 Serial pulse coder alarm (No. 202, 203)

Diagnostic display of the detailed content of serial pulse coder alarm No. 350 (pulse coder alarm).

No.	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
202		CSA	BLA	PHA	RCA	BZA	CKA	SPHA

SPHA : Soft phase data trouble alarm has occurred.
CKA : Clock alarm has occurred.
BZA : Battery zero alarm has occurred.
RCA : Speed count trouble alarm has occurred.
PHA : Phase data trouble alarm has occurred.
BLA : Battery low alarm has occurred.
CSA : Check sum alarm has occurred.

Diagnostic display of the detailed content of serial pulse coder alarm No. 351 (communication alarm).

No.	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
203								
DTE	CRCE	STBE	PRMA					

DTE : Data error has occurred.
CRC : CRC error has occurred.
STBE : Stop bit error has occurred.
PRMA : The parameter illegal alarm has been given.
Servo parameter illegal alarm No. 417 is also displayed.

No.	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
204		OFS	MCC	LDA	PMS			

OFS : A/D conversion of a digital servo current value is abnormal.
MCC : The contact of the servo amplifier's magnetic contactor has melted.
LDA : The LED of the serial pulse coder is abnormal.
PMS : A feedback error occurred.

When servo alarm No. 417 is detected by the NC, the cause of the alarm is indicated. When the same alarm is detected by the servo system, bit 4 (PRM) of DGN No. 0203 is set to 1.
AXS : In parameter No. 1023 (servo axis number), a value that exceeds the range of 1 to the number of controlled axes (such as 4 instead of 3), or non-sequential value is set.
DIR : In parameter No. 2022, used for specifying the direction of rotation of the motor, a valid value (111 or-111) has not been set.
PLS : In parameter No. 2024, used for specifying the number of position feedback pulses per motor rotation, an invalid value, such as 0 or a negative value, has been set.
PLC: In parameter No. 2023, used for specifying the number of velocity feedback pulses per motor rotation, an invalid value, such as 0 or a negative value, has been set.
MOT : In parameter No. 2020, used for specifying the motor model, an invalid value has been set.
6.1.7 Positional error display (No. 300)

The positional error is displayed in Least command units.
6.1.8 Machine position display (No. 301)

The machine position from the reference point is displayed in least command units.

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY
6.1.9 Reference position shift function display (No. 302)

The distance from the deceleration dog to the first grid point is displayed on the output unit.
6.1.10 Inductosyn display (No. 380 and No. 381)

The deviation between the absolute position of the motor and the offset data is displayed. That is, the remainder of (M (absolute motor position) - S (offset data)) / λ (1-pitch interval) is displayed in detection units.

Offset data, received by the CNC at the time of macine position calculation, is displayed in detection units.
6.1.11 Spindle data (No. 400-420)

No.	\#7	\#6	\#5	\#4	\#3	\#2	\#1		\#0
400									
			SAI	SS2	SSR	POS	SIC		

SIC 0: The module required for spindle serial control is not installed.
1: The module required for spindle serial control is installed.
POS 0: The module required for spindle analog control is not installed. 1: The module required for spindle analog control is installed.
SSR 0: Spindle serial control is not used.
1: Spindle serial control is used.
SS2 0: The 2nd spindle is not used in spindle serial control.
1: The 2nd spindle is used in spindle serial control.
SAI 1: Spindle analog control is not used.
0 : Spindle analog control is used.

Information related to communication errors in the spindle serial output interface

No.	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
408	SSA		SCA	CME	CER	SNE	FRE	CRE

CRE 1: A CRC error occurred (warning).
FRE 1: A framing error occurred (warning).
SNE 1: The sender/receiver is incorrect.
CER 1: A receiver error occurred.
CME 1: In automatic scanning, no response is returned.
SCA 1: A communication alarm is issued on the spindle amplifier side.
SSA 1: A system alarm is issued on the spindle amplifier side.
(These states represent the causes of spindle alarm No. 749. These states are caused mainly by noise, disconnection, and momentary power failure.)

No.	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
409					SPE	S2E	S1E	SHE

Refer to this diagnosis when alarm 750 has generated.

SPE In spindle serial control, serial spindle parameters
0 : Satisfy start condition of spindle unit
1: Do not satisfy start condition of spindle unit
S2E 0: 2nd spindle started normally in spindle serial control.
1: 2nd spindle did not start normally in spindle serial control.
S1E $\quad 0: 1$ st spindle started normally in spindle serial control.
1: 1 st spindle did not start normally in spindle serial control.
SHE 0: Serial communication module is correct on CNC side.
1: An error occurred in serial communication module on CNC side.

Load meter (load data) of the 1st spindle when the serial spindle is used No.

Display of the speed meter for the 1st spindle (rpm)

Speed meter (motor speed) of the 1 st spindle when the serial spindle is used

Load meter (load data) of the 2nd spindle when the serial spindle is used

Speed meter (motor speed) of the 2nd spindle when the serial spindle is used | No. |
| :---: |
| 414 |

SRLERRS1

Motion error on the 1st spindle during synchronous control

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY

Motion error on the 2nd spindle during synchronous control
No.

| $416 \quad$ SRLSYCERR |
| :--- | :--- |

Absolute value of the synchronous error between the 1 st and the $2 n d$ spindle synchronous control

Data returned by the 1 st spindle position coder

Positional shift of the 1st spindle in each mode, including a positional loop

$$
\begin{aligned}
& \text { No. } \\
& \hline 419 \quad \text { Data returned by the 2nd spindle position coder } \\
& \hline
\end{aligned}
$$

Data returned by the 2nd spindle position coder

No.
$420 \quad$ Positional shift of the 2nd spindle

Positional shift of the 2nd spindle in each mode, including a positional loop

The above four DGN items (No. 417 to 420) directly display the data received from the serial spindle control unit.
6.1.12 Rigid tapping display (No. 450-457)

The position deviation of the spindle during rigid tapping is displayed in detection units.

The number of pulses issued to the spindle during rigid tapping, is displayed in detection units.

The cumulative number of pulses, issued to the spindle during rigid tapping, is displayed in detection units.
No.

| 455 |
| :--- | :--- |
| SYNC. PULSE (SUM) |

The momentary value (signed, cumulative) of a spindle-converted move command difference during rigid tapping is displayed in detection units.
123

The momentary value (signed) of a spindle-converted position deviation difference during rigid tapping is displayed in detection units.

The width (maximum value) of a synchronization error during rigid tapping is displayed in detection units.
6.1.13 Polygon synchronization mode status (No. 470-478)

No.	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
470	SC0	LGE		SCF			PST	SPL

\#0(SPL) : Spindle polygon synchronization is in progress.
\#1(PST) : Spindle polygon synchronization mode is starting.
\#2 : Spindle polygon synchronization mode is being released.
\#3 : The spindle speed is being changed in spindle polygon synchronization mode.
\#4(SCF) : The spindle speed has been changed in spindle polygon synchronization mode.
\#5 : Not used
\#6(LGE) : In spindle polygon synchronization mode, the two spindles have different loop gains.
\#7(SC0) : In spindle polygon synchronization mode, the specified speed is zero.

This data indicates the cause of P/S alarm 5018 or 218.

No.	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
471	NPQ	PQE		NSP	SUO	QCL	PCL	

\#0 to \#3 \rightarrow Cause of P/S alarm No. 5018
P/S alarm No. 5018 can be cleared by issuing a reset. The cause indication is retained until the cause is removed or until polygon synchronization mode is released.
\#4 to \#7 \rightarrow Cause of P/S alarm No. 218
If P/S alarm No. 218 occurs, polygon synchronization mode is released. The cause indication, however, is retained until P/S alarm No. 218 is cleared by issuing a reset.
\#0 : The speed specified for spindle polygon synchronization is too low. (The unit speed becomes 0 for internal operations.)
\#1(PCL) : The first spindle (master axis in polygon synchronization) is clamped.
\#2(QCL) : The second spindle (slave axis in polygon synchronization) is clamped.
\#3(SUO): The speed specified in spindle polygon synchronization is too high. (The speed is restricted to the upper limit for internal operations.)
\#4(NSP) : A spindle required for control is not connected. (The serial spindle, second spindle, etc. is not connected.)
\#5 : A negative Q value is specified while the QDRC bit (bit 1 of parameter No. 7603) is set to 1 .

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY

\#6(PQE) : The P value or Q value, specified with G51.2, falls outside the predetermined range. Alternatively, the P and Q values are not specified as a pair.
\#7(NPQ) : Although the P and Q values are not specified with G51.2, an R value is specified. Alternatively, none of the P, Q, or R value is specified.

In spindle polygon synchronization mode, the rotation ratio (specified P value) of the current master axis (first spindle) is displayed.

In spindle polygon synchronization mode, the rotation ratio (specified Q value) of the current slave axis (second axis) is displayed.
DGN
476

In spindle polygon synchronization mode, the current phase difference (specified R value) is displayed. (The units are the minimum input increment for the rotation axis of the machine.)
If the RDGN bit (bit 5 of parameter 7603) is set to 1 , the shift amount specified for the serial spindle (number of specified pulses, calculated at a rate of 4096 pulses per 360 degrees) is displayed.
This diagnostic data indicates the actual speed of each spindle in synchronization mode.
DGN
477
Actual speed of the master axis for spindle polygon synchronization (rpm)

In spindle polygon synchronization mode, the actual speed of the master axis (first spindle) is displayed.

DGN
478
Actual speed of the slave axis in spindle polygon synchronization (rpm)

In spindle polygon synchronization mode, the actual speed of the slave axis (second spindle) is displayed.

6.1.14 Remote buffer protocol A status (No. 500-502)

0 : Not ready for operation
Reset
Run
Alarm
Line breakage
6.1.15 Display lated to MMC-IV (No. 510-513)

DGN	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
510								

This data indicates the internal MMC-IV information (not available to general users).

This data indicates the internal MMC-IV information (not available to general users).

DGN	\#7	\#6	\#5	\#4	\#3	\#2	\#1
512							
PA1	PAO	BNK		THH	THL		PRA

This data indicates the cause of a system alarm that has occurred in MMC-IV.
\#0(PRA) 1 : A RAM parity error occurred in shared RAM.
\#2(THL) 0 : The temperature of the MMC board is too low.
1: Normal
\#3(THH) 0 : The temperature of the MMC board is too high.
1 : Normal
\#4 0 : Normal
1: An NMI has occurred on the MMC board.
\#5(BNK) If bit 0 (PRA) is set to 1 ,
0 : An alarm occurred in the lower half of shared RAM.
1: An alarm occurred in the upper half of shared RAM.

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY
\#6 (PAO) If bit 0 (PRA) is set to 1 ,
1: An alarm occurred at an even-numbered address.
\#7 (PA1) If bit 0 (PRA) is set to 1 ,
1: An alarm occurred at an odd-numbered address.

DGN	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
513								

This data indicates the internal MMC-IV information.
\#4 For the VIDEO signal,
1 : The CNC/PMC screen is selected.
0 : The MMC screen is selected.
6.1.16 Small-diameter peck drilling cycle display (No. 520-523)

The total count of the retract movements, performed during cutting after G83 is specified, is displayed. This count is cleared to zero when G83 is next specified.

The total count of the retract movements, performed by overload signal reception during cutting after G83 is specified, is displayed. This count is cleared to zero when G83 is next specified.

The coordinates of the drilling axis where a retract movement was started are displayed in units of the least input increment.

The difference between the coordinates of the drilling axis where the previous retract movement was started, and the coordinates of the drilling axis where the current retract movement was started, is displayed in units of the least input increment.
6.1.17 Display of ATC for FD alpha (No. 530-531)

A43 : An unusable T code is specified with M06T $\square \square$.
A95 : M06 is specified when the machine coordinate along the Z-axis is positive.
A96 : Parameter No. 7810 for the current tool number is set to 0 .
A97 : In canned cycle mode, M06 is specified.
In a block containing a reference position return command, M06 is specified.
In tool compensation mode, M06 is specified.

A98 : M06 is specified when a reference position return operation has not been performed after the power was turned on or the emergency stop state was released.
During a tool exchange operation, the machine lock signal or Z -axis ignore signal was turned on for the Z -axis.
A99 : During a tool exchange operation, a wrench alarm was detected.

No.	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
531		585	584	583	582	581	580	502

502 : Excessive pulse distribution to the spindle (system error)
580 : Spindle servo alarm (excessive error in the stop state)
581 : Spindle servo alarm (excessive error during movement)
582 : Spindle servo alarm (excessive drift)
583 : Spindle servo alarm (LSI overflow)
584 : ATC and spindle positioning sequence error (system error)
585 : Spindle servo alarm (excessive error during ATC magazine indexing)
6.1.18 Simplified synchronous control display (No. 540)

The position deviation difference between the master axis and a synchronized slave axis, is displayed in detection units.

6.1.19 Display related to the dual position feedback function

 (No. 550-553)

Data is displayed in detection units.

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY

6.2 Waveform Diagnosis Display

The purpose of this function is to tune the servo motor easily by graphically displaying the changes in servo motor error, torque and pulse distribution in waveform.
(1) Setting a parameter

1 Set the parameter for wave analysis

3112

| \#7 | \#6 | \#5 | \#4 | \#3 | \#2 | \#1 | \#0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | SGD |

\#O(SGD) 0: Graphic function is effective
*1: Wave analysis is effective (The usual graphic function cannot be used)
2 Turn off the power once, then on again.
(2) Displaying parameter screen for wave diagnosis.

1 Display SYSTEM contents screen by pressing sistem key.
2 Press Δ key twice to display [W.DGNS] soft key.
3 Display the parameter screen of Waveform diagnoses by pressing [W.DGNS] soft key.
4 Position the cursor and enter the required data. Data can be entered from the keyboard. Press the \square key after entering the required data.
5 Those items indicated by ***** cannot be set. When the cursor is positioned to an item to be set, guidance information for that item is displayed in the box displayed in the right-hand half of the screen. Use the displayed information for reference. When one screen cannot display all the guidance information, press the page change keys ($\left.\begin{array}{|c}\mathbf{T} \\ \text { PAGE }\end{array}\right]$ and $\left.\begin{array}{c}\text { PAGE } \\ \vdots\end{array}\right)$ to display the remaining part of the information.

(a) One-shot type waveform diagnosis (parameter) Display start condition

0: Starts data collection when the [START] soft key is pressed. Data is collected for a specified sampling period, after which the data is plotted.

1: Starts data collection on a rising edge of a trigger signal after the [START] soft key is pressed. Data is collected for a specified sampling period, after which the data is plotted.

2: Starts data collection on a falling edge of a trigger signal after the [START] soft key is pressed. Data is collected for a specified sampling period, after which the data is plotted.
Sampling period: Sets the period during which data is to be collected.
Setting range: 10 to 32760
Units: 1 ms
Trigger: Sets a PMC address and bit. Set this item when 1 or 2 is specified for the display start condition. This item specifies a trigger for starting data collection.
Example: G0007.2: ST signal
Data number: The table below lists the numbers of data subject to waveform display. A number from 1 to 8 can be entered in the squares (\square) of the data numbers below.

Data No.	Description	Units
00	No waveform is displayed.	-
$0 \square$	Servo error along the n-th axis (8 ms) (position deviation)	Pulses (detection units)
$1 \square$	Number of pulses distributed to the n-th axis (move command)	Pulses (increment system)
$2 \square$	Torque value for the n-th axis (actual current)	\% (ratio to the maximum current)
$3 \square$	Servo error along the n-th axis (2 ms) (position deviation)	Pulses (detection units)
$5 \square$	Actual speed along the n-th axis	RPM
$6 \square$	Current command for the n-th axis \% (ratio to the maximum current)	
$7 \square$	Thermal simulation data for the n-th axis	\% (OVC alarm ratio) 90Combined speed along the first, second, and third axes
99	On/off state of the machine signal specified with a signal address	None (increment system)
$10 \square$	Actual speed of the spindle along the n -th axis	\% (ratio to the maximum speed)
$11 \square$	Load meter for the spindle on the n-th axis	\% (ratio to the maximum power)

Data units : Weighting used when the data subject to analysis is 1 . This item is set automatically. Set this item only when different units are to be used.

Setting range: 1 to 1000
Units: 0.001 increments
Signal address:
PMC address and bit number. Set this item when the data number 99 is specified. The example given in the trigger item, above, applies.
(b) Memory-type waveform diagnosis (parameter)

Display start condition
100: Plots data sampled in memory type mode.
Sampling time: Not applicable
Trigger: Not applicable
Data number: The table below lists the numbers of data subject to waveform display. A number from 1 to 8 can be entered in the squares (\square) of the data numbers below. No number can be set for data that has not been saved.

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY

Data No.	Description	Units
00	No waveform is displayed.	-
$0 \square$	Servo error along the n-th axis (8 ms) (position deviation)	Pulses (detection units)
$1 \square$	Number of pulses distributed to the n-th axis (move command)	Pulses (increment system)
$2 \square$	Torque value for the n -th axis (actual current)	\% (ratio to the maximum current)
$5 \square$	Actual speed along the n-th axis	RPM
$6 \square$	Current command for the n-th axis	$\%$ (ratio to the maximum current)
$7 \square$	Thermal simulation data for the n-th axis	\% (OVC alarm ratio)

Data unit : Weighting used when data subject to analysis is 1 . This item is set automatically. Set this item only when different units are to be used.

Setting range: 1 to 1000
Units: 0.001
Signal address: Not applicable
(3) Graphic display
(a) Plotting of one-shot waveform diagnosis data

One-shot waveform diagnosis data is sampled and simultaneously displayed graphically. Unlike memory type data, one-shot waveform diagnosis data is not saved for later output.
The sampling of one-shot waveform diagnosis data is started when the [START] soft key is pressed on the waveform diagnosis (graph) screen and the start condition is satisfied.
After waveform diagnosis data has been collected for the specified sampling period, sampling stops.

1 Press the \square function key. When the continuation menu
key \triangle is pressed, the [W.DGNS] soft key appears. Then, press the [W.DGNS] soft key to display the waveform diagnosis (parameter) screen. Waveform diagnosis (parameter) setting is explained in an earlier description.

2 Press the [W.GRPH] soft key.
3 The waveform diagnosis (graph) screen appears. The soft keys for operation selection are displayed.

4 Press the [START] soft key.
In the upper part of the screen, the word SAMPLING blinks, indicating that data sampling has started. Upon the completion of data collection, a waveform is displayed automatically.

(b) Plotting of memory-type waveform diagnosis data

To plot memory-type waveform diagnosis data, set 100 for the display start condition. When the [START] soft key is pressed while data is being memorized, data saving stops, and the waveform for the saved data is displayed. Whether data is being memorized can be checked by using the waveform diagnosis (memory data) screen.
The memory-type waveform diagnosis data width is a maximum of $32,760 \mathrm{~ms}$.

1 Press the ssstem function key. When the continuation menu key \boxtimes is pressed, the [W.DGNS] soft key appears. Then, press the [W.DGNS] soft key to display the waveform diagnosis (parameter) screen. Waveform diagnosis (parameter) setting is explained in an earlier description.

2 Press the [W.GRPH] soft key.
3 The waveform diagnosis (graphic) screen appears. The soft keys for operation selection are also displayed.

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY

4 Press the [START] soft key.
In the upper-left part of the screen, the words NOT READY blink, indicating that saved data is still being read. Once the saved data has been read, waveform display is started. The display in the upper-left part of the screen changes from NOT READY to the date on which the data was saved.

(c) Operation selection keys

Fig. 1 Soft Key Display
[START] : Plots the waveform of the object being analyzed.
[TIME \rightarrow]: Shifts the $\mathrm{CH}-1 / \mathrm{CH}-2$ waveform to the right.
[\leftarrow TIME] : Shifts the $\mathrm{CH}-1 / \mathrm{CH}-2$ waveform to the left.
[H-DOBL] : Increases the horizontal width of the $\mathrm{CH}-1 / \mathrm{CH}-2$ waveform by a factor of 2.
[H-HALF] : Reduces the horizontal width of the $\mathrm{CH}-1 / \mathrm{CH}-2$ waveform by a factor of 2.
$[\mathrm{CH}-1 \uparrow]$: Shifts the $\mathrm{CH}-1$ zero point level up.
$[\mathrm{CH}-1 \downarrow]$: Shifts the $\mathrm{CH}-1$ zero point level down.
[V-DOBL] : Increases the height of the $\mathrm{CH}-1 / \mathrm{CH}-2$ waveform by a factor of 2.
[V-HALF] : Reduces the height of the $\mathrm{CH}-1 / \mathrm{CH}-2$ waveform by a factor of 2.
[$\mathrm{CH}-2 \uparrow]$: Shifts the $\mathrm{CH}-2$ zero point level up.
[CH-2 \downarrow] : Shifts the CH-2 zero point level down.

(4) Selection of memory data
(a) Displaying the memory data screen

1 Press the ssrrem function key. When the continuation menu
key \boxtimes is pressed, the [W.DGNS] soft key appears. Then, press the [W.DGNS] soft key to display the waveform diagnosis (parameter) screen.
2 Press the [W.MEM] soft key.
3 The waveform diagnosis (memory data) screen appears. The soft keys for operation selection are also displayed.

4 The operation selection soft keys are as follows:

Fig. 2 Soft Key Display
(b) Selecting memory data

1 Display the waveform diagnosis (memory data) screen.
2 Position the cursor and enter the required data. For sampling axis selection, move the cursor to the desired data type, type in desired axis names, then press the [SELECT] soft key or the
\qquad key. The entered axis names appear in the sampling axis field to the right of the selected data type field
Example: XYZ + [SELECT] or wwor

3 When axis selection is completed, a sampling period for one axis is displayed. Then, press the [START] soft key to start data sampling.
NOTE1 Those items indicated by ***** cannot be set.
NOTE2 To change the selected axes, type in the desired axes again, then press the [SELECT] soft key. If the [SELECT] soft key is pressed without having typed in any axes, no axes are selected.

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY

NOTE3 If selected axes are changed during waveform data sampling, the sampling operation stops. In such a case, press the [START] soft key to restart data sampling.
NOTE4 The initial sampling axis setting is such that no sampling axis is selected.
c) Memory data parameter

1 Data saving termination condition
100: Terminates data saving when a servo alarm is issued.
101: Terminates data saving when a servo alarm is issued or the rising edge of a trigger signal is detected.

102: Terminates data saving when a servo alarm is issued or the falling edge of a trigger signal is detected.

The data saving width is $32,760 \mathrm{~ms}$, maximum. If a specified saving termination condition is not satisfied upon the elapse of 32760 ms , older data is replaced by newer data.
In the case of data saving termination by the issue of a servo alarm the termination of data saving can be delayed by the period (in ms) set in parameter No. 3120
2 Trigger: Sets a PMC address and bit. Set this item when 101 or 102 is specified for the termination condition. This item specifies a trigger for terminating data collection
Example: G0007.2: ST signal
3 Data type: The table below lists the data types subject to waveform display.

Data type	Description	Unit
Position deviation	Servo error along the n -th axis (8 ms)	Pulses (detection units)
Move command	Number of pulses distributed to the n -th axis	Pulses (increment system)
Actual current	Torque value on the n -th axis	\% (ratio to the maxi- mum current)
Actual speed	Actual speed along the n -th axis	RPM
Current command	Current command for the n -th axis	\% (ratio to the maxi- mum current)
Thermal simulation	Thermal simulation data for the n -th axis	\% (OVC alarm ratio)

4 Sampling axis: Displays the names of the axes subject to sampling.
5 Sampling time: Displays a sampling period for one axis.
6 Date and time of saving: Displays MEMORY during data sampling. When data sampling is terminated, the date of the termination is displayed.
(5) Output of waveform diagnosis data

Servo alarm type waveform diagnosis data can be output to an input/output unit connected to the reader/punch interface
Set the input/output unit to be used for output in parameter No. 0020 and Nos. 0100 to 0135.
In addition, set a code in bit 1 (ISO) of parameter No. 0020
(a) Output of waveform diagnosis data

Servo alarm type waveform diagnosis data can be output to an input/output unit, according to the procedure below

1 Set the EDIT mode.
2 Press the function key, then select the waveform diagnosis (memory data) screen.

3 Press the soft keys [W.MEM], \triangle, [PUNCH], and [EXEC], in this order.

For an explanation of input/output to and from the FANUC Floppy Cassette or FA Card, see item (b).

6
(b) Output to the FANUC Floppy Cassette or FA Card

In the item below, a FANUC Floppy Cassette is referred to as a Cassette, and a FANUC FA Card as a Card.
(i) Directory

When the directory of a Cassette or Card is displayed, the name of a file containing servo alarm type waveform diagnosis data is registered as WAVE DIAGNOS.
The procedure for displaying the directories is described later.
(ii) Output to the Cassette/Card

Servo alarm type waveform diagnosis data can be output to a Cassette or Card by following the procedure below.

1 Set EDIT mode.
2 Press the sssrem function key, then select the waveform diagnosis (memory data) screen.

3 Open the write protect switch of the Cassette or Card.
4 Press the [W.MEM], \triangle, [PUNCH], and [EXEC] soft keys, in this order.

Specify a file number at the end.
The file name WAVE DIAGNOS is assigned.

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY

If the Cassette or Card used as the output destination already contains a file having the same name as that specified, P/S alarm No. 86 is issued. To a Cassette or Card, only one file of waveform diagnosis data of servo alarm type can be output. When output to a Cassette or Card containing unnecessary servo alarm type waveform diagnosis data is needed, delete the file having the same name from the Cassette or Card beforehand.
Deleting a file is described later.
(iii) Displaying the directory of a Cassette or Card

The directory of a Cassette or Card can be displayed by following the procedure below.
1 Set EDIT mode.
2 Press the PROG function key, then select the program screen.
3 Press \boxtimes. Then press [FLOPPY].
4 Press the page change key $\begin{gathered}\text { PAGE } \\ \pm\end{gathered}$.
In this way, the directory is displayed.
(iv) Deleting a file from a Cassette or Card

A file can be deleted from a Cassette or Card by following the procedure below.
1 Set EDIT mode.
2 Press the PROG function key, then select the program screen.
3 Open the write protect switch of the Cassette or Card.
4 Press [FLOPPY].
5 Press [DELETE].
6 Type in a file number, then press [F SET].
7 Press [EXEC].
The file having the specified file number is deleted. After the file is deleted, all subsequent file numbers are decremented by 1.

NOTE The floppy directory display function is optional.

6.3 Screen Display at Power On

(1) Slot configuration display

PCB modules mounted on the slots are displayed. The CRT displays this screen when a hardware trouble or invalid leading of PCB has occurred.
(a) Screen display

Slot No. (Primary)
*1) Module ID code of PCBs
$\times \times 00 \square \square \Delta \Delta$
$\xrightarrow{\sim \uparrow \uparrow \uparrow \uparrow \uparrow \text { Slot No. of CNC (Logical No.) }} \begin{aligned} & \text { Module function (Software ID code) } \\ & \text { Type of PCBs (Module ID code) }\end{aligned}$

(b) Module ID code

B9 : Series 16 main CPU
BA : Series $16 / 18$ option 2
BD : Series 18 main CPU (For 4-axis)
3F : Remote buffer DNC1
9D : PMC-RC
B4 : PMC-RB5/RB6
46 : I/O card (Sink type)
5F : I/O card (Source type)
A8 : I/O card with power supply (Sink type)
B1 : I/O card with power supply (Source type)
6D : CAP-II
A9 : Graphic
(c) Software ID code

40 : Main CPU
41 : PMC-RC
42 : Built-in I/O card
43 : Sub CPU
45 : Graphic
49 : CAP II
4A : Remote buffer
4F : PMC-RE
50 : Additional 4-axis control (FS16 option 2)
53 : Loader control
59 : RISC board for high-precision contour control
5 A : Sub CPU for background drawing
5C : Built-in I/O card
5E : MMC-IV or HSSB interface
67 : PMC-RB5/RB6

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY
(2) Screen of waiting for setting module configuration information

(3) Display of the software series and version

(4) Initial screen (different on some machines)

6.4 System Configuration Screen

Software and hardware configuration are displayed on the system configuration screen when the CNC becomes ready for operation.
(1) Display method

(2) PCB configuration screen
(a) Screen display

(b) Module ID code

B9 : Series 16 main CPU
BA : Series16/18 option 2
BD : Series 18 main CPU (For 4-axis)
3F : Remote buffer DNC1
9D : PMC-RC
B4 : PMC-RB5/RB6
46 : I/O card (Sink type)
5 F : I/O card (Source type)
A8 : I/O card with power supply (Sink type)
B1 : I/O card with power supply (Source type)
6D : CAP-II
45 : Graphic (CAP-II)
9A : Graphic

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY

(c) Software ID code

40 : Main CPU
41 : PMC-RC
42 : Built-in I/O card
43 : Sub CPU
45 : Graphic
49 : CAP II
4A : Remote buffer
4F : PMC-RE
50 : Additional 4-axis control (FS16 option 2)
53 : Loader control
59 : RISC board for high-precision contour control
5A : Sub CPU for background drawing
5C : Built-in I/O card
5E : MMC-IV or HSSB interface
67 : PMC-RB5/RB6
(3) Software configuration screen

(4) Module configuration screen

The configuration of the modules mounted on each board is displayed.

System configuration of another PCB is displayed by page key

$$
\left.\binom{\text { PAGE }}{\mathbf{t}} \text { or } \begin{array}{c}
\mathbf{\uparrow} \\
\text { PAGE }
\end{array}\right) \text {. }
$$

NOTE See Maintenance Manual for display of each module.

6.5 Interface between CNC and PMC/MT and

Displaying I/O Signals

(1) One-path control

Addresses of interface signals between CNC and PMC/MT.

(2) Two-path control

The figure below shows the addresses of the interface signals between the CNC and the PMC.
Note, however, that some of signals common to paths 1 and 2 are allocated to path 1.

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY
6.5.1 I/O signal list

Symbol	Signal name	Address	T series	M series
${ }^{*}+E D 1$ to *+ED8	External deceleration signal	G118	\bigcirc	\bigcirc
${ }^{*}+$ L1 to *+L8	Overtravel signal	G114	\bigcirc	\bigcirc
*-ED1 to *-ED8	External deceleration signal	G120	\bigcirc	\bigcirc
*-L1 to *-L8	Overtravel signal	G116	\bigcirc	\bigcirc
*ABSM	Manual absolute signal	G006\#2	\bigcirc	\bigcirc
${ }^{*}$ AFV0 to *AFV7	2nd feedrate override signal	G013	\bigcirc	\bigcirc
*BECLP	B-axis clamp completion signal	G038\#7	-	\bigcirc
*BEUCP	B-axis unclamp completion signal	G038\#6	-	\bigcirc
*CHLD	Chopping hold signal	G051\#7	-	\bigcirc
*CHP8 to *CHP0	Chopping feedrate override signals	G051\#0 to $\# 3$	-	\bigcirc
*CRTOF	Automatic erase CRT screen display cancel signal	G062\#1	\bigcirc	\bigcirc
*DEC1 to	Decelation signal ffr	x009	\bigcirc	\bigcirc

*DEC1 to *DEC8	Deceleration signal for reference position return	X009	\bigcirc	\bigcirc
*EAXSL	Control axis selection status signal (PMC axis control)	F129\#7	\bigcirc	\bigcirc
*ESP	Emergency stop signal	X008\#4	\bigcirc	\bigcirc
*ESP		G008\#4	\bigcirc	\bigcirc
*ESPA	Emergency stop signal (serial spindle)	G071\#1	\bigcirc	\bigcirc
*ESPB		G075\#1	\bigcirc	\bigcirc
*ESPC		G205\#1	\bigcirc	\bigcirc
*FLWU	Follow-up signal	G007\#5	\bigcirc	\bigcirc
*FV0 to *FV7	Feedrate override signal	G012	\bigcirc	\bigcirc
*FV0E to *FV7E	Feedrate override signal (PMC axis control)	G151	\bigcirc	\bigcirc
*FV0O to *FV7O	Software operator's panel signal (*FV0 to *FV7)	F078	\bigcirc	\bigcirc
*HROVO to *HROV6	1\% step rapid traverse override signal	G096\#0 to \#6	\bigcirc	\bigcirc
*IT	Interlock signal	G008\#0	\bigcirc	\bigcirc
*IT1 to *IT8	Interlock signal for each axis	G130	\bigcirc	\bigcirc
*JV0 to *JV15	Manual feedrate override signal	$\begin{aligned} & \text { G010, } \\ & \text { G011 } \end{aligned}$	\bigcirc	\bigcirc
*JV0O to *JV150	Software operator's panel signal(*JV0 to *JV15)	$\begin{aligned} & \text { F079, } \\ & \text { F080 } \end{aligned}$	\bigcirc	\bigcirc

143

Symbol	Signal name	Address	T series	M series
*PLSST	Polygon spindle stop signal	G038\#0	\bigcirc	-
*SCPF	Spindle clamp completion signal	G028\#5	\bigcirc	-
*SP	Feed hold signal	G008\#5	\bigcirc	\bigcirc
*SSTP	Spindle stop signal	G029\#6	\bigcirc	\bigcirc
*SSTP1		G027\#3	\bigcirc	-
*SSTP2	Stop signal in each spindle	G027\#4	\bigcirc	-
*SSTP3		G027\#5	\bigcirc	-
*SUCPF	Spindle unclamp completion signal	G028\#4	\bigcirc	-
*TLV0 to *TLV9	Tool life count override signal	$\begin{aligned} & \text { G049\#0 to } \\ & \text { G050\#1 } \end{aligned}$	-	\bigcirc
*TSB	Tailstock barrier select signal	G060\#7	\bigcirc	-
+لJ1 to +J8	Feed axis and direction selection signal	G100	\bigcirc	\bigcirc
+J 1 O to +J 4 O	Software operator's panel signal (+J1 to +J4)	$\begin{aligned} & \text { F081\#0,\#2, } \\ & \# 4, \# 6 \end{aligned}$	\bigcirc	\bigcirc
$\begin{aligned} & +\mathrm{Jg},-\mathrm{Jg},+\mathrm{Ja}, \\ & -\mathrm{Ja} \end{aligned}$	Feed axis and direction selection signals	G086\#0 to \#3	\bigcirc	\bigcirc
+LM1 to +LM8	Stroke limit external setting signal	G110	-	\bigcirc
+MIT1,+MIT2	Manual feed interlock signal for each axis	X004\#2,\#4	\bigcirc	-
+MIT1,+MIT2	Tool offset write signal	X004\#2,\#4	\bigcirc	-
+MIT1 to +MIT4	Interlock signal for each axis and direction	$\begin{aligned} & \text { G132\#0 to } \\ & \text { \#3 } \end{aligned}$	-	\bigcirc
-J1 to -J8	Feed axis and direction selection signal	G102	\bigcirc	\bigcirc
-J1O to -J4O	Software operator's panel signal (-J 1 to -J 4)	$\begin{aligned} & \text { F081\#1,\#3, } \\ & \# 5, \# 7 \end{aligned}$	\bigcirc	\bigcirc
-LM1 to -LM8	Stroke limit external setting signal	G112	-	\bigcirc
-MIT1,-MIT2	Manual feed interlock signal for each axis	X004\#3,\#5	\bigcirc	-
-MIT1,-MIT2	Tool offset write signal		\bigcirc	-
-MIT1 to -MIT4	Interlock signal for each axis and direction	$\begin{aligned} & \text { G134\#0 to } \\ & \# 3 \end{aligned}$	-	\bigcirc
ABTQSV	Servo axis abnormal load detected signal	F090\#0	\bigcirc	\bigcirc
ABTSP1	First-spindle abnormal load detected signal	F090\#1	\bigcirc	\bigcirc
ABTSP2	Second-spindle abnormal load detected signal	F090\#2	\bigcirc	\bigcirc
AFL	Miscellaneous function lock signal	G005\#6	\bigcirc	\bigcirc
AL	Alarm signal	F001\#0	\bigcirc	\bigcirc

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY

Symbol	Signal name	Address	T series	series			
ALMA	Alarm signal						
(serial spindle)					\quad	F045\#0	\bigcirc
:---	:---						
ALMB	F049\#0						
	F168\#0						
ALMC	Tool axis direction handle feed mode signal						
ALNGH	G023\#7						
Actual spindle speed signal	F040, F041						
AR0 to AR15	Alarm reset signal						
(serial spindle)	G0						

Symbol	Signal name	Address	T series	M series
COSP	Spindle command signal	F064\#5	-	-
CSS	Constant surface speed signal	F002\#2	\bigcirc	\bigcirc
CTH1A, CTH2A	Clutch/gear signal (serial spindle)	G070\#3,\#2	\bigcirc	\bigcirc
CTH1B,CTH2B		G074\#3,\#2	\bigcirc	\bigcirc
CTH1C,CTH2C		G204\#3,\#2	\bigcirc	\bigcirc
CUT	Cutting feed signal	F002\#6	\bigcirc	\bigcirc
DEFMDA	Differential mode command signal (serial spindle)	G072\#3	\bigcirc	\bigcirc
DEFMDB		G076\#3	\bigcirc	\bigcirc
DEFMDC		G206\#3	\bigcirc	\bigcirc
DEN	Distribution end signal	F001\#3	\bigcirc	\bigcirc
DM00	Decode M signal	F009\#7	\bigcirc	\bigcirc
DM01		F009\#6	\bigcirc	\bigcirc
DM02		F009\#5	\bigcirc	\bigcirc
DM30		F009\#4	\bigcirc	\bigcirc
DMMC	Direct operation select signal	G042\#7	\bigcirc	\bigcirc
DNCI	DNC operation select signal	G043\#5	\bigcirc	\bigcirc
DRN	Dry run signal	G046\#7	\bigcirc	\bigcirc
DRNE	Dry run signal (PMC axis control)	G150\#7	\bigcirc	\bigcirc
DRNO	Software operator's panel signal(DRN)	F075\#5	\bigcirc	\bigcirc
$\begin{aligned} & \text { DSP1, DSP2, } \\ & \text { DSP3 } \end{aligned}$	Spindle motor speed detection signals	$\begin{array}{\|l} \hline Y(n+1) \\ \# 0 \text { to \#2 } \end{array}$	\bigcirc	\bigcirc
DSV1 to DSV8	Servo motor speed detection signals	$Y(\mathrm{n}+0)$	\bigcirc	\bigcirc
DTCH1 to DTCH8	Controlled axis detach signal	G124	\bigcirc	\bigcirc
EA0 to EA6	Address signal for external data input	$\begin{aligned} & \text { G002\#0 to } \\ & \text { \#6 } \end{aligned}$	\bigcirc	\bigcirc
EABUFA	Buffer full signal (PMC axis control)	F131\#1	\bigcirc	\bigcirc
EABUFB		F134\#1	\bigcirc	\bigcirc
EABUFC		F137\#1	\bigcirc	\bigcirc
EABUFD		F140\#1	\bigcirc	\bigcirc
EACNT1 to EACNT8	Controlling signal (PMC axis control)	F182	\bigcirc	\bigcirc
EADEN1 to EADEN8	Distribution completion signal (PMC axis control)	F112	\bigcirc	\bigcirc
EAX1 to EAX8	Control axis select signal (PMC axis control)	G136	\bigcirc	\bigcirc
EBSYA	Axis control command read completion signal (PMC axis control)	F130\#7	\bigcirc	\bigcirc
EBSYB		F133\#7	\bigcirc	\bigcirc
EBSYC		F136\#7	\bigcirc	\bigcirc
EBSYD		F139\#7	\bigcirc	\bigcirc

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY

Symbol	Signal name	Address		M series
EBUFA	Axis control command read signal (PMC axis control)	G142\#7	\bigcirc	\bigcirc
EBUFB		G154\#7	\bigcirc	\bigcirc
EBUFC		G166\#7	\bigcirc	\bigcirc
EBUFD		G178\#7	\bigcirc	\bigcirc
EC0A to EC6A	Axis control command signal (PMC axis control)	G143\#0 to \#6	\bigcirc	\bigcirc
EC0B to EC6B		G155\#0 to \#6	\bigcirc	\bigcirc
EC0C to EC6C		G167\#0 to \#6	\bigcirc	\bigcirc
EC0D to EC6D		G179\#0 to \#6	\bigcirc	\bigcirc
ECKZA	Following zero checking signal (PMC axis control)	F130\#1	\bigcirc	\bigcirc
ECKZB		F133\#1	\bigcirc	\bigcirc
ECKZC		F136\#1	\bigcirc	\bigcirc
ECKZD		F139\#1	\bigcirc	\bigcirc
ECLRA	Reset signal (PMC axis control)	G142\#6	\bigcirc	\bigcirc
ECLRB		G154\#6	\bigcirc	\bigcirc
ECLRC		G166\#6	\bigcirc	\bigcirc
ECLRD		G178\#6	\bigcirc	\bigcirc
ED0 to ED15	Data signal for external data input	$\begin{aligned} & \text { G000, } \\ & \text { G001 } \end{aligned}$	\bigcirc	\bigcirc
EDENA	Auxiliary function executing signal (PMC axis control)	F130\#3	\bigcirc	\bigcirc
EDENB		F133\#3	\bigcirc	\bigcirc
EDENC		F136\#3	\bigcirc	\bigcirc
EDEND		F139\#3	\bigcirc	\bigcirc
EDGN	Slave diagnosis selection signal	F177\#7	\bigcirc	\bigcirc
EF	External operation signal	F008\#0	-	\bigcirc
EFD	External operation signal for high-speed interface	F007\#1	-	\bigcirc
EFIN	External operation function completion signal	G005\#1	-	\bigcirc
EFINA	Auxiliary function completion signal (PMC axis control)	G142\#0	\bigcirc	\bigcirc
EFINB		G154\#0	\bigcirc	\bigcirc
EFINC		G166\#0	\bigcirc	\bigcirc
EFIND		G178\#0	\bigcirc	\bigcirc
EGENA	Axis moving signal (PMC axis control)	F130\#4	\bigcirc	\bigcirc
EGENB		F133\#4	\bigcirc	\bigcirc
EGENC		F136\#4	\bigcirc	\bigcirc
EGEND		F139\#4	\bigcirc	\bigcirc
EIALA	Alarm signal (PMC axis control)	F130\#2	\bigcirc	\bigcirc
EIALB		F133\#2	\bigcirc	\bigcirc
EIALC		F136\#2	\bigcirc	\bigcirc
EIALD		F139\#2	\bigcirc	\bigcirc

147

Symbol	Signal name	Address	T series	M series
EID0A to EID31A	Axis control data signal (PMC axis control)	$\begin{aligned} & \text { G146 to } \\ & \text { G149 } \end{aligned}$	\bigcirc	\bigcirc
$\begin{aligned} & \text { EID0B to } \\ & \text { EID31B } \end{aligned}$		$\begin{aligned} & \text { G158 to } \\ & \text { G161 } \end{aligned}$	\bigcirc	\bigcirc
$\begin{aligned} & \text { EID0C to } \\ & \text { EID31C } \end{aligned}$		$\begin{aligned} & \text { G170 to } \\ & \text { G173 } \end{aligned}$	\bigcirc	\bigcirc
EID0D to EID31D		$\begin{aligned} & \text { G182 to } \\ & \text { G185 } \end{aligned}$	\bigcirc	\bigcirc
EIFOA to EIF15A	Axis control feedrate signal (PMC axis control)	$\begin{aligned} & \text { G144, } \\ & \text { G145 } \end{aligned}$	\bigcirc	\bigcirc
EIF0B to EIF15B		$\begin{aligned} & \text { G156, } \\ & \text { G157 } \end{aligned}$	\bigcirc	\bigcirc
EIFOC to EIF15C		$\begin{aligned} & \text { G168, } \\ & \text { G169 } \end{aligned}$	\bigcirc	\bigcirc
EIFOD to EIF15D		$\begin{array}{\|l} \text { G180, } \\ \text { G181 } \end{array}$	\bigcirc	\bigcirc
EINPA	In-position signal (PMC axis control)	F130\#0	\bigcirc	\bigcirc
EINPB		F133\#0	\bigcirc	\bigcirc
EINPC		F136\#0	\bigcirc	\bigcirc
EINPD		F139\#0	\bigcirc	\bigcirc
EKC0 to EKC7	Key code signal	G098	\bigcirc	\bigcirc
EKENB	Key code read completion signal	F053\#7	\bigcirc	\bigcirc
EKSET	Key code read signal	G066\#7	\bigcirc	\bigcirc
EM11A to EM48A	Auxiliary function code signal (PMC axis control)	$\begin{aligned} & \text { F132, } \\ & \text { F142 } \end{aligned}$	\bigcirc	\bigcirc
EM11B to EM48B		$\begin{aligned} & \text { F135, } \\ & \text { F145 } \end{aligned}$	\bigcirc	\bigcirc
EM11C to EM48C		$\begin{aligned} & \text { F138, } \\ & \text { F148 } \end{aligned}$	\bigcirc	\bigcirc
EM11D to EM48D		$\begin{aligned} & \text { F141, } \\ & \text { F151 } \end{aligned}$	\bigcirc	\bigcirc
EMBUFA	Buffering disable signal (PMC axis control)	G142\#2	\bigcirc	\bigcirc
EMBUFB		G154\#2	\bigcirc	\bigcirc
EMBUFC		G166\#2	\bigcirc	\bigcirc
EMBUFD		G178\#2	\bigcirc	\bigcirc
EMFA	Auxiliary function strobe signal (PMC axis control)	F131\#0	\bigcirc	\bigcirc
EMFB		F134\#0	\bigcirc	\bigcirc
EMFC		F137\#0	\bigcirc	\bigcirc
EMFD		F140\#0	\bigcirc	\bigcirc
EMSBKA	Block stop disable signal (PMC axis control)	G143\#7	\bigcirc	\bigcirc
EMSBKB		G155\#7	\bigcirc	\bigcirc
EMSBKC		G167\#7	\bigcirc	\bigcirc
EMSBKD		G179\#7	\bigcirc	\bigcirc
ENB	Spindle enable signal	F001\#4	\bigcirc	\bigcirc
ENB2		F038\#2	\bigcirc	-
ENB3		F038\#3	\bigcirc	-

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY

Symbol	Signal name	Address	$\begin{gathered} \mathrm{T} \\ \text { series } \end{gathered}$	$\begin{gathered} \mathrm{M} \\ \text { series } \end{gathered}$
ENBKY	External key input mode selection signal	G066\#1	\bigcirc	\bigcirc
EOTNA	Negative-direction overtravel signal (PMC axis control)	F130\#6	\bigcirc	\bigcirc
EOTNB		F133\#6	\bigcirc	\bigcirc
EOTNC		F136\#6	\bigcirc	\bigcirc
EOTND		F139\#6	\bigcirc	\bigcirc
EOTPA	Positive-direction overtravel signal (PMC axis control)	F130\#5	\bigcirc	\bigcirc
EOTPB		F133\#5	\bigcirc	\bigcirc
EOTPC		F136\#5	\bigcirc	\bigcirc
EOTPD		F139\#5	\bigcirc	\bigcirc
EOVo	Override 0\% signal (PMC axis control)	F129\#5	\bigcirc	\bigcirc
EPARM	Slave parameter selection signal	F177\#6	\bigcirc	\bigcirc
EPRG	Slave program selection signal	F177\#4	\bigcirc	\bigcirc
ERDIO	Slave external read start signal	F177\#1	\bigcirc	\bigcirc
EREND	Read completion signal for external data input	F060\#0	\bigcirc	\bigcirc
ERS	External reset signal	G008\#7	\bigcirc	\bigcirc
ESBKA	Block stop signal (PMC axis control)	G142\#3	\bigcirc	\bigcirc
ESBKB		G154\#3	\bigcirc	\bigcirc
ESBKC		G166\#3	\bigcirc	\bigcirc
ESBKD		G178\#3	\bigcirc	\bigcirc
ESEND	Search completion signal for external data input	F060\#1	\bigcirc	\bigcirc
ESKIP	Skip signal (PMC axis control)	X004\#6	\bigcirc	\bigcirc
ESOFA	Servo off signal (PMC axis control)	G142\#4	\bigcirc	\bigcirc
ESOFB		G154\#4	\bigcirc	\bigcirc
ESOFC		G166\#4	\bigcirc	\bigcirc
ESOFD		G178\#4	\bigcirc	\bigcirc
ESRSYC	Simple spindle synchronous control signal	G064\#6	\bigcirc	\bigcirc
ESTB	Read signal for external data input	G002\#7	\bigcirc	\bigcirc
ESTPA	Axis control temporary stop signal (PMC axis control)	G142\#5	\bigcirc	\bigcirc
ESTPB		G154\#5	\bigcirc	\bigcirc
ESTPC		G166\#5	\bigcirc	\bigcirc
ESTPD		G178\#5	\bigcirc	\bigcirc
ESTPIO	Slave read/write stop signal	F177\#2	\bigcirc	\bigcirc
EVAR	Slave macro variable selection signal	F177\#5	\bigcirc	\bigcirc
EXHPCC	HPCC operation signal	F066\#7	-	\bigcirc
EXLM	Stored stroke limit select signal	G007\#6	\bigcirc	\bigcirc

149

Symbol	Signal name	Address	T series	M series
EXRD	External read start signal	G058\#1	\bigcirc	\bigcirc
EXSTP	External read/punch stop signal	G058\#2	\bigcirc	\bigcirc
EXWT	External punch start signal	G058\#3	\bigcirc	\bigcirc
EWTIO	Slave external write start signal	F177\#3	\bigcirc	\bigcirc
F1D	F1-digit feed select signal	G016\#7	-	\bigcirc
FIN	Completion signal	G004\#3	\bigcirc	\bigcirc
FRP1 to FRP8	Floating reference position return end signal	F116	\bigcirc	\bigcirc
FSCSL	Cs contour control change completion signal	F044\#1	\bigcirc	\bigcirc
FSPPH	Spindle phase synchronous control completion signal	F044\#3	\bigcirc	\bigcirc
FSPSY	Spindle synchronous speed control completion signal	F044\#2	\bigcirc	\bigcirc
G08MD	Lock-ahead control mode signal	F066\#0	-	\bigcirc
GOQSM	Tool offset value write mode select signal	G039\#7	\bigcirc	-
GR1,GR2	Gear selection signal (input)	G028\#1,\#2	\bigcirc	\bigcirc
$\begin{aligned} & \text { GR1O,GR2O,G } \\ & \text { R3O } \end{aligned}$	Gear selection signal (output)	$\begin{aligned} & \text { F034\#0 to } \\ & \text { \#2 } \end{aligned}$	-	\bigcirc
GR21	selection signal	G029\#0	\bigcirc	-
GR31	(input)	G029\#2	\bigcirc	-
HDO0 to HDO7	High-speed skip status signal	F122	\bigcirc	\bigcirc
HEAD	Path selection signal (Tool post selection signal)	G063\#0	-	-
HROV	1\% step rapid traverse override select signal	G096\#7	\bigcirc	\bigcirc
HS1A to HS1D	Manual handle feed axis selection signal	$\begin{aligned} & \text { G018\#0 to } \\ & \# 3 \end{aligned}$	\bigcirc	\bigcirc
HS1AO	Software operator's panel signal (HS1A)	F077\#0	\bigcirc	\bigcirc
HS1BO	Software operator's panel signal (HS1B)	F077\#1	\bigcirc	\bigcirc
HS1CO	Software operator's panel signal (HS1C)	F077\#2	\bigcirc	\bigcirc
HS1DO	Software operator's panel signal (HS1D)	F077\#3	\bigcirc	\bigcirc
HS1IA to HS1ID	Manual handle interruption axis select signal	G041\#0 to \#3	\bigcirc	\bigcirc
HS2A to HS2D	Manual handle feed axis selection signal	G018\#4 to \#7	\bigcirc	\bigcirc
HS2IA to HS2ID	Manual handle interruption axis select signal	G041\#4 to \#7	\bigcirc	\bigcirc
HS3A to HS3D	Manual handle feed axis selection signal	G019\#0 to \#3	-	\bigcirc

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY

Symbol	Signal name	Address	T series	M series
HS3IA to HS3ID	Manual handle interruption axis select signal	G042\#0 to \#3	-	\bigcirc
IGNVRY	All-axis VRDY OFF alarm ignore signal	G066\#0	\bigcirc	\bigcirc
IGVRY1 to IGVRY8	Each-axis VRDY OFF alarm ignore signal	G192	\bigcirc	\bigcirc
INCH	Inch input signal	F002\#0	\bigcirc	\bigcirc
INCMDA	Incremental command external setting type orientation signal (serial spindle)	G072\#5	\bigcirc	\bigcirc
INCMDB		G076\#5	\bigcirc	\bigcirc
INCMDC		G206\#5	\bigcirc	\bigcirc
INCSTA	Incremental method orientation signal (serial spindle)	F047\#1	\bigcirc	\bigcirc
INCSTB		F051\#1	\bigcirc	\bigcirc
INCSTC		F170\#1	\bigcirc	\bigcirc
INDXA	Orientation stop position change signal (serial spindle)	G072\#0	\bigcirc	\bigcirc
INDXB		G076\#0	\bigcirc	\bigcirc
INDXC		G206\#0	\bigcirc	\bigcirc
INHKY	Key input disable signal	F053\#0	\bigcirc	\bigcirc
INP1 to INP8	In-position signal	F104	\bigcirc	\bigcirc
INTGA	Signal for controlling velocity integration (serial spindle)	G071\#5	\bigcirc	\bigcirc
INTGB		G075\#5	\bigcirc	\bigcirc
INTGC		G205\#5	\bigcirc	\bigcirc
IOLACK	I/O Link confirmation signal	G092\#0	\bigcirc	\bigcirc
IOLNK	Slave I/O Link selection signal	F177\#0	\bigcirc	\bigcirc
IOLS	I/O Link specification signal	G092\#1	\bigcirc	\bigcirc
KEY1 to KEY4	Memory protect signal	$\begin{aligned} & \text { G046\#3 to } \\ & \# 6 \end{aligned}$	\bigcirc	\bigcirc
KEYO	Software operator's panel signal (KEY1 to KEY4)	F075\#6	\bigcirc	\bigcirc
LDT1A	Load detection signal 1 (serial spindle)	F045\#4	\bigcirc	\bigcirc
LDT1B		F049\#4	\bigcirc	\bigcirc
LDT1C		F168\#4	\bigcirc	\bigcirc
LDT2A	Load detection signal 2 (serial spindle)	F045\#5	\bigcirc	\bigcirc
LDT2B		F049\#5	\bigcirc	\bigcirc
LDT2C		F168\#5	\bigcirc	\bigcirc
M00 to M31	Miscellaneous function code signal	$\begin{array}{\|l\|} \hline \text { F010 to } \\ \text { F013 } \end{array}$	\bigcirc	\bigcirc
M200 to M215	2nd M function code signal	F014 to F015	\bigcirc	\bigcirc
M300 to M315	3rd M function code signal	F016 to F017	\bigcirc	\bigcirc
MA	CNC ready signal	F001\#7	\bigcirc	\bigcirc
MABSM	Manual absolute check signal	F004\#2	\bigcirc	\bigcirc
MAFL	Miscellaneous function lock check signal	F004\#4	\bigcirc	\bigcirc

Symbol	Signal name	Address	T series	M series
MBDT1, MBDT2 to MBDT9	Optional block skip check signal	$\begin{aligned} & \text { F004\#0, } \\ & \text { F005 } \end{aligned}$	\bigcirc	\bigcirc
MCFNA	Power line switch completion signal (serial spindle)	G071\#3	\bigcirc	\bigcirc
MCFNB		G075\#3	\bigcirc	\bigcirc
MCFNC		G205\#3	\bigcirc	\bigcirc
MD1,MD2,MD4	Mode selection signal	G043\#0 to \#2	\bigcirc	\bigcirc
MD1O	Software operator's panel signal (MD1)	F073\#0	\bigcirc	\bigcirc
MD2O	Software operator's panel signal (MD2)	F073\#1	\bigcirc	\bigcirc
MD4O	Software operator's panel signal (MD4)	F073\#2	\bigcirc	\bigcirc
MDRN	Dry run check signal	F002\#7	\bigcirc	\bigcirc
MDTCH1 to MDTCH8	Controlled axis detach status signal	F110	\bigcirc	\bigcirc
MEDT	Memory edit select check signal	F003\#6	\bigcirc	\bigcirc
MF	Auxiliary function strobe signal	F007\#0	\bigcirc	\bigcirc
MF2	2nd M function strobe signal	F008\#4	\bigcirc	\bigcirc
MF3	3rd M function strobe signal	F008\#5	\bigcirc	\bigcirc
MFIN	Auxiliary function completion signal	G005\#0	\bigcirc	\bigcirc
MFIN2	2nd M function completion signal	G004\#4	\bigcirc	\bigcirc
MFIN3	3rd M function completion signal	G004\#5	\bigcirc	\bigcirc
MFNHGA	Main spindle MCC status signal while changing spindles signal (serial spindle)	G072\#6	\bigcirc	\bigcirc
MFNHGB		G076\#6	\bigcirc	\bigcirc
MFNHGC		G206\#6	\bigcirc	\bigcirc
MH	Manual handle feed select check signal	F003\#1	\bigcirc	\bigcirc
MHPCC	HPCC mode signal	F066\#6	-	\bigcirc
MI1 to MI8	Mirror image signal	G106	\bigcirc	\bigcirc
MINC	Incremental feed select check signal	F003\#0	\bigcirc	\bigcirc
MINP	External program input start signal	G058\#0	\bigcirc	\bigcirc
MIX1 to MIX7	Composite control axis selection signals	$\begin{aligned} & \text { G128\#0 to } \\ & \# 6 \end{aligned}$	\bigcirc	-
MJ	JOG feed select check signal	F003\#2	\bigcirc	\bigcirc
MLK	All-axis machine lock signal	G044\#1	\bigcirc	\bigcirc
MLK1 to MLK8	Each-axis machine lock signal	G108	\bigcirc	\bigcirc

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY

Symbol	Signal name	Address	T series	M series
MLKO	Software operator's panel signal(MLK)	F075\#4	\bigcirc	\bigcirc
MMDI	Manual data input select check signal	F003\#3	\bigcirc	\bigcirc
MMEM	Automatic operation select check signal	F003\#5	\bigcirc	\bigcirc
MMI1 to MMI8	Mirror image check signal	F108	\bigcirc	\bigcirc
MMLK	All-axis machine lock check signal	F004\#1	\bigcirc	\bigcirc
MORA1A	Signal for completion of spindle orientation with a magnetic sensor (serial spindle)	F046\#6	\bigcirc	\bigcirc
MORA1B		F050\#6	\bigcirc	\bigcirc
MORA1C		F169\#6	\bigcirc	\bigcirc
MORA2A	Signal for approximate spindle orientation with a magnetic sensor (serial spindle)	F046\#7	\bigcirc	\bigcirc
MORA2B		F050\#7	\bigcirc	\bigcirc
MORA2C		F169\#7	\bigcirc	\bigcirc
MORCMA	Command for spindle orientaion with a magnetic sensor (serial spindle)	G073\#0	\bigcirc	\bigcirc
MORCMB		G077\#0	\bigcirc	\bigcirc
MORCMC		G207\#0	\bigcirc	\bigcirc
MP1, MP2	Manual handle feed amount selection signal (incremental feed signal)	$\begin{aligned} & \text { G019\#4, } \\ & \# 5 \end{aligned}$	\bigcirc	\bigcirc
MP10	Software operator's panel signal (MP1)	F076\#0	\bigcirc	\bigcirc
MP2O	Software operator's panel signal (MP2)	F076\#1	\bigcirc	\bigcirc
MPOFA	Motor power stop signal (serial spindle)	G073\#2	\bigcirc	\bigcirc
MPOFB		G077\#2	\bigcirc	\bigcirc
MPOFC		G207\#2	\bigcirc	\bigcirc
MRDYA	Machine ready signal (serial spindle)	G070\#7	\bigcirc	\bigcirc
MRDYB		G074\#7	\bigcirc	\bigcirc
MRDYC		G204\#7	\bigcirc	\bigcirc
MREF	Manual reference position return selection check signal	F004\#5	\bigcirc	\bigcirc
MRMT	DNC operation select check signal	F003\#4	\bigcirc	\bigcirc
MSBK	Single block check signal	F004\#3	\bigcirc	\bigcirc
MSDFON	Motor speed detection function enable signal	G016\#0	\bigcirc	\bigcirc
MTCHIN	TEACH IN select check signal	F003\#7	\bigcirc	\bigcirc
MV1 to MV8	Axis moving signal	F102	\bigcirc	\bigcirc
MVD1 to MVD8	Axis moving direction signal	F106	\bigcirc	\bigcirc
NOWT	No-wait signal	G063\#1	\bigcirc	\bigcirc
NOZAGC	Perpendicular/angular axis control disable signal	G063\#5	\bigcirc	\bigcirc

Symbol	Signal name	Address	T series	M series
NPOS1 to NPOS8	Position display neglect signal	G198	\bigcirc	\bigcirc
NRROA	Short-distant movement command while changing the orientation stop position signal (serial spindle)	G072\#2	\bigcirc	\bigcirc
NRROB		G076\#2	\bigcirc	\bigcirc
NRROC		G206\#2	\bigcirc	\bigcirc
OFN0 to OFN5,OFN6	Tool offset number select signal	$\begin{aligned} & \text { G039\#0 } \\ & \text { to \#5, } \\ & \text { G040\#0 } \end{aligned}$	\bigcirc	-
OP	Automatic operation signal	F000\#7	\bigcirc	\bigcirc
ORARA	Orientation completion signal (serial spindle)	F045\#7	\bigcirc	\bigcirc
ORARB		F049\#7	\bigcirc	\bigcirc
ORARC		F168\#7	\bigcirc	\bigcirc
ORCMA	Orientation command signal (serial spindle)	G070\#6	\bigcirc	\bigcirc
ORCMB		G074\#6	\bigcirc	\bigcirc
ORCMC		G204\#6	\bigcirc	\bigcirc
OUT0 to OUT7	Software operator's panel general-purpose switch signal	F072	\bigcirc	\bigcirc
OVC	Override cancel signal	G006\#4	\bigcirc	\bigcirc
OVCE	Override cancellation signal (PMC axis control)	G150\#5	\bigcirc	\bigcirc
OVLS1 to OVLS7	Superimposed control axis selection signals	G190\#0 to \#6	\bigcirc	-
OVRIDA	Analog override command signal (serial spindle)	G072\#4	\bigcirc	\bigcirc
OVRIDB		G076\#4	\bigcirc	\bigcirc
OVRIDC		G206\#4	\bigcirc	\bigcirc
PC1DEA	Signal indicating the status of the detected one-rotation position coder signal (serial spindle)	F047\#0	\bigcirc	\bigcirc
PC1DEB		F051\#0	\bigcirc	\bigcirc
PC1DEC		F170\#0	\bigcirc	\bigcirc
PC2SLC	2nd position coder selection signal	G028\#7	\bigcirc	-
PECK2	Small-diameter peck drilling in progress signal	F066\#5	-	\bigcirc
PK1 to PK8	Parking signals	G122	\bigcirc	-
PK1 to PK7	Parking signals	$\begin{aligned} & \text { G122\#0 to } \\ & \# 6 \end{aligned}$	-	-
PKESS1	First spindle synchronous control signal	$\begin{aligned} & \text { G122\#6 } \\ & \text { (G031\#6) } \end{aligned}$	\bigcirc	\bigcirc
PKESS2	Second spindle synchronous control signal	$\begin{aligned} & \text { G122\#7 } \\ & \text { (G031\#7) } \end{aligned}$	\bigcirc	\bigcirc
PN1, PN2, PN4, PN8, PN16	Workpiece number search signal	G009\#0 to 4	\bigcirc	\bigcirc
PORA2A	Signal for approximate spindle orientation with a position coder (serial spindle)	F046\#5	\bigcirc	\bigcirc
PORA2B		F050\#5	\bigcirc	\bigcirc
PORA2C		F169\#5	\bigcirc	\bigcirc
PRC	Position record signal	G040\#6	\bigcirc	-

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY

Symbol	Signal name	Address	T series	M series
PRGDPL	program screen display mode signal	F053\#1	\bigcirc	\bigcirc
PRTSF	Target parts count reached signal	F062\#7	\bigcirc	\bigcirc
PSAR	Spindle polygon speed arrival signal	F063\#2	\bigcirc	-
PSE1	Master axis not arrival signal	F063\#0	\bigcirc	-
PSE2	Polygon synchronous axis not arrival signal	F063\#1	\bigcirc	-
PSW01 to PSW10	Position switch signal	$\begin{aligned} & \text { F070\#0 to } \\ & \text { F071\#1 } \end{aligned}$	\bigcirc	\bigcirc
PSYN	Polygon synchronization under way signal	F063\#7	\bigcirc	-
R01I to R12l	Spindle motor speed command signal	$\begin{aligned} & \text { G032\#0 to } \\ & \text { G033\#3 } \end{aligned}$	\bigcirc	\bigcirc
R01I2 to R1212		$\begin{aligned} & \text { G034\#0 to } \\ & \text { G035\#3 } \end{aligned}$	\bigcirc	\bigcirc
R0113 to R1213		$\begin{aligned} & \text { G036\#0 to } \\ & \text { G037\#3 } \end{aligned}$	\bigcirc	\bigcirc
R01O to R120	S12-bit code signal	$\begin{aligned} & \text { F036\#0 to } \\ & \text { F037\#3 } \end{aligned}$	\bigcirc	\bigcirc
RCFNA	Output switch completion signal (serial spindle)	F046\#3	\bigcirc	\bigcirc
RCFNB		F050\#3	\bigcirc	\bigcirc
RCFNC		F169\#3	\bigcirc	\bigcirc
RCHA	Power line status check signal (serial spindle)	G071\#7	\bigcirc	\bigcirc
RCHB		G075\#7	\bigcirc	\bigcirc
RCHC		G205\#7	\bigcirc	\bigcirc
RCHHGA	High-output MCC status signal while a magnetic sensor (serial spindle)	G072\#7	\bigcirc	\bigcirc
RCHHGB		G076\#7	\bigcirc	\bigcirc
RCHHGC		G206\#7	\bigcirc	\bigcirc
RCHPA	Output switch signal (serial spindle)	F046\#2	\bigcirc	\bigcirc
RCHPB		F050\#2	\bigcirc	\bigcirc
RCHPC		F169\#2	\bigcirc	\bigcirc
RCYO	Retry complete signal	F063\#5	-	\bigcirc
RGHTH	Tool axis perpendicular direction handle feed mode signal	G023\#6	-	\bigcirc
RGSPM	Spindle rotation direction signal	F065\#1	-	\bigcirc
RGSPP		F065\#0	-	\bigcirc
RGTAP	Rigid tapping signal	G061\#0	\bigcirc	\bigcirc
RGTSP1, RGTSP2	Rigid tapping spindle selection signal	$\begin{aligned} & \text { G061\#4, } \\ & \# 5 \end{aligned}$	\bigcirc	-
RLSOT3	Stroke check 3 release signal	G007\#4	\bigcirc	\bigcirc
RMTDIO to RMTDI7	Input signal for remote buffer	G052	\bigcirc	\bigcirc

Symbol	Signal name	Address	T series	M series
RMTDO0 to RMTDO7	Output signal for remote buffer	F069	\bigcirc	\bigcirc
ROTAA	Rotation direction command while changing the orientation stop position signal (serial spindle)	G072\#1	\bigcirc	\bigcirc
ROTAB		G076\#1	\bigcirc	\bigcirc
ROTAC		G206\#1	\bigcirc	\bigcirc
ROV1,ROV2	Rapid traverse override signal	$\begin{aligned} & \text { G014\#0, } \\ & \# 1 \end{aligned}$	\bigcirc	\bigcirc
ROV1E, ROV2E	Rapid traverse override signal (PMC axis control)	$\begin{aligned} & \text { G150\#0, } \\ & \# 1 \end{aligned}$	\bigcirc	\bigcirc
ROV1O	Software operator's panel signal (ROV1)	F076\#4	\bigcirc	\bigcirc
ROV2O	Software operator's panel signal (ROV2)	F076\#5	\bigcirc	\bigcirc
RPALM	Read/punch alarm signal	F053\#3	\bigcirc	\bigcirc
RPBSY	Read/punch in-progress signal	F053\#2	\bigcirc	\bigcirc
RPDO	Rapid traversing signal	F002\#1	\bigcirc	\bigcirc
RRW	Reset\&rewind signal	G008\#6	\bigcirc	\bigcirc
RSLA	Output switch request signal (serial spindle)	G071\#6	\bigcirc	\bigcirc
RSLB		G075\#6	\bigcirc	\bigcirc
RSLC		G205\#6	\bigcirc	\bigcirc
RST	Reset signal	F001\#1	\bigcirc	\bigcirc
RT	Manual rapid traverse selection signal	G019\#7	\bigcirc	\bigcirc
RTAP	Rigid tapping in-progress signal	F076\#3	\bigcirc	\bigcirc
RTE	Manual rapid traverse selection signal (PMC axis control)	G150\#6	\bigcirc	\bigcirc
RTO	Software operator's panel signal (RT)	F077\#6	\bigcirc	\bigcirc
RTNCY	Retry start signal	G064\#0	-	\bigcirc
RTNMVS	Retry point signal	F066\#3	-	\bigcirc
RTRCT	Retract signal	G066\#4	-	\bigcirc
RTRCTF	Retract completion signal	F065\#4	-	\bigcirc
RVS	Retrace signal	G007\#0	-	\bigcirc
RVSL	Retrace-in-progress signal	F082\#2	-	\bigcirc
RWD	Rewinding signal	F000\#0	\bigcirc	\bigcirc
S00 to S31	Spindle speed code signal	$\begin{aligned} & \hline \text { F022 to } \\ & \text { F025 } \end{aligned}$	\bigcirc	\bigcirc
SA	Servo ready signal	F000\#6	\bigcirc	\bigcirc
SAR	Spindle speed arrival signal	G029\#4	\bigcirc	\bigcirc
SARA	Speed arrival signal (serial spindle)	F045\#3	\bigcirc	\bigcirc
SARB		F049\#3	\bigcirc	\bigcirc
SARC		F168\#3	\bigcirc	\bigcirc
SBK	Single block signal	G046\#1	\bigcirc	\bigcirc

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY

Symbol	Signal name	Address	T series	M series
SBKO	Software operator's panel signal (SBK)	F075\#3	\bigcirc	\bigcirc
SCLP	Spindle clamp signal	F038\#0	\bigcirc	-
SDTA	Speed detection signal (serial spindle)	F045\#2	\bigcirc	\bigcirc
SDTB		F049\#2	\bigcirc	\bigcirc
SDTC		F168\#2	\bigcirc	\bigcirc
SF	Spindle speed strobe signal	F007\#2	\bigcirc	\bigcirc
SFIN	Spindle function completion signal	G005\#2	\bigcirc	\bigcirc
SFRA	CW command signal (serial spindle)	G070\#5	\bigcirc	\bigcirc
SFRB		G074\#5	\bigcirc	\bigcirc
SFRC		G204\#5	\bigcirc	\bigcirc
SGN	Spindle motor command polarity select signal	G033\#5	\bigcirc	\bigcirc
SGN2		G035\#5	\bigcirc	\bigcirc
SGN3		G037\#5	\bigcirc	\bigcirc
SHAOO to SHA11	Spindle orientation external stop position command signal	$\begin{aligned} & \text { G078\#0 to } \\ & \text { G079\#3 } \end{aligned}$	\bigcirc	\bigcirc
SHB00 to SHB11		$\begin{aligned} & \text { G080\#0 to } \\ & \text { G081\#3 } \end{aligned}$	\bigcirc	\bigcirc
$\begin{aligned} & \text { SHC00 to } \\ & \text { SHC11 } \end{aligned}$	Spindle orientation stop position external command signal	$\begin{aligned} & \text { G208\#0 to } \\ & \text { G209\#3 } \end{aligned}$	\bigcirc	\bigcirc
SIND	Spindle motor speed command select signal	G033\#7	\bigcirc	\bigcirc
SIND2		G035\#7	\bigcirc	\bigcirc
SIND3		G037\#7	\bigcirc	\bigcirc
SKIP	Skip signal	X004\#7	\bigcirc	\bigcirc
	Overload torque signal	X004\#7	-	\bigcirc
SKIP2 to SKIP6, SKIP7, SKIP8	Skip signal	X004\#2 to \#6, \#0, \#1	\bigcirc	\bigcirc
SKIPP	Skip signal	G006\#6	\bigcirc	-
SLCSEQ	Retry point selection signal	G064\#1		\bigcirc
SLPCA, SLPCB	Spindle return select signal	$\begin{aligned} & \text { G064\#2, } \\ & \text { \#3 } \end{aligned}$	-	-
SLSPA, SLSPB	Spindle command select signal	$\begin{aligned} & \text { G063\#2, } \\ & \# 3 \end{aligned}$	-	-
SLVA	Slave operation command signal (serial spindle)	G073\#1	\bigcirc	\bigcirc
SLVB		G077\#1	\bigcirc	\bigcirc
SLVC		G207\#1	\bigcirc	\bigcirc
SLVSA	Slave operation status signal (serial spindle)	F046\#4	\bigcirc	\bigcirc
SLVSB		F050\#4	\bigcirc	\bigcirc
SLVSC		F169\#4	\bigcirc	\bigcirc
SMZ	Error detect signal	G053\#6	\bigcirc	-
SOCNA	Soft start/stop cancel signal (serial spindle)	G071\#4	\bigcirc	\bigcirc
SOCNB		G075\#4	\bigcirc	\bigcirc
SOCNC		G205\#4	\bigcirc	\bigcirc

157

Symbol	Signal name	Address	T series	M series
SOR	Spindle orientation signal	G029\#5	\bigcirc	\bigcirc
SOV0 to SOV7	Spindle speed override signal	G030	\bigcirc	\bigcirc
SPAL	Spindle fluctuation detection alarm signal	F035\#0	\bigcirc	\bigcirc
SPL	Feed hold lamp signal	F000\#4	\bigcirc	\bigcirc
SPO	Software operator's panel signal (*SP)	F075\#7	\bigcirc	\bigcirc
SPPHS	Spindle phase synchronous control signal	G038\#3	\bigcirc	\bigcirc
SPSLA	Spindle select signal (serial spindle)	G071\#2	\bigcirc	\bigcirc
SPSLB		G075\#2	\bigcirc	\bigcirc
SPSLC		G205\#2	\bigcirc	\bigcirc
SPSTP	Spindle stop complete signal	G028\#6	\bigcirc	-
SPSYC	Spindle synchronous control signal	G038\#2	\bigcirc	\bigcirc
SRLNIO to SRLNI3	Group number specification signals	G091\#0 to \#3	\bigcirc	\bigcirc
SRLNOO to SRLNO3	Group number output signals	F178\#0 to \#3	\bigcirc	\bigcirc
SRN	Program restart signal	G006\#0	\bigcirc	\bigcirc
SRNMV	Program restart under way signal	F002\#4	\bigcirc	\bigcirc
SRVA	CCW command signal (serial spindle)	G070\#4	\bigcirc	\bigcirc
SRVB		G074\#4	\bigcirc	\bigcirc
SRVC		G204\#4	\bigcirc	\bigcirc
SSIN	Spindle motor command polarity select signal	G033\#6	\bigcirc	\bigcirc
SSIN2		G035\#6	\bigcirc	\bigcirc
SSIN3		G037\#6	\bigcirc	\bigcirc
SSTA	Speed zero signal (serial spindle)	F045\#1	\bigcirc	\bigcirc
SSTB		F049\#1	\bigcirc	\bigcirc
SSTC		F168\#1	\bigcirc	\bigcirc
ST	Cycle start lamp signal	G007\#2	\bigcirc	\bigcirc
STL	Cycle start signal	F000\#5	\bigcirc	\bigcirc
STLK	Start lock signal	G007\#1	\bigcirc	-
STRD	Input and run simultaneous mode select signal	G058\#5	-	\bigcirc
STWD	Output and run simultaneous mode select signal	G058\#6	-	\bigcirc
SUCLP	Spindle unclamp signal	F038\#1	\bigcirc	-
SVF1 to SVF8	Servo off signal	G126	\bigcirc	\bigcirc
SWS1	Spindle selection signal	G027\#0	\bigcirc	-
SWS2		G027\#1	\bigcirc	-
SWS3		G027\#2	\bigcirc	-

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY

Symbol	Signal name	Address	T series	M series
SYCAL	Spindle synchronous control alarm signal/ phase error monitor signal	F044\#4	\bigcirc	\bigcirc
SYN1O to SYN8O	Synchronous control under way signals	F118	\bigcirc	-
SYN1O to SYN7O	Synchronous/composite/ superimposed control under way signals	$\begin{aligned} & \text { F118\#0 to } \\ & \# 6 \end{aligned}$	\bigcirc	-
SYNC1 to SYNC8	Simple synchronous axis select signal	G138	\bigcirc	\bigcirc
SYNC to SYNC8	Synchronous control axis selection signals	G138	\bigcirc	-
SYNC to SYNC7	Synchronous control axis selection signals	G138\#0 to \#6	\bigcirc	-
SYNCJ1 to SYNCJ8	Simple synchronous manual feed axis select signal	G140	-	\bigcirc
SYNMOD	EGB mode signal	F065\#6		\bigcirc
T00 to T31	Tool function code signal	$\begin{array}{\|l\|} \hline \text { F026 to } \\ \text { F029 } \end{array}$	\bigcirc	\bigcirc
TAP	Tapping signal	F001\#5	\bigcirc	\bigcirc
TF	Tool function strobe signal	F007\#3	\bigcirc	\bigcirc
TFIN	Tool function completion signal	G005\#3	\bigcirc	\bigcirc
THRD	Thread cutting signal	F002\#3	\bigcirc	\bigcirc
TIALM	Tool post interference alarm signal	F064\#7	\bigcirc	-
TICHK	Tool post interference check signal	F064\#6	\bigcirc	-
TL01 to TL64	Tool group number select signal	G047\#0 to \#6	\bigcirc	-
TL01 to TL256		$\begin{aligned} & \text { G047\#0 to } \\ & \text { G048\#0 } \end{aligned}$	-	\bigcirc
TLCH	Tool change signal	F064\#0	\bigcirc	\bigcirc
TLCHI	Individual tool change signal	F064\#2	-	\bigcirc
TLMA	Torque limit signal (serial spindle)	F045\#6	\bigcirc	\bigcirc
TLMB		F049\#6	\bigcirc	\bigcirc
TLMC		F168\#6	\bigcirc	\bigcirc
TLMHA	Torque limit command HIGH signal (serial spindle)	G070\#1	\bigcirc	\bigcirc
TLMHB		G074\#1	\bigcirc	\bigcirc
TLMHC		G204\#1	\bigcirc	\bigcirc
TLMLA	Torque limit command LOW signal (serial spindle)	G070\#0	\bigcirc	\bigcirc
TLMLB		G074\#0	\bigcirc	\bigcirc
TLMLC		G204\#0	\bigcirc	\bigcirc
TLNW	New tool select signal	F064\#1	\bigcirc	\bigcirc
TLRST	Tool change reset signal	G048\#7	\bigcirc	\bigcirc

Symbol	Signal name	Address	T series	M series
TLRSTI	Individual tool change reset signal	G048\#6	-	\bigcirc
TLSKP	Tool skip signal	G048\#5	\bigcirc	\bigcirc
TMRON	General-purpose integrating meter start signal	G053\#0	\bigcirc	\bigcirc
TRACT	Tool retraction mode signal	F092\#3	\bigcirc	\bigcirc
TRESC	Tool retraction signal	G059\#0	\bigcirc	\bigcirc
TRQL1 to TRQL8	Torque limit reached signal	F114	\bigcirc	-
TRRTN	Tool return signal	G059\#1	\bigcirc	\bigcirc
TRSPS	Tool return completion signal	F092\#5	\bigcirc	\bigcirc
UI000 to UI015	Input signal for custom macro	$\begin{aligned} & \text { G054, } \\ & \text { G055 } \end{aligned}$	\bigcirc	\bigcirc
UINT	Interrupt signal for custom macro	G053\#3	\bigcirc	\bigcirc
$\begin{aligned} & \text { UO000 to } \\ & \text { UO015 } \end{aligned}$	Output signal for custom	$\begin{aligned} & \text { F054, } \\ & \text { F055 } \end{aligned}$	\bigcirc	\bigcirc
UO100 to UO131	macro	F056 to F059	\bigcirc	\bigcirc
WATO	Waiting signal	F063\#6	\bigcirc	\bigcirc
WOQSM	Workpiece coordinate system shift value write mode select signal	G039\#6	\bigcirc	-
WOSET	Workpiece coordinate system shift value write signal	G040\#7	\bigcirc	-
XAE		X004\#0	\bigcirc	\bigcirc
YAE	ring position reached	X004\#1	-	\bigcirc
ZAE	signal	X004\#1	\bigcirc	-
ZAE		X004\#2	-	\bigcirc
ZP1 to ZP8	Reference position return end signal	F094	\bigcirc	\bigcirc
ZP21 to ZP28	2nd reference position return end signal	F096	\bigcirc	\bigcirc
ZP31 to ZP38	3rd reference position return end signal	F098	\bigcirc	\bigcirc
ZP41 to ZP48	4th reference position return end signal	F100	\bigcirc	\bigcirc
ZPX	Spindle orientation completion signal	F094	\bigcirc	-
ZRF1 to ZRF8	Reference position establishment signal	F120	\bigcirc	\bigcirc
ZRN	Manual reference position return selection signal	G043\#7	\bigcirc	\bigcirc
ZRNO	Software operator's panel signal (ZRN)	F073\#4	\bigcirc	\bigcirc

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY

6.5.2 Address list

(1) List of Addresses (One-Path Control)

Following shows table of addresses:
In an item where both T series and M series are described, some signals are covered with shade () in the signal address figure as shown below. This means either T series or M series does not have this signal. Upper part is for T series and lower part is for M series.
[Example 1]
Signals EXLM and ST are common signals, STLK is for T series only and RLSOT and RVS are for M series only.

MT \rightarrow PMC								
Address	Bit number							
	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
								(T series)
X004	SKIP	ESKIP	-MIT2	+MIT2	-MIIT1-	\pm MIT1	ZAE	XAE
	SKIP	SKIP6	S̄Kİ5	-SKIP4	SKIP3 ${ }^{-1}$	S̄KIP2 ${ }^{-1}$	-SK̇IP8	SKIP7 ${ }^{-1}$
	SKIP	ESKIP_	SKIP5	SKIP4	SKIP3	ZAE	YAE	XAE
	SKIP	SKIP6 ${ }^{-1}$	SKIPJ	SKIP4	SKIP3	SǨIP2 ${ }^{-1}$	S̄KIP $\overline{8}$	SKIP7
(M series)								
X008				*ESP				
X009	*DEC8	*DEC7	*DEC6	*DEC5	*DEC4	*DEC3	*DEC2	*DEC1

161

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
G011	*JV15	*JV14	*JV13	*JV12	*JV11	*JV10	*JV9	*JV8
G012	*FV7	*FV6	*FV5	*FV4	*FV3	*FV2	*FV1	*FV0
G013	*AFV7	*AFV6	*AFV5	*AFV4	*AFV3	*AFV2	*AFV1	*AFV0
G014							ROV2	ROV1
G016	F1D							MSDFON
G018	HS2D	HS2C	HS2B	HS2A	HS1D	HS1C	HS1B	HS1A
G019	RT		MP2	MP1	HS3D	HS3C	HS3B	HS3A
G023	ALNGH	RGHTH						
G027	CON		*SSTP3	*SSTP2	*SSTP1	SWS3	SWS2	SWS1
G028	PC2SLC	SPSTP	*SCPF	*SUCPF		GR2	GR1	
G029		*SSTP	SOR	SAR		GR31		GR21
G030	SOV7	SOV6	SOV5	SOV4	SOV3	SOV2	SOV1	SOV0
G031	PKESS2	PKESS1						
G032	R08I	R071	R06I	R05I	R04I	R03I	R021	R01I
G033	SIND	SSIN	SGN		R12I	R111	R10I	R091
G034	R0812	R0712	R0612	R05I2	R0412	R0312	R0212	R0112
G035	SIND2	SSIN2	SGN2		R1212	R1112	R1012	R0912
G036	R0813	R0713	R0613	R05I3	R04I3	R0313	R0213	R0113
G037	SIND3	SSIN3	SGN3		R1213	R1113	R1013	R0913
G038	*BECLP	*BEUCP			SPPHS	SPSYC		*PLSST
G039	GOQSM	WOQSM	OFN5	OFN4	OFN3	OFN2	OFN1	OFN0
G040	WOSET	PRC						OFN6
G041	HS2ID	HS2IC	HS2IB	HS2IA	HS1ID	HS1IC	HS1IB	HS1IA
G042	DMMC				HS3ID	HS3IC	HS3IB	HS3IA

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
G073						MPOFA	SLVA	morcma
G074	MRDYB	ORCMB	SFRB	SRVB	CTH1B	CHT2B	TLMHB	TLMLB
G075	RCHB	RSLB	INTGB	SOCNB	MCFNB	SPSLB	*ESPB	ARSTB
G076	RCHHGB	MFNHGB	INCMDB	OVRIDB	DEFMDB	NRROB	ROTAB	INDXB
G077						MPOFB	SLVB	MORCMB
G078	SHA07	SHA06	SHA05	SHA04	SHA03	SHA02	SHA01	SHAOO
G079					SHA11	SHA10	SHA09	SHA08
G080	SHB07	SHB06	SHB05	SHB04	SHB03	SHB02	SHB01	SHB0O
G081					SHB11	SHB10	SHB09	SHB08
G082	Reserve for order made macro							
G083	Reserve for order made macro							
G086					-Ja	+Ja	-Jg	+Jg
G091					SRLNI3	SRLNI2	SRLNI1	SRLNIO
G092				BGEN	BGIALM	BGION	IOLS	IOLACK
G096	HROV	*HROV6	*HROV5	*HROV4	*HROV3	*HROV2	*HROV1	*HROVo
G098	EKC7	EKC6	EKC5	EKC4	EKC3	EKC2	EKC1	EKCO
G100	+J8	+J7	+J6	+J5	+J4	+J3	+J2	+J1
G102	-J8	-J7	-J6	-J5	-J4	-J3	-J2	-J1
G106	MI8	M17	M16	M15	M14	M13	M12	M11
G108	MLK8	MLK7	MLK6	MLK5	MLK4	MLK3	MLK2	MLK1
G110	+LM8	+LM7	+LM6	+LM5	+LM4	+LM3	+LM2	+LM1
G112	-LM8	-LM7	-LM6	-LM5	-LM4	-LM3	-LM2	-LM1
G114	*+L8	*+L7	*+L6	*+L5	*+L4	*+L3	*+L2	*+L1
G116	*-L8	*-L7	*-L6	*-L5	*-L4	*-L3	*-L2	*-L1

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
G118	*+ED8	*+ED7	*+ED6	*+ED5	*+ED4	*+ED3	*+ED2	*+ED1
G120	*-ED8	*-ED7	*-ED6	*-ED5	*-ED4	*-ED3	*-ED2	*-ED1
	(T series)							
G122	$\begin{aligned} & \text { PRK8 } \\ & \text { PKESS2 } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { PK7 } \\ \hline \text { PKESS1- } \\ \hline \end{array}$	PK6	PK5	PK4	PK3	PK2	PK1
	PKESS2	PKESS1						
		(M series)						
G124	DTCH8	DTCH7	DTCH6	DTCH5	DTCH4	DTCH3	DTCH2	DTCH1
G126	SVF8	SVF7	SVF6	SVF5	SVF4	SVF3	SVF2	SVF1
G130	*¢8	*IT7	*IT6	*T5	*T4	*T3	*\|T2	*IT1
G132					+MIT4	+M1T3	+M1T2	+MIT1
G134					-MIT4	-MIT3	-MIT2	-MIT1
G136	EAX8	EAX7	EAX6	EAX5	EAX4	EAX3	EAX2	EAX1
G138	SYNC8	SYNC7	SYNC6	SYNC5	SYNC4	SYNC3	SYNC2	SYNC1
G140	SYNCJ8	SYNCJ7	SYNCJ6	SYNCJ5	SYNCJ4	SYNCJ3	SYNCJ2	SYNCJ1
G142	EBUFA	ECLRA	ESTPA	ESOFA	ESBKA	embuFa		EFINA
G143	EMSBKA	EC6A	EC5A	EC4A	EC3A	EC2A	EC1A	ECOA
G144	EIF7A	EIF6A	ElF5A	EIF4A	EIF3A	EIF2A	EIF1A	EIFOA
G145	EIF15A	EIF14A	EIF13A	EIF12A	EIF11A	EIF10A	EIF9A	EIF8A
G146	EID7A	EID6A	EID5A	EID4A	EID3A	EID2A	EID1A	EIDOA
G147	EID15A	EID14A	EID13A	EID12A	EID11A	EID10A	EID9A	EID8A
G148	EID23A	EID22A	EID21A	EID20A	EID19A	EID18A	EID17A	EID16A
G149	EID31A	EID30A	EID29A	EID28A	EID27A	EID26A	EID25A	EID24A
G150	DRNE	RTE	OVCE				ROV2E	ROV1E
G151	*FV7E	*FV6E	*FV5E	*FV4E	*FV3E	*FV2E	*FV1E	*FVOE
G154	EBUFB	ECLRB	ESTPB	ESOFB	ESBKB	embufb		EFINB
G155	EmSBKB	EC6B	EC5B	EC4B	EС3B	EC2B	EC1B	ECOB

165

166

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
G204	MRDYC	ORCML	SFRC	SRVC	CTH1C	CTH2C	TLMHC	TLMLC
G205	RCHC	RSLC	INTGC	SOCNC	MCFNC	SPSLC	*ESPC	ARSTC
G206	RCHHGC	MFNHGC	INCMDC	OVRIDC	DEFMDC	NRROC	ROTAC	INDXC
G207						MPOFC	SLVC	MORCMC
G208	SHC07	SHC06	SHC05	SHC04	SHC03	SHC02	SHC01	SHCOO
G209					SHC11	SHC10	SHC09	SHC08

167

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
F047							incsta	PC1DEA
F049	ORARB	TLMB	LDT2B	LDT1B	SARB	SDTB	SSTB	ALMB
F050	morazb	moraib	PORAZB	SLvSB	RCFNB	RСНРв	CFINB	CHPB
F051							incstb	PC1DEB
F053	EKENB			BGEACT	RPALM	RPBSY	PRGDPL	INHKY
F054	U0007	U0006	U0005	U0004	บ0003	U0002	U0001	U0000
F055	U0015	U0014	U0013	U0012	U0011	U0010	U0009	U0008
F056	U0107	U0106	U0105	U0104	U0103	U0102	U0101	U0100
F057	U0115	U0114	U0113	U0112	U0111	U0110	U0109	U0108
F058	U0123	U0122	U0121	U0120	U0119	U0118	U0117	U0116
F059	U0131	U0130	U0129	U0128	U0127	U0126	U0125	U0124
F060							ESEND	EREND
F061							BCLP	BUCLP
F062	PRTSF							
F063	PSYN		RCYO			PSAR	PSE2	PSE1
F064						TLCHI	TLNW	TLCH
F065		SYNMOD		RTRCTF			RGSPM	RGSPP
F066	EXHPCC	MMPCC	PECK2		RTNMVS			G08MD
F069	RMTDO7	RMTDO6	RMTDO5	RMTDO4	RMTDO3	RMTDO2	RMTDO1	RMTDoo
F070	PSW08	PSW07	PSW06	PSW05	PSW04	PSW03	PSW02	PSW01
F071							PSW10	PSW09
F072	OUT7	OUT6	OUT5	OUT4	OUT3	OUT2	OUT1	оито
F073				zRNO		MD40	MD2O	MD10
F075	SPO	KEYO	DRNO	mLKo	Sвко	вдто		

169

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
F076			ROV20	Rov10	RTAP		MP2O	MP10
F077		RTO			HS1DO	HS1CO	HS1BO	HS1AO
F078	*FV70	*FV60	*FV50	*FV4O	*FV30	*FV2O	*FV1O	*FV00
F079	*JV70	*JV60	*JV50	*JV4O	*JV30	*JV2O	*JV10	*JV00
F080	*JV150	*JV140	*JV130	*JV120	*JV110	*JV100	*JV90	*JV80
F081	-J40	+J40	-J30	+J30	-J2O	+J2O	-J10	+J10
F082						RVSL		
F090					ABTSP3	ABTSP2	ABTSP1	ABTQSV
F092			TRSPS		TRACT			
F094	ZP8	ZP7	ZP6	ZP5	ZP4	ZP3	ZP2	ZP1
F096	ZP28	ZP27	ZP26	ZP25	ZP24	ZP23	ZP22	ZP21
F098	ZP38	ZP37	ZP36	ZP35	ZP34	ZP33	ZP32	ZP31
F100	ZP48	ZP47	ZP46	ZP45	ZP44	ZP43	ZP42	ZP41
F102	MV8	MV7	MV6	MV5	MV4	MV3	MV2	MV1
F104	INP8	INP7	INP6	INP5	INP4	INP3	INP2	INP1
F106	MVD8	MVD7	MVD6	MVD5	MVD4	MVD3	MVD2	MVD1
F108	MMI8	MMI7	MMI6	MMI5	MMI4	MMI3	MMI2	MMI1
F110	MDTCH8	MDTCH7	MDTCH6	MDTCH5	MDTCH4	MDTCH3	MDTCH2	MDTCH1
F112	EADEN8	EADEN7	EADEN6	EAden5	EADEN4	EADEN3	EADEN2	EADEN1
F114	TRQL8	TRQL7	TRQL6	TRQL5	TRQL4	TRQL3	TRQL2	TRQL1
F116	FRP8	FRP7	FRP6	FRP5	FRP4	FRP3	FRP2	FRP1
F118	SYN8O	SYN7O	SYN6O	SYN5O	SYN4O	SYN3O	SYN2O	SYN1O
F120	ZRF8	ZRF7	ZRF6	ZRF5	ZRF4	ZRF3	ZRF2	ZRF1
F122	HDO7	HDO6	HDO5	HDO4	HDO3	HDO2	HDO1	HDOO

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
F129	*EAXSL		EOV0					
F130	EBSYA	EOTNA	EOTPA	EGENA	EDENA	EIALA	ECKZA	EINPA
F131							EABUFA	EMFA
F132	EM28A	EM24A	EM22A	EM21A	EM18A	EM14A	EM12A	EM11A
F133	EBSYB	EOTNB	EOTPB	EGENB	EDENB	EIALB	ECKZB	EINPB
F134							EABUFB	EMFB
F135	EM28B	EM24B	EM22B	EM21B	EM188	EM14B	EM12B	EM11B
F136	EBSYC	EOTNC	EOTPC	EGENC	EDENC	EIALC	ECKZC	EINPC
F137							EABUFC	EMFC
F138	EM28C	EM24C	EM22C	Em21C	EM18C	EM14C	EM12C	EM11C
F139	EBSYD	EOTND	EOTPD	EGEND	EdEnd	EIALD	ECKZD	EINPD
F140							EABUFD	EMFD
F141	EM28D	EM24D	EM22D	EM21D	EM18D	EM14D	EM12D	EM11D
F142	EM48A	EM44A	Em42A	EM41A	EM38A	EM34A	EM32A	Em31A
F145	EM48B	EM44B	EM42B	EM41B	EM388	EM34B	EM32B	EM31B
F148	EM48C	EM44C	Em42C	EM41C	Ем38С	ем34С	EM32C	EM31C
F151	EM48D	EM44D	EM42D	EM41D	EM38D	EM34D	EM32D	EM31D
F168	ORARC	tLMC	LDT2C	LDT1C	SARC	SDTC	sstc	ALMC
F169	MORA2C	moratc	PORA2C	SLVSC	RCFNC	RCHPC	CFINC	CHPC
F170							INCSTC	PC1DEC
F177	EDGN	EPARM	EVAR	EPRG	EWTIO	ESTPIO	ERDIO	IOLNK
F178					SRLNO3	SRLNO2	SRLNO1	SRLNOO
F180	CLRCH8	CLRCH7	CLRCH6	CLRCH5	CLRCH4	CLRCH3	CLRCH2	CLRCH1
F182	EACNT8	EACNT7	EACNT6	EACNT5	EACNT4	EACNT3	EACNT2	EACNT1

171

(2) List of Addresses (Two-Path Control)

Signals addresses for each path are usually assigned as follows:
However, for the signals common to both paths, those signals are assigned to path 1. Interface signals between the CNC and PMC are as shown below: The signals with suffix \#1 are those for path 1 and the signals with suffix \#2 are those for path 2.

Signal address	Contents
G000-G255	Signals on path 1 (PMC \rightarrow CNC)
F000-F255	Signals on path 1 (CNC \rightarrow PMC)
G1000-G1255	Signals on path 2 (PMC \rightarrow CNC)
F1000-F1255	Signals on path 2 (CNC \rightarrow PMC)

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY

175

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY

G1004			MFIN3\#2	MFIN2\#2	FIN\#2			
G1005	BFIN\#2	AFL\#2		BFIN\#2	TFIN\#2	SFIN\#2	EFIN*2	MFIN\#2

G1008	ERS\#2	RRW\#2	*SP\#2	*ESP\#2				*1T\#2
G1009				PN16\#2	PN8\#2	PN4\#2	PN2\#2	PN1\#2
G1010	*JV7\#2	*JV6\#2	*JV5\#2	*JV4\#2	*JV3\#2	*JV2\#2	*JV1\#2	*JV0\#2
G1011	*JV15\#2	*JV14\#2	*JV13\#2	*JV12\#2	*JV11\#2	*JV10\#2	*JV9\#2	*JV8*2
G1012	*FV7\#2	*FV6\#2	*FV5\#2	*FV4\#2	*FV3\#2	*FV2\#2	*FV1\#2	*FVo\#2
G1013	*AFV7\#2	*AFV6\#2	*AFV5\#2	*AFV4\#2	*AFV3\#2	*AFV2\#2	*AFV1\#2	*AFV0\#2

G1018	HS2D\#2	HS2C\#2	HS23\#2	HS2A\#2	HS1D\#2	HS1C\#2	HS13\#2	HS1A \#2
G1019	RT\#2		MP2\#2	MP1\#2	HS3D\#2	HS3C\#2	HS33\#2	HS3A\#2
G1023	ALNGH²	RGHTH ${ }^{\text {² }}$						

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
G1027	CON\#2		*SSTP3 ${ }^{\text {² }}$	*SSTP2 ${ }^{\text {+2 }}$	*SSTP1 ${ }^{\text {+2 }}$	SWS3\#2	sws2\#2	SWS1*2
G1028	PC2SLC\#2	SPSTP\#2	*SCPF\#2	*SUCPF**		GR2\#2	GR1\#2	
G1029		*SSTP\#2	SOR\#2	SAR*2		GR31\#2		GR21\#2
G1030	SOV7\#2	SOV6\#2	Sov5\#2	Sov4*2	sov3\#2	Sov2\#2	sov1\#2	sovo\#2
G1031	PKESS2*2	PKESS ${ }^{+1}$						
G1032	R08\|*2	R07\|\#2	R061*2	R051\#2	R04\|\#2	R031*2	R02\|\#2	R011*2
G1033	SIND\#2	SSIN*2	SGN*2		R121*2	R111*2	R101\#2	R091*2
G1034	R0812\#2	R0772\#2	R0612**2	R0512 ${ }^{\text {\#2 }}$	R0412*2	R0312*2	R021 ${ }^{\text {\#2 }}$	R0112 ${ }^{\text {\#2 }}$
G1035	SIND2\#2	SSIN2*2	SGN2\#2		R1212*2	R1112\#2	R1012\#2	R0912 ${ }^{\text {\#2 }}$
G1036	R0813\#2	R0713 ${ }^{\text {\#2 }}$	R0613 $3^{\text {\#2 }}$	R0513 ${ }^{\text {\#2 }}$	R0413\#2	R0313 ${ }^{\text {\#2 }}$	R0213 ${ }^{\text {\#2 }}$	R0113 ${ }^{\text {\#2 }}$
G1037	SIND3\#2	SSIN3 ${ }^{\# 2}$	SGN3\#2		R1213\#2	R1113\#2	R1013\#2	R0913\#2
G1038	-BECLP\#2	'BEUCP\#2			SPPHS\#2	SPSYC\#2		*PLSST*2
G1039	Goasm ${ }^{\text {+2 }}$	woasm*2	OFN5\#2	OfN4\#2	OFN3\#2	OFN2\#2	OfN1*2	OFN0\#2
G1040	WOSET*2	PRC\#2						OFN6 ${ }^{\text {\#2 }}$
G1041	HS21D\#2	HS21C\#2	HS21B\#2	HS21A*2	HS11D\#2	HS11C\#2	HS11B\#2	HS11A\#2
G1042					HS310\#2	HS31C\#2	HS31B\#2	HS31A\#2
G1043	ZRN\#2		DNCI\#2			MD4\#2	MD2\#2	MD1\#2
G1044							MLK\#2	BDT1\#2
G1045	BDT9\#2	BDT8\#2	BDT7\#2	BDT6\#2	BDT5\#2	BDT4\#2	BDT3 ${ }^{\text {\#2 }}$	BDT2\#2
G1046	DRN\#2	KEY4\#2	KEY3\#2	KEY2\#2	KEY1\#2		SBK\#2	
G1047	TL128\#\#2	TL64\#2	TL32*2	TL16*2	TLO8\#2	TL04*2	TLO2\#2	TLO1\#2
G1048	TLRST*2	TLRSTT ${ }^{(12}$	TLSKp\#2					TL256 ${ }^{\text {+2 }}$
G1049	*TLV7\#2	*TLV6*2	*TLV5\#2	*TLV4*2	*TLV3*2	*TLV2\#2	*TOV1*2	*TLV0\#2
G1050							*TLV9\#2	*TLV8\#2

179

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
G1051	*CHLD*2	CHPST\#2			*CHP8\#2	*CHP4*2	* ${ }^{\text {CHP2\#2 }}$	* $\mathrm{CHPO}{ }^{\text {\#2 }}$
G1053	CDZ\#2	SMZ\#2			UINT\#2			TMRON*2

G1054	U1007\#2	U1006\#2	U1005\#2	UI004\#2	U1003\#2	U1002\#2	U1001\#2	U1000\#2
G1055	U1015\#2	Ul014\#2	U1013\#2	U1012\#2	U1011\#2	U1010\#2	Ul009\#2	U1008\#2
G1058					EXWT\#2	EXSTP\#2	EXRD\#2	MINP\#2
G1059							TRRTN\#2	TRESC\#2
G1060	*TSB\#2							

| G1061 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

G1062	RGTSP2\#2	RGTSP1\#2				RGTAP\#2

G1064		ESRSYC\#2					SLCSEQ\#2	RTNCY\#2
G1066				RTRCT\#2				IGNVRY\#2
G1070	MRDYA\#2	ORCMA\#2	SFRA\#2	SRVA\#2	CTH1A ${ }^{\# 2}$	CTH2A\#2	TLMHA ${ }^{\text {\#2 }}$	TLMLA ${ }^{\# 2}$

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY

181

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY
 183

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY

187

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
F1022	S07\#2	S06\#2	S05\#2	S04\#2	S03\#2	S02\#2	S01\#2	S00\#2
F1023	S15\#2	S14\#2	S13\#2	S12\#2	S11\#2	S10\#2	S09\#2	S08\#2
F1024	S23\#2	S22\#2	S21\#2	S20\#2	S19\#2	S18\#2	S17\#2	S16\#2
F1025	S31\#2	S30\#2	S29\#2	S28\#2	S27\#2	S26\#2	S25\#2	S24\#2
F1026	T07\#2	T06\#2	T05\#2	T04\#2	T03\#2	T02\#2	T01\#2	T00\#2
F1027	T15\#2	T14*2	T13\#2	T12\#2	T11\#2	T10\#2	T09\#2	T08\#2
F1028	T23\#2	T22\#2	T21\#2	T20\#2	T19\#2	T18\#2	T17\#2	T16\#2
F1029	T31*2	T30\#2	T29\#2	T28\#2	T27\#2	T26\#2	T25\#2	T24\#2
F1030	B07\#2	B06\#2	B05\#2	B04\#2	B03\#2	B02\#2	B01\#2	B00\#2
F1031	B15\#2	B14\#2	B13*2	B12\#2	B11\#2	B10\#2	B09\#2	B08*2
F1032	B23\#2	B22\#2	B21\#2	B20\#2	B19\#2	B18*2	B17\#2	B16\#2
F1033	B31\#2	B30\#2	B29\#2	B28\#2	B27\#2	B26\#2	B25*2	B24\#2
F1034						GR30\#2	GR2O\#2	GR10\#2
F1035								SPAL\#2
F1036	R080\#2	R070\#2	R060\#2	R050\#2	R04O\#2	R03O\#2	R020\#2	R010\#2
F1037					R120\#2	R110\#2	R100\#2	R090\#2
F1038					ENB3\#2	ENB2\#2	SUCLP\#2	SCLP\#2
F1039					CHPCY42	CHPMD ${ }^{\text {+2 }}$		
F1040	AR7\#2	AR6\#2	AR5\#2	AR4\#2	AR3*2	AR2\#2	AR1\#2	ARO\#2
F1041	AR15\#2	AR14\#2	AR13\#2	AR12\#2	AR11\#2	AR10\#2	AR09\#2	AR08\#2
F1044				SYCAL*2	FSPPH ${ }^{\text {\#2 }}$	FSPSY\#2	FSCSL ${ }^{\text {\#2 }}$	
F1045	ORARA\#2	TLMA \#2	LDT2A\#2	LDT1A ${ }^{\text {\#2 }}$	SARA ${ }^{\# 2}$	SDTA\#2	SSTA\#2	ALMA ${ }^{\# 2}$
F1046	MORA2A*2	MORA1A ${ }^{\text {\#2 }}$	PORA2A*2	SLVSA*2	RCFNA ${ }^{\text {\#2 }}$	RCHPA \#2	CFINA\#2	CHPA\#2
F1047							INCSTA*2	PC1DEA*2

189

6. STATUS DISPLAY BY SELF-DIAGNOSTIC DISPLAY

7. HARDWARE
7.1 Configuration of CNC Machine Tool

NOTE1 Refer to the "FANUC I/O Unit Model A Connecting Maintenance Manual (B-61813E)".
NOTE2 Refer to the following manuals:
"FANUC AC Servo Motor α Series Descriptions (B-65142E)"
"FANUC AC Spindle Motor α Series Descriptions (B-65152E)"
"FANUC CONTROL MOTOR AMPLIFIER α Series Descriptions (B-65162E)"

7. HARDWARE
7.2 Configuration of the Control Unit
(1) For Series 16/160

7. HARDWARE
(2) For Series 18/180

(3) When power supply C is used.

7. HARDWARE

7.3 Total Connection

(1) When power supply unit $\mathrm{AI} / \mathrm{BI}$ is used.

NOTE Refer to item 7.1.1 for CRT/MDI connection.

199

7

200

7. HARDWARE

\qquad
 (CONNECTION CONFORMS TO 1ST AXIS)
 (CONNECTION CONFORMS TO 1ST AXIS)
4TH ĀXIS SE(CONNECTION CONFORMS TO 1ST AXIS)
5TH AXIS SERVO AMP/MOTOR/PC
(CONNECTION CONFORMS TO 1ST AXIS)

(CONNECTION CONFORMS TO 1ST AXIS)
\qquad REMOTE BUFFER OR DNC1 (RS422)
REMOTE BUFFER (RS232C)
\qquad ANALOG OUTPUT FOR TOOL DRIVE
ANALOG I/O
HIGH SPEED DI
CONNECTION CONFORMS TO THAT OF MAIN CPU BOARD
 (CONNECTION CONFORMS TO MAIN 1ST AXIS)
 : (CONNECTION CONFORMS TO MAIN 1ST AXIS)

7. HARDWARE

7. HARDWARE

205

RECTIFIER FOR BRAKE EMERGENCY STOP CONTROL CIRCUIT

7. HARDWARE

(2) When power supply C is used

NOTE Refer to item (3) for CRT/MDI connection.

207

208

7. HARDWARE
(3) CRT/MDI unit interface
(a) When 9 "CRT/MDI or 9"PDP/MDI is used (MMC-IV cannot be used)

The separate display unit is not provided with an ON/OFF button.
\qquad \square

(b) When $14^{\prime \prime}$ CRT/MDI is used (MMC-IV cannot be used)

7. HARDWARE
(c) When LCD/MDI is used (MMC-IV cannot be used)

(d) When MMC-IV is provided without NC's graphic function

7. HARDWARE
(e) When MMC-IV is provided with NC's graphic function.

7.4 Configuration of the Printed Circuit Boards and LED Display

7.4.1 Power unit configuration and LED display
(1) Parts layout

Drawing number: A16B-1212-0901 (Power supply unit AI) A16B-1212-0871 (Power supply unit BI) A20B-1005-0420 (Power supply unit)

	No.	Description
CP1		200VAC power input

F1 AC power fuses
CP2, CP3 200VAC power output
Lithium battery for memory backup
Pilot lamp Alarm lamp ON/OFF power control
+24 V output
+24 E output
+24 V fuse +24 E fuse

Fig. 7.4.1 Power Unit Parts Layout
(2) LED display

Table 7.4.1 (a) LED Display of the Power Unit

No.	LED display		NC status	
1	PIL	■	(green)	200 VAC power is supplied to connector CP1.
2	ALM	$\boxed{\square}$	(red)	Indicates that overvoltage, overcurrent, or voltage drop occurs at the output of the direct current power supply.

(3) Maintenance parts

Table 7.4.1 (b) Maintenance Parts List

P o w e r supply	Symbol	Rating	Individual code
AI	F1	7.5A	A60L-0001-0245\#GP75
	F3	3.2A	A60L-0001-0075\#3.2
	F4	5AS	A60L-0001-0046\#5.0
	F1	7.5A	A60L-0001-0245\#GP75
	F3	5A	A60L-0001-0075\#5.0
	F4	5AS	A60L-0001-0046\#5.0
C	-	7.5A	A60L-0001-0046\#7.5R
Lithium battery code (For power supply AI, BI)	A98L-0031-0012		
Lithium battery code (For ppower supply C)	A98L-0031-0006		

7. HARDWARE

7.4.2 Configuration main CPU board and LED display
(1) Parts layout

Fig. 7.4.2 Parts Layout for the Main CPU Board

Table 7.4.2 (a) Module List for the Main CPU Board

No.	Name	Specifications	Function	Display of system configuration screen
(1)	DRAM module	A20B-2901-0941	CNC system RAM	DRAM:4MB
		A20B-2901-0942		DRAM:2MB
		A20B-2902-0461		DRAM:8MB
(2)	SRAM module	A20B-2902-0350	Expanded SRAM	ADDITIONAL SRAM:256KB
		A20B-2902-0351		ADDITIONAL SRAM:768KB
		A20B-2902-0352		ADDITIONAL SRAM:2.25MB
(3)	FROM SRAM module	A20B-2902-0341	CNC system, Ser- vo system Graphic system, SRAM for system	FLASH ROM MODULE:4MB
		A20B-2902-0343		FLASH ROM MODULE:2MB
		A20B-2902-0411		FLASH ROM MODULE:6MB
		A20B-2902-0410		FLASH ROM MODULE:8MB
		A20B-2902-0500		$\begin{aligned} & \hline \text { FLASH ROM MODULE: } \\ & \text { 12MB } \end{aligned}$
(4)	Spindle module	A20B-2901-0980	Spindle control	SERIAL SPINDLE LSI ANALOG SPINDLE LSI
		A20B-2901-0981		SERIAL SPINDLE LSI
		A20B-2901-0982		ANALOG SPINDLE LSI
(5)	PMC module	A20B-2902-0480	PMC control	SLOTxx PMC MODULE SLC : MOUNTED
		A20B-2902-0481		SLOTxx PMC MODULE SLC : \qquad
(6)	HSSBC module	A20B-2902-0490	CRT text display control	CRTC MODULE : HSSB
	CRTC module	A20B-2902-0271		CRTC MODULE:9"CRT
		A20B-2902-0275		CRTC MODULE:VGA
		A20B-2902-0276		CRTC MODULE:9"CRT

217

(7)	Servo module	A20B-2902-0070	Servo control	SERVO 5/6 AXIS
	A20B-2902-0061	5th or 6th axis		
(8)	Servo module	A20B-2902-0070	Servo control	SERVO 3/4 AXIS
	A20B-2902-0061	3rd or 4th axis		
(9)	Servo module	A20B-2902-0070	Servo control	SERVO 1/2 AXIS
	A20B-2902-0061	st or 2nd axis		

(2) LED display
(a) LED display transition when the power is turned on
\square : Off \quad : Lit \star : Flashing
The STATUS LEDs are green and the ALARM LEDs are red.
Table 7.4.2 (b) LED Display (1) for the Main CPU Board

No.	LED display	NC status	
1	STATUS $\quad \square \square \square$	When power is off	
2	STATUS	$\square \square$	Startup status immediately after power is turned on
3	STATUS	$\square \square$	Waiting for each processor to set its ID within the system
4	STATUS	$\square \square \square$	All processors have completed setting their IDs within the system
5	STATUS	$\square \square$	Completion of FANUC BUS startup
6	STATUS	$\square \square \square$	Completion of PMC startup
7	STATUS	$\square \square \square$	Completion of setting information of hardware configuration for each board within the sys- tem
8	STATUS	$\square \square \square \square$	Completion of each processor's startup within the system
10	STATUS	$\square \square \square$	Completion of the initial execution of the PMC ladder
11	STATUS	$\square \square \square \square$	Waiting for digital servo system startup

(b) LED display when an error occurs

Table 7.4.2 (c) LED Display (2) for the Main CPU Board

No.	LED display	NC status
1	STATUS ALARM	RAM parity error occurred in the main CPU board or a servo alarm occurred in the option 2 board.
2	STATUS ALARM	Servo alarm (SERVO WATCHDOG ALARM) occurred.
3	STATUS $\square ■ \square \square$ ALARM $\square ■ \square$	Some other system error occurred.
4	STATUS $\square \square \square \square$ ALARM $\times \boldsymbol{\square} \times$	The system had been stopped before the CPU was activated.

7. HARDWARE
(c) LED display when the system is activated without the option 2 board (having the sub-CPU) mounted

Table 7.4.2 (d) LED Display (3) for the Main CPU Board

No.	LED display	NC status
1	STATUS ALARM $\square \square \square \square \square$	An error occurred at SRAM on the Option 2 board (having the sub-CPU). Replace the Option 2 board.

7.4.3 Configuration of the option 1 board and LED display
(1) Parts layout

Drawing number : A16B-2200-0913 (communications function with remote buffer)
: A16B-2200-0914 (communications function with DNC1)

Fig. 7.4.3 (a) Parts Layout for the Option 1 Board

Table 7.4.3 (a) Module List for the Option 1 Board

No.	Name of module	Specifications	Function	Display of system configuration screen
1	Commu- nication control module	A20B-2900-0361	Commu- nication control	COMMUNICATION MOUNTED

(2) LED display

(a) LED display for the communications function (remote buffer)
(i) LED display transition when the power is turned on

$$
\square: \text { Off } \quad \text { : Lit } \quad \star: \text { Flashing } \quad \times: \text { Don't care }
$$

The STATUS LEDs are green and the ALARM LEDs are red.
Table 7.4.3 (b) LED Display (1) for the Option 1 Board

No.	LED display		NC status
1	STATUS ALARM		Startup status immediately after the power has been turned on
2	STATUS ALARM	$\begin{aligned} & \times \times \square \square \\ & \square \square \square \end{aligned}$	Remote buffer startup stage has terminated and the system is now in normal operation mode.

(ii) LED display when an error occurs

Table 7.4.3 (c) LED Display (2) for the Option 1 Board

No.	LED display		NC status
1	STATUS ALARM	$\times \times \star \star$	
$\square \square \square$			

control of the option 1 board\end{array}\right.\)

7. HARDWARE
7.4.4 Configuration of option 2 board and LED display
(1) Parts layout

Drawing number : A16B-2203-0030 (SUB CPU and additional axis for Series 16)
A16B-2203-0031 (additional axis only for Series 16)
A16B-2203-0033 (SUB CPU for Series 18)

Fig. 7.4.4 (a) Parts Layout of the Option 2 board for Series 16

Table 7.4.4 (a) Module List of the Option 2 Board for Series 16

No.	Name	Specifications	Function	Display of system configuration screen
(1)	FROM module	A20B-2902-0081	2nd path macro	FLASH ROM MODULE:4MB
		A20B-2902-0082		FLASH ROM MODULE:2MB
(2)	SRAM module	A20B-2902-0350	CNC system RAM	ADDITIONAL SRAM: 256KB
		A20B-2902-0351		ADDITIONAL SRAM: 768 KB
		A20B-2902-0352		ADDITIONAL SRAM: 2.25 MB
(3)	DRAM module	A20B-2901-0941	CNC RAM	DRAM:4MB
		A20B-2901-0942		DRAM:2MB
		A20B-2902-0461		DRAM:8MB
(4)	Spindle module	A20B-2901-0984	Spindle control	SERIAL SPINDLE LSI ANALOG SPINDLE LSI
		A20B-2901-0985		SERIAL SPINDLE LSI
		A20B-2901-0986		ANALOG SPINDLE LSI
(5)	HAM module	A20B-2900-0280	Analog $\mathrm{I} / \mathrm{O}+\mathrm{HDI}$	H-SKIP DI \& ANALOG I/O: HDI+ANALOG
		A20B-2900-0281	HDI	H-SKIP DI \& ANALOG I/O: HDI
(6)	Servo module	A20B-2902-0070	Servo control 5th or 6th axis	SERVO 5/6 AXIS
(7)	Servo module	A20B-2902-0070	Servo control 3rd or 4th axis	SERVO 3/4 AXIS
(8)	Servo module	A20B-2902-0070	Servo control 1st or 2nd axis	SERVO 1/2 AXIS

221

Fig. 7.4.4 (b) Parts Layout of the Option 2 board for Series 18

Table 7.4.4 (b) Module List of the Option 2 Board for Series 18

7．HARDWARE
（2）LED display
（a）LED display for the sub－CPU
（i）LED display transition when the power is turned on

$$
\square: \text { Off } \quad \text { : Lit } \star \text { : Flashing }
$$

The STATUS LEDs are green and the ALARM LEDs are red．
Table 7．4．4（c）LED Display（1）for the Option 2 Board

No．	LED display		NC status
1	STATUS	■ロロロ	When power is off
2	STATUS	－	Startup status immediately after power is turned or CPU is not running
3	STATUS		Initializing RAM
4	STATUS	■－	Software ID has been set，initialization of keys，ALL CLEAR
5	STATUS	口ロ■■	Waiting for software initialization 1
6	STATUS	■■■	Waiting for software initialization 2 ， Initializing SRAM
7	STATUS	$\square \square \square$	Initializing position coder
8	STATUS	$\square \square \square$	Waiting for digital servo system startup
9	STATUS	■－	Startup has been completed and the system is now in normal operation mode．

（ii）LED display when an error occurs
Table 7．4．4（d）LED Display（2）for the Option 2 Board

No．	LED display		NC status
1	STATUS	$\square \square \square \square$	RAM parity error occurred．
	ALARM	$\square \square \square$	Replace the RAM MODULE．
2	STATUS	$\square \square \square \square$	Servo alarm（watch dog，etc．）occurred．
	ALARM	$\square \square \square$	$\square \square \square$
3	STATUS	$\square \square \square \square$	Other alarm occurred．
	ALARM	$\square \square \square$	

（iii）LED display when system is not started
Table 7．4．4（e）LED Display（3）for the Option 2 Board

No．	LED display		Case and required action
1	STATUS ALARM		An SRAM parity error occurred．Replace the option 2 board．In addition，check the LED display for the main CPU board．
2	STATUS ALARM		A DRAM parity alarm occurred．Replace the DRAM module．
3	STATUS ALARM	$\begin{aligned} & \mathrm{Ba} \square \square \\ & \square \square \square \end{aligned}$	A DRAM module of at least 2 M is not mounted，or another alarm occurred．Check and replace the DRAM module．

（b）LED display for additional axes
Table 7．4．4（f）LED Display（4）for the Option 2 Board

No．	LED display		NC status
1	STATUS $\quad \square \square \square \square$	Power is off．	
2	STATUS	$\square \square \square$	litialization has been terminated（normal state）after power on．
3	STATUS ALARM	$\square \square \square$	A servo alarm（such as watchdog alarm）was issued．

223

7.4.5 Configuration of the option 3 board and LED display
(1) Parts layout

Drawing number : A16B-3200-0055 (PMC-RC and CAP II) A16B-3200-0054 (PMC-RC only) A16B-3200-0057 (CAP II only)

Fig. 7.4.5 (a) Parts Layout of the Option 3 Board

Table 7.4.5 (a) Module List of the Option 3 Board

No.	Name	Specifications	Function	Display of system configuration screen
(1)	ROM module for CAP	A20B-2900-0290	CAP-II system	$\begin{aligned} & \text { SYSTEM ROM MODULE } \\ & : 1 \mathrm{MB} \end{aligned}$
		A20B-2900-0291		SYSTEM ROM MODULE :768KB
(2)	ROM module for CAP	A20B-2901-0390	CPU for CAP-II	No. display
(3)	ROM module for CAP	A20B-2901-0413	DRAM + SRAM for CAP-II	SRAM MODULE :512KB DRAM MODULE :512KB
(4)	DRAM module for PMC	A20B-2902-0191	DRAM for PMC	ADDITIONAL DRAM(MGR) DRAM(APPLICATION) :2MB
		A20B-2902-0192		ADDITIONAL DRAM(MGR) DRAM(APPLICATION) :1MB
		A20B-2902-0193		ADDITIONAL DRAM(MGR) DRAM(APPLICATION) $: 512 \mathrm{~KB}$
		A20B-2902-0194		ADDITIONAL DRAM(MGR)
		A20B-2902-0196		DRAM :2MB
		A20B-2902-0197		DRAM :1MB
		A20B-2902-0198		DRAM :512KB
(5)	PMC module	A20B-2901-0960		PMC MODULE:PMP2
		A20B-2902-0250		PMC MODULE:PMP2

7. HARDWARE

(2) LED display

The STATUS LEDs in the front upper section of the option 3 board are used for two independent functions as shown in the figure on the right.

Fig. 7.4.5 (b) Location of LED Display for the Option 3 Board
(a) LED display for the graphics display function when CAP II is not installed
(i) LED display transition when the power is turned on

$$
\begin{aligned}
& \square: \text { Off } \quad \text { : Lit } \quad \star \text { : Flashing } \\
& \times: \text { Don't care }
\end{aligned}
$$

The STATUS LEDs are green and the ALARM LEDs are red.
Table 7.4.5 (b) LED Display (1) for the Option 3 Board

No.	LED display	NC status
1	STATUS	
2	STATUS $\times \times \square \square$	Startup status immediately after power is turned on
3	STATUS $\times \times \square \square$	Waiting for each processor in the system to set its ID
4	STATUS $\times \times \square \square$	Waiting for each processor in the system to complete startup

(ii) LED display when an error occurs

Table 7.4.5 (c) LED Display (2) for the Option 3 Board

No.	LED display	NC status
1	STATUS $\times \times \star \star$	NMI from another board (STATUS LEDs 3 and 4 are flashing simultaneously). Check other boards' LED displays.
2	STATUS $\times \times \square \star$	A CAP II sub-memory parity error occurred. Initialize the sub-memory.
3	STATUS $\times \times \star \square$	A bus error occurred (incorrect memory ac- cess). Replace the option 3 board.
4	STATUS $\times \times \star \star$	A ROM parity error occurred (STATUS LEDs 3 and 4 are flashing alternately). Replace the CAP II ROM module.

(b) LED display for the PMC-RC functions
(i) LED display transition when the power is turned on

$$
\square: \text { Off } \quad \text { : Lit } \quad \star \text { : Flashing } \times \text { : Don't care }
$$

The STATUS LEDs are green and the ALARM LEDs are red.
Table 7.4.5 (d) LED Display (3) for the Option 3 Board

No.	LED display	NC status
1	STATUS $\quad \square \square \times \times$	Startup status immediately after power is turned on
2	STATUS $\quad \square \square \times \times$	Waiting for each processor in the system to set its ID
3	STATUS $\quad \square \square \times \times$	Waiting for each processor in the system to complete startup
4	STATUS $\quad \square \square \times \times$	The PMC-RC function startup has been com- pleted and the system is now in normal op- eration.

(ii) LED display when an error occurs

Table 7.4.5 (e) LED Display (4) for the Option 3 Board

No.	LED display		NC status
1	STATUS $\quad \star \star \times \times$	NMI from another board (LEDs are flashing simultaneously). Check other boards' LED displays.	
2	STATUS	$\square \star \times \times$	The parity error of the memory for LADDER or work occurred. Initialize the memory for LAD- DER or replace it for work RAM MODULE.
3	STATUS	$\star \square \times \times$	A bus error occurred (incorrect memory ac- cess). Replace the option 3 board.
4	STATUS	$\boxed{\boxed{ } \times \times}$	Communication error occurred in I/O Link. Check the Link device and the cables.
5	STATUS	$\star \square \times \times$	The parity error etc. occurred in the PMC con- trol module. Replace the PMC control mod- ule.
6	STATUS	$\star \star \times \times$	A checksum error occurred in the system pro- gram memory. The DRAM module for the PMC may have failed.

(c) Alarm LED display (common to CAP II and PMC-RC)

Table 7.4.5 (f) LED Display (4) for the Option 3 Board

No.	LED display	Description	NC status
1	ALARM $\square \square \square$	An I/O link error occurred.	Check the link devices and cables.
2	ALARM $\square \square \square$	A parity error occurred in the SRAM for CAP-II	The SRAM module for CAP-II may be out of order.
3	ALARM \square ■	A parity error occurred in the DRAM for PMC	Option 3 board or the DRAM module for PMC may have failed.
4	ALARM $\square \square \square$	A parity error occurred in the DRAM for CAP-II	The DRAM module for CAP-II may have failed.
5	ALARM ■ \square	A parity error occurred in the DRAM for PMC	Option 3 board or the DRAM module for PMC may have failed.
6	ALARM $\square \square$	The CPU for PMC is not started	Check whether the main board has been activated normally.
7	ALARM ■■■	The operation of the PMC module is abnormal	The PMC module may have failed.

7. HARDWARE

7.4.6 Configuration of the loader control board and LED display
(1) Parts layout

Drawing number : A16B-2203-0080

Fig. 7.4.6 (a) Parts Layout of the Loader Control Board

Table 7.4.6 (a) Module List for the Loader Control Board

No.	Name	Specifications	Function	Display of system configuration screen
(1)	FROM module	A20B-2902-0082	ROM for macro of loader side	FLASH ROM MODULE:2MB
(2)	DRAM module	A20B-2901-0941	Loader system RAM	DRAM:4MB
		A20B-2901-0942		DRAM:2MB
(3)	Servo module	A20B-2902-0070	Servo control 3rd or 4th axis	SERVO 3/4 AXIS
		A20B-2902-0061		
(4)	Servo module	A20B-2902-0070	Servo control 1st or 2nd axis	SERVO 1/2 AXIS
		A20B-2902-0061		
(5)	PMC module	A20B-2900-0142	$\begin{aligned} & \hline \text { PMC } \\ & \text { control } \end{aligned}$	PMC MODULE: BSI+SLC
		A20B-2900-0143		PMC MODULE: BSI

(2) LED display
(i) LED display transition when the power is turned on
\square : Off \quad : Lit $\quad \star$: Flashing
The STATUS LEDs are green and the ALARM LEDs are red.
Table 7.4.6 (b) LED Display (1) for the Loader Control Board

No.	LED display	NC status	
1	STATUS $\quad \square \square \square \square$	When power is off	
2	STATUS	$\square \square$	Startup status immediately after power is turned or CPU is not running
3	STATUS	$\square \square \square$	Initializing RAM
4	STATUS	$\square \square \square$	Software ID has been set, initialization of keys, ALL CLEAR
5	STATUS	$\square \square \square$	Waiting for software initialization 1
6	STATUS	$\square \square \square$	Waiting for software initialization 2, Initializing SRAM
7	STATUS	$\square \square \square$	Initializing position coder
8	STATUS	$\square \square \square \square$	Waiting for digital servo system startup
9	STATUS	$\square \square \square \square$	Startup has been completed and the system is now in normal operation mode.

(ii) LED display when an error occurs

Table 7.4.6 (c) LED Display (2) for the Loader Control Board

No.	LED display		NC status
1	STATUS	$\square \square \square \square$	
ALARM	$\square \square \square$		

7

7. HARDWARE
7.4.7 Configuration of I/O card
(1) Sink type output

Name	Code	Function
I/O card (sink type output)	A16B-2200-0950	DI : 104 DO : 80 With high-speed skip
	A16B-2200-0951	DI : 104 DO : 72 With high-speed skip
	A16B-2200-0952	DI : 80 DO : 56 With high-speed skip
	A16B-2200-0953	DI : 40 DO : 40 With high-speed skip
	A16B-2200-0954	High-speed skip only
	A16B-2200-0955	DI : 104 DO : 80 Without high-speed skip
	A16B-2200-0956	DI : 104 DO : 72 Without high-speed skip
	A16B-2200-0957	DI : 80 DO : 56 Without high-speed skip
	A16B-2200-0958	DI : 40 DO : 40 Without high-speed skip
I/O card add-on board	A20B-9001-0480	DI : 52 DO : 40 Use with A16B-2200-0950 or A16B-2200-0955 listed above

NOTE This printed circuit board has no LED display.
(2) Sink type output

Name	Code	Function
I/O card (sink type output)	A16B-2202-0720	DI : 104 DO : 80 With high-speed skip
	A16B-2202-0721	DI : 104 DO : 72 With high-speed skip
	A16B-2202-0722	DI : 80 DO : 56 With high-speed skip
	A16B-2202-0723	DI : 40 DO : 40 With high-speed skip
	A16B-2202-0725	DI : 104 DO : 80 Without high-speed skip
	A16B-2202-0726	DI : 104 DO : 72 Without high-speed skip
	A16B-2202-0727	DI : 80 DO : 56 Without high-speed skip
	A16B-2202-0728	DI : 40 DO : 40 Without high-speed skip
I/O card add-on board	A20B-8001-0150	DI : 52 DO : 40 Use with A16B-2200-0950 or A16B-2200-0955 listed above

NOTE This printed circuit board has no LED display.

7.4.8 Configuration of the I/O card with power supply (for power supply C) and LED display
(1) Sink type output

Name	Code	Function
I/O card (sink type output)	A16B-2202-0690	DI :104 DO :72
	A16B-2202-0691	DI : 80 DO :56
	A16B-2202-0692	DI :40 DO :40
Power supply	A20B-1005-0420	To be used with the above I/O card

- LED display

PIL (Green)	Lights when DC input power voltage is applied to CP1A

(2) Source type output

Name	Code	Function
I/O card (sink type output)	A16B-2202-0870	DI :104 DO :72
	A16B-2202-0871	DI :80 DO :56
	A16B-2202-0872	DI :40 DO :40
Power supply	A20B-1005-0420	To be used with the above I/O card

- LED display

7. HARDWARE

7.4.9 Configuration of the background graphic board and LED display
(1) Parts layout

Drawing number : A16B-2203-0032

Fig. 7.4.9 (a) Parts Layout of the Background Graphic Board

Table 7.4.9 (a) Module List of the Background Graphic Board

No.	Name	Specifications	Function	Display of system configuration screen
(1)	FROM module	A20B-2902-0081	Background graphic system	FLASH ROM MODULE:4MB
		A20B-2902-0082		FLASH ROM MODULE:2MB
(2)	SRAM module	A20B-2902-0350	System RAM	ADDITIONAL SRAM: 256KB
		A20B-2902-0351		ADDITIONAL SRAM: 768 KB
		A20B-2902-0352		ADDITIONAL SRAM: 2.25 MB
(3)	DRAM module	A20B-2901-0941	System RAM	DRAM:4MB
		A20B-2902-0461		DRAM:8MB

(2) LED display
(a) LED display transition when the power is turned on The STATUS LEDs are green and the ALARM LEDs are red.
\square :OFF ■:ON
Table 7.4.9 (b) LED Display (1) for Background Graphic Board

No.	LED display	NC status		
1	STATUS	$\square \square \square \square$	When power is off	
2	STATUS	$\square \square$	Startup status immediately after power is turned or CPU is not running	
3	STATUS	$\square \square \square$	Initializing RAM	
4	STATUS	$\square \square \square$	Software ID has been set, initialization of keys, ALL CLR	
5	STATUS	$\square \square \square$	Waiting for software initialization 1	
6	STATUS	$\square \square \square$	Waiting for software initialization 2, Initializing SRAM	
7	STATUS	$\square \square \square$	Initialization has been completed (steady state).	
231				

(b) LED display when an error occurs
\square : OFF $\square:$ ON
Table 7.4.9 (c) LED Display (2) for Background Graphic Board

No.	LED display	NC status
1	STATUS	$\square \square \square \square$
	ALARM	$\square \square \square$

(c) LED display when system is not started
\square :OFF $\square:$ ON
Table 7.4.9 (d) LED Display (3) for Background Graphic Board

No.	LED display		NC status
1	STATUS $\square \square \square$ ALARM $\square \square \square$	SRAM parity error occurred.	
2	STATUS $\square \square \square \square$ ALARM $\square \square \square$	DRAM parity error occurred.	

7. HARDWARE

7.4.10 Configuration of the 64-bit RISC board and LED display
(1) Parts layout

Drawing number : A16B-3200-0150

Fig. 7.4.10 Parts Layout of the 64-bit RISC Board

Table 7.4.10 (a) Module List for the 64-bit RISC Board

No.	Name	Specifications	Function	
(1)	FPROM module	A20B-2901-0292	ROM for RISC board system	ROM : 512KB

(2) LED display
(a) LED display transition when the power is turned on The STATUS LEDs are green and the ALARM LEDs are red: ON
Table 7.4.10 (a) LED Display (1) for the 64-bit RISC Board

No.	LED display	NC status	
1	STATUS $\quad \square \square \square \square$	When power is off	
2	STATUS	$\square \square \square$	Start up status immediately after power is turned or CPU is not turning
3	STATUS $\quad \square \square \square \square$	DRAM or SRAM test in progress (If an error was detected during a test, the LEDs re- main in the state in which they were during the test.)	
4	STATUS	$\square \square \square \square$	ROM test in progress (If an error was de- tected during a test, the LEDs remain in the state in which they were during the test.)
5	STATUS	$\square \square \square \square$	Waiting for a main CPU request (1)

(b) LED display transition when the power is turned on

$$
\square: \text { OFF } \quad \star: \text { Blink }
$$

Table 7.4.10 (b) LED Display (2) for the 64-bit RISC Board

No.	LED display		NC status
1	STATUS	$\square \square \square \star$	Waiting for RISC mode to selected
2	STATUS	$\square \star \square \star$	Waiting for an NC statement to be entered
3	STATUS	$\square \star \star \square$	Command being executed in RISC mode
4	STATUS	$\star \square \square \square$	Resetting
5	STATUS	$\star \square \star \star$	Override 0 for pre-interpolation accelera- tion/deceleration (waiting for the override level to be changed)

(c) LED display upon occurrence of an error
\square : OFF
ON

Table 7.4.10 (c) LED Display (3) for the 64-bit RISC Board

No.	LED display	NC status		
1	STATUS $\quad \square \square \square \square$	An error occurred on the RISC board during the DRAM or SRAM test		
2	STATUS $\quad \square \square \square \square$	An error occurred in the ROM module dur- ing a test.		
3	STATUS $\quad \square \square \square$	A sync signal from the main CPU was not detected.		
4	STATUS $\quad \square \square \square \square$	An error occurred when the F-BUS was accessed.		
5	STATUS	$\square \square \square$	System error	
:---				

(d) Alarm LED display

$\square:$ OFF ■:ON
Table 7.4.10 (d) LED Display (4) for the 64-bit RISC Board

No.	LED display		NC status
1	STATUS $\quad \square \square \square$	The RISC CPU has not been started.	
2	STATUS	$\square \square$	SRAM parity
3	STATUS	$\square \square$	DRAM parity

Table 7.4.10 (e) LED Display (5) for the 64-bit RISC Board

No.	LED display	NC status
1	LVALM \square	RISC board or Power abnormal The RISC board or power supply unit may be defective.

(3) Maintenance parts

Table 7.4.10 (f) Maintenance Parts List

Symbol	Rating	Specifications
F21	$5 A$	A60L-0001-0075\#5.0

8. PARAMETERS

8.1 How to Enter the Parameters

(1) Enabling writing the parameters

1 Enter the MDI mode or emergency stop state.
 setting.

3 Move the cursor to the PARAMETER WRITE field and enter 1
and then

4 Alarm 100 occurs. Press the CAN and RESET keys simultaneously to temporarily stop the alarm.
(2) Entering the parameters

1 Press the ssstem key on the CRT/MDI panel several times to select the parameter screen.

2 Pressing soft key [(OPRT)] displays the operation menu including the items below.

Enter a parameter number and press [NO.SRH]: Searches for the specified number.

Soft key [ON:1] : Sets the value at which the cursor is positioned to 1 . (Only for bit parameters)
Soft key [OFF:0] : Sets the value at which the cursor is positioned to 0 . (Only for bit parameters)

Soft key [+INPUT]: Adds the entered value to the value at which the cursor is positioned. (Only for word parameters)
Soft key [INPUT]: Sets the value at which the cursor is positioned to the entered value. (Only for word parameters)
Soft key [READ] : Inputs parameters from the reader/punch interface. Soft key [PUNCH]: Outputs parameters to the reader/punch interface.

Convenient methods for entering data
3-1 To change data in units of bits
 which enables setting data in units of bits (only for bit parameters).

3-2 Use EOB to continuously set data starting from the cursor position.
(Example 1)

(Example 2)
When 1243 Еов Еов 9,959 9 wpur is entered,

3-3 Use $=$ to enter the same data.
(Example)
When 1243 EOB $=3$ EOB $=1$ wPut entered,

| 0 | | 1234 |
| ---: | ---: | ---: | ---: |
| 0 | | 1234 |
| 0 | | 1234 |
| 0 | | 0 |

3-4 For bit parameters
(Example)
When 1 EOB $=1$ EOB is entered,

0	0	0	0	0	0	0	0									
0	0	0	0	0	0	0	0									
0	0	0	0	0	0	0	0									
0	0	0	0	0	0	0	0	$\quad \rightarrow \quad$	0	0	0	1	1	0	0	0
:---	:---	:---	:---	:---	:---	:---	:---									
0	0	0	1	1	0	0	0									
0	0	0	1	1	0	0	0									
0	0	0	0	0	0	0	0									

4 After all necessary parameters are entered, reset the PARAMETER WRITE field to 0 on the SETTING screen.

8. PARAMETERS

8.2 Parameter List

1)	Setting	(No. 0000 -)
2)	Reader/Puncher interface	(No. 0100 -)
3)	Axis control/Incremental system	(No. 1000 -)
4)	The coordinate system	(No. 1200 -)
5)	Stroke limit	(No. 1300 -)
6)	Feedrate	(No. 1400 -)
7)	Acceleration/Deceleration	(No. 1600 -)
8)	Servo	(No. 1800 -)
9)	DI/DO	(No. 3000 -)
10)	CRT/MDI, Display, and Edit	(No. 3100 -)
11)	Program	(No. 3400 -)
12)	Pitch error compensation	(No. 3600 -)
13)	Spindle control	(No. 3700 -)
14)	Tool offset	(No. 5000 -)
15)	Grinding-wheel wear compensation	(No. 5071 -)
16)	Canned cycle	(No. 5100 -)
17)	Rigid tapping	(No. 5200 -)
18)	Scaling/Coordinate rotation	(No. 5400 -)
19)	Uni-directional positioning	(No. 5430 -)
20)	Polar coordinate interpolation	(No. 5450 -)
21)	Normal direction control	(No. 5480 -)
22)	Index table indexing	(No. 5500 -)
23)	Involute interpolation	(No. 5600 -)
24)	Exponential interpolation	(No. 5630 -)
25)	Straightness compensation	(No. 5710 -)
26)	Custom macro	(No. 6000 -)
27)	Pattern data input	(No. 6100 -)
28)	Skip functions	(No. 6200 -)
29)	Automatic tool offset	(No. 6240 -)
30)	External data input/output	(No. 6300 -)
31)	Graphic display	(No. 6500 -)
32)	Run hour - parts count display	(No. 6700 -)
33)	Tool life management	(No. 6800 -)
34)	Position switch function	(No. 6900 -)
35)	Manual operation/automatic operation	(No. 7000 -)
36)	Manual handle feed/Handle interruption	(No. 7100 -)
37)	Butt-type reference position setting	(No. 7181 -)
38)	Software operator's panel	(No. 7200 -)
39)	Program restart	(No. 7300 -)
40)	High speed machining	(No. 7500 -)
High speed cycle machining		
High speed remote buffer		
41)	Polygon turning	(No. 7600 -)
42)	External pulse input	(No. 7680 -)
43)	Hobbing machine and electric gear box	(No. 7700 -)
44)	Axis control by PMC	(No. 8000 -)
237		

45)	Two-path control	(No. 8100 -)
46)	Inclined axis control	(No. 8200 -)
47)	B-axis function (T series)	(No. 8240 -)
48)	Simple synchronous control	(No. 8300 -)
49)	Program check termination	(No. 8341 -)
50)	Chopping	(No. 8360 -)
51)	High-precision contour control (M series)	(No. 8400 -)
52)	Macro executer and etc.	(No. 8650 -)

Data Type	Valid data range	Data Type	Valid data range
Bit	0 or 1	Word	0 to ± 32767
Bit axis		Word axis	
Byte	$\begin{gathered} 0 \text { to } \pm 127 \\ 0 \text { to } 255 \end{gathered}$	${ }^{2-w o r d}$	0 to ± 99999999
Byte axis		2-word axis	

NOTE1 There is something to which the range of setting is limited depending on the parameter No.
NOTE2 A part of the parameter can be input with the setting screen.
NOTE3 In the description of a bit-type parameter, the explanation written at the left-hand side of a slash (/) corresponds to setting 0 , and that at the right-hand side corresponds to setting 1.
NOTE4 <Axis> indicated at the right column in a parameter list shows that the corresponding parameters are specified for each axis.

1) Parameters for SETTING

Number	Contents	Remarks
0000	For Setting	
\#7 \#6 \#5 SEQ \#4 \#3 \#2 INI \#1 ISO \#0 TVC	Automatic insertion of sequence No. is, not performed (0)/performed (1) Input increment by mm (0)/by inch (1) Data output by EIA code (0)/by ISO code (1) TV check is not performed (0)/performed (1)	PRM3216
0001	Parameter relating to tape format	
$\begin{aligned} & \# 7 \\ & \# 6 \\ & \# 5 \\ & \# 4 \\ & \# 3 \\ & \# 2 \\ & \# 1 \text { FCV } \\ & \# 0 \end{aligned}$	FS16 standard (0)/FS15 Tape format (1)	

8. PARAMETERS

0002	Parameter relating to tape format					
\#7 SJZ : \#6 \#5 \#4 \#3 \#2 \#1 \#0 RDG:	For manual reference position return, deceleration dogs are used when a reference position is not established, and positioning is performed when a reference position is established (0)/deceleration dogs are used at all times (1) Remote diagnosis is not performed (0)/ performed (1)					$\begin{gathered} \text { M series } \\ \text { PRM } \\ 1005 \# 3=1 \end{gathered}$
0012	Parameter for axis detaching, mirror image					<Axis>
\#7 RMV : \#6 \#5 \#4 \#3 \#2 \#1 \#0 MIR	Detach of the each axis is not performed (0)/ performed (1) Setting of mirror image for each axis is OFF (0)/ON (1)					$\begin{gathered} \text { PRM } \\ 1005 \# 7 \end{gathered}$
0020	Selection of channel for input/output devices					
Setting		0	1	2	3 (remote buffer)	
Common	PRM0100					
Output format		PRM 0101	PRM 0111	PRM 0121	PRM 0131	
Specificat number		PRM 0102	PRM 0112	PRM 0122	PRM 0132	
Transfer rate		PRM 0103	PRM 0113	PRM 0123	PRM 0133	
Transfer method		Not set				PRM 0135 \#3=1
Connecto number		JD5A		JD5B	JD5	JD6A
$\begin{array}{rr} \hline 10 & : \\ 12 & : \\ 20 & : \\ \text { to } & \\ 35 & : \end{array}$	DNC DNC Data I/O Data I/O	1/DNC2 1\#2 transfer to Link. transfer to Link.	and from th and from th	Power Power M	te of g te of g	0 via the 15 via the

239

2) For reader/puncher interface

Number	Contents	Remarks
0100	Common to each channel	
\#7 ENS \#6 IOP \#5 ND3 \#4 \#3 NCR : \#2 \#1 CTV : \#0	Reading of data by EIA code, if NULL code is red in the data, ignore it (0)/make alarm (1) Input/output of an NC program is stopped by resetting the CNC (0)/by pressing the [STOP] soft key (1). DNC operation is performed to read blocks one by one (0)/until the buffer becomes full (1). When output EOB by ISO code, LF, CR, CR (0) /CR output (1) TV check in control-out is performed (0)/not performed (1)	ALM001
0101	Parameter relating to CHANNEL 1 (1/O CHANNEL=0)	
\#7 NFD \#6 \#5 \#4 \#3 ASI \#2 \#1 \#0 SB2	FEED before \& after of data is output (0)/not output (1) Data input by EIA or ISO code (0)/ASCII code (1) Number of stop bit is 1 bit (0)/2 bits (1)	
0102	Spec. No. of I/O devices of CHANNEL 1 (1/O CHANNEL=0)	
$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	RS-232-C (Except of under-mentioned) FANUC CASSETTE B1/B2 FANUC CASSETTE F1 FANUC PROGRAM FILE Mate, FANUC FA Card, FSP-H, FANUC FLOPPY CASSETTE RS-232-C (Control codes DC1 to DC4 are not used.) PORTABLE TAPE READER FSP-G, FSP-H, FANUC PPR	
0103	Baud rate setting of CHANNEL 1 ($/$ O CHANNEL=0)	
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 6 \end{aligned}$	50 Baud $7: 600$ Baud 100 Baud $9: 2400$ Baud 110 Baud $10: 4800$ Baud 150 Baud $11: 9600$ Baud 300 Baud $12: 19200$ Baud	
0111	Parameter relating to CHANNEL 1 ($/$ O CHANNEL=1)	PRM0101
0112	Spec. No. of I/O devices of CHANNEL 1 (I/O CHANNEL=1)	PRM0102

8. PARAMETERS

Number	Contents	Remarks
0113	Baud rate setting of CHANNEL 1 (I/O CHANNEL=1)	PRM0103
0121	Parameter relating to CHANNEL 2 ($\mathrm{I} / \mathrm{O} \mathrm{CHANNEL=2} \mathrm{)}$	PRM0101
0122	Spec. No. of I/O devices of CHANNEL 2 (I/O CHANNEL=2)	PRM0102
0123	Baud rate setting of CHANNEL 2 (I/O CHANNEL=2)	PRM0103
0131	Parameter relating to CHANNEL 3 (I/O CHANNEL=3)	PRM0101
0132	Spec. No. of I/O devices of CHANNEL 3 (I/O CHANNEL=3)	PRM0102
0133	Baud rate setting of CHANNEL 3 ($/ / \mathrm{O}$ CHANNEL=3)	PRM0103
0134	Parameter relating to REMOTE BUFFER	
\#7 \#6 \#5 CLK \#4 NCD \#3 \#2 SYN \#1 PRY \#0	Baud rate clock of RS-422 interface is used, inner clock (0)/outer clock (1) CD (Signal quality detection) of RS-232-C interface, checked (0)/not checked (1) "SYN", "NAK" code in protocol B is not controlled (0)/controlled (1) Without parity bit (0)/With parity bit (1)	
0135	Parameter relating to REMOTE BUFFER	
\#7 RMS \#6 \#5 \#4 \#3 R42 \#2 PRA \#1 ETX \#0 ASC	In case of extended protocol A, the byte location of SAT data part is, usually not appointed $0(0)$ / send back unconditionally (1) Interface is, RS-232-C (0)/RS-422 (1) Communication protocol is $B(0) / A(1)$ The END CODE for protocol A is, CR code (0)/ EXT code (1) in ASCII/ISO Communication code except of NC data is ISO code (0)/ASCII code (1)	
0140	Parameter relating to BCC check	
$\begin{aligned} & \# 7 \\ & \# 6 \\ & \# 5 \\ & \# 4 \\ & \# 4 \\ & \# 3 \\ & \# 2 \\ & \# 1 \\ & \# 0 \end{aligned}$	A BCC value is checked $(0) /$ not checked (1).	

241

Number	Contents	Remarks
0141	System for connection between the CNC and host (DNC1 interface) (0: PTP, 1: Multi-point)	
0142	Station address of the CNC (DNC1 interface) (2-52)	
0143	Time limit specified for the timer monitoring a response (1-60) [sec]	
0144	Time limit specified for the timer monitoring the EOT signal ($1-60$) [sec]	
0145	Time required for switching RECV and SEND (1-60) [sec]	
0146	Number of times the system retries holding communication (1-10) [Number of times]	
0147	Number of times the system sends the message in response to the NAK signal (1 10) [Number of times]	
0148	Number of characters in overrun (10-255) [Characters]	
0149	Number of characters in the data section of the communication packet (80-256) [Characters]	
0161	Communication method	
$\begin{aligned} & \text { \#7 SRS } \\ & \text { \#6 } \\ & \text { \#5 PEO } \\ & \text { \#4 SRP } \\ & \text { \#3 } \\ & \text { \#2 SRL } \\ & \# 1 \\ & \# 0 \end{aligned}$	The number of stop bits is $1(0) / 2(1)$. Vertical parity is based on odd parity (0)/even parity (1). A vertical parity check is not made $(0) /$ made (1). The serial interface character consists of 7 bits (0)/8 bits (1).	When PRM $1401 \# 4=1$
0171	Number of data items transferred from the PLC to NC (1 to 32).	
0172	Number of data items transferred from the NC to PLC (1 to 32).	
0173	Station address (1 to 15)	
0174	Baud rate	
$\begin{aligned} & 0: \\ & 1: \end{aligned}$	2400 $2:$ 9600 $4: 38400$ $6: 768$ 4800 $3: 19200$ $5: 57600$	[bps]

8. PARAMETERS

Number	Contents	Remarks
0175	Monitoring timer used from the completion of local station connection preparation sequence to the start of a normal sequence	$\begin{gathered} 1-32767 \\ {[\mathrm{msec}]} \end{gathered}$
0176	Polling time monitoring timer	
0177	Monitoring timer used from the start of SAI transmission to the end of BCC transmission	
0178	Timer used from the completion of reception to the start of transmission	
0201	Transfer condition	$\begin{gathered} \text { PRM } \\ 0002 \# 0=1 \end{gathered}$
\#7 $\# 6$ $\# 5$ $\# 5$ $\# 4$ $\# 3$$\vdots$.		
0203	Baud rate (for remote diagnosis)	
	50 4 $: 150$ 7 600 $10: 4800$ 100 5 $: 200$ 8 $: 1200$ $11: 9600$ 110 $6: 300$ $9: 2400$ [bps]	
0204	Channel used for remote diagnosis	
0, 1 : Reader/punch interface channel 1, 2 : Channel 2		
0206	Device ID number for remote diagnosis (0 to 20)	
0211	Password 1 for remote diagnose (All remote diagnosis functions)	
0212	Password 2 for remote diagnose (Part programs)	
0213	Password 3 for remote diagnose (Parameters)	
0221	Keyword 1 for remote diagnose	PRM 0211
0222	Keyword 2 for remote diagnose	PRM 0212
0223	Keyword 3 for remote diagnose	PRM 0213
0231	Output format for DNC1 interface \#2	PRM 0101
0233	Baud rate for DNC1 interface \#2	PRM 0103
0241	System for connection between the CNC and host (DNC1 interface) (1: PTP, 2 : Multi-point)	
0242	Station address of the CNC (DNC1 interface \#2) (2-52)	

Number	Contents	Remarks
0900	Data server function	
$\# 7$	\vdots	
$\# 6$	\vdots	
$\# 5$	\vdots	
$\# 4$	\vdots	
$\# 3$	\vdots	
$\# 2$	Alse data server function is enabled (0)/	
$\# 1$	disabled (1)	
\#0 DSV		
0911	Altemate MDI character	
0912	Character not provided in MDI keys	

3) Parameter for Axis control/Incremental system

Number	Contents	Remarks
1001	Parameter relating to least input increment	
$\begin{aligned} & \# 7 \\ & \# 6 \\ & \# 5 \\ & \# 4 \\ & \# 3 \\ & \# 2 \\ & \# 1 \\ & \# 0 \text { INM } \end{aligned}$	Least command increment on linear axis is, mm system (0)/inch system (1)	
1002	Parameter relating to number of control axis	
\#7 \#6 \#5 XIK \#4 \#3 AZR \#2 SFD \#1 DLZ \#O JAX	When an axis-by-axis interlock signal is applied during nonlinear positioning, only the interlock axis is stopped (0)/all axes are stopped (1). For G28, specified when a reference position has not yet been established, deceleration dogs are used (0)/ALM 90 is issued (1). The reference position shift function is not used (0)/used (1). Reference position return function without dog is, disable (0)/enable (1) Number of simultaneous controlled axis in manual operation is, 1 axis (0)/3 axis (1)	M series PRM 1005\#1

8. PARAMETERS

Number				Contents	Remarks
1004	Parameter relating to least input increment				
b7 IPR : b6 b5 b4 b3 b2 b1 ISC b0 ISA	Least input increment of each axis is set to 1 time (0)/10 times (1) as of least command increment				M series
	ISC	ISA	COD	pur	
	0	0		0.001 mm or	
	0	1	IS-A	0.01 mm or 0.01	
	1	0	IS-C	0.0001 mm or 0.0001 deg	
1005	Parameter relating to external deceleration				<Axis
\#7 RMB \#6 MCC : \#5 EDM : \#4 EDP \#3 HJZ \#2 \#1 DLZ \#O ZRN	Setting to detach of axis control for each axis is not effective (0)/effective (1) At axis removal, the MCC is turned off (0)/only motor activation is turned off (1). External deceleration in the negative (-) direction is applicable to rapid traverse (0)/ rapid traverse and cutting feed (1). External deceleration in the positive (+) direction is applicable to rapid traverse (0)/ rapid traverse and cutting feed (1). For manual reference position return when a reference position is established, deceleration dogs are used (0)/the setting of bit 7 of parameter No. 0002 is followed. Function for setting the reference position without dogs disabled (0)/enabled (1) A command is issued in automatic operation before a return to reference position has not been performed since the power was turned on, an alarm is generated (0)/alarm is not generated (1)				PRM 0012\#7 PRM1426, 1427 PRM1426, 1427 M series PRM 1002\#1
1006	Parameter relating to controlled axis				Axis>
\#7 \#6 \#5 ZMI \#4 \#3 DIA \#2 \#1 ROS \#0 ROT	Initial set for direction of reference position return and backlash compensation is, + direction (0)/ - direction (1) The command of amount of travel for each axis is made by radius (0)/diameter (1) The machine coordinate system of a rotation axis is of rotation axis type (0)/linear axis type (1). The setting of axis is, linear axis (0)/rotary axis (1)				T series When PRM 1006\#0=1

Number	Contents	Remarks
1007	Parameter relating to rotation axis	
	Absolute commands for a rotation axis conform to bit 1 of PRM1008\#1 (0)/the end point coordinate is the absolute value of the command value while the rotation direction is determined from the sign of the command value (1).	
1008	Setting of rotation axis	<Axis>
\#3 RAA : \#2 RRL : \#1 RAB : \#0 ROA :	The rotation direction and end point coordinates specified by an absolute command follow the setting of \#1 (0)/the end point coordinates are represented by the absolute values of specified values, and the direction is represented by the sign of the specified values (1). Relative coordinates are not rounded by the amount of the shift per one rotation (0)/are rounded by the amount of the shift per one rotation (1) In the absolute commands, the axis rotates in the direction in which the distance to the target is longer (0)/shorter (1) The roll over function of a rotation axis is invalid (0)/valid (1)	Rotation axis control PRM1260 PRM 1006\#0=1
1010	Setting of number of CNC controlled axis (1 to number of controlled axes)	
1020	Setting of name of each axis used for programming	
$\begin{aligned} & \mathrm{X}: \\ & \mathrm{A}: \\ & \mathrm{U}: \end{aligned}$	88 Y: 89 Z : 90 65 B $: 66$ C : 67 85 V : 86 W: 87	<Axis> PRM3405 for T series

8. PARAMETERS

Number	Contents	Remarks
1022	Setting of each axis in the basic coordinate system	<Axis>
0	$:$ Neither the basic three axes nor a parallel axis	
1	$:$ X axis of the basic three axes	
2	$:$	Y axis of the basic three axes
3	$:$	Z axis of the basic three axes
5	$:$	Axis parallel to the X axis
6	$:$	Axis parallel to the Y axis
7	$:$	Axis parallel to the Z axis

4) Parameter for Coordinate system

Number	Contents	Remarks
1201	Parameters for coordinates	
\#7 WZR: \#6 \#5 AWK: \#4 \#3 FPC : \#2 ZCL : \#1 ZPI \#0 ZPR :	Upon reset, the workpiece coordinate system is not returned (0)/returned (1) to that specified with G54 When to change workpiece origin offset, value is changed from preprocessing step (0)/ changed immediately (1) When the floating reference position is set, the relative position display is not preset (0)/is preset (1) When manual reference position return is performed the local coordinate system is, not canceled (0)/canceled (1) The coordinate value of automatic coordinate system is set PRM 1250 (0)/PRM 1250 \& PRM 1251 (1) When manual reference position return is performed the automatic coordinate system is not set (0)/set automatically (1)	T series PRM1250, 1251
1202	Workpiece origin offset	
\#7 \#6 \#5 \#4 \#3 RLC \#2 G50 : \#1 EWS: \#0 EWD:	Upon reset, the local coordinate system is not canceled (0)/canceled (1). When the workpiece coordinate system function is selected, coordinate system setting is executed (0)/an alarm is issued (1). The meanings of the workpiece shift value and external workpiece origin offset value are the same (0)/different (1). The shift direction of the external workpiece origin offset is the same as the sign (0)/ opposite to the sign (1).	ALM010 T series T series T series

247

Number	Contents	Remarks
1220	Offset of the external workpiece origin	<Axis>
1221	Offset of the workpiece origin in workpiece coordinate system 1 (G54)	<Axis> OFFSET screen
1222	Offset of the workpiece origin in workpiece coordinate system 2 (G55)	
1223	Offset of the workpiece origin in workpiece coordinate system 3 (G56)	
1224	Offset of the workpiece origin in workpiece coordinate system 4 (G57)	
1225	Offset of the workpiece origin in workpiece coordinate system 5 (G58)	
1226	Offset of the workpiece origin in workpiece coordinate system 6 (G59)	
1240	Coordinate value of the first reference position on each axis in the machine coordinate system	<Axis>
1241	Coordinate value of the second reference position on each axis in the machine coordinate system	<Axis>
1242	Coordinate value of the third reference position on each axis in the machine coordinate system	<Axis>
1243	Coordinate value of the fourth reference position on each axis in the machine coordinate system	<Axis>
1244	Coordinate value of the floating reference position	<Axis> Set automatically
1250	Coordinate value of the reference position used when automatic coordinate system setting is performed (mm input)	$\begin{gathered} \text { <Axis> } \\ \text { PRM } \\ 1201 \# 1=0 \end{gathered}$
1251	Coordinate value of the reference position on each axis used for setting a coordinate system automatically when input is performed in inches	$\begin{gathered} \text { <Axis> } \\ \text { PRM } \\ 1201 \# 1=1 \end{gathered}$
1260	The amount of travel per rotation	
1290	Distance between two opposed tool posts in mirror image	T series

8. PARAMETERS
5) Parameters of Stroke Limit

Number	Contents	Remarks
1300	Relating to Stroke Limit	
\#7 BFA \#6 LZR \#5 RL3 \#4 \#3 \#2 LMS \#1 \#0 OUT	When a command that exceeds a stored stroke limit is issued, an alarm is generated after the stroke limit is exceeded (0)/before the limit is exceeded (1) The stored stroke limits are checked during the time from power-on to manual return to the reference position (0)/not checked (1) Stored stroke limit3 release signal RLSOT3 is disabled (0)/enabled (1) The EXLM signal for switching stored stroke limit is disable (0)/enable (1) An inhibition area of the second stored stroke limits is set, inside (0)/outside (1)	$\begin{aligned} & \text { PRM1320, } \\ & 1321, \\ & 1326,1327 \end{aligned}$
1301	Stroke limit check performed before movement	
\#7 PLC \#6 \#5 \#4 \#3 \#2 NPC \#1 \#0	Stroke limit check before movement is not performed (0)/performed (1) As part of the stroke limit check performed before movement, the movement specified in G31 (skip) and G37 (automatic tool length measurement (for M series) or automatic tool compensation (for T series)) blocks is checked (0)/not checked (1)	
1310	Relating to Stroke Limit	<Axis>
\#7 \#6 \#5 \#4 \#3 \#2 \#1 OT3 \#0 OT2	Stored stroke limits 3 for each axis are, not checked (0)/checked (1) When the inside of the stored stroke limits 2 is set as the inhibition area, whether stored stroke limits 2 are checked for each axis is set, stored stroke limits 2 are not checked (0)/ checked (1)	
1320	Coordinate value I of stored stroke limit 1 in the positive direction on each axis	<Axis>
1321	Coordinate value I of stored stroke limit 1 in the negative direction on each axis	<Axis>

249

Number	Contents	Remarks
1322	Coordinate value of stored stroke limit 2 in the positive direction on each axis	<Axis>
1323	Coordinate value of stored stroke limit 2 in the negative direction on each axis	<Axis>
1324	Coordinate value of stored stroke limit 3 in the positive direction on each axis	<Axis>
1325	Coordinate value of stored stroke limit 3 in the negative direction on each axis	<Axis>
1326	Coordinate value II of stored stroke limit 1 in the positive direction on each axis	$\begin{gathered} \text { <Axis> } \\ \text { PRM } \\ 1300 \# 2=1 \end{gathered}$
1327	Coordinate value II of stored stroke limit 1 in the negative direction on each axis	$\begin{gathered} \text { <Axis> } \\ \text { PRM } \\ 1300 \# 2=1 \end{gathered}$
1330	Profile of a chuck 0 : Holds a workpiece on the inner surface. 1: Holds a workpiece on the outer surface.	T series
1331	Dimensions of the claw of a chuck (L) [Increment system]	T series
1332	Dimensions of the claw of a chuck (W) (Radius value) [Increment system]	T series
1333	Dimensions of the part of a claw at which a workpiece is held (L1) [Increment system]	T series
1334	Dimensions of the part of a claw at which a workpiece is held (W1) (Radius value) [Increment system]	T series
1335	Chuck position CZ along the X-axis (workpiece coordinate system) [Increment system]	T series
1336	Chuck position CZ along the Z-axis (workpiece coordinate system) [Increment system]	T series
1341	Length of a tailstock (L) [Increment system]	T series
1342	Diameter of a tailstock (D) [Increment system]	T series
1343	Length of a tailstock (L1) [Increment system]	T series
1344	Diameter of a tailstock (D1) [Increment system]	T series
1345	Length of a tailstock (L2) [Increment system]	T series
1346	Diameter of a tailstock (D2) [Increment system]	T series
1347	Diameter of the hole of a tailstock (D3) [Increment system]	T series
1348	Z coordinate of a tailstock (TZ) (Workpiece coordinate system) [Increment system]	T series

8. PARAMETERS
6) Parameter of Feedrate

Number	Contents	Remarks
1401	Parameter relating to Feedrate	
\#7 \#6 RDR \#5 TDR \#4 RFO \#3 \#2 JZR \#1 LRP \#0 RPD	Dry run for rapid traverse command is, disable (0)/enable (1) Dry run during tapping in the tapping cycle (G74, G84) (including rigid tapping) is enable (0)/ disable (1) When cutting feedrate override is 0% during rapid traverse, the machine tool does not stop moving (0)/stops moving (1) Manual return to the reference position at Jog feedrate is not performed (0)/performed (1) Positioning (GOO) is nonlinear (0)/linear (1). Manual rapid traverse before the completion of return to reference position is disable (0)/enable (1)	T series
1402	Parameter relating to Manual feed per revolution	
\#7 \#6 \#5 \#4 JRV \#3 OV2 \#2 \#1 \#0 NPC	Manual feed per revolution is, not performed (0)/performed (1) The secondary feedrate override value is 1% (PMCDGN G013) (0)/0.01\% (G094, G095) (1). The feed per rotation command is ineffective when a position coder is not provided (0)/ provided (1)	T series
1403	Units used for feed per minute, threading retract	T series
\#7 RTV \#6 \#5 \#4 \#3 \#2 \#1 \#0 MIF	Overriding during threading retraction is enabled (0)/disabled (1). The unit of F for feed per minute is [$\mathrm{mm} / \mathrm{min}$] $(0) / 0.001 \mathrm{~mm} / \mathrm{min}](1)$.	

Number	Contents	Remarks
1404	Helical interpolation, reference position return	
\#7 \#6 \#5 \#4 \#3 \#2 F8A \#1 DLF \#0 HFC :	With inch input, Valid data range for an F command in feed per minute mode 9600 $\mathrm{deg} / \mathrm{min}(0) / 24000 \mathrm{deg} / \mathrm{min}(1)$ After a reference position has been established, a manual reference position return operation is performed at the rapid traverse rate (PRM1420) (0)/at the manual rapid traverse rate (PRM1424) (1). When helical interpolation involves a linear axis that is longer than an arc, the maximum feedrate is clamped to the feedrate along the linear axis (0)/the combined feedrate along the linear axis and arc (1).	
1410	Dry run rate (feedrate of jog override is 100\%) [mm/min]	
1411	Cutting feedrate in the automatic mode at power-on [mm/min]	M series
1414	Feedrate for reverse movement by the retrace function [mm/min]	M series 0: Programmed command
1420	Rapid traverse rate for each axis (Rapid traverse override is 100\%) [$\mathrm{mm} / \mathrm{min}$]	<Axis>
1421	F0 rate of rapid traverse override for each axis [mm/min]	<Axis>
1422	Maximum cutting feedrate for each axis [mm/min]	<Axis> PRM1430
1423	Manual continuous feedrate for each axis (jog feedrate) [$\mathrm{mm} / \mathrm{min}$]	<Axis>
1424	Manual rapid traverse rate for each axis If 0 is set, the rate set in PRM1420 is assumed [mm/min]	<Axis>
1425	FL rate of return to the reference position for each axis [mm/min]	<Axis>
1426	External deceleration rate of cutting feed [mm/min]	<Axis> PRM
1427	External deceleration rate of rapid traverse for each axis [mm/min]	1005\#4, 5

8. PARAMETERS

	*1 To be selected with bit 0 of PRM1401 *2 To be selected with bit 1 of PRM1404	
1430	Maximum cutting feedrate for each axis [mm/min]	<Axis> M series PRM1422
1431	Maximum cutting feedrate for all axes in the look-ahead control mode [mm/min]	M series
1432	Maximum cutting feedrate for each axis in the look-ahead control mode [mm/min]	<Axis> M series PRM 1431
1450	Change of feedrate for one graduation on the manual pulse generator during F1 digit feed	M series
1451	Feedrate for F1 digit command F1 [$\mathrm{mm} / \mathrm{min}$]	M series Setting entry is acceptable. It is possible to increase and decrease according to F1D signal.
1452	Feedrate for F1 digit command F2 [mm/min]	
1453	Feedrate for F1 digit command F3 [mm/min]	
1454	Feedrate for F1 digit command F4 [$\mathrm{mm} / \mathrm{min}$]	
1455	Feedrate for F1 digit command F5 [mm/min]	
1456	Feedrate for F1 digit command F6 [$\mathrm{mm} / \mathrm{min}$]	
1457	Feedrate for F1 digit command F7 [mm/min]	
1458	Feedrate for F1 digit command F8 [mm/min]	
1459	Feedrate for F1 digit command F9 [mm/min]	
1460	Upper limit of feedrate for F1 digit command (F1 to F4) [$\mathrm{mm} / \mathrm{min}$]	M series
1461	Upper limit of feedrate for F1 digit command (F5 to F9) [$\mathrm{mm} / \mathrm{min}$]	

253

7) Parameters of acceleration/deceleration control

Number	Contents	Remarks
1601	Parameter relating to acceleration/deceleration	
\#7 \#6 ACD \#5 NCI \#4 RTO \#3 \#2 OVB \#1 \#0	Automatic corner deceleration function is used (0)/not used (1) Imposition check at deceleration is performed (0)/not performed (1) Block overlap in rapid traverse is not performed (0)/performed (1) Cutting feed block overlap is not performed (0)/ is performed (1).	PRM 1722 M series
1602	Acceleration/deceleration control	
\#7 \#6 LS2 \#5 \#4 CSD \#3 \#2 \#1 \#0 FWB	Acceleration/deceleration after cutting feed interpolation during look-ahead control is exponential (0)/linear (1). Automatic corner deceleration is controlled by angle (0)/feedrate (1). Linear acceleration/deceleration before interpolation is type $A(0) /$ type $B(1)$	G08.1
1610	Acceleration/deceleration control	<Axis>
\#7 \#6 \#5 \#4 JGL \#3 \#2 \#1 CTB \#0 CTL	Acceleration/deceleration for manual feed is exponential (0)/linear or bell-shaped (1). On an axis-by-axis basis, bell-shaped acceleration/deceleration after cutting feed interpolation is not used (0)/used (1). On an axis-by-axis basis, linear acceleration/deceleration after cutting feed interpolation is not used (0)/used (1).	$\begin{gathered} \text { PRM } \\ 1610 \# 0, \# 1, \\ 1624 \end{gathered}$ PRM1622 PRM1622
1620	Time constant of linear acceleration/ deceleration in rapid traverse for each axis [msec]	<Axis>
1621	Time constant T2 used in bell-shaped acceleration/deceleration in rapid traverse for each axis [msec]	<Axis>
1622	Time constant of exponential function acceleration/deceleration in cutting feed for each axis [msec]	<Axis>

8. PARAMETERS

Number	Contents	Remarks
1623	FL rate of exponential function acceleration/ deceleration in cutting feed for each axis [mm/min]	<Axis>
1624	Time constant of exponential function acceleration/deceleration in manual continuous feed for each axis	<Axsec]

Number	Contents	Remarks
1741	Feedrate for terminating automatic corner deceleration (for acceleration/deceleration after interpolation)	<Axis> M series
1762	Time constant of exponential acceleration/ deceleration in cutting feed in look-ahead control mode [msec]	<Axis> M series
1763	FL rate for exponential acceleration/ deceleration in cutting feed in look-ahead control mode [mm/min]	<Axis> M series
1768	Time constant of linear acceleration/ deceleration in cutting feed in look-ahead control mode [msec]	M series
1770	Maximum machining speed during linear acceleration/deceleration before interpolation [mm/min]	Acceleration/ deceleration before interpola-
1771	Time needed until the machining speed reaches the maximum machining speed during acceleration/deceleration before interpolation [msec]	tion (look- ahead control mode) M series
1777	Minimum allowable feedrate for automatic corner deceleration (for acceleration/ deceleration before interpolation)	<Axis> M series
1778	Minimum speed of for the automtic corner deceleration function (for linear acceleration/ deceleration before interpolation)	<Axis> M series
1779	Critical angle subtended by two blocks for automatic corner deceleration (for look-ahead control)	M series
1780	Allowable feedrate difference for the corner deceleration function based on a feedrate difference (acceleration/deceleration before interpolation)	
1781	Allowable feedrate difference for the corner deceleration function based on a feedrate difference (acceleration/deceleration after interpolation)	<Axis>
1783	Allowable error in automatic corner deceleration based on a feedrate difference (linear acceleration/deceleration after interpolation)	<Axis>
1784	Feedrate for overtravel alarm deceleration during acceleration/deceleration before interpolation (stroke limit)	

8. PARAMETERS
8) Parameters of Servo

Number	Contents	Remarks
1800	Backlash compensation, DRDY alarm	
\#7 \#6 \#5 TRC \#4 RBK : \#3 FFR \#2 OZR :	The servo trace function is disabled (0)/ enabled (1). Backlash compensation applied separately for cutting feed and rapid traverse is not performed (0)/performed (1) The feed-forward function is enabled for cutting only (0)/cutting and rapid traverse (1). If manual reference position return is performed using the feed hold function when there is a remaining distance to travel, a miscellaneous function is being executed, a dwell operation is being performed, or a canned cycle is being executed, ALM091 is issued (0)/not issued (1).	PRM 1870 PRM 1851, 1852
\#1 CVR :	A servo alarm is generated when DRDY is set ON before output of MCON (0)/alarm is not generated (1)	ALM 404

8. PARAMETERS

Number	Contents							Remarks
1804	VRDY OFF ignore signal							
\#6 SAK \#5 \#4 \#3 \#2 \#1 \#0	When the IGNVRY signal is 1 or the IGNVRYx signal for each axis is 1 , SA is set to $0(0) /$ 1 (1).							
1815	Parameter relating to position detector							<Axis>
\#7 ZMG : \#6 \#5 APC \#4 APZ \#3 \#2 \#1 OPT \#0	The reference position method is the grid method (0)/magnetic switch method (1). Position transducer is incremental position transducer (0)/absolute pulse coder (1) When the absolute position detector is used, machine position and absolute position transducer is not corresponding (0)/ corresponding (1) A separate pulse coder is not used (0)/ used (1)							
1816	Parameter relating to detection multiply							<Axis>
\#7 \#6 DM3 \#5 DM2 \#4 DM1 \#3 \#2 \#1 \#0	DM3 DM2 0 0 0 0 0 1 0 1 Detection Move	DM1 0 1 0 1 nit $=$ amount needb th	DMR 1/2 1 3/2 2 per on back p moto	DM3 1 1 1 1 e rota 1 le pe	DM2 0 0 1 1 on of t one r DMR	DM1 0 1 0 1	DMR $5 / 2$ 3 $7 / 2$ 4 or	Flexible feed gear In case of parameter (No. 2084 and 2085 are not used.)
1817	Tandem control							<Axis>
$\begin{aligned} & \# 7 \\ & \# 6 \text { TAN } \\ & \# 5 \\ & \# 4 \\ & \# 3 \\ & \# 2 \\ & \# 1 \\ & \# 0 \end{aligned}$	Tandem control is not applied (0)/applied (1).							

Number	Contents	Remarks
1819	Follow-up, feed-forward	<Axis>
$\begin{aligned} & \# 7 \text { NAH } \\ & \# 6 \\ & \# 5 \\ & \# 4 \\ & \# 3 \\ & \# 2 \\ & \# 1 \\ & \# 0 \text { FUP } \end{aligned}$	In look-ahead control mode, the advance feed-forward function is used (0)/not used (1). When the servo system is turned off, a follow-up operation is performed based on *FLWU (0)/is not performed (1).	M series
1820	Command multiply for each axis (CMR) $\begin{aligned} & \text { CMR }=\frac{\text { Least command increment }}{\text { Detection unit }} \\ & \text { CMR } \\ & \text { CMR } \\ & \geqq 1 \text { Setting value }=(1 / C M R)+100 \\ & \end{aligned}$	<Axis>
1821	Reference counter capacity for each axis [Detection unit]	<Axis>
1825	Servo loop gain for each axis [0.01 $\left.\mathrm{sec}^{-1}\right]$	<Axis> Std=3000
1826	Inposition width for each axis [Detection unit]	<Axis>
1827	Inposition width for successive cutting feed blocks for each axis [Detection unit]	<Axis> T series PRM 1801\#4
1828	Positioning deviation limit for each axis in movement [Detection unit] Setting value = $\frac{\text { Rapid traverse }}{60 \times \text { PRM } 1825} \times \frac{1}{\text { Detecting unit }} \times 1.2$	<Axis> PRM 1420 PRM 1825
1829	Positioning deviation limit for each axis in the stopped state [Detection unit]	<Axis> Std=5000
1832	Feed stop positioning deviation for each axis [Detection unit]	<Axis>
1836	Servo error amount where reference position return is possible [Detection unit]	<Axis> PRM 2000\#0
1850	Grid shift for each axis [Detection unit]	<Axis>
1851	Backlash compensating value for each axis [Detection unit]	<Axis>
1852	Backlash compensating value used for rapid traverse for each axis [Detection unit]	$\begin{gathered} \text { <Axis> } \\ \text { PRM } \\ 1800 \# 4=1 \end{gathered}$
1870	Number of the program for storing servo trace data	
1871	Program number where servo trace data is stored (when the program number is 8 digits)	

8. PARAMETERS

Number	Contents									Remarks
1874	Numerator of the conversion coefficient for inductosyn position detection									<Axis>
1875	Denominator of the conversion coefficient for inductosyn position detection									<Axis>
1876	One-pitch interval of the inductosyn									<Axis>
1877	Amount of inductosyn shift									<Axis>
1880	Abnormal load detection alarm timer [msec]									
1890	Detection speed of the servo motor speed detection function [rpm]									
1891	Signal output address of the servo motor speed detection function [rpm]									
2000	Parameter for servo									<Axis>
\#7 \#6 \#5 \#4 \#3 PRMC \#2 \#1 DGPRM \#0 PLC01	AL : Automatic calculation of parameter values according to the number of PC pulses is not performed (0)/performed (1) : When the power is turned on, the digital servo parameter specific to the motor is set (0)/not set (1). : Incremental system is $1 / 1000 \mathrm{~mm}(0)$ / $1 / 10000 \mathrm{~mm}$ (1)									$\begin{aligned} & \text { PRM2023, } \\ & \text { 2024, } 1836 \end{aligned}$
2001	Parameter for pulse coder									<Axis>
\#7 AMR7: \#6 AMR6: \#5 AMR5: \#4 AMR4: \#3 AMR3: \#2 AMR2: \#1 AMR1: \#O AMRO:	\#7 1 0 0	\#6	\#5	\#4	\#3	\#2	\#1	\#0	Motor type $5-0$ $4-0 S$, $3-0 S$ Servo Motor α series	

\begin{tabular}{|c|c|c|}
\hline Number \& Contents \& Remarks \\
\hline 2003 \& Parameter for velocity control \& <Axis> \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
\#7 VOFST : VCMD is not offset (0)/offset (1) \\
\#6 OVSCMP : Overshoot compensation is invalidated (0)/validated (1) \\
\#5 BLENBL : In speed control, backlash compensation is, not improved (0)/proved (1) \\
\#4 IPSPRS : In speed control, 1 pulse when the direction is reversed one pulse is not ignored (0)/ignored (1) \\
\#3 PIENBL : Velocity control by IP control (0)/PI control (1) \\
\#2 OBENBL : Velocity control observer is not used (0)/ used (1) \\
\#1 TGALRM : The detecting level of the motor rotation without feedback alarm is set to standard (0)/set by parameter 1892 (1) \\
\#0 *NDL8 : 0
\end{tabular}} \& PRM 2045
PRM 2048

PRM 2047,
2050, 2051
PRM 2064

\hline 2004 \& Parameter for pulse coder \& <Axis>

\hline \multicolumn{3}{|l|}{}

\hline 2005 \& Parameter for servo \& <Axis>

\hline \multicolumn{2}{|l|}{| \square |
| :--- |
| \#7 |
| \#6 BRKCTL : Gravity shaft break control function is ineffective (0)/effective (1) |
| \#1 FEEDFD: Feedforward function is ineffective (0)/ effective (1) |} \& PRM2083

\hline 2006 \& Parameter for servo \& <Axis

\hline \multicolumn{2}{|l|}{| \#7 | $:$ |
| :--- | :--- |
| \#6 DCBEMF | : While decelerating, back electromotive |
| force compensation is ineffective (0)/ | |
| effective (1) | |} \& PRM 2074

PRM 2048

\hline
\end{tabular}

8. PARAMETERS

Number	Contents			Remarks
2009	Parameter for servo			<Axis>
\#7 BLSTP : Backlash acceleration stop function is ineffective (0)/effective (1) \#6 BLCUT : Backlash acceleration stop function in \#5 cutting mode is ineffective (0)/effective (1) \#4 \vdots \#3 \vdots \#2 ADBLSH : New type backlash acceleration stop \#1 function is ineffective (0)/effective (1) \#0 SERDMY : Dummy function for the serial pulse coder is not used (0)/used (1)				$\begin{gathered} \text { PRM2066, } \\ 2082 \\ \\ \text { PRM2048, } \\ 2087 \end{gathered}$
2010	Parameter for servo			<Axis>
\#7 POLENB: Function for switching the punch and laser is not used (0)/used (1) \#3 BLTEN : Multiply backlash acceleration amount is $\times 1(0) / \times 10(1)$				PRM2048
2012	Parameter for servo			<Axis>
				PRM2088
2015	High-speed positioning function			<Axis
\#7 $:$ $\# 6$ $:$ $\# 5$ \vdots $\# 4$ \vdots $\# 3$ \vdots $\# 2$ \vdots $\# 1$ SSG1 \quadIntegration function at low speed is not used (0)/used (1) $\# 0$ PGTWNPolygonal lines for the position gain are not used (0)/used (1)				$\begin{aligned} & \text { PRM2029, } \\ & 2030 \\ & \text { PRM2028 } \end{aligned}$

8. PARAMETERS

Number	Contents	Remarks
2034	Vibration-damping control gain (GAINBT)	<Axis>
2035	Number of directly set feed-forward shifts (FMFSFL)	<Axis>
2036	Slave axis damping compensation (SBDMPL)	<Axis>
2037	(Reserve)	<Axis>
2038	Spindle feed back coefficient	<Axis>
2039	Second-stage acceleration of the Two-stage backlash acceleration function (BL3QUT)	<Axis>
2040	Current loop gain (PK1)	<Axis>
2041	Current loop gain (PK2)	<Axis>
2042	Current loop gain (PK3)	<Axis>
2043	Velocity loop gain (PK1V)	<Axis>
2044	Velocity loop gain (PK2V)	<Axis>
2045	Imperfect integration coefficient (PK3V)	<Axis>
2046	Velocity loop gain (PK4V)	<Axis>
2047	Velocity control observer parameter (POA1)	<Axis>
2048	Velocity control backlash compensation impovement (BLCMP)	<Axis>
2049	Maximum zero width of dual feedback	<Axis>
2		

Number	Contents	Remarks
2064	TG alarm level (TGALMLV)	<Axis> PRM 2003\#1
2065	Overload protection coefficient (OVCLMT)	<Axis>
2066	250μ sec acceleration feedback (PK2VAUX)	<Axis>
2067	Torque command filter (TCFIL)	<Axis>
2068	Feedforward coefficient (FALPH)	<Axis>
2069	Feedforward filter coefficient (VFFLT)	<Axis>
2070	Backlash compensation acceleration parameter (ERBLM)	<Axis>
2071	Backlash compensation acceleration parameter (PBLCT)	<Axis>
2072	Static-friction compensation acceleration (SFCCML)	<Axis>
2087	Static-friction compensation stop decision time (PSPTL)	<Axis>
2084	Flewible feed gear numerator	n type backlash acceleration torque offset
2085	Flexible feed gear denominator	<Axis>
2074	Velocity depending type current loop gain (AALPH)	<Axis>
2076	Acceleration feedback gain (WKAC)	<Axises/motor rev.

8. PARAMETERS

Number	Contents	Remarks
2088	Machine velocity feedback gain (MCNFB)	<Axis> PRM 2012\#2
$\text { PRM 2088=4096 } \times \alpha \times \frac{\text { PRM } 2023}{\text { PRM } 2024}$		
2089	Base pulse for backlash acceleration (BLBSL)	<Axis>
2091	Nonlinear switch input amount	<Axis>
2092	Advance feed-forward coefficient [0.01\%]	<Axis>
2093	Incomplete integral (speed command mode) (VMPK3V)	<Axis>
2094	Second backlash acceleration (BLCMP2)	<Axis>
2095	Mechanical distortion compensation (AHDRT)	<Axis>
2096	Radius parameter for radial error serial output (RADUS)	<Axis>
2097	Static-friction compensation stop (SMCNT)	<Axis>
2098	Phase progress compensation coefficient in deceleration (PIPVPL)	<Axis>
2099	1 pulse suppress level (ONEPSL)	<Axis>
2102	Final clamp value of the actual current limit (DBLMI)	<Axis>
2103	Restored amount in abnormal load detection (ABVOF)	<Axis>
2104	Threshold in the alarm of abnormal load detection (ABTSH)	<Axis>
2105	Torque constant (TRQCST)	<Axis>
2107	Speed loop gain override (VLGOVR)	<Axis>
2109	Fine Acc/Dec time constant (BELLTC)	<Axis>
2110	Current phase control 2 (MGSTCM)	<Axis>
2111	Deceleration torque limit (DETQLM)	<Axis>
2112	Linear motor AMR conversion factor (AMRDML)	<Axis>
2113	Notch filter cutoff frequency (NFILT)	<Axis>
2114	Second-stage acceleration multiplier of the Two-stage backlash acceleration function (BL3OVR)	<Axis>
2115	Arbitrary data serial output address (SRTADL)	<Axis>
2116	Abnormal load detection friction compensation (FRCCMP)	<Axis>

Number	Contents	Remarks
2118	Maximum value for dual position feedback error difference detection (DERMXL)	<Axis>
2121	Super-precision pulse conversion factor (SBPDNL)	<Axis>
2122	Super-precision detection resistance conversion factor (SBAMPL)	<Axis>

9) Parameter of $\mathrm{DI} / \mathrm{DO}$

Number	Contents	Remarks
3001	Parameter for Interface	
$\begin{array}{\|l} \hline \# 7 \mathrm{MHI} \\ \text { \#6 } \\ \# 5 \\ \# 4 \\ \# 3 \\ \# 2 \\ \text { RWM } \\ \# 1 \\ \# 0 \end{array}$: Exchange of strobe and completion signals for the M, S, T and B codes are normal (0)/ high speed (1) : RRW signal is put out only when the tape reader is being rewound (0)/ when a program in memory is being rewound (1)	
3002	Override polarity	
\#7 \#6 \#5 \#4 IOV \#3 \#2 \#1 \#0	The manual feed and cutting feed override signal uses negative logic (0)/positive logic (1).	
3003	Parameter for Interlock signal	
\#7 MVG: \#6 MVX : \#5 DEC \#4 \#3 DIT \#2 ITX \#1 \#0 ITL	During dynamic graphic processing, the axis movement in-progress signal is output (0)/not output (1). The axis movement in-progress signal is set to 0 at the time of distribution completion (0)/ in-position (1). Deceleration signals (*DEC1 to *DEC8) for manual reference position return specify deceleration when they are $0(0)$ /when they are 1 (1) Interlock for each axis direction is, enable (0)/ disable (1) Interlock signals for each axis is, enable (0)/ disable (1) Interlock signal is enable (0)/ disable (1) *IT, STLK	T series +MIT1 - -MIT4 *IT1 - *IT8 *IT, STLK (T)

8. PARAMETERS

Number	Contents	Remarks
3004	Overtravel	
\#7 \#6 \#5 OTH \#4 \#3 \#2 \#1 \#0	The hardware overtravel function is used (0)/ not used (1).	
3006	Reference position return deceleration signal	
$\begin{array}{\|cc} \hline \# 7 & \vdots \\ \# 6 & \vdots \\ \# 5 & \vdots \\ \# 4 & \vdots \\ \# 3 & \vdots \\ \# 2 & \vdots \\ \# 1 & \vdots \\ \# 0 & \text { GDC } \end{array}$	The address of the reference position return deceleration signal is X009 (0)/G196 (1).	
3010	Delay time of strobe signals MF, SF, TF, BF [msec]	
3011	Acceptable width of M, S, T and B function completion signal (FIN) [msec]	
3017	Output time of reset signal RST [16 msec]	
3030	Allowable number of digits for the M code $(1-8)$	
3031	Allowable number of digits for the S code $(1-5)$	
3032	Allowable number of digits for the T code (1-8)	
3033	Allowable number of digits for the B code $(1-8)$	

10) Parameters of CRT/MDI, Display, and Edit

Number	Contents	Remarks
3100	Parameter for CRT / MDI	
\#7 COR \#6 \#5 \#4 FPT \#3 FKY \#2 \#1 \#0	9-inch high resolution CRT is used as a monochrome display (0)/color display (1) The CAP-II keyboard is not used (0)/used (1). The standard keys are used for MDI keyboard (0)/ The full keys are used (1)	T series
3101	CRT	
\#7 SBA \#6 \#5 \#4 BGD \#3 \#2 \#1 KBF \#0	The current positions are displayed in the order of tool post 1 then tool post 2 (0)/tool post 2 then tool post 1 (1). The display of a foreground program in the background is disabled (0)/enabled (1). At screen or mode switching, the key buffer is cleared (0)/not cleared (1).	T series (2-path control)
3102	The selection of language used in the display on theCRT (Option)	English is a standard
\#7 \#6 SPN \#5 HNG \#4 ITA \#3 CHI \#2 FRN \#1 GRM \#0 JPN	Spanish Korean (Hangul character) Italian Chinese (Taiwanese) French German Japanese	When all the bits are set to 0 , English is used.
3103	Current position display order	
\#7 ABR \#6 \#5 \#4 \#3 \#2 \#1 \#0	When the absolute and relative current positions are displayed, tool post 1 is displayed on the first screen, then tool post 2 is displayed on the second screen (0)/ a selected tool post is displayed on the first screen, then the tool post that is not selected is displayed on the second screen (1).	T series (2-path control)

8. PARAMETERS

Number	Contents	Remarks
3104	Parameters for position display	
\#7 DAC : \#6 DAL : \#5 DRC : \#4 DRL : \#3 PPD : \#2 \#1 \#O MCN:	For displaying absolute positions, cutter compensation (M series) or tool-tip radius compensation (T series) is considered (0)/not considered (1) For displaying absolute positions, tool length compensation (M series) or tool offset (T series) is considered (0)/not considered (1) For displaying relative positions, cutter compensation (M series) or tool-tip radius compensation (T series) is considered (0)/not considered (1) For displaying relative positions, tool length compensation (M series) or tool offset (T series) is considered (0)/not considered (1) When a coordinate system is set, the relative position display is not preset (0)/preset (1) The machine position display is not displayed according to the unit of input (0)/displayed according to the unit of input (1)	$\begin{aligned} & \text { PRM } \\ & 0000 \# 2 \end{aligned}$
3105	Parameters for data display	
\#7 SMF : \#6 \#5 \#4 \#3 \#2 DPS : \#1 PCF : \#0 DPF :	During simplified synchronous control, movement along a slave axis is included (0)/ not included (1) in the actual speed display. Actual spindle speed and T code are not always displayed (0)/always displayed (1) The movement of the PMC controlled axes are added to the actual speed display (0)/not added (1) Display of the actual speed on the current position display screen, program check screen and program screen(MDI mode)is, not displayed (0)/displayed (1)	M series

Number	Contents	Remarks
3106		
\#7 OHS : Operation history sampling is performed (0)/not performed (1). \#6 DAK : For absolute coordinate display in three-dimensional coordinate conversion, programmed coordinates are displayed (0)/ coordinates in the workpiece coordinate system are displayed (1). \#5 SOV : A spindle override value is not displayed (0)/ displayed (1). \#4 OPH : The operation history screen is not displayed (0)/displayed (1). \#3 SPD : Names for actual spindle speed values are displayed regardless (0)/depending (1) of the selected spindle position coder. \#2 \#1 GPL : On the program list screen, the list-by-group function is disabled1 (0)/enabled (1).		M series PRM 3105\#2 T series
3107	Parameters for program display	
\#7 MDL : \#6 \#5 DMN : \#4 SOR : \#3 \#2 DNC \#1 \#O NAM :	Display of the modal state on the program display screen is, not displayed (0)/displayed (1) The G code menu is displayed (0)/not displayed (1) In the Display of the program directory, programs are listed in the order of registration (0)/in the order of program number (1) Upon reset, the program display for DNC operation is not cleared (0)/cleared (1) In the Program list, only program numbers are indicated (0)/program numbers and program names (1)	MDI mode
3108	T code display	
$\# 7$ $:$ $\# 6$ \vdots $\# 5$ \vdots $\# 4$ \vdots $\# 3$ \vdots $\# 2$ PCT $\# 1$ $:$ $\# 0$ $:$	For T code display, programmed T numbers are displayed (0)/PMC T numbers are displayed (1).	M series

8. PARAMETERS

Number	Contents	Remarks
3109	Parameter for display of tool offset	
\#7 \#6 BGO : \#5 \#4 \#3 \#2 IKY \#1 DWT : \#0	When the <OFFSET> function key on the background drawing screen is pressed, the machining screen is displayed (0)/background drawing data is displayed (1). On the tool compensation screen, the [INPUT] soft key is displayed (0)/not displayed (1). At the display of tool wear/geometry compensation, the character "W" is displayed at the left of each number (0)/not displayed (1)	T series Compensation memory B
3111	Parameter for CRT display	
\#7 NPA : \#6 OPS : \#5 OPM: \#4 \#3 \#2 SVP \#1 SPS : \#0 SVS :	When an alarm is generated, the display shifts to the alarm screen (0)/does not shift (1) The speedometer on the operating monitor screen indicates the spindle motor (0) /speed of the spindle (1) The operating monitor is not displayed (0)/ displayed (1) The synchronization errors displayed on the spindle adjustment screen is the instant values (0)/peak hold values (1) The spindle setting screen is not displayed (0)/ displayed (1) The servo setting screen is displayed (0)/not display (1)	
3112	Parameter for servo waveform display	
\#7 \#6 \#5 OPH : \#4 \#3 EAH : \#2 OMH: \#1 \#O SGD :	The operation history log function is displayed (0)/enable (1). As alarm history information, macro alarm and external alarm messages are recorded (0)/not recorded (1). The history of external operator messages is not displayed (0)/displayed (1). Generally used graphic display (0)/servo waveform display (1)	

8. PARAMETERS

Number	Contents	Remarks
3115	Parameter for current position display	<Axis>
\#7 \#6 \#5 \#4 \#3 \#2 SFM \#1 NDA \#0 NDP	In current position display, axis name subscripts are provided for all coordinates (0)/ machine coordinates only (1). Absolute coordinates and relative coordinates are displayed (0)/not displayed (only machine coordinates being displayed) (1). The current position for each axis is, displayed (0)/not displayed (1)	2-path control
3120	Time from the output of an alarm to the termination of sampling [msec]	
3122	Time interval used to record time data in operation history [Minute]	
3123	Time until screen clear function is applied [Minute]	
3130	Axis display order for current position display screens	2-path control
3131	Subscript for the name of each axis	2-path control
3132	Axis name (absolute coordinate) for current position display	
3133	Axis name (relative coordinate) for current position display	
3134	Axis display order on workpiece coordinate system screen and workpiece shift screen	
3141	Name of the path (first character)	2-path
:	:	
3147	Name of the path (seventh character)	

Number	Contents	Remarks
3151	Number of the axis for which the first load meter for the servo motor is used	$\begin{gathered} \text { PRM } \\ 3111 \# 5 \end{gathered}$
3152	Number of the axis for which the second load meter for the servo motor is used	
3153	Number of the axis for which the third load meter for the servo motor is used	
3154	Number of the axis for which the fourth load meter for servo motor is used	
3155	Number of the axis for which the fifth load meter for servo motor is used	
3156	Number of the axis for which the sixth load meter for servo motor is used	
3157	Number of the axis for which the seventh load meter for servo motor is used	
3158	Number of the axis for which the eighth load meter for servo motor is used	
3160	Rated load of the load meter for each axis	
3201	Parameter for program registration	
\#7 \#6 NPE : \#5 N99 : regis \#4 \#3 \#2 REP : \#1 RAL : \#0 RDL :	At the program registration, M02, M30 and M99 is assumed as completion of registration (0)/ not assumed (1) When an M99 block is specified, program stration is terminated (0)/not terminated (1). When program registration, if the program number is same as an existing one, an alarm is generated (0)/the existing program is deleted then the new program is registered (1) In case of the program registeration, all programs are registered (0)/only one program is registered (1) In case of program registration by MINP signal, the new program is registered following the programs already registered (0)/all registered programs are deleted, then the new program is registered (1)	$\begin{gathered} \text { PRM } \\ 3201 \# 6=0 \end{gathered}$ EXRD signal

8. PARAMETERS

Number	Contents	Remarks
3202	Parameter for program protect	
\#7 \#6 PSR \#5 \#4 NE9 \#3 \#2 CND \#1 OLV \#O NE8	Search for the program number of a protected program is disabled (0)/enabled (1) Editing of programs with program numbers 9000 to 9999 are not inhibited (0)/inhibited (1) With the [ARRANGE] soft key, main program arrangement is not performed (0)/performed (1). When a program other than the selected program is deleted or output the display of the selected program is not held (0)/held (1). Editing of programs with program numbers 8000 to 8999 are not inhibited (0)/inhibited (1)	
3203	MDI operation	
\#7 MCL \#6 MER \#5 MIE \#4 PIO \#3 \#2 \#1 \#0	Whether a program coded in the MDI mode is cleared by reset (0)/not cleared (1) When MDI operation is terminated in single block mode, program deletion is not performed (0)/performed (1). During MDI operation, program editing is enabled (0)/disabled (1). Program input/output is performed on a tool-post-by-tool-post basis (0)/on a two-path basis (1).	T series (2-path control)
3204	Small MDI panel	
\#7 \#6 \#5 SPR \#4 P9E \#3 P8E \#2 EXK \#1 \#O PAR	Program numbers in the 9000 range for specific programs are not added (0)/added (1) with 90000000 Editing of subprograms 90000000 to 99999999 are not inhibited (0)/inhibited (1) Editing of subprograms 80000000 to 89999999 is not inhibited (0)/inhibited (1) With the small MDI panel, the input character extension function is not used (0)/used (1). With the small MDI panel, [,] is used without modification (0)/used as (,) (1).	
3210	Password Keyword	$\begin{gathered} \text { O9000~ } \\ \text { O9999 } \\ \text { PRM } \\ 3202 \# 4 \end{gathered}$
3216	Increment in sequence numbers inserted automatically	$\begin{gathered} \text { PRM } \\ 0000 \# 5=1 \end{gathered}$

277

Number	Contents	Remarks
3290	Parameter for protect of data input	
\#7 KEY :The KEY1 to KEY4 signals are used (0)/KEY1 is used for program protection (1).		
\#6 MCM:Macro variable input from the MDI panel is enabled regardless of which mode is set (0)/ enabled in MDI mode only.	\#5 IWZ	During operation, workpiece origin offset and workpiece shift value modification are enabled (0)/disabled (1).
\#3 WZO:Input of workpiece origin offset with MDI keys is not inhibited (0)/inhibit (1)		
\#1 GOF :Input of Macro variables with MDI keys is, not inhibited (0)/inhibited (1) mith MDI tool geometry compensation value mot inhibited (0)/inhibited (1)		
\#0 WOF:Input of a tool wear compensation value with MDI keys is not inhibited (0)/inhibited (1)		
3294	Start number of tool offset values whose input by MDI is disabled	
3295	Number of tool offset values (from the start number) whose input by MDI is disabled	

11) Parameters for programs

Number			Contents	Remarks
3401	Parameter for G code			
\#7 GSC : The G code system of lathe is $A / B / C$ type \#6 GSB : The G code system of lathe is $A / B / C$ type				T series T series
	GSC	GSB	G code	
	0	0	G code system A	
	0	1	G code system B	
	1	0	G code system C	
\#5 ABS \#4 MAB :	When in the MDI operation, program command is assumed as an incremental command (0)/ absolute command (1) When in the MDI operation, switching between the absolute and incremental commands is performed by G90 or G91 (0)/depending on the ABS setting in parameter 3401\#5 (1)			$\begin{gathered} \text { PRM } \\ 3401 \# 4=1 \end{gathered}$
$\begin{aligned} & \# 3 \\ & \# 2 \\ & \# 1 \text { FCD } \end{aligned}$				
	When an F code is specified before a G code, a feedrate is determined by the modal G code (0)/G code in the same block (1). When a decimal point is omitted in an address, the least input increment is assumed (0)/the unit of mm , inches, or sec. is assumed (1)			T series
\#0 DPI :				Calculation type

8. PARAMETERS

Number	Contents	Remarks
3402	Parameter for G code	
\#7 G23 \#6 CLR \#5 \#4 \#3 G91 \#2 G19 \#1 G18 \#0 G01	Upon power-up, G22 is set (0)/G23 is set (1). Cause reset state the CNC with Reset signal(0)/cause clear state (1) When the power is turned, the mode is G90 (0)/G91 (1) When the power is turned, the mode is G17/G18/G19 When the power is turned, the mode is G17/G18/G19 When the power is turned, the mode is G00 (0)/G01 (1)	T series M series M series
3403	Circular interpolation	
\#7 \#6 AD2 \#5 CIR \#4 \#3 \#2 \#1 \#0	Specification of the same address two or more times in a block is enabled (0)/disabled (1) When R, I, J, and K are not specified for circular interpolation, a linear movement is made (0)/an alarm is issued (1).	ALM5074 ALM022
3404	Parameter for M function	
\#7 M3B \#6 EOR : \#5 M02 \#4 M30 : \#3 \#2 SBP \#1 POL : \#0 NOP :	The number of M code that can be specified in one block is one (0)/up to three (1) When EOR(\%) is read, an alarm is issued (0)/ not issued (1). The cursor returns to the beginning of the program when M02 is read (0)/not return (1) When M30 is read, the cursor returns to the beginning of the program (0)/does not return to the beginning of the program (1). An address P of the block including M198 is indicating a file number (0)/a program number (1) For a command address allowing a decimal point, omission of the decimal point is enabled (0)/disabled (1) In program execution, only O, EOB, and N are not ignored (0)/ignored (1).	PRM 6030 ALM5073 M series

Number	Contents	Remarks
3405	Parameter for Direct drawing dimension program	
\#7 QAB \#6 QLC : \#5 DDP : \#4 CCR : \#3 G36 : \#2 PPS : \#1 DWL: \#O AUX :	Passing point signal output specifies a remaining distance to travel (0)/coordinate along a major axis (1). A remaining distance to travel, specified by the passing point signal output, represents a total distance along all axes (0)/distance along a major axis (1). An angle commands by direct drawing dimension programming is normal specification (0)/a supplementary angle is given (1) The addresses " C " " R " are used for chamfering and corner rounding (0)/The address " l " " K " ",R" ",C" (1) G code for automatic tool compensation is G36/G37 (0)/G37.1/G37.2 (1). Passing point signal output is not used (0)/used (1). Dwell operation is performed on an every-second basis at all times (0)/on an every-rotation basis during feed per rotation (1). The least increment of the command of the second miscellaneous function specified with a decimal point is assumed to be $0.001(0)$ / depending on the input increment (1)	T series T series
3406	G code clear	$\begin{gathered} \text { PRM } \\ 3402 \# 6=1 \end{gathered}$
\#7 C07 \#6 \#5 C05 \#4 C04 \#3 C03 \#2 C02 \#1 C01 \#0	Upon reset, the G codes in group 07 are cleared (0)/not cleared (1). Upon reset, the G codes in group 05 are cleared (0)/not cleared (1). Upon reset, the G codes in group 04 are cleared (0)/not cleared (1). Upon reset, the G codes in group 03 are cleared (0)/not cleared (1). Upon reset, the G codes in group 02 are cleared (0)/not cleared (1). Upon reset, the G codes in group 01 are cleared (0)/not cleared (1).	

8. PARAMETERS

Number	Contents	Remarks
3407	G code clear	$\begin{gathered} \text { PRM } \\ 3402 \# 6=1 \end{gathered}$
\#7 C15 \#6 C14 \#5 C13 \#4 \#3 C11 \#2 C10 \#1 C09 \#0 C08	Upon reset, the G codes in group 15 are cleared (0)/not cleared (1). Upon reset, the G codes in group 14 are cleared (0)/not cleared (1). Upon reset, the G codes in group 13 are cleared (0)/not cleared (1). Upon reset, the G codes in group 11 are cleared (0)/not cleared (1). : Upon reset, the G codes in group 10 are cleared (0)/not cleared (1). Upon reset, the G codes in group 09 are cleared (0)/not cleared (1). : Upon reset, the G codes in group 08 are cleared (0)/not cleared (1).	M series M series M series M series
3408	G code clear	$\begin{gathered} \text { PRM } \\ 3402 \# 6=1 \end{gathered}$
\#7 \#6 \#5 \#4 C20 \#3 C19 \#2 C18 \#1 C17 \#0 C16	Upon reset, the G codes in group 20 are cleared (0)/not cleared (1). Upon reset, the G codes in group 19 are cleared (0)/not cleared (1). Upon reset, the G codes in group 18 are cleared (0)/not cleared (1). Upon reset, the G codes in group 17 are cleared (0)/not cleared (1). Upon reset, the G codes in group 16 are cleared (0)/not cleared (1).	M series M series M series M series
3409	Clear	$\begin{gathered} \text { PRM } \\ 3402 \# 6=1 \end{gathered}$
$\begin{aligned} & \text { \#7 CFH } \\ & \# 6 \\ & \# 5 \\ & \# 4 \\ & \# 3 \\ & \# 2 \\ & \# 1 \\ & \# 0 \mathrm{C} 24 \end{aligned}$	Upon reset, F, H, and D (M series) or F and T (T series) are cleared (0)/not cleared (1). Upon reset, the G codes in group 24 are cleared (0)/not cleared (1).	M series
3410	Tolerance of arc radius [Setting unit]	
3411	M code preventing buffering 1	
3412	M code preventing buffering 2	
:	:	
3419	M code preventing buffering 9	
3420	M code preventing buffering 10	

Number	Contents	Remarks
3421	Minimum value 1 of M code preventing buffering	
3422	Maximum value 1 of M code preventing buffering	
3423	Minimum value 2 of M code preventing buffering	
3424	Maximum value 2 of M code preventing buffering	
3425	Minimum value 3 of M code preventing buffering	
3426	Maximum value 3 of M code preventing buffering	
3427	Minimum value 4 of M code preventing buffering	
3428	Maximum value 4 of M code preventing buffering	
3429	Minimum value 5 of M code preventing buffering	
3430	Maximum value 5 of M code preventing buffering	
3431	Minimum value 6 of M code preventing buffering	
3432	Maximum value 6 of M code preventing buffering	
3441	Start number of the M codes corresponding to the set numbers 100 to 199	
3442	Start number of the M codes corresponding to the set numbers 200 to 299	
3443	Start number of the M codes corresponding to the set numbers 300 to 399	
3444	Start number of the M codes corresponding to the set numbers 400 to 499	

8. PARAMETERS

Number	Contents							Remarks
3450	Second miscellaneous function command							
$\begin{aligned} & \# 7 \\ & \# 6 \\ & \# 5 \\ & \# 4 \\ & \# 3 \\ & \# 2 \\ & \# 1 \\ & \# 0 \text { AUP } \end{aligned}$	When a command for the second miscellaneous function contains a decimal point or negative sign the command is invalid (0)/valid (1).							M series
3460	Address fo Address B the above	A	d mis B 66 med	C	U 85	func V 86	ion W 87 er th	M series

12) Parameters for Pitch Error Compensation

Number	Contents	Remarks
3620	Number of the pitch error compensation point for the reference position for each axis	Valid data range : $0-1023$
3621	Number of pitch error compensation points of negative direction for each axis	
3622	Number of pitch error compensation points of positive direction for each axis	
3623	Magnification for pitch error compensation for each axis	$0-100$
3624	Interval between pitch error compensation points for each axis	
[Setting unit]		

13) Parameters for Spindle Control

Number	Contents	Remarks
3700	Parameter for Cs axis	
$\# 7$	$:$	
$\# 6$	$:$	
$\# 5$	\vdots	
$\# 4$	\vdots	
$\# 3$	\vdots	
$\# 2$	NRF : At the first G00 command after the serial	
	spindle is switched to C axis conturing control mode, the positioning is done after returning to	spindle
	the reference position (0)/with normal positioning (1)	
$\# 0$	$:$	

283

8. PARAMETERS

Number	Contents					Remarks
3705	Parameter for gear shift of spindle					
\#7 \#6 SFA \#5 NSF \#4 EVS \#3 SGT \#2 SGB \#1 GST \#0 ESF	The swit swit Whe cons (0)/n With outp The G74 The meth The (0)/g The code (0)/n cont (1).	SF sig hed hed (n an S tant s ot outp an S (0)/ gear s is me gear od B SOR ear sh SF sig s and ot out ol is	is ou rresp ode co ace-sp (1) mman put (1) tching d (0) tching nal is (1) outp are when d or th	put wh ctive mman eed co , S co method /meth method sed for ut cond utput const e spind	en gears are whether gears are is issued in ntrol, SF is output des and SF are not during G84 and d B (1) is method A (0)/ spindle orientation tion is such that S with all S commands nt surface speed le speed is clamped	M series M series T series M series PRM3761, 3762 M series PRM3741, 3743 M series PRM3751, 3752 PRM 3705\#5
3706	Parameter for the voltage polarity of spindle					
\#7 TCW \#6 CWM \#5 ORM \#4 GTT \#3 PCS \#2 \#1 PG2 \#0 PG1	$\begin{aligned} & \text { The } \\ & \text { : The } \\ & \text { vol } \\ & : \text { The } \\ & \text { isp } \\ & : \text { Spi } \\ & \text { T ty } \\ & : \text { Wh } \\ & \text { sig } \\ & \text { cod } \\ & \text { dis } \end{aligned}$	volta age is volta age is volta sitive ndle g pe (1) en mu al sel er sel bled gear , $\times 2$, gear , $\times 2$,	polari tput polarit tput polarity)/nega selec spindl ion, in ion sig enabl io of s , $\times 8$) tio of s $4, \times 8$) TCW 0 0	when when durin tive (1 tion is contr depen nal of (1). indle indle CWM 0 1 0	the spindle speed the spindle speed spindle orientation based on M type (0)/ is used, feedback ent of the position he other tool post, is position coder position coder Volt. polarity M03, M04 = + M03, M04 = - M03 = +, M04 = - M03 = -, M04 = +	M series PRM 3705\#0 T series (2-path control) SLPCA signal SLPCB signal

8. PARAMETERS

Number	Contents	Remarks
3732	The number of spindle revolutions during spindle orientation or the spindle motor velocity during spindle gear shift [rpm] For a serial spindle $\text { Set value }=\frac{\begin{array}{c} \text { Spindle motor speed during spindle } \\ \text { gear shift } \end{array}}{\substack{\text { Maximum spindle motor speed } \\ \times 16383}}$ For an analog spindle $\text { Set value }=\frac{\begin{array}{c} \text { Spindle motor speed during spindle } \\ \text { gear shift } \end{array}}{\begin{array}{l} \text { Maximum spindle motor speed } \\ \end{array} .4095}$	$\begin{gathered} \text { PRM } \\ 3705 \# 1 \end{gathered}$
3735	Minimum clamp speed of the spindle motor $\text { Set value }=\frac{\begin{array}{c} \text { Minimum clamp speed of the } \\ \text { spindle motor } \end{array}}{\times 4095}$	M series
3736	$\begin{aligned} & \text { Maximum clamp speed of the spindle motor } \\ & \text { Set value }= \begin{array}{c} \text { Maximum clamp speed of the } \\ \text { spindle motor } \end{array} \\ & \times 4095 \end{aligned}$	M series
3740	Time elapsed prior to checking the spindle speed arrival signal (SAR) [msec]	
3741	Maximum spindle speed for gear $1 \quad$ [rpm]	
3742	Maximum spindle speed for gear 2 [rpm]	
3743	Maximum spindle speed for gear 3 [rpm]	
3744	Maximum spindle speed for gear $4 \quad$ [rpm]	T series
3751	Spindle motor speed when switching from gear 1 to gear 2	M series PRM
3752	Spindle motor speed when switching from gear 2 to gear 3 $\text { Set value }=\frac{\begin{array}{c} \text { Spindle motor speed when the } \\ \text { gears are switched } \end{array}}{\times 4095}$	
3761	Spindle speed when switching from gear 1 to gear 2 during tapping [rpm]	M series PRM
3762	Spindle speed when switching from gear 2 to gear 3 during tapping [rpm]	37
3770	Axis as the calculation reference in constant surface speed control	M series
3771	Minimum spindle speed in constant surface-speed control mode (G96) [rpm]	
3772	Maximum spindle speed (constant surface-speed control) [rpm]	

Number	Contents	Remarks
3811	$\begin{array}{l}\text { Maximum spindle speed for gear 1 of the 2nd } \\ \text { spindle }\end{array}$	
3812	$\begin{array}{l}\text { Maximum spindle speed for gear 2 of the 2nd } \\ \text { spindle }\end{array}$	
3820	Gain adjustment data for the 3rd spindle [0.1\%]	

[Parameters for Cs conturing control axis]

Number	Contents	Remarks
3900	Number of the servo axis whose loop gain is to be changed according to the set value of parameter 3901 to 3904 when the Cs conturing axis is controlled (Set value 0 to 8)	1st group for the 1st spindle
3901	Loop gain for the servo axis when the spindle gear 1 selection	
3902	Loop gain for the servo axis when the spindle gear 2 selection	
3903	Loop gain for the servo axis when the spindle gear 3 selection	
3904	Loop gain for the servo axis when the spindle gear 4 selection	
3910	Number of the servo axis whose loop gain is to be changed according to the set value of parameter 3911 to 3914 when the Cs conturing axis is controlled (Set value 0 to 8)	2nd group for the 1st spindle
3911	Loop gain for the servo axis when the spindle gear 1 selection	
3912	Loop gain for the servo axis when the spindle gear 2 selection	
3913	Loop gain for the servo axis when the spindle gear 3 selection	
3914	Loop gain for the servo axis when the spindle gear 4 selection	

8. PARAMETERS

Number	Contents	Remarks
3920	Number of the servo axis whose loop gain is to be changed according to the set value of parameter 3921 to 3924 when the Cs conturing axis is controlled (Set value 0 to 8)	3rd group for the 1st spindle
3921	Loop gain for the servo axis when the spindle gear 1 selection	
3922	Loop gain for the servo axis when the spindle gear 2 selection	
3923	Loop gain for the servo axis when the spindle gear 3 selection	
3924	Loop gain for the servo axis when the spindle gear 4 selection	
3930	Number of the servo axis whose loop gain is to be changed according to the set value of parameter 3931 to 3934 when the Cs conturing axis is controlled (Set value 0 to 8)	4th group for the 1st spindle
3931	Loop gain for the servo axis when the spindle gear 1 selection	
3932	Loop gain for the servo axis when the spindle gear 2 selection	
3933	Loop gain for the servo axis when the spindle gear 3 selection	
3934	Loop gain for the servo axis when the spindle gear 4 selection	
3940	Number of the servo axis whose loop gain is to be changed according to the set value of parameter 3941 to 3944 when the Cs conturing axis is controlled (Set value 0 to 8)	5th group for the 1st spindle
3941	Loop gain for the servo axis when the spindle gear 1 selection	
3942	Loop gain for the servo axis when the spindle gear 2 selection	
3943	Loop gain for the servo axis when the spindle gear 3 selection	
3944	Loop gain for the servo axis when the spindle gear 4 selection	

[Parameters for serial spindle (α series spindle amplifier)]

Number	Contents	Remarks
4000	Parameter of rotation direction of spindle	
$\left.\begin{array}{ll}\text { \#7 } & \text { : } \\ \text { \#6 DEFDRT } & \text { The direction to which the differential } \\ \text { speed function is applied and the direction } \\ \text { specified in the feedback signal is the } \\ \text { same (0)/reversed (1) }\end{array}\right\}$		From spind side
4001	Parameter for using of detector	
\#7 CAXIS3: The position coder of Cs axis control and the spindle rotate to the same direction (0)/ to opposite direction each other (1) \#6 CAXIS2 : The position coder signal for Cs axis control is not used to detection of speed (0)/used (1) \#5 CAXIS1 : Not use the position coder of Cs axis control (0)/use (1) \#4 \#3 MGSEN: The magnetic senser and the spindle rotate to the same direction (0)/opposite direction each other (1) \#2 POSC2 : The position coder is not used (0)/used (1) \#1 \#0 MRDY1 : The MRDY signal is not used (0)/used (1)		

8. PARAMETERS

8. PARAMETERS

Number	Contents	Remarks
4004	Detector selection	
		$\begin{gathered} \text { PRM } \\ 4003 \# 1=1 \end{gathered}$
4006		
\#7 BLTRGD : Rigid tapping using a motor's built-in sensor is not performed (0)/performed (1). \#6 PRMCHK: Parameters are transferred from the NC (0)/the data being used currently is checked (1). \#5 ALGOVR : The spindle analog override value is 0% to $100 \%(0) / 0 \%$ to 120% (1). \#4 : \#3 SYCREF : In spindle synchronization, the one-rotation signal is automatically detected (0)/not detected (1). \#2 SPDUNT : The unit of motor speed is $1 \mathrm{rpm}(0) / 10$ rpm (1). \#1 GRUNIT : The gear ratio resolution is 0.01 (0)/0.001 (1).		PRM4056 to 4059
4007		
\#7 PHAICL: Motor voltage pattern when no load is applied \#6 PCALCL : Alarms related to the position coder signal are detected (0)/not detected (1). \#5 PCLS : Disconnection of a high-resolution magnetic pulse coder and position coder is detected (0)/not detected (1).		

8. PARAMETERS

8. PARAMETERS

Number	Contents	Remarks
4023	Speed detection level [0.1\%]	
4024	Speed zero detection level [0.01\%]	
4025	Torque limit value [\%]	
4026	Load detection level 1 (LDT1 signal) [\%]	
4027	Load detection level 2 (LDT2 signal) [\%]	
4028	Output limit pattern	
4029	Output limit value [\%]	
4030	Soft start (0)/stop time (1) [rpm/sec]	
4031	Position coder method orientation stop position	
4032	Acceleration deceleration time constant when the spindle synchronization is controlled [rpm/sec]	
4033	Arrival level for the spindle synchronization speed	
4034	Shift amount when the spindle phase synchronization is controlled	
4035	Spindle phase synchronization compensation data	
4036	Feed forward factor	

4037	Velocity loop feed forward factor		
4038	Spindle orientation speed	[rpm]	
4040	Normal velocity loop proportional gain (High gear)		
4041	Normal velocity loop proportional gain (Low gear)		
4042	Velocity loop proportional gain during (High gear)		
4043	Velocity loop proportional gain during orientation		
4044	Velocity loop proportional gain in servo mode/ synchronous control (High gear)		
4045	Velocity loop proportional gain in servo mode/synchronous control (Low gear)		
4046	Velocity loop proportional gain when the Cs (High gear)		
4047	Velocity loop proportional gain when the Cs axis is controlled		
4048	Normal velocity loop integral gain	(LHigh gear)	
4049	Normal velocity loop integral gain	(Low gear)	

Number	Contents	Remarks
4050	Velocity loop integral gain during orientation (High gear)	
4051	Velocity loop integral gain during orientation (Low gear)	
4052	Velocity loop integral gain in servo mode/synchronous control (High gear)	
4053	Velocity loop integral gain in servo mode/synchronous control (Low gear)	
4054	Velocity loop integral gain when the Cs axis is controlled (High gear)	
4055	Velocity loop integral gain when the Cs axis is controlled (Low gear)	
4056	Number of motor rotation in one revolution of the spindle (High gear) $[\times 100$]	
4057	Number of motor rotation in one revolution of the spindle (Medium high gear) $[\times 100]$	
4058	Number of motor rotation in one revolution of the spindle (Medium low gear) [$\times 100$]	
4059	Number of motor rotation in one revolution of the spindle (Low gear) [$\times 100$]	
4060	Position gain during orientation (High gear)	
4061	Position gain during orientation (Medium high gear)	
4062	Position gain during orientation (Medium low gear)	
4063	Position gain during orientation (Low gear)	
4064	Position gain change ratio when orientation is completed	
4065	Position gain in servo mode/synchronous control (High gear)	
4066	Position gain in servo mode/synchronous control (Medium high gear)	
4067	Position gain in servo mode/synchronous control (Medium low gear)	
4068	Position gain in servo mode/synchronous control (Low gear)	
4069	Position gain when the Cs axis is controlled (High gear)	
4070	Position gain when the Cs axis is controlled (Medium high gear)	
4071	Position gain when the Cs axis is controlled (Medium low gear)	

8. PARAMETERS

Number	Contents	Remarks
4072	Position gain when the Cs axis is controlled (Low gear)	
4073	Grid shift amount in servo mode [0-4095p]	
4074	Reference position return speed in Cs contouring control mode or servo mode [rpm]	
4075	Orientation completion signal detection level	
4076	Motor velocity limit value during orientation [\%]	
4077	Orientation stop position shift amount [\%]	
4078	MS signal constant (Magnetic senser system orientation)	
4079	MS signal gain adjustment (Magnetic senser system orientation)	
4080	Regenerative power limit	
4081	Delay time prior motor power shut-off [msec]	
4082	Acceleration/deceleration time setting [sec]	
4083	Motor voltage during normal rotation [\%]	
4084	Motor voltage during orientation [\%]	
4085	Motor voltage in servo mode [\%]	
4086	Motor voltage when the Cs axis is controlled	

299

Number	Contents	Remarks
4100	Base velocity of the motor output specification [rpm]	
4101	Limit value of the motor output specification [\%]	
4102	Base speed [rpm]	
4103	Magnetic flux weakening start velocity [rpm]	
4104	Current loop proportional gain during normal operation	
4105	Current loop proportional gain when the Cs axis is controlled	
4106	Current loop integral gain during normal operation	
4107	Current loop integral gain when the Cs axis is controlled	
4108	Zero point of current loop integral gain	
4109	Current loop proportional gain velocity factor	
4110	Current conversion sconstant	
4111	Secondary current factor for exceiting current	
4112	Current expectation constant	
4113	Slip constant	

8. PARAMETERS

Number	Contents	Remarks
4127	Load meter displayed value for maximum output	
4128	Maximum output zero point [rpm]	
4129	Secondary current factor during rigid tapping	
4130	Constant for compensating for the phase of the electromotive force at deceleration	
4131	Time constant of the speed detection filter at the Cs contour control	
4132	Conversation constant of the phase-V current	
4133	Motor model code	
4135	Grid shift amount when the Cs axis is controlled	

[Parameter for low speed driving when the output switching function is used]

Number	Contents	Remarks
4136	Motor voltage during normal rotation [\%]	
4137	Motor voltage in the servo mode [\%]	
4138	Base speed of the motor output specifications [rpm]	
4139	Limit value of the motor output specifications [\%]	
4140	Base speed [rpm]	
4141	Magnetic flux weakening start velocity [rpm]	
4142	Current loop proportional gain during normal operation	
4143	Current loop integral gain during normal operation	
4144	Zero point of the current loop integral gain	
4145	Velocity factor of the current loop proportional gain	
4146	Current conversion constan	
4147	Secondary current factor for activating current	
4148	Current expectation constant	
4149	Slip constant	
4150	High speed rotation slip compensation constant	
4151	Compensation constant for voltage applied to motor in the dead zone	
4152	Electromotive force compensation constant [\%]	

301

Number	Contents	Remarks			
4153	Electromotive force phase compensation constant	[\%]	\quad	4154	Voltage factor of the electromotive force compensation
:---:	:---:				
4155	Voltage compensation factor during deceleration				
4156	Slip compensation gain				

8. PARAMETERS
[Parameters for spindle switching function is used (Sub-spindle)]

Number	Contents	Remarks
$\begin{gathered} 4176 \\ \text { to } \\ 4190 \end{gathered}$	Bit parameter	
4191	Bit parameter (User can not set)	
$\begin{gathered} 4192 \\ \text { to } \\ 4194 \end{gathered}$	Bit parameter	
4195	Bit parameter (Automatic setting by parameter)	
4196	Maximum motor speed	
4197	Reached speed level	
4198	Speed detection level	
4199	Speed zero detection level	
4200	Torque limit value	
4201	Load detection level 1	
4202	Output limit pattern	
4203	Output limit value	
4204	Position coder method orientation stop position	
4205	Orientation speed	
4206	Proportional gain (HIGH) of the normal velocity loop	
4207	Proportional gain (LOW) of the normal velocity loop	
4208	Velocity loop proportional gain during orientation (HIGH)	
4209	Velocity loop proportional gain during orientation (LOW)	
4210	Velocity loop proportional gain in the servo mode (HIGH)	
4211	Velocity loop proportional gain in the servo mode (LOW)	
4212	Normal velocity loop integral gain	
4213	Velocity loop integral gain during orientation	
4214	Velocity loop integral gain in the servo mode (HIGH)	
4215	Reserved	
4216	Gear ratio (HIGH)	
4217	Gear ratio (LOW)	
4218	Position gain during orientation (HIGH)	
4219	Position gain during orientation (LOW)	

Number	Contents	Remarks
4220	Position gain change ratio when orientation is completed	
4221	Position gain in the servo mode (HIGH)	
4222	Position gain in the servo mode (LOW)	
4223	Grid shift amount in the servo mode	
4224	Reserved	
4225	Reserved	
4226	Detection level of orientation completion signal	
4227	Motor velocity limit value during orientation	
4228	Shift amount of orientation stop position	
4229	MS signal constant $=(\mathrm{L} / 2) /(2 \times \pi \times H) \times 4096$	
4230	MS signal gain adjustment	
4231	Regenerative power limit	
4232	Delay time up to motor power shut-off	
4233	Acceleration/deceleration time setting	
4234	Spindle load monitor observer gain 1	
4235	Spindle load monitor observer gain 2	
4236	Motor voltage during normal rotation	
4237	Motor voltage during orientation	
4238	Motor voltage in the servo mode	
4239	Position gain change ratio when returning to the origin in the servo mode	
4240	Feed forward coefficient	
4241	Feed forward coefficient in velocity loop	
4242	Reserved	
4243	Arbitrary gear data between spindle and position coder (SUB/HIGH no. of teeth on spindle)	
4244	Arbitrary gear data between spindle and position coder (SUB/HIGH no. of teeth on PC)	
4245	Arbitrary gear data between spindle and position coder (SUB/LOW no. of teeth on spindle)	
4246	Arbitrary gear data between spindle and position coder (SUB/LOW no. of teeth on PC)	
4247	Spindle load monitor magnetic flux compensation time constant (for high-speed characteristic on the MAIN side)	
4248	Spindle load motor torque constant (for high-speed characteristic on the MAIN side)	

8. PARAMETERS

Number	Contents	Remarks
4249	Spindle load monitor observer gain 1 (on the MAIN side)	
4250	Spindle load monitor observer gain 2 (on the MAIN side)	
4251	Spindle load monitor magnetic flux compensation time constant (for low-speed characteristic on the MAIN side)	
4252	Spindle load monitor magnetic flux compensation time constant (for high-speed characteristic)	
4253	Spindle load monitor magnetic flux compensation time constant (for low-speed characteristic)	
4254	Slip correction gain (for high-speed characteristic)	
4255	Slip correction gain (for low-speed characteristic)	
4256	Base velocity of the motor output specifications	
4257	Limit value for the motor output specifications	
4258	Base speed	
4259	Magnetic flux weakening start velocity	
4260	Current loop proportional gain during normal operation	

4261	Current loop integral gain during normal operation	
4262	Zero point of current loop integral gain	
4263	Velocity factor of current loop proportional gain	
4264	Current conversion constant	
4265	Secondary current factor for excitation current	
4266	Current expectation constant	
4267	Slip constant	Compensation constant for high-speed rotation slip
4268	Compensation constant for voltage applied to motor in the dead zone	
4270	Electromotive force compensation constant	
4271	Phase compensation constant of electromotive force	
4272	Compensation velocity factor for electromotive force	
4273	Time constant for changing the torque	
4274	Displayed value of load meter for maximum output	

305

Number	Contents	Remarks
4275	Maximum output zero point	
4276	Secondary current factor in rigid tapping	
4277	Constant for compensating for the phase of the electromotive force at deceleration	
4278	Time constant of the speed detection filter	
4279	Reserved	
4280	Time constant of voltage filter for electromotive force compensation	
4281	Spindle load monitor torque constant (for low-speed characteristic on the MAIN side)	
4282	Spindle load monitor torque constant (for high-speed characteristic)	
4283	Spindle load monitor torque constant (for low-speed characteristic)	
4284	Motor voltage during normal rotation	
4285	Motor voltage in the servo mode	
4286	Base speed of the motor output specifications	
4287	Limit value for the motor output specifications	
4288	Base speed	
4289	Magnetic flux weakening start velocity	
4290	Current loop proportional gain during normal	

8. PARAMETERS

Number	Contents	Remarks
4305	Secondary current factor in rigid tapping	
4306	Constant for compensating for the phase of the electromotive force at deceleration	
4307	Limit of regenerative power	
4308	Time constant of voltage filter for electromotive voltage compensation	
4309	Motor model code	
4310	Reserved	
4311	Reserved	
4312	Position coder method orientation end signal width 2 (MAIN)	
4313	Magnetic sensor method orientation end signal width 1 (MAIN)	
4314	Magnetic sensor method orientation end signal width 2 (MAIN)	
4315	Magnetic sensor method orientation stop position shift amount (MAIN)	
4316	Position coder method orientation end signal width 2 (SUB)	
4317	Magnetic sensor method orientation end signal width 1 (SUB)	
4318	Magnetic sensor method orientation end signal width 2 (SUB)	
4319	Magnetic sensor method orientation stop position shift amount (SUB)	
4320	Spindle orientation deceleration constant (MAIN/HIGH)	
4321	Spindle orientation deceleration constant deceleration (MAIN/MEDIUM HIGH)	
4322	Spindle orientation deceleration constant deceleration (MAIN/MEDIUM LOW)	
4323	Spindle orientation deceleration constant deceleration (MAIN/LOW)	
4324	Spindle orientation deceleration constant deceleration (SUB/HIGH)	
4325	Spindle orientation deceleration constant deceleration (SUB/LOW)	
4326	Width of pulses when switching to the spindle orientation control mode (MAIN)	
4327	Width of pulses when switching to the spindle orientation control mode (SUB)	
4328	Position coder-based spindle orientation command multiplication (MAIN)	

Number	Contents	Remarks
4329	Position coder-based spindle orientation command multiplication (SUB)	
4330	Motor excitation delay time at spindle orientation (MAIN)	
4331	Motor excitation delay time at spindle orientation (SUB)	
4332	Reserved	
4333	Reserved	
4334	No. of arbitrary pulses of speed detector (MAIN)	
4335	No. of arbitrary pulses of speed detector (SUB)	
4336	Magnetic flux change point for spindle synchronus acc./dec. time calculation.	
4337	Velocity compensation factor of velocity loop gain (MAIN)	
4338	Velocity compensation factor of velocity loop gain (SUB)	
4339	Torque clamp level	
4340	Bell-shaped acceleration/deceleration time constant for spindle synchronization	
4334	Abnormal load detection level	
4348	Overload current alarm detection level (for high speed characteristic)	
4342	Respensation for current detection offset	
(for low speed characteristic)		

8. PARAMETERS

Number	Contents	Remarks
4800	Parameter for synchronization control of spindle	
\#7 \#6 \#5 \#4 \#3 \#2 \#1 ND2 \#0 ND1	In controlling the spindle synchronization, the direction of the second spindle motor rotation is the direction indicated by the command sign (0)/the opposite direction (1) In controlling the spindle synchronization, the direction of the first spindle motor rotation is the direction indicated by the command sign (0)/the opposite direction (1)	
4810	Error pulse between two spindles when phase synchronizing in the serial spindle synchronization control mode	
4811	Allowable error count for the error pulse between two spindles in the serial spindle synchronization control mode	
4900	Spindle fluctuation detection	T series
$\begin{array}{\|l} \hline \# 7 \\ \# 6 \\ \# 5 \\ \# 4 \\ \# 3 \\ \# 2 \\ \# 1 \\ \# 0 \text { FLR } \end{array}$	The allowable rate and fluctuation rate of parameter No. 4911 and No. 4912 are indicated in 1% steps (0) $/ 0.1 \%$ steps (1).	
4911	Ratio (q) of the spindle speed which is assumed to the specified spindle speed	
4912	Spindle speed fluctuation ratio (r) for which no alarm is activated in the spindle speed fluctuation detection function	
4913	Spindle speed fluctuation value (d) for which no alarm is activated in the spindle speed fluctuation detection function	
4914	Time (p) elapsed from when the commanded spindle speed is changed to the start of spindle speed fluctuation detection	

Number	Contents	Remarks
4950	Spindle positioning	T series
	Semi-fixed angle positioning by M code follows specification A (0)/specification B (1). Spindle positioning conforms to the conventional specification (0)/extended specification (1). When an M code for orientation is specified, orientation by canceling rotation mode is performed (0)/not performed (1). The positioning direction for the spindle using a M code is the positive direction (0)/the negative direction (1) Resetting the system in the spindle positioning mode does not releases the mode (0)/releases the mode (1)	
4960	M code specifying the spindle orientation	T series
4961	M code releasing the spindle positioning mode	
4962	M code specifying the angle for the spindle positioning	
4963	Basic rotation angle specified by a M code in the spindle positioning mode	
4964	Number of M codes for specifying a spindle positioning angle	
4970	Servo loop gain of the spindle	
4971	Servo loop gain multiplier of the spindle for gear 1	
4972	Servo loop gain multiplier of the spindle for gear 2	
4973	Servo loop gain multiplier of the spindle for gear 3	
4974	Servo loop gain multiplier of the spindle for gear 4	

8. PARAMETERS
14) Parameters for tool offset

Number	Contents	Remarks
5000		M series
$\begin{array}{ll} \# 7 & : \\ \# 6 & : \\ \# 5 & \vdots \\ \# 4 & \vdots \\ \# 3 & \vdots \\ \# 2 & \vdots \\ \# 1 & \vdots \\ \# 0 & \text { SBK } \end{array}$	For a block that is internally created by cutter compensation, single block mode is disabled (0)/enabled (1).	
5001	Parameter for tool offset	M series
\#7 \#6 EVO \#5 TPH \#4 \#3 TAL \#2 OFH : \#1 TLB : \#0 TLC :	Tool offset is effective from next H code (0)/ next block (1) Tool offset number is $D(0) / H$ (1) In the tool length compensation C , generates an alarm when two or more axes are offset (0)/ not generate (1) The address to appoint the offset number of tool length and tool radius is $D(0) / H(1)$ Tool length compensation axis is always Z axis (0)/axis perpendicular to plane specification (1) (G17, G18, G19) Tool length compensation A•B(0)/Tool length compensation C (1)	$\begin{gathered} \text { PRM } \\ 5001 \# 1 \end{gathered}$
5002	Parameter for tool offset	T series
\#7 WNP: \#6 LWM : \#5 LGC : \#4 LGT : \#3 \#2 \#1 LGN \#0 LD1 :	Specifies whether the valid direction of the virtual tool used for tool-tip radius compensation is specified with a geometry offset number (0)/a wear offset number (1) when the tool geometry and wear compensation option is selected. Tool offset is executed in the T code block (0)/ together with the axis movement (1) Tool geometry compensation is not canceled by offset number 0 (0)/canceled (1) Tool geometry compensation is compensated by the shift of the coordinate system (0)/by the tool movement (1) Geometry offset number of tool offset is the same as wear offset number (0)/executed by the tool selection number (1) Wear offset number of tool offset is specified using the lower two digits of a T code (0)/lower one digit of a T code (1)	PRM 5002\#4=1 PRM 5002\#0

Number	Contents	Remarks
5003	Parameter for tool offset	
\#7 TGC \#6 LVC LVK \#5 \#4 BCK \#3 ICK \#2 CCN : \#1 SUV : \#0 SUP	Tool geometry compensation is not cleared by reset (0)/cleared by reset (1) Tool compensation vector is not cleared by reset (0)/cleared by reset (1) Tool length compensation vector is cleared by reset (0)/not cleared (1) When a cutter compensation interference check finds that the direction of movement differs from the offset direction of machining by 90 to 270 degrees, an alarm is issued (0)/not issued (1). In MPCC mode, a cutter compensation interference check is made (0)/not made (1). During movement to a middle point in automatic reference position return operation, the offset vector is canceled (0)/not canceled (1). When G40,G41,G42 are specified independently, the start up conforms to the standard specification (0)/moves by a distance corresponding to the offset vector which is vertical to the next block movement (1) Start up in cutter compensation C is type A (0)/ B (1)	PRM 5003\#6=1 T series T series M series M series M series
5004	Parameters for tool offset	
\#7 : $\# 6$ \vdots $\# 5$ \vdots $\# 4$ \vdots $\# 3$ \vdots $\# 2$ ODI $\# 1$ ORC : \#0	The cutter compensation value is a radius value (0)/diameter value (1). Tool compensation value is set by the diameter specification (0)/set by the radius specification (1)	M series T series
5005	Parameters for tool offset	T series
\#7 \#6 \#5 QNI \#4 \#3 \#2 PRC \#1 \#O CNI	The tool compensation number in the offset write mode by the tool compensation direct input B is not selected automatically (0)/ selected automatically (1) When direct input of tool offset value, a PRC signal is not used (0)/used (1) On the offset screen, Y -axis offset screen, and macro screen, [INP.C] is displayed (0)/not displayed (1).	$\begin{gathered} 0: \\ \text { PRM5020 } \end{gathered}$

8. PARAMETERS

Number	Contents	Remarks
5006		
\#7 $:$ $\# 6$ \vdots $\# 5$ $:$ $\# 4$ \vdots $\# 3$ \vdots $\# 2$ \vdots $\# 1$ TGC $:$ A T code, specified in a block containing G50, G04, or G10, is valid (0)/causes ALM254 to be issued (1). $\# 0$ OIM : Inch-metric conversion of tool compensation values is not performed (0)/performed (1).		T series
5008	Cutter compensation C, Tool nose radius compensation	
5010	Limit value that ignores the vector when a tool moves on the outside of a corner during tool nose radius compensation	T series
	Limit value that ignores the vector when a tool moves on the outside of a corner during cutter compensation C	M series
5011	Value for determining the norm of a tool compensation vector in three-dimensional tool compensation	M series
5013	Maximum value of tool wear compensation	T series
5014	Maximum value of incremental input for tool wear compensation	T series
5015	Distance (XP) between reference position and X axis + contact surface	T series
5016	Distance (XM) between reference position and X axis - contact surface	
5017	Distance (ZP) between reference position and Z axis + contact surface	
5018	Distance (ZM) between reference position and Z axis - contact surface	

313

15) Parameters for grinding-wheel wear compensation

Number	Contents	Remarks
5071	Number of first axis for grinding-wheel wear compensation	M series
5072	Number of second axis for grinding-wheel wear compensation	M series
5081	Coordinate of first compensation center along first axis on compensation plane	M series
5082	Coordinate of first compensation center along second axis on compensation plane	M series
5083	Coordinate of second compensation center along first axis on compensation plane	M series
5084	Coordinate of second compensation center along second axis on compensation plane	M series
5085	Coordinate of third compensation center along first axis on compensation plane	M series
5086	Coordinate of third compensation center along second axis on compensation plane	M series

8. PARAMETERS
16) Parameters for canned cycles

Number	Contents					Remarks
5101	Parameter for canned cycles					
\#7 M5B : In drilling canned cycles G76 and G87, output M05 before an oriented spindle stop (0)/not output (1) \#6 M5T : In tapping cycles G74 and G84, not output M05 (0)/output M05 (1) before the spindle rotation direction is turned to reverse \#6 M5T : In tapping cycles G74 and G84, output M05 (0)/not output M05 (1) before the spindle rotation direction is turned to reverse \#5 RD2 : Set the axis and direction in which the tool in G76 and G87 is got free \#4 RD1: Set the axis and direction in which the tool in G76 and G87 is got free						M series T series M s series M M series M s series
\#3 ILV \#2 RTR \#1 EXC \#O FXY	The in is not G83 and drilling An ext sent out The dr always progra	po date G8 cle nal \#y ng axi (1)	pos by re peci /spe ratio (0) in)/an	in dr (0)/u high y a pe comm nt out ng ca xis sel	ling canned cycle dated by reset (1) peed peck drilling cycle (1) nd (EF) is not by G1 (1) ned cycle is cted using	T series T series PRM5114 M series M series
5102	Cann	ycle				T series
\#7 RDI \#6 RAB \#5 \#4 \#3 F16 \#2 QSR \#1 RMC : \#0	In the drilling In the drilling system system In a ca is enab Before numbe With monot an alarm	S15 f specif S15 is incr A, or B an ned ed (0 execu chec 1/72 ne inc (0)/	mat, a ra mat, enta pend C (1) le for isabl n of s not comm ase ues	in a ca s (0) in a ca 0)/abs on G9 rilling, (1). to ade and oth decre alarm	ned cycle for xis (1). ned cycle for lute with G code /G91 for G code the FS15 format 73, a Q sequence /made (1). er than for se does not issue (1).	

Number	Contents	Remarks
5103	Canned cycle	M series
$\begin{aligned} & \# 7 \\ & \# 6 \\ & \# 5 \\ & \# 4 \\ & \# 3 \\ & \# 2 \\ & \# 1 \\ & \# 0 \text { SIJ } \end{aligned}$	In the FS15 format, a shift value in a boring canned cycle G76 or G86 is specified by address Q (0)/address I, J, or K (1).	
5110	C-axis clamp M code in drilling canned cycle	T series
5111	Dwell time when C axis unclamping is specified in drilling canned cycle	T series
5112	Spindle forward-rotation M code in drilling canned cycle	T series
5113	Spindle reverse-rotation M code in drilling canned cycle	T series
5114	Return and clearance of drilling canned cycle G83	$\begin{aligned} & \text { T series } \\ & \text { PRM } \\ & 5101 \# 2 \end{aligned}$
	Return of high-speed, peck drilling cycle G73	M series
5115	Clearance of canned cycle G83	M series
5130	Chamfering in thread cutting cycles G76 and G92	T series
5132	Depth of cut in multiple repetitive canned cycles G71 and G72	T series
5133	Escape in multiple repetitive canned cycles G71 \& G72	
5135	Escape in multiple repetitive canned cycle G73 in X axis direction	
5136	Escape in multiple repetitive canned cycle G73 in Z axis direction	
5137	Division count in multiple repetitive canned cycle G73	
5139	Return in multiple canned cycle G74 and G75	
5140	Minimum depth of cut in multiple repetitive canned cycle G76	
5141	Finishing allowance in multiple repetitive canned cycle G76	
5142	Repetition count of final finishing in multiple repetitive canned cycle G76	
5143	Tool nose angle in multiple repetitive canned cycle G76	

8. PARAMETERS

Number	Contents	Remarks
5160		M series
$\begin{aligned} & \# 7 \\ & \# 6 \\ & \# 5 \\ & \# 4 \\ & \# 3 \\ & \# 2 \text { NOL } \\ & \\ & \# 1 \text { OLS } \\ & \# 0 \end{aligned}$	When the depth of cut per action is satisfied in a peck drilling cycle of a small diameter, the feed and spindle speed are not changed (0)/ changed (1) When an overload torque signal is received in a peck drilling cycle of a small diameter, the feed and spindle speed are not changed (0)/ changed (1)	
5163	M code that specifies the peck drilling cycle mode of a small diameter	M series
5164	Percentage of the spindle speed to be changed when the tool is retracted after an overload torque signal is received	M series
5165	Percentage of the spindle speed to be changed when the tool is retracted without an overload torque signal received	M series
5166	Percentage of cutting feedrate to be changed when the tool is retracted after an overload torque signal is received	M series
5167	Percentage of the cutting feedrate to be changed when the tool is retracted without an overload torque signal received	M series
5168	Lower limit of the percentage of the cutting feedrate in a peck drilling cycle of a small diameter	M series
5170	Number of the macro variable to which the total number of retractions during cutting is output	M series
5171	Number of the macro variable to which the total umber of retractions because of an overload signal is output	M series
5172	Speed of retraction to point R when no address I is issued [$\mathrm{mm} / \mathrm{min}$]	M series
5173	Speed of advancing to the position just before the bottom of a hole when no address I is issued [mm/min]	M series
5174	Clearance in a peck drilling cycle of a small diameter	M series

17) Parameters for rigid tapping

Number	Contents	Remarks
5200	Parameter for rigid tapping	
\#7 SRS \#6 FHD \#5 PCP \#4 DOV \#3 SIG \#2 CRG \#1 VGR \#0 G84	When multi-spindle control is used, the spindle selection signal is G027.0 and G027.1 (0)/ G061.4 and G061.5 (1). Feed hold and single block in rigid tapping are validated (0)/invalidated (1) In rigid tapping, a high-speed peck tapping cycle is used (0)/not used (1) Override during extraction in rigid tapping is invalidated (0)/validated (1) When gears are changed for rigid tapping, the use of SIND is not permitted (0)/permitted (1) When a rigid mode cancel command is specified, the rigid mode is not canceled before RGTAP signal is set low (0)/canceled (1) Any gear ration between spindle and position coder in rigid tapping is not used (0)/used (1) G74 and G84 are not used as a rigid tapping G code (0)/used (1)	T series M series PRM5213 PRM5211 PRM3706, 5221 to 5234 PRM5210
5201	Parameter for rigid tapping	
\#7 \#6 \#5 \#4 OV3 \#3 OVU \#2 TDR \#1 \#O NIZ	Overriding by program is disabled (0)/enabled (1) The increment unit of the override PRM5211 is $1 \%(0) / 10 \%$ (1) Cutting time constant in rigid tapping uses a same parameter during cutting and extraction (0)/not use a same parameter (1) Rigid tapping smoothing processing is disabled (0)/enabled (1).	$\begin{aligned} & \text { PRM5261 } \\ & \text { to } 5264 \text {, } \\ & 5271 \text { to } \\ & 5274 \end{aligned}$ M series
5202	Rigid tapping	
$\begin{aligned} & \# 7 \\ & \# 6 \\ & \# 5 \\ & \# 4 \\ & \# 3 \\ & \# 2 \\ & \# 1 \\ & \# 0 \text { ORI } \end{aligned}$	When rigid tapping is started, orientation is not performed (0)/performed (1).	M series

8. PARAMETERS

Number	Contents	Remarks
5203	Rigid tapping by the manual handle	M series
\#7 \#6 \#5 \#4 \#3 \#2 \#1 HRM: \#O HRG :	When the tapping axis moves in the negative direction, the direction in which the spindle rotates is determined as follows: In G84 mode, the spindle rotates in a normal direction (0)/reverve (1). In G74 mode, the spindle rotates in reverse (0)/ a normal derection (1). Rigid tapping by the manual handle is disabled (0)/enabled (1).	
5204	Rigid tapping	
$\begin{array}{lc} \# 7 & : \\ \# 6 & \vdots \\ \# 5 & \vdots \\ \# 4 & \vdots \\ \# 3 & \vdots \\ \# 2 & \vdots \\ \# 1 & \vdots \\ \# 0 & \text { DGN } \end{array}$	The diagnosis screen displays a rigid tapping synchronization error (0)/spindle and tapping axis error ratio difference (1).	
5210	Rigid tapping mode specification M code	0=M29
5211	Override value during rigid tapping extraction	$\begin{gathered} \text { PRM } \\ 5200 \# 4 \end{gathered}$
5212	M code that specifies a rigid tapping mode $(0-65535)$	PRM5210
5213	Escape or cutting start point in peck tapping cycle	$\begin{gathered} \text { PRM } \\ 5200 \# 5 \end{gathered}$
5214	Rigid tapping synchronization error width	ALM411

Number	Contents	Remarks
5221	Number of gear teeth on the spindle side in (1st gear)	PRM rigid tapping
5200 \#1		

8. PARAMETERS

Number	Contents	Remarks
5281	Position control loop gain of spindle and tapping axis in rigid tapping (1st gear)	$\begin{gathered} \text { PRM } \\ 5280=0 \end{gathered}$
5282	Position control loop gain of spindle and tapping axis in rigid tapping (2nd gear)	
5283	Position control loop gain of spindle and tapping axis in rigid tapping (3rd gear)	
5284	Position control loop gain of spindle and tapping axis in rigid tapping (4th gear)	T series
5291	Spindle loop gain multiplier in the rigid tapping mode (for gear 1)	T series
5292	Spindle loop gain multiplier in the rigid tapping mode (for gear 2)	
5293	Spindle loop gain multiplier in the rigid tapping mode (for gear 3)	
5294	Spindle loop gain multiplier in the rigid tapping mode (for gear 4) Loop gain multiplier $=2048 \times \mathrm{E} / \mathrm{L} \times \alpha \times 1000$ E:Voltage in the velocity command at 1000 rpm L : Rotation angle of the spindle per one rotation of the spindle motor α : Unit used for the detection	
5300	Imposition width of tapping axis in rigid tapping [Detection unit]	
5301	Imposition width of spindle in rigid tapping [Detection unit]	
5310	Limit value of tapping axis positioning deviation during movement in rigid tapping	PRM5314
5311	Limit value of spindle positioning deviation during movement in rigid tapping	
5312	Limit value of tapping axis positioning deviation during stop in rigid tapping	
5313	Limit value of spindle positioning deviation during stop in rigid tapping	
5314	Limit of position deviation during movement along the tapping axis for rigid tapping (0 to 99999999)	PRM5310 when 0 is specified
5321	Spindle backlash in rigid tapping (1st gear)	T series
	Spindle backlash in rigid tapping	M series
5322	Spindle backlash in rigid tapping (2nd gear)	T series
5323	Spindle backlash in rigid tapping (3rd gear)	T series
5324	Spindle backlash in rigid tapping (4th gear)	T series
5382	Overshoot in rigid tapping return	M series

18) Parameters for scaling/coordinate rotation

Number	Contents	Remarks
5400	Parameter for scaling/coordinate rotation	
\#7 SCR \#6 XSC \#5 \#4 \#3 \#2 \#1 \#O RIN	Scaling magnification unit is 0.00001 times (0)/ 0.001 times (1) Axis scaling and programmable mirror image are invalidated (0)/validated (1) Angle command of coordinate rotation is specified by an absolute method (0)/by an incremental method (1)	M series M series PRM 5401\#0
5401	Parameter for scaling	M series
$\begin{aligned} & \# 7 \\ & \# 6 \\ & \# 5 \\ & \# 4 \\ & \# 3 \\ & \# 2 \\ & \# 1 \\ & \# 0 \text { SCL } \end{aligned}$	Scaling for each axis is invalidated (0)/ validated (1)	PRM5421
5410	Angle used when coordinate rotation angle is not specified	
5411	Magnification used when scaling magnification is not specified	M series PRM 5400\#6
5421	Scaling magnification for each axis	M series PRM 5400\#7

19) Parameter for uni-direction positioning

Number	Contents	Remarks
5431	Uni-direction positioning	M series
\#7 \#6 \#5 \#4 \#3 \#2 \#1 \#0 MDL	Specifies whether the G code for uni-directional positioning (G60) is included in one-shot G codes (00 group) (0)/modal G codes (01 group) (1)	
5440	Positioning direction and approach in uni-directional positioning for each axis [Detection unit]	M series

8. PARAMETERS
20) Parameters for polar coordinate interpolation

Number	Contents	Remarks
5450	Automatic speed control	
$\# 7$	\vdots	
$\# 6$	\vdots	
$\# 5$	\vdots	
$\# 4$	\vdots	
$\# 3$	$\vdots 2$	$\begin{array}{l}\text { In polar coordinate interpolation mode, } \\ \text { automatic speed control is not applied (0)/ } \\ \text { applied (1). }\end{array}$
\#0 AFC		
5460	$\begin{array}{l}\text { Axis (linear axis) specification for polar } \\ \text { coordinate interpolation }\end{array}$	
5461	$\begin{array}{l}\text { Axis (rotary axis) specification for polar } \\ \text { coordinate interpolation }\end{array}$	
5462	$\begin{array}{l}\text { Maximum cutting feedrate during polar } \\ \text { coordinate interpolation }\end{array}$	[mm/min]

21) Parameter for normal direction control

Number	Contents	Remarks
5480	Number of the axis for controlling the normal direction	M series
5481	Rotation speed of normal direction control axis	M series
5482	Limit value that ignores the rotation insertion of direction control axis	M series
5483	Limit value of movement that is executed at the normal direction angle of a preceding block	M series

22) Parameters for indexing index table

Number	Contents	Remarks
5500	Parameters of indexing index table	M series
\#7 IDX \#6 \#5 \#4 G90 \#3 INC \#2 ABS \#1 REL \#0 DDP	Index table indexing sequence is Type A (0)/ Type B (1) Indexing command is judged according to the G90/G91 mode (0)/judged by an absolute command (1) Rotation in the G90 mode is not set to the shorter way around the circumference (0)/set to the shorter way around the circumference (1) Displaying absolute coordinate value is not rounded by 360 degrees (0)/rounded by 360 degrees (1) Relative position display is not rounded by 360 degrees (0)/rounded by 360 degrees (1) Decimal point input method is conventional method (0)/electronic calculator method (1)	PRM $5511=0$ PRM 5500\#3 PRM 3401\#0=0
5511	Negative-direction rotation command M code	M series
5512	Unit of index table indexing angle	M series

23) Parameter for involute interpolation

Number	Contents	Remarks
5610	Limit of initial permissible error during involute interpolation	M series
$[0.001 \mathrm{~mm}]$		

24) Parameters for exponential interpolation

Number	Contents	Remarks
5630	Distribution amount	M series
\#7 \#6 \#5 \#4 \#3 \#2 \#1 \# 0 SPN	A distribution amount along a linear axis in exponential interpolation is specified by PRM5643 (0)/K in G02.3 or G03.3 (1).	
5641	Number of a linear axis subject to exponential interpolation	M series
5642	Number of a rotation axis subject to exponential interpolation	M series
5643	Distribution amount (span value) for a linear axis subject to exponential interpolation	M series

8. PARAMETERS
25) Parameters for straightness compensation

Number	Contents	Remarks
5711	Axis number of moving axis 1	
5712	Axis number of moving axis 2	
5713	Axis number of moving axis 3	
5721	Axis number of compensation axis 1 for moving axis 1	
5722	Axis number of compensation axis 2 for moving axis 2	
5723	Axis number of compensation axis 3 for moving axis 3	
5731	Compensation point number a of moving axis 1	
5732	Compensation point number b of moving axis 1	
5733	Compensation point number c of moving axis 1	
5734	Compensation point number d of moving axis 1	
5741	Compensation point number a of moving axis 2	
5742	Compensation point number b of moving axis 2	
5774	Compensation corresponding compensation point number d of moving axis 2 point number c of moving axis 2	
5743	Compensation point number c of moving axis 2 point number a of moving axis 2	
5744	Compensation point number d of moving axis 2	
5751	Compensation point number a of moving axis 3	
5752	Compensation point number b of moving axis 3	
5753	Compensation point number c of moving axis 3	
5754	Compensation point number d of moving axis 3	
5761	Compensation corresponding compensation point number a of moving axis 1	
5762	Compensation corresponding compensation point number b of moving axis 1	
point number c of moving axis 1		

Number	Contents	Remarks
5781	Compensation corresponding compensation point number a of moving axis 3	
5782	Compensation corresponding compensation point number b of moving axis 3	
5783	Compensation corresponding compensation point number c of moving axis 3	
5784	Compensation corresponding compensation point number d of moving axis 3	

26) Parameters for custom macro

Number	Contents	Remarks
6000	Parameter for custom macro	
\#7 \#6 \#5 SBM \#4 \#3 V15 \#2 \#1 \#0 G67	In the custom macro statement, the single block stop is not valid (0)/valid (1) The system variables for tool compensation are the same as those used with FS16 (0)/ FS15 (1). A G67 specified in modal call cancel mode issues an alarm (0)/is ignored (1).	M series
6001	Parameter for custom macro	
\#7 CLV \#6 CCV \#5 TCS \#4 CRD \#3 PV5 \#2 \#1 PRT \#0	Local variables \#1 through \#33 are cleared to "vacant" by reset (0)/not cleared by reset (1) Common variables \#100 through \#149 are cleared to "vacant" by reset (0)/not cleared by reset (1) Custom macro is not called using a T code (0)/ called (1) When ISO code is used in the B/D PRINT mode, output only "LF" (0)/output "LF" and "CR" (1) The output macro variables are \#500 and up (0)/\#100 and up and \#500 and up (1). When data is output using a DPRINT command, outputs a space for reading zero (0)/outputs no data (1)	09000

8. PARAMETERS

Number	Contents	Remarks
6003	Parameter for custom macro	
\#7 MUS : \#6 MCY : \#5 MSB : \#4 MPR : \#3 TSE \#2 MIN \#1 MSK : \#0 :	Interrupt-type custom macro is not used (0)/ used (1) Custom macro interrupt during cycle operation is not performed (0)/performed (1) The local variable of interrupt program is macrotype (0)/subprogram type (1) M code for custom macro interrupt valid/invalid is standard (M96/M97) (0)/using parameter setting (1) Interrupt signal UNIT uses edge trigger method (0)/status trigger method (1) Custom macro interrupt is Type I (0)/Type II (1) Absolute coordinate during custom macro interrupt is not set to the skip coordinate (0)/set (1)	$\begin{aligned} & \text { M96: } \\ & \text { PRM6033 } \\ & \text { to } 6034 \end{aligned}$
6010	Setting of hole pattern "*" of EIA code (*0 to *7)	
6011	Setting of hole pattern " $=$ " of EIA code ($=0$ to $=7$)	
6012	Setting of hole pattern "\#" of EIA code (\#0 to \#7)	
6013	Setting of hole pattern " [" of EIA code ([0 to [7)	
6014	Setting of hole pattern "] " of EIA code (]0 to]7)	
6030	M code that calls the program entered in file	M198
6033	M code that validates a custom macro interrupt	PRM
6034	M code that invalidates a custom macro interrupt	
6036	Number of custom macro valiables common to paths (100-199)	$\begin{aligned} & \text { T series } \\ & \text { (2-path } \\ & \text { control) } \end{aligned}$
6037	Number of custom macro valiables common to paths (500-599)	$\begin{aligned} & \text { T series } \\ & \text { (2-path } \\ & \text { control) } \end{aligned}$
6050	G code that calls the custom macro of program number 9010	
6051	G code that calls the custom macro of program number 9011	
6052	G code that calls the custom macro of program number 9012	
6053	G code that calls the custom macro of program number 9013	
6054	G code that calls the custom macro of program number 9014	
6055	G code that calls the custom macro of program number 9015	

Number	Contents	Remarks
6056	G code that calls the custom macro of program number 9016	
6057	G code that calls the custom macro of program number 9017	
6058	G code that calls the custom macro of program number 9018	
6059	G code that calls the custom macro of program number 9019	
6071	M code that calls the subprogram of program number 9001	
6072	M code that calls the subprogram of program number 9002	
6073	M code that calls the subprogram of program number 9003	
6074	M code that calls the custom macro of program number 9004	
6075	M code that calls the custom macro of program number 9005	
6076	M code that calls the custom macro of program number 9006	
6077	M code that calls the custom macro of program number 9007	
6078	M code that calls the custom macro of program number 9008	
6079	M code that calls the custom macro of program number 9009	
6080	M code that calls the custom macro of program number 9020	
6081	M code that calls the custom macro of program number 9021	
6082	M code that calls the custom macro of program number 9022	
6083	M code that calls the custom macro of program number 9023	
6084	M code that calls the custom macro of program number 9024	
6085	M code that calls the custom macro of program number 9025	
6086	M code that calls the custom macro of program number 9026	
6087	M code that calls the custom macro of program number 9027	

8. PARAMETERS

Number	Contents	Remarks
6088	M code that calls the custom macro of program number 9028	
6089	M code that calls the custom macro of program number 9029	
6090	ASCII code that calls the subprogram of program number 9004	
6091	ASCII code that calls the subprogram of program number 9005	

27) Parameters for pattern data input

Number	Contents	Remarks
6101	First variable number displayed on pattern data screen 1	
6102	First variable number displayed on pattern data screen 2	
6103	First variable number displayed on pattern data screen 3	
6104	First variable number displayed on pattern data screen 4	
6105	First variable number displayed on pattern data screen 5	
6106	First variable number displayed on pattern data screen 6	
6107	First variable number displayed on pattern data screen 7	
6108	First variable number displayed on pattern data screen 8	
6109	First variable number displayed on pattern data screen 9	
6110	First variable number displayed on pattern data screen 10	

28) Parameters for skip function

8. PARAMETERS

Number	\quad Contents	Remarks
6202	High-speed skip signal/multi-step skip signal selection	
\#7 1S8 : For high-speed skip, the HD17 signal is not		
	used (0)/used (1). Alternatively, for G31 P1/Q1, the SKIP8 signal is not used (0)/used (1).	
\#6 1S7 : For high-speed skip, the HD16 signal is not		
	used (0)/used (1). Alternatively, for G31 P1/Q1,	
the SKIP7 signal is not used (0)/used (1).		

Number	Contents	Remarks
6204	Multi-step skip signal selection	
\#7 3S8 \#6 3S7 \#5 3S6 \#4 3S5 \#3 3S4 \#2 3S3 \#1 3S2 \#0 3S1	For G31 P3/Q3, the SKIP8 signal is not used (0)/used (1). For G31 P3/Q3, the SKIP7 signal is not used (0)/used (1). For G31 P3/Q3, the SKIP6 signal is not used (0)/used (1). For G31 P3/Q3, the SKIP5 signal is not used (0)/used (1). For G31 P3/Q3, the SKIP4 signal is not used (0)/used (1). For G31 P3/Q3, the SKIP3 signal is not used (0)/used (1). For G31 P3/Q3, the SKIP2 signal is not used (0)/used (1). For G31 P3/Q3, the SKIP signal is not used (0)/used (1).	
6205	Multi-step skip signal selection	
\#7 4S8 \#6 4S7 \#5 4S6 \#4 4S5 \#3 4S4 \#2 4S3 \#1 4S2 \#0 4S1	For G31 P4/Q4, the SKIP8 signal is not used (0)/used (1). For G31 P4/Q4, the SKIP7 signal is not used (0)/used (1). For G31 P4/Q4, the SKIP6 signal is not used (0)/used (1). For G31 P4/Q4, the SKIP5 signal is not used (0)/used (1). For G31 P4/Q4, the SKIP4 signal is not used (0)/used (1). For G31 P4/Q4, the SKIP3 signal is not used (0)/used (1). For G31 P4/Q4, the SKIP2 signal is not used (0)/used (1). For G31 P4/Q4, the SKIP signal is not used (0)/used (1).	
6206	Multi-step skip signal selection	
\#7 DS8 \#6 DS7 \#5 DS6 \#4 DS5 \#3 DS4 \#2 DS3 \#1 DS2 \#0 DS1	For G04, the SKIP8 signal is not used (0)/used (1). For G04, the SKIP7 signal is not used (0)/used (1). For G04, the SKIP6 signal is not used (0)/used (1). For G04, the SKIP5 signal is not used (0)/used (1). For G04, the SKIP4 signal is not used (0)/used (1). For G04, the SKIP3 signal is not used (0)/used (1). For G04, the SKIP2 signal is not used (0)/used (1). For G04, the SKIP signal is not used (0)/used (1).	

8. PARAMETERS

Number	Contents	Remarks
6207	High-speed skip	
$\begin{array}{\|l} \hline \# 7 \\ \# 6 \\ \# 5 \\ \# 4 \\ \# 3 \\ \# 2 \\ \# 1 \\ \# 0 \text { IOC } \end{array}$	For the high-speed skip signal, the option 2 board is used (0)/the I/O card is used (1).	
6208	Continuous high-speed skip signal selection	M series
\#7 9S8 \#6 9S7 \#5 9S6 \#4 9S5 \#3 9S4 \#2 9S3 \#1 9S2 \#0 9S1	For continuous high-speed skip, the HD17 signal is not used (0)/used (1). For continuous high-speed skip, the HD16 signal is not used (0)/used (1). For continuous high-speed skip, the HD15 signal is not used (0)/used (1). For continuous high-speed skip, the HD14 signal is not used (0)/used (1). For continuous high-speed skip, the HD13 signal is not used (0)/used (1). For continuous high-speed skip, the HD12 signal is not used (0)/used (1). For continuous high-speed skip, the HD11 signal is not used (0)/used (1). For continuous high-speed skip, the HD10 signal is not used (0)/used (1).	
6220	Period during which input is ignored for continuous high-speed skip signal [8msec]	M series

29) Parameters for automatic tool compensation (T series) and automatic tool length compensation (M series)

Number	Contents	Remarks
6240	Signal logic	
$\# 7$ $:$ $\# 6$ \vdots $\# 5$ \vdots $\# 4$ \vdots $\# 3$ \vdots $\# 2$ \vdots $\# 1$ \vdots $\# 0$ AEO A measuring position is assumed to be reached when XAE, YAE, or ZAE is 1 (0)/0 (1).		
6241	Feedrate during measurement of automatic tool compensation	T series
	Feedrate during measurement of automatic tool length compensation	M series
6251	γ value on X axis during automatic tool compensation	T series
	γ value during automatic tool length compensation	M series
6252	γ value on Z axis during automatic tool compensation	T series
6254	ε value on X axis during automatic tool compensation	T series
	ε value during automatic tool length compensation	M series
6255	ε value on Z axis during automatic tool compensation	T series

30) Parameters for external data input/output

Number	Contents	Remarks
6300	Parameter for external program number search	
$\# 7$	$:$	
$\# 6$	$:$	
$\# 5$	\vdots	
$\# 4$ ESR $:$	External program number search is disabled	
$\# 3$	(0)/ enabled (1)	
$\# 2$	\vdots	
$\# 1$	\vdots	
$\# 0$	$:$	

8. PARAMETERS
31) Parameters for graphic display

Number	Contents	Remarks
6500	Parameter for graphic display	
\#6 NZM \#5 DPO \#4 \#3 DPA \#2 GUL \#1 SPC \#0 GRL	The screen image is not enlarged (0)/enlarged (1) by specifying the center of the screen and magnification. Current position is not appear on the machining profile drawing or tool path drawing screen (0)/ appear (1) Current position display is the actual position to ensure tool nose radius compensation (0)/ programmed position (1) The positions of X1- and X2-axes are not replaced (0)/are replaced (1) with each other in the coordinate system specified with PRM6509. Graphic display (2-path control) is done on two spindles and two tool posts (0)/on one spindle and two tool posts (1) Graphic display Tool post 1 is displayed on the left, and tool post 2 is displayed on the right (0) Tool post 1 is displayed on the right, and tool post 2 is displayed on the left (1)	T series M series T series T series (2-path control) T series (2-path control) T series (2-path control)
6501	Parameter for graphic display	
\#7 \#6 \#5 CSR \#4 FIM \#3 RID \#2 3PL \#1 TLC : \#0 ORG:	Center position of tool in tool path drawing is marked with ■ (0)/with $\times(1)$ Machining profile drawing in solid drawing is displayed in the coarse mode (0)/fine mode (1) In solid drawing, a plane is drawn without edges (0)/with edges (1) Tri-plane drawing in solid drawing is drawn by the first angle projection (0)/third angle projection (1) In solid drawing, the tool length compensation is not executed (0)/executed (1) Drawing when coordinate system is altered during drawing, draws in the same coordinate system (0)/draws in the new coordinate system (1)	M series M series M series M series M series
6509	Coordinate system for drawing a single spindle	T series (2-path control)
6510	Drawing coordinate system	T series

Number	Contents	Remarks
6511	Right margin in solid drawing	M series
6512	Left margin in solid drawing	
6513	Upper margin in solid drawing	
6514	Lower margin in solid drawing	
6515	Change in cross-section position in tri-plane drawing	
6520	C-axis number for dynamic graphic display	T series

32) Parameters for displaying operation time and number of parts

Number	Contents	Remarks
6700	Parameter for number of parts	
\#7 \#6 \#5 \#4 \#3 \#2 \#1 \#0 PCM	M code that counts the number of machined parts are specified by M02, M30 and PRM 6710 (0)/only M code specified by PRM 6710 (1)	PRM6710
6710	M code that counts the total number of machined parts and the number of machined parts	
6711	Number of machined parts	
6712	Total number of machined parts (M02, M03, PRM 6710)	
6713	Number of required parts (Required parts finish signal PRTSF is output to PMC)	$\begin{aligned} & \text { DGN } \\ & \text { F62.7 } \end{aligned}$
6750	Integrated value of power-on period [Minute]	
6751	Operation time [msec] (Integrated value of time during automatic operation)	
6752	Operation time [Minute] (Integrated value of time during automatic operation)	
6753	Integrated value of cutting time [msec]	
6754	Integrated value of cutting time [Minute]	
6755	Integrated value of general-purpose integrating meter drive signal (TMRON) ON time	$\begin{aligned} & \text { DGN } \\ & \text { G53.0 } \end{aligned}$

8. PARAMETERS

Number	Contents	Remarks
6756	Integrated value of general-purpose [Minute] integrating meter drive signal (TMRON) ON time	
6757	Operation time (Integrated value of one automatic operation time)	
6758	Operation time (Integrated value of one automatic operation time)	

33) Parameters for tool life management

Number	Contents						Remarks
6800	Parameter for tool life management						
\#7 M6T : T code in the same block as M06 is judged as a back number (0)/as a next tool group command (1) \#6 IGI : Tool back number is not ignored (0)/ignored (1) \#5 SNG : At the input of a tool skip signal when tools other than those under tool life management are selected, skips a tool that is used last or specified (0)/ignores a tool skip signal (1) \#4 GRS : Data clear during the input of tool exchange reset signal clears only the execution data of specified groups (0)/the execution data of all entered groups (1) \#3 SIG : Not input the group number using a tool group signal during tool skip (0)/input the group number (1) \#2 LTM : Tool life is specified by the number of times (0) /by time (1) \#1 GS2 : Setting the combination of the number of tool life : groups and the number of tools \#0 GS1 : Setting the combination of the number of tool life : groups and the number of tools							M series M series
			M s		T se		
	GS2	GS1	Group count	Tool count	Group count	Tool count	
	0	0	$\begin{aligned} & 1-16 \\ & 1-64 \end{aligned}$	$\begin{aligned} & 1-16 \\ & 1-32 \end{aligned}$	$\begin{aligned} & 1-16 \\ & 1-16 \end{aligned}$	$\begin{aligned} & 1-16 \\ & 1-32 \end{aligned}$	
	0	1	$\begin{aligned} & 1-32 \\ & 1-28 \end{aligned}$	$\begin{gathered} 1-8 \\ 1-16 \end{gathered}$	$\begin{aligned} & 1-32 \\ & 1-32 \end{aligned}$	$\begin{gathered} 1-8 \\ 1-16 \end{gathered}$	
	1	0	$\begin{gathered} 1-64 \\ 1-256 \end{gathered}$	$\begin{aligned} & 1-4 \\ & 1-8 \end{aligned}$	$\begin{aligned} & 1-64 \\ & 1-64 \end{aligned}$	$\begin{aligned} & 1-4 \\ & 1-8 \end{aligned}$	
	1	1	$\begin{aligned} & 1-128 \\ & 1-512 \end{aligned}$	$\begin{aligned} & 1-2 \\ & 1-4 \end{aligned}$	$\begin{gathered} 1-16 \\ 1-128 \end{gathered}$	$\begin{gathered} 1-16 \\ 1-4 \end{gathered}$	
		value n the I-lifeided.	on the 12-(M s managen	wer row ries) or ent-gr	in the ta 28-(T s poption	e apply ries)	

337

Number	Contents	Remarks
6801	Parameter for tool life management	
\#7 M6E \#6 EXG \#6 EXT \#5 EIS \#4 \#3 EMD \#2 LFV \#1 TSM \#O CUT	When T code is specified in the same block as M06, the T code is processed as a next selected group number/the tool group life is counted immediately Using G10, tool life management data is registered after data for all tool groups has been cleared (0)/data can be added $/ \mathrm{modified} /$ deleted for a specified group only (1). Specifies whether the extended tool life management function is not used (0) / is used (1) When the life of a tool is measured in time-based units, the life is counted every four seconds (0)/every second (1) Specifies when an asterisk (*) indicating that a tool has been exhausted is displayed. When the next tool is selected (0) / When the tool life is exhausted (1) Specifies whether life count override is disabled (0) / enabled (1) when the extended tool life management function is used. When a tool takes several tool numbers, life is counted for each of the same tool numbers (0)/ for each tool (1) The tool life management using cut length is not performed (0) / is performed (1)	PRM 6800\#7 T series M series PRM 6800\#2 M series M series T series M series
6810	Tool life control ignored number	M series
6811	Tool life count restart M code	T series

34) Parameters of position switch functions

Number	Contents	Remarks
6901	Position switch	
$\# 7$	$:$	
$\# 6$	\vdots	
$\# 5$	\vdots	
$\# 4$	\vdots	
$\# 3$	\vdots	
$\# 2$	\vdots	
$\# 1$		
$\# 0$ IGP	During follow-up for the absolute position detector, position switch signals are output (0)/ not output (1)	
6910	Axis corresponding to the 1st position switch	
6911	Axis corresponding to the 2nd position switch	
6912	Axis corresponding to the 3rd position switch	
6913	Axis corresponding to the 4th position switch	

8. PARAMETERS

Number	Contents	Remarks
6914	Axis corresponding to the 5th position switch	
6915	Axis corresponding to the 6th position switch	
6916	Axis corresponding to the 7th position switch	
6917	Axis corresponding to the 8th position switch	
6918	Axis corresponding to the 9th position switch	
6919	Axis corresponding to the 10th position switch	
6930	Maximum operation range of the 1st position switch	
6931	Maximum operation range of the 2nd position switch	
6932	Maximum operation range of the 3rd position switch	
6933	Maximum operation range of the 4th position switch	
6934	Maximum operation range of the 5th position switch	
6935	Maximum operation range of the 6th position switch	
6936	Maximum operation range of the 7th position switch	
6937	Maximm	

6937	Maximum operation range of the 8th position switch	
6938	Maximum operation range of the 9th position switch	
6939	Maximum operation range of the 10th position switch	
6950	Minimum operation range of the 1st position switch	
6951	Minimum operation range of the 2nd position switch	
6952	Minimum operation range of the 3rd position switch	
6953	Minimum operation range of the 4th position switch	
6954	Minimum operation range of the 5th position switch	
6955	Minimum operation range of the 6th position switch	
6956	Minimum operation range of the 7th position switch	
6957	Minimum operation range of the 8th position switch	

339

Number	Contents	Remarks
6958	Minimum operation range of the 9th position switch	
6959	Minimum operation range of the 10th position switch	

35) Manual operation / Automatic operation

Number	Contents	Remarks
7001	Manual intervention/return function	
\#7 MFM : \#6 \#5 \#4 \#3 \#2 \#1 \#O MIN	For the manual linear or circular interpolation function, modifying a value specified with a command during jog feed in the guidance direction, immediately starts moving according to the new value (0)/stops moving (1). The manual intervention/return function is disabled (0)/enabled (1).	
7050	Retrace function	
$\begin{aligned} & \# 7 \\ & \# 6 \\ & \# 5 \\ & \# 4 \\ & \# 3 \\ & \# 3 \\ & \# 2 \\ & \# 1 \\ & \# 0 \text { RV1 } \end{aligned}$	When the tool moves backwards after feed hold during forward feed with the retrace function, the block is split at the feed hold position and stored (0)/stored without being split (1).	

8. PARAMETERS
36) Parameters for manual handle feed / Interrupts

Number	Contents	Remarks
7100	Parameter for manual pulse generator	
\#7 \#6 \#5 \#4 HPF \#3 HCL \#2 \#1 THD \#0 JHD	If the specified manual handle feedrate exceeds the rapid traverse rate, handle pulses exceeding the rapid traverse rate are ignored (0)/are not ignored such that the tool is moved then stopped (1). The clearing of a handle interrupt travel distance is invalid (0)/valid (1). Manual pulse generator in TEACH IN JOG mode is invalid (0)/valid (1) Manual pulse generator in JOG mode is invalid (0)/valid (1)	
7101	Parameter for manual pulse generator	
\#7 \#6 \#5 \#4 \#3 \#2 \#1 \#O IOL	Manual pulse generator interface on the main CPU board (0) / provided in the machine operator's panel interface for I/O link (1)	
7102	Rotation direction	<Axis>
$\begin{array}{lc} \# 7 & : \\ \# 6 & \vdots \\ \# 5 & \vdots \\ \# 4 & \vdots \\ \# 3 & \vdots \\ \# 2 & \vdots \\ \# 1 & \vdots \\ \# 0 & \text { HNG } \end{array}$	Axis movement direction for rotation direction of manual pulse generator is same in direction (0) / reverse in direction (1)	T series

Number	Contents	Remarks
7104	Handle feed in the tool axis direction	M series
\#4 3D2 \#3 3D1 \#2 CXC \#1 \# 0 TLX	For tool axis direction handle feed and right angle direction handle feed, the machine coordinates when the mode is set or when a reset is performed (0)/the coordinates specified with PRM7145 (1) are set as the coordinates of the second rotation axis. For tool axis direction handle feed and right angle direction handle feed, the machine coordinates when the mode is set or when a reset is performed (0)/the coordinates specified with PRM7144 (1) are set as the coordinates of the first rotation axis. Tool axis direction handle feed or perpendicular direction handle feed is performed with 5-axis machine (0)/4-axis machine (1). When the rotation axis is at the origin, the tool axis is in the Z direction (0)/X direction (1).	
7110	Number of manual pulse generator used	
7113	Manual handle feed magnification m (1-127)	
7114	Manual handle feed magnification n (0-1000)	
7120	Axis configuration for using the tool axis direction handle feed or perpendicular direction handle feed 1: A-C 2: B-C 3: A-B (A: Master) 4: A-B (B: Master)	M series
7121	Axis selection in tool axis direction handle feed mode	M series
7141	Axis selection in the X direction for the radial tool axis handle feed	M series
7142	Axis selection in the Y direction for the radial tool axis handle feed	M series
7144	Coordinate of the first rotation axis for tool axis direction handle feed and radial tool axis handle feed	M series
7145	Coordinate of the second rotation axis for tool axis handle feed and radial tool axis handle feed	M series

8. PARAMETERS
37) Parameters for butt-type reference position setting

Number	Contents	Remarks
7181	First withdrawal distance in butt-type reference position setting	
7182	Second withdrawal distance in butt-type reference position setting	
7183	First butting feedrate in butt-type reference position setting	
7184	Second butting feedrate in butt-type reference position setting	
7185	Withdrawal feedrate (common to the first and second butting operations) in butt-type reference position setting	
7186	Torque limit value in butt-type reference position setting	

38) Parameters for software operator's panel

Number	Contents	Remarks
7200	Parameter for software operator's panel	
\#7 \#6 OP7 \#5 OP6 \#4 OP5 \#3 OP4 \#2 OP3 \#1 OP2 \#0 OP1	Feed hold is not performed on software operator's panel (0) / performed (1) Protect key is not performed on software operator's panel (0) / performed (1) OBS,SBK,MLK,DRN are not performed on software operator's panel (0) / performed (1) Override is not performed on software operator's panel (0) /performed (1) MPG's axis selection is not performed on software operator's panel (0) / performed (1) JOG feed axis selection is not performed on software operator's panel (0) / performed (1) Mode selection is not performed on software operator's panel (0) /performed (1)	
7210	Jog movement axis and its direction on software operator's panel	
7211	Jog movement axis and its direction on software operator's panel	
7212	Jog movement axis and its direction on software operator's panel	
7213	Jog movement axis and its direction on software operator's panel	
7214	Jog movement axis and its direction on software operator's panel	
7215	Jog movement axis and its direction on software operator's panel	

343

8. PARAMETERS
40) Parameter for high-speed machining

Number	Contents	Remarks
7501	Parameter for high speed cycle machining	
\#7 IPC : \#6 IT2 \#5 IT1 \#4 IT0 \#3 \#2 \#1 \#0 CSP	The system does not monitor (0)/monitors (1) whether a distribution process is stopped with high-speed remote buffer or in a high-speed cycle. Cs contouring control function dedicated to a piston lathe is not used (0)/used (1).	T series
7502	High speed machining	
\#7 \#6 \#5 \#4 \#3 L8M \#2 \#1 PMC : \#0 SUP :	In high-speed machining with an interpolation period of 8 msec , learning control is not exercised (0)/exercised (1). A PMC axis control command in high-speed machining is ignored (0)/executed (1). In high-speed remote buffer operation and high-speed cycle machining, acceleration/ deceleration is not used (0)/used (1).	M series
7505	High-speed cutting	<Axis>
\#7 \#6 \#5 \#4 \#3 \#2 \#1 HUN : \#O HSC :	Unit of data to be distributed during machining a high-speed cycle is the same as the least input increment (0)/ten times the least input increment (1). Not used (0)/used (1) for high-speed distribution in each axis.	T series

Number		Contents	Remarks
7510	Control axis count in high-speed remote buffer		T series
	Maximum number of simultaneously controlled axes when G05 is specified during high-speed cycle machining (0)/control axis count in high-speed remote buffer (1)		M series
7511	Extension of data variables used for machining in a high-speed cycle		
	Set Value	Means	
	0	Variables \#200000 to \#85535 are used.	
	1	Variables \#200000 to \#232767 are used.	
	2	Variables \#200000 to \#265535 are used.	
	3	Variables \#200000 to \#298303 are used.	
	4	Variables \#200000 to \#331072 are used.	
	5	Variables \#200000 to \#363839 are used.	
	6	Variables \#200000 to \#396607 are used.	
	7	Variables \#200000 to \#429375 are used.	
	8	Variables \#200000 to \#462143 are used.	

41) Parameters for polygon turning

Number	Contents	Remarks
7600	Parameter for returns to reference position	T series
\#7 PLZ : \#6 \#5 \#4 \#3 \#2 \#1 \#0	The sequence of returns to the reference position of synchronous axis using G28 command is same as a return to reference position manually (0)/by positioning (1)	
7602	Inter-spindle polygon function	T series
\#7 \#6 \#5 COF : \#4 HST : \#3 HSL \#2 HDR : \#1 SNG : \#O MNG:	In spindle polygon turning, phase control is exercised (0)/not exercised (1). The spindle does not stop (0)/stops to set the polygon mode (1). For phase synchronization, the second spindle is shifted (0)/the first spindle is shifted (1). The phase synchronization shift direction is not reversed (0)/reversed (1). In spindle polygon turning, the synchronization axis rotation direction is not reversed (0)/ reversed (1). In spindle polygon turning, the spindle rotation direction is not reversed (0)/reversed (1).	$\begin{aligned} & 7602 \# 5=0 \\ & 7602 \# 5=0 \\ & 7602 \# 5=0 \end{aligned}$

8. PARAMETERS

Number	Contents	Remarks
7603	Inter-spindle polygon function	T series
\#7 PST :The polygon spindle stop signal *PLSST (G038.0) is not used (0)/used (1).		
\#6 \#5 RDG : As the phase command value R, the diagnosis screen displays a specified value (0)/actual shift pulse data (1).		
\#4 \#3 \#2 \#1 QDR : \#0 RPL : The synchronization axis rotation direction depends on the sign of Q (0)/the rotation direction of the first spindle (1). Upon reset, spindle polygon mode is canceled (0)/not canceled (1).	ALM218	
7610	Control axis number of tool rotation axis for polygon turning	T series
7620	Movement of tool rotation axis per revolution	
7621	Upper-limit rotation speed of tool rotation axis	
7631	Allowable spindle speed deviation level in spindle polygon turning	
7632	Steady state confirmation time duration in spindle polygon turning	

42) Parameters for the external pulse input

Number	Contents	Remarks
7681	Setting 1 for the ratio of an axis shift amount to external pulses (M)	M series
7682	Setting 2 for the ratio of an axis shift amount to external pulses (N)	M series

43) Parameters for the hobbing machine and electric gear box

Number	Contents				Remarks
7700	Hobbing machine/electric gear box				M series
\#7 \#6 DPS : Display of actual spindle speed the hob-axis (0)/the spindle speed (1) speed is displayed. \#5 RTO : Gear ratio for the spindle and position coder specified in parameter 3706 disabled (0)/ enabled (1) (Always specify 0 .) \#4 \#3 MLT : Unit of data for the magnification for compensating C-axis servo delay 0.001 (0)/ 0.0001 (1) \#2 HDR : Setting of the direction for compensating a helical gear (1 is usually specified.) \#1 CMS : The position manually set with a single rotation signal is canceled (0)/not canceled (1) when a synchronization cancel command is issued. \#0 HBR : Performing a reset does not cancel (0)/cancel (1) synchronization of the C -axis to the hob axis (G81).					PRM7714
7701	Hobbing machine				M series
\#7 \#6 \#5 DLY \#4 JHD \#3 \#2 SM3 \#1 SM2 \#0 SM1	CompendisabledWhilesynchrhandle(0)/enaSM3 0 0 0 0 1 1 1	nsating (0)/e e C-a needs SM2 0 0 1 1 0 1 1	C-axi abled SM1 with ea 0 1 0 1 0 0 1	servo delay with G84 is) hob axis are other, jogging and e C -axis are disabled	
7709	Numbe	of th	axial	ed axis for a helical gear	M series
7710	Numb axis	of the	axis s	chronized with the hob	M series
7711	Gear	tio fo	he hob	axis and position coder	M series
7712	Time accele the hob each	nstan ation/ axis her	for Cceler nd C-a	xis ion during rotation with is synchronized with [ms]	M series
7713	FL spe during synch		-axis with th each o	celeration/deceleration hob axis and C -axis er [deg/min]	M series

8. PARAMETERS

Number	Contents	Remarks
7714	Magnification 2 for compensation of C -axis servo delay by G83	M series PRM 7700\#3
7715	Magnification 1 for compensation of C-axis servo delay by G83	M series PRM 7700\#3
7730	Retraction function	<Axis> M series
$\begin{array}{\|l} \hline \# 7 \\ \# 6 \\ \# 5 \\ \# 4 \\ \# 3 \\ \# 2 \\ \# 1 \\ \# 0 \text { RTR } \end{array}$	Specifies whether the retraction function is effective for each axis. Retraction is disabled (0)/enabled (1).	
7740	Feedrate during retraction for each axis [mm/min]	<Axis> M series
7741	Retracted distance for each axis [0.001 mm]	<Axis> M series
7771	Number of EGB axis	M series
7772	Number of position detector pulses per rotation about tool axis [Detection unit]	M series
7773	Number of position detector pulses per rotation about workpiece axis [Detection unit]	M series

44) Parameters for axis control by PMC

8. PARAMETERS

Number	Contents	Remarks
8003	Inch input/Metric input	
\#7 \#6 \#5 \#4 \#3 \#2 \#1 \#O PIM	When only the axes controlled by the PMC are used, the linear axis is influenced (0)/not influenced (1) by inch/millimeter input.	
8004	Axis control	
\#7 NDI \#6 NCI \#5 DSL \#4 G8R \#3 G8C \#2 JFM \#1 NMT	A move command along a PMC axis is specified using a diameter value (0)/radius value (1). In deceleration, an in-position check is made (0)/not made (1). If axis switching is specified when axis switching is disabled, ALM139 is issued (0)/ axis switching is valid for a system not specified (1). For rapid traverse and cutting feed along a PMC axis, look-ahead control is disabled (0)/ enabled (1). For cutting feed along a PMC axis, look-ahead control is disabled (0)/enabled (1). A feedrate for continuous feed is normal (0)/ multiplied by 200 (1). If the PMC and NC specify commands at the same time, an alarm is issued (0)/no alarm is issued if the commands do not include a move command (1).	$\begin{gathered} \text { T series } \\ \text { PRM } \\ 1006 \# 3=1 \\ \text { ALM139 } \\ \text { PRM } \\ \text { 1819\#7=0 } \\ \text { PRM } \\ 1819 \# 7=0 \\ \text { ALM130 } \end{gathered}$
8005		
\#7 \#6 \#5 \#4 \#3 \#2 \#1 CDI \#0	If diameter input is specified for PMC-controlled axes, the amount of travel becomes double the specified value while the specified feedrate is used as is (0)/both the specified amount of travel and feedrate are used as is (1).	T series PRM 1006\#3
8010	DI/DO group selection for each axis during PMC axis control	
8022	Upper-limit rate of feed per revolution during PMC axis control	

45) Parameters for two-path control

Number	Contents	Remarks
8100		2-path control
\#3 \#2 \#1 IAL \#0 RST	The special single block function is disabled (0)/enabled (1). A separate tool compensation memory area is used for each tool post (0)/a common tool compensation memory area is shared by the tool posts (1). When an alarm is raised in one tool post in the automatic operation mode, the other tool post enters the feed hold state and stops (0)/ continues operation without stopping (1) Reset key on the CRT/MDI panel effective for both paths (0)/for the tool post selected by the path select signal (1)	T series T series T series
8110	Queuing M code range (minimum value)	2-p
8111	Queuing M code range (maximum value)	
8140	Checking interference between tool posts	T series (2-path control)
$\begin{aligned} & \text { \#7 } \\ & \text { \#6 } \\ & \text { \#5 ZCL } \\ & \text { \#4 IFE } \\ & \text { \#3 IFM } \\ & \\ & \text { \#2 IT0 } \\ & \\ & \\ & \text { \#1 TY1 } \\ & \text { \#0 TY0 } \end{aligned}$	Specifies whether interference along the Z axis is checked (0)/is not checked (1) Specifies whether interference between tool posts is checked (0)/is not checked (1) Specifies whether interference between tool post is checked (0)/is not checked (1) in the manual operation mode When offset number 0 is specified by the T code, checking interference between tool posts is stopped until an offset number other than 0 is specified by the next T code (0)/checking interference between tool posts is continued according to the previously specified offset number (1) Specifies the relationship between the coordinate systems of the two tool posts.	
8151	Distance along the X axis between the reference positions of tool posts 1 and 2	T series (2-path
8152	Distance along the Z axis between the reference positions of tool posts 1 and 2	

8. PARAMETERS

Number	Contents	Remarks
8160	Synchronous, composite, or superimposed control	<Axis> T series (2-path control)
\#7 NRS : \#6 SPE : \#5 \#4 \#3 \#2 ZSI \#1 XSI : \#O MXC :	When the system is reset, synchronous, composite, or superimposed control is released (0)/not released (1) The synchronization deviation is the difference between the positioning deviation of the master axis and that of the slave axis (0)/the slave axis plus the acceleration/deceleration delay (1) Machine coordinates along the Z-axis for the other path subject to mixed control are fetched with the sign as is (0)/inverted (1) The machine coordinates along the X -axis for the other path subject to mixed control are fetched with the sign as is (0)/inverted (1) During mixed control of the X - or Z -axis, measurement direct input function B for tool compensation performs calculation based on: Machine coordinates for the path being controlled (0)/another path subject to mixed control (1)	$\begin{gathered} \text { PRM } \\ 8160 \# 0 \\ \\ \text { PRM } \\ 8160 \# 0 \end{gathered}$
8161	Composite control	<Axis> T series (2-path control)
\#7 \#6 \#5 \#4 \#3 \#2 \#1 CZM : \#O NMR:	When two Cs contour axes are subject to mixed control, the function for mixing zero point return commands for Cs contour axes is not used (0)/used (1) When an axis subject to mixed control is placed in servo-off state mixed control is stopped (0)/mixed control is not stopped to disable follow-up for the axis (1)	

8. PARAMETERS

Number	Contents	Remarks
8180	Master axis with which an axis is synchronized under synchronous control	T series (2-path control)
8181	Synchronization error limit of each axis [Detection unit]	T series (2-path control)
8182	Display of the synchronization error of an axis [Detection unit]	T series (2-path control)
8183	Axis under composite control in path 1 corresponding to an axis of path 2	T series (2-path control)
8184	Coordinates of the reference point of an axis on the coordinate system of another axis under composite control	T series (2-path control)
8185	Workpiece coordinates at the reference position	<Axis> T series (2-path control)
8186	Master axis under superimposed control	T series (2-path control)
8190	Rapid traverse rate of an axis under superimposed control [mm/min]	T series (2-path control)
8191	F0 velocity of rapid traverse override of an axis under superimposed control [mm/min]	T series (2-path control)
8192	Linear acceleration/deceleration time constant in rapid traverse of an axis under superimposed control [msec]	T series (2-path control)
8193	Maximum cutting feedrate under superimposed control $\quad[\mathrm{mm} / \mathrm{min}]$	T series (2-path control)
8194	Maximum cutting feedrate of an axis under superimposed control [mm/min]	T series (2-path control)

46) Parameters for inclined axis control

Number	Contents	Remarks
8200	Inclined axis control	
\#7 \#6 \#5 \#4 \#3 AZR \#2 \#1 \#O AAC	The machine tool is moved (0)/is not moved (1) along the Z axis during manual reference position return along the Y axis under inclined axis control Does not perform (0)/performs (1) inclined axis control	
8210	Inclination angle for inclined axis control	
8211	Axis number of a slanted axis subject to slanted axis control	
8212	Axis number of a Cartesian axis subject to slanted axis control	

47) Parameters for B-axis function (T series)

Number	Contents	Remarks
8240		T series
\#7 MST : \#6 ABS : \#5 SOV : \#4 TEM : \#3 REF : \#2 \#1 \#0	When an M command for starting B-axis operation is specified, FIN is awaited (0)/not awaited (1). A B-axis command is incremental (0)/absolute (1). G110 overlaps the next block (0)/does not overlap the next block (1). When offsetting is performed in a T block, a movement along the axis is made after the M function (0)/the M function is performed after a movement along the axis (1). Reference position return operation is the same as manual reference position return operation (0)/positioning is performed when a reference position is established (1).	

8. PARAMETERS

Number	Contents	Remarks
8241	Miscellaneous function	T series
$\begin{array}{lr} \# 7 & \vdots \\ \# 6 & \vdots \\ \# 5 & \vdots \\ \# 4 & \vdots \\ \# 3 & \vdots \\ \# 2 & \text { MDF : } \\ \# 1 & \\ \# & \\ \# 0 & \text { MDG: } \end{array}$	When the execution of a B-axis operation command is started, G98 mode is set (0)/G99 mode is set (1). When the execution of a B-axis operation command is started, G00 mode is set (0)/G01 mode is set (1). G84 rotates the spindle in the forward or reverse direction after M05 (0)/without M05.	
8242	Offset value	T series
$\begin{aligned} & \# 7 \\ & \# 6 \\ & \# 5 \\ & \# 4 \\ & \# 4 \\ & \# 3 \\ & \# 2 \\ & \# 1 \\ & \# 0 \text { COF } \end{aligned}$	A separate B-axis offset value is used for each tool post (0)/a common B-axis offset value is shared by the tool posts (1).	T series (2-path control)
8250	Axis number used for B-axis control	T series
8251	M code for specifying the start of first program operation	T series
8252	M code for specifying the start of second program operation	T series
8253	M code for specifying the start of third program operation	T series
8257	T code number for tool offset cancellation	T series
8258	Clearance, used in canned cycle G83, for the B-axis	T series

48) Parameters for simple synchronous control

Number	Contents				Remarks
8301	Axis number of the master axis				M series
$\begin{aligned} & \text { \#7 SOF } \\ & \# 6 \\ & \# 5 \\ & \# 4 \\ & \# 3 \\ & \# 2 \\ & \# 1 \text { SY1 } \\ & \# 0 \text { SY0 } \end{aligned}$	The s used	chroniz SY0 0 1 0 1	zation function is The simple syn control is not pe The X axis is th The Y axis is th The Z axis is th	not used (0)/ hronous formed master axis master axis master axis	
8302	Simple synchronous control				M series
\#7 $:$ $\# 6$ $:$ $\# 5$ \vdots $\# 4$ \vdots $\# 3$ \vdots $\# 2$ $:$ $\# 1$ ATS $:$ Automatic setting of grid positioning for simplified synchronous control is not started (0)/started (1) \#0 ATE $:$Automatic setting of grid positioning for simplified synchronous control is disabled (0)/ enabled (1)					
8311	Axis subjec T seri When secon M seri	mber o to sync : Set mas	f the master axis the axis number ter axis for each Tens digit Master axis for the second axis Master axis for the fourth axis Master axis for the sixth axis Master axis for the eighth axis ter axis for the fo et 00, 20, 00, and the axis number ter axis for each	for an axis (0 to 7) of the axis. ting Units digit Master axis for the first axis Master axis for the third axis Master axis for the fifth axis Master axis for the seventh axis urth axis is the 00. 1 to 8) of the axis.	<Axis>
8312	Slave axis mirror image setting (100 or more: Reversed)				<Axis> T series
8313	Limit of the difference between the amount of positioning deviation of the m				
8314	Allowable error in synchronization error check				<Axis> M series

8. PARAMETERS

Number	Contents	Remarks
8315	Maximum compensation value for synchronization	$<$ Axis> M series Alarm 407
8316	Difference between reference counters for master and slave axes [Detection unit]	M series
8317	Torque difference alarm detection time [msec]	M series

49) Program check termination

Number	Contents	Remarks
8341	Program number subject to check termination	
8342	Sequence number subject to check termination	
8343	Program number where collation is to be stopped (when an 8-digit program number is used)	

50) Parameters for chopping

Number	Contents	Remarks
8360	Chopping	M series
\#7 CHPX \#6 \#5 \#4 \#3 \#2 \#1 \#0 CPRP	On the chopping screen, the chopping speed can be set (0)/not be set (1) D : A rapid traverse override for a section from the current position to the R point is determined as follows: A chopping override is enabled (0)/ An ordinary rapid traverse override is enabled (1)	
8370	Chopping axis	M series
8371	Chopping reference point (R point) [Increment system]	M series
8372	Chopping upper dead point [Increment system]	M series
8373	Chopping lower dead point [Increment system]	M series
8374	Chopping speed [mm/min]	M series
8375	Maximum chopping feedrate [$\mathrm{mm} / \mathrm{min}]$	M series
8376	Chopping compensation scaling factor [\%]	M series
8377	Compensation start tolerance [Increment system]	M series

359

51) High-precision control (M series)

Number			Contents	Remarks
8400	Parameter 1 for determining a linear acceleration/deceleration before interpolation			M series
8401	Parameter 2 for determining a linear acceleration/deceleration before interpolation			M series
8402	Acceleration/deceleration before interpolation			M series
```#7 BADO #6 #5 DST #4 BLK #3 #2 #1 NWBL #0```	Be sure Be sure   BADO   0	to set to set   NWBL	Meaning   Linear type is used for   acceleration/deceleration prior to   pre-read interpolation   Bell-shape type is used for   acceleration/deceleration prior to   pre-read interpolation	
8403	Stored stroke limit			M series
\#7 SGO   \#6   \#5   \#4   \#3 PLC2   \#2 PLC1   \#1 MSU   \#0	When a G00 code is specified in the RISC mode, the setting of \#1 is followed (0)/G00 is executed in a simplified manner in HPCC mode (1).   In HPCC mode, a strokek check before movement for the stored stroke limit -2 is not performed (0)/performed (1) In HPCC mode, a strokek check before movement for stored stroke limit 1 is not performed (0)/performed (1) If A G00, M, S, T, or B code is specified in HPCC mode, an alarm is issued (0)/the command is executed (1).			$\begin{gathered} \text { PRM } \\ 8403 \# 1=1 \end{gathered}$
8410	Allowable velocity difference in velocity determination considering the velocity difference at corners   [mm/min]			M series
8416	Look-ahead bell-shaped acceleration/deceleration before interpolation			M series



8. PARAMETERS

Number	Contents	Remarks
8451	Automatic velocity control	M series
\#7 NOF   \#6   \#5   \#4 ZAG   \#3   \#2   \#1   \#O USE	In a block where automatic velocity control is validated, the F command is validated (0)/ ignored (1)   The velocity is not determined ( 0 )/determined (1) according to the angle at which the machine descends along the $Z$-axis   Automatic velocity control is not applied (0)/ applied (1)	
8452	Range of velocity fluctuation to be ignored [\%] (Standard setting: 10)	M series
8456	Area-2 override [\%] (Standard setting: 80)	M series
8457	Area-3 override [\%] (Standard setting: 70)	M series
8458	Area-4 override [\%] (Standard setting: 60)	M series
8455	Automatic velocity control	
$\begin{aligned} & \# 7 \\ & \# 6 \\ & \# 5 \\ & \# 4 \\ & \# 3 \\ & \# 3 \\ & \# 2 \\ & \# 1 \text { CTY } \\ & \# 0 \text { CDC } \end{aligned}$	Be sure to set to 1 . Be sure to set to 0 .	
8464	Initial feedrate for automatic feedrate control	M series
8465	Maximum allowable feedrate for automatic feedrate control	M series
8470	Parameter for determining allowable acceleration in velocity calculation considering acceleration [msec]	M series
8475	Automatic velocity control	M series
\#7   \#6   \#5   \#4   \#3 CIR   \#2 BIP   \#1   \#0	The function of automatic velocity control considering acceleration and deceleration during circular interpolation is not used (0)/ used (1)   The function of deceleration at corners is not used (0)/used (1). (Always set 1.)	




Number	Contents	Remarks
8480	Interpolation period	M series
\#7   \#6 RI2 \#5 RI1 \#4 RIO \#3 \#2 \#1 \#0	Always set the following values.	
8481	Rapid traverse rate in HPCC mode	M series PRM 8403\#7
8485	Smooth interpolation	M series
\#7   \#6   \#5 CDSP   \#4   \#3   \#2   \#1   \#0	Disables (0)/enables (1) smooth interpolation in HPCC mode.	
8486	Maximum travel distance of a block where smooth interpolation is applied   [Input increment]	M series


52) Parameters for macro executor and etc.

Number	Contents	Remarks
8650	Key code	
\#7   \#6   \#5   \#4   \#3   \#2   \#1 CNA :   \#0 RSK :	If an NC alarm is issued while the C executor user screen is displayed, the screen is changed according to PRM3111\#7 (0)/is not changed (1).   Upon reset, key codes are not passed to the application (0)/passed to the application (1).	



8. PARAMETERS

Number	Contents	Remarks
8701	Read method	
\#7   \#6 CTV   \#5   \#4   \#3   \#2   \#1 PLD   \#0	When CAP II is provided, 1 must be specified.   Read operation is performed after the P -code loader is cleared ( 0 )/without clearing the P -code loader (1).	
8703	MAP	
\#7   \#6   \#5   \#4   \#3   \#2   \#1 LCL   \#O DLF	A change in the internal state of the NC is not reported to the host (0)/reported to the host (1). If file transfer using MAP, for example, is terminated, an incomplete file is not deleted (0)/ deleted (1).	
8760	Number of a program transferred to the Power Mate by using the I/O Link	
8781	Amount of DRAM used with the $C$ executor [64k Byte]	
8801	Bit parameter 1 for machine tool builder	
8802	Bit parameter 2 for machine tool builder	
8811	2-word parameter 1 for machine tool builder	
8812	2-word parameter 2 for machine tool builder	
8813	2-word parameter 3 for machine tool builder	
8901	Maintenance	
\#7   \#6   \#5   \#4   \#3   \#2   \#1   \#O FAN	A fan motor error is detected ( 0 )/not detected (1). (Use inhibited)	





Number	Contents	Remarks
9000	Macro executor	
\#7   \#6   \#5 MKG:   \#4 RSC :   \#3   \#2 STP   \#1 NDP   \# 0 SQN :	The graphic screen is displayed (0)/not displayed (1)   When reset, \#100 to \#149 in the P-CODE is cleared (0)/not cleared (1)   Conversational macros are executed (0)/not executed (1)   The P-CODE variables screen is not displayed (0)/displayed (1)   While the P -CODE is executed, O and N numbers represent those for the user program (0)/those for the P-CODE (1)	$\begin{gathered} \text { PRM9002, } \\ 9003 \end{gathered}$
9002	Break program number for the conversational macro	$\begin{gathered} \text { PRM } \\ 9000 \# 2 \end{gathered}$
9003	Break sequence number for the conversational macro	






9. ERROR CODE LIST

### 9.1 Alarms Displayed on NC Screen

### 9.1.1 Program errors (P/S alarm)

Number	Message	Contents
000	PLEASE TURN OFF POWER	A parameter which requires the power off was input, turn off power.
001	TH PARITY ALARM	TH alarm (A character with incorrect parity was input).   Correct the program or tape.
002	TV PARITY ALARM	TV alarm (The number of characters in a block is odd). This alarm will be generated only when the TV check is effective.
003	TOO MANY DIGITS	Data exceeding the maximum allowable number of digits was input. (Refer to the item of max. programmable dimensions.)
004	ADDRESS NOT FOUND	A numeral or the sign " - " was input without an address at the beginning of a block. Modify the program .
005	NO DATA AFTER ADDRESS	The address was not followed by the appropriate data but was followed by another address or EOB code. Modify the program.
006	ILLEGAL USE OF NEGATIVE SIGN	Sign " - " input error (Sign " - " was input after an address with which it cannot be used. Or two or more " - " signs were input.) Modify the program.
007	ILLEGAL USE OF DECIMAL POINT	Decimal point ". " input error (A decimal point was input after an address with which it can not be used. Or two decimal points were input.) Modify the program.
009	ILLEGAL ADDRESS INPUT	Unusable character was input in significant area. Modify the program.
010	IMPROPER G-CODE	An unusable G code or G code corresponding to the function not provided is specified. Modify the program.
011	NO FEEDRATE COMMANDED	Feedrate was not commanded to a cutting feed or the feedrate was inadequate. Modify the program.
014	ILLEGAL LEAD COMMAND (T series)	In variable lead threading, the lead incremental and decremental outputted by address K exceed the maximum command value or a command such that the lead becomes a negative value is given.   Modify the program.
	CAN NOT COMMAND G95 (M series)	A synchronous feed is specified without the option for threading / synchronous feed.   Modify the program.




Number	Message	Contents
015	TOO MANY AXES COMMANDED (M series)	An attempt was made to move the machine along the axes, but the number of the axes exceeded the specified number of axes controlled simultaneously. Alternatively, in a block where where the skip function activated by the torque-limit reached signal (G31 P99/P98) was specified, either moving the machine along an axis was not specified, or moving the machine along multiple axes was specified. Specify movement only along one axis.
	TOO MANY AXES COMMANDED (T series)	An attempt has been made to move the tool along more than the maximum number of simultaneously controlled axes. Alternatively, no axis movement command or an axis movement command for two or more axes has been specified in the block containing the command for skip using the torque limit signal (G31 P99/98). The command must be accompanied with an axis movement command for a single axis, in the same block.
020	OVER TOLERANCE OF RADIUS	In circular interpolation (G02 or G03), difference of the distance between the start point and the center of an arc and that between the end point and the center of the arc exceeded the value specified in parameter No. 3410.
021	ILLEGAL PLANE AXIS COMMANDED	An axis not included in the selected plane (by using G17, G18, G19) was commanded in circular interpolation. Modify the program.
022	NO CIRCLE RADIUS	The command for circular interpolation lacks arc radius R or coordinate $\mathrm{I}, \mathrm{J}$, or K of the distance between the start point to the center of the arc.
023	ILLEGAL RADIUS COMMAND (T series)	In circular interpolation by radius designation, negative value was commanded for address R. Modify the program.
025	CANNOT COMMAND FO IN G02/G03 (M series)	F0 (fast feed) was instructed by F1 -digit column feed in circular interpolation. Modify the program.
027	NO AXES COMMANDED IN G43/G44 (M series)	No axis is specified in G43 and G44 blocks for the tool length offset type C.   Offset is not canceled but another axis is offset for the tool length offset type C. Modify the program.
028	ILLEGAL PLANE SELECT	In the plane selection command, two or more axes in the same direction are commanded. Modify the program.



9. ERROR CODE LIST

Number	Message	Contents
029	ILLEGAL OFFSET VALUE (M series)	The offset values specified by H code is too large.   Modify the program.
	ILLEGAL OFFSET VALUE (T series)	The offset values specified by T code is too large.   Modify the program.
030	ILLEGAL OFFSET NUMBER (M series)	The offset number specified by D/H code for tool length offset or cutter compensation is too large. Modify the program.
	ILLEGAL OFFSET NUMBER (T series)	The offset number in T function specified for tool offset is tool large. Modify the program.
031	ILLEGAL P COMMAND IN G10	In setting an offset amount by G10, the offset number following address $P$ was excessive or it was not specified.   Modify the program.
032	ILLEGAL OFFSET VALUE IN G10	In setting an offset amount by G10 or in writing an offset amount by system variables, the offset amount was excessive.   Modify the program.
033	NO SOLUTION AT CRC (M series)	A point of intersection cannot be determined for cutter compensation. Modify the program.
	NO SOLUTION AT CRC (T series)	A point of intersection cannot be determined for tool nose radius compensation. Modify the program.
034	NO CIRC ALLOWED IN ST-UP /EXT BLK (M series)	The start up or cancel was going to be performed in the G02 or G03 mode in cutter compensation C. Modify the program.
	NO CIRC ALLOWED IN ST-UP /EXT BLK (T series)	The start up or cancel was going to be performed in the G02 or G03 mode in tool nose radius compensation. Modify the program.
035	CAN NOT COMMANDED G39   (M series)	G39 is commanded in cutter compensation B cancel mode or on the plane other than offset plane. Modify the program.
	CAN NOT COMMANDED G31 (T series)	Skip cutting (G31) was specified in tool nose radius compensation mode. Modify the program.
036	CAN NOT COMMANDED G31 (M series)	Skip cutting (G31) was specified in cutter compensation mode. Modify the program.
037	CAN NOT CHANGE PLANE IN CRC   (M seires)	G40 is commanded on the plane other than offset plane in cutter compensation B. The plane selected by using G17, G18 or G19 is changed in cutter compensation C mode. Modify the program.
	CAN NOT CHANGE PLANE IN NRC (T seires)	The offset plane is switched in tool nose radius compensation. Modify the program.




Number	Message	Contents
038	INTERFERENCE IN CIRCULAR BLOCK (M seires)	Overcutting will occur in cutter compensation C because the arc start point or end point coincides with the arc center.   Modify the program.
	INTERFERENCE IN CIRCULAR BLOCK (T series)	Overcutting will occur in tool nose radius compensation because the arc start point or end point coincides with the arc center.   Modify the program.
039	CHF/CNR NOT ALLOWED IN NRC   (T series)	Chamfering or corner R was specified with a start-up, a cancel, or switching between G41 and G42 in tool nose radius compensation. The program may cause overcutting to occur in chamfering or corner R. Modify the program.
040	INTERFERENCE IN G90/G94 BLOCK (T series)	Overcutting will occur in tool nose radius compensation in canned cycle G90 or G94. Modify the program.
041	INTERFERENCE IN CRC (M seires)	Overcutting will occur in cutter compensation C. Two or more blocks are consecutively specified in which functions such as the auxiliary function and dwell functions are performed without movement in the cutter compensation mode. Modify the program.
	INTERFERENCE IN NRC (T seires)	Overcutting will occur in tool nose radius compensation. Modify the program.
042	G45/G48 NOT ALLOWED IN CRC   (M series)	Tool offset (G45 to G48) is commanded in cutter compensation. Modify the program.
043	ILLEGAL T-CODE COMMAND (M series)	In a system using the DRILL-MATE with an ATC, a T code was not specified together with the M06 code in a block. Alternatively, the Tcode was out of range.
044	G27-G30 NOT ALLOWED IN FIXED CYC (M sries)	One of G27 to G30 is commanded in canned cycle mode. Modify the program.
046	ILLEGAL REFERENCE RETURN COMMAND	Other than P2, P3 and P4 are commanded for 2nd, 3rd and 4th reference position return command. Modify the program.
047	ILLEGAL AXIS SELECT (M series)	Two or more parallel axes (in parallel with a basic axis) have been specified upon start-up of three-dimensional tool compensation or threedimensional coordinate conversion.
048	BASIC 3 AXIS NOT FOUND (M series)	Start-up of three-dimensional tool compensation or three-dimensional coordinate conversion has been attempted, but the three basic axes used when $X p, Y p$, or $Z p$ is omitted are not set in parameter No. 1022.


9. ERROR CODE LIST

Number	Message	Contents
050	CHF/CNR NOT ALLOWED IN THRD BLK (M series)	Optional chamfering or corner R is commanded in the thread cutting block.   Modify the program.
	CHF/CNR NOT ALLOWED IN THRD BLK(T series)	Chamfering or corner R is commanded in the thread cutting block. Modify the program.
051	MISSING MOVE AFTER   CHF/CNR   (M series)	Improper movement or the move distance was specified in the block next to the optional chamfering or corner R block.   Modify the program.
	MISSING MOVE AFTER   CHF/CNR   (T series)	Improper movement or the move distance was specified in the block next to the chamfering or corner R block. Modify the program.
052	CODE IS NOT G01 AFTER CHF/CNR (M series)	The block next to the chamfering or corner R block is not G01,G02 or G03.   Modify the program.
	CODE IS NOT G01 AFTER CHF/CNR (T series)	The block next to the chamfering or corner R block is not G01. Modify the program.
053	TOO MANY ADDRESS COMMANDS (M series)	For systems without the arbitary angle chamfering or corner R cutting, a comma was specified. For systems with this feature, a comma was followed by something other than R or C Correct the program.
	TOO MANY ADDRESS COMMANDS (T seires)	In the chamfering and corner R commands, two or more of $\mathrm{I}, \mathrm{K}$ and R are specified. Otherwise, the character after a comma(",") is not C or R in direct drawing dimensions programming. Modify the program.
054	NO TAPER ALLOWED AFTER CHF/CNR (T series)	A block in which chamfering in the specified angle or the corner R was specified includes a taper command. Modify the program.
055	MISSING MOVE VALUE IN CHF/CNR (M series)	In the arbitrary angle chamfering or corner R block, the move distance is less than chamfer or corner R amount.   Modify the program.
	MISSING MOVE VALUE IN CHF/CNR (T series)	In chamfering or corner R block, the move distance is less than chamfer or corner R amount. Modify the program.
056	NO END POINT \& ANGLE IN CHF/CNR (T series)	Neither the end point nor angle is specified in the command for the block next to that for which only the angle is specified (A). In the chamfering comman, $\mathrm{I}(\mathrm{K})$ is commanded for the $X(Z)$ axis.   Modify the program.
057	NO SOLUTION OF BLOCK END   (T series)	Block end point is not calculated correctly in direct dimension drawing programming.





9. ERROR CODE LIST

Number	Message	Contents
065	$\begin{array}{l}\text { ILLEGAL COMMAND IN } \\ \text { G71-G73 } \\ \text { (T series) }\end{array}$	$\begin{array}{l}\text { 1) G00 or G01 is not commanded at } \\ \text { the block with the sequence } \\ \text { number which is specified by ad- } \\ \text { dress P in G71, G72, or G73 } \\ \text { command. }\end{array}$
2) Address Z(W) or X(U) was com-		
manded in the block with a se-		
quence number which is speci-		
fied by address P in G71 or G72,		
respectively.		
Modify the program.		






9. ERROR CODE LIST

Number	Message	Contents
085	COMMUNICATION ERROR	When entering data in the memory   by using Reader/ Puncher interface,   an overrun, parity or framing error   was generated. The number of bits of   input data or setting of baud rate or   specification No. of I/O unit is incor-   rect.
086	DR SIGNAL OFF	When entering data in the memory   by using Reader / Puncher interface,   the ready signal (DR) of reader /   puncher was turned off.   Power supply of I/O unit is off or   cable is not connected or a P.C.B. is   defective.
087	BUFFER OVERFLOW	When entering data in the memory   by using Reader / Puncher interface,   though the read terminate command   is specified, input is not interrupted   after 10 characters read. //O unit or   P.C.B. is defective.
088	LAN FILE TRANS ERROR   (CHANNEL-1)	File data transfer via OSI-ETHER-   NET has been stopped due to a   transfer error.
089	LAN FILE TRANS ERROR   (CHANNEL-2)	File data transfer via OSI-ETHER-   NET has been stopped due to a   transfer error.
090	PREFERENCE RETURN   (EXT OFS CHG)   INCOMPLETE	The reference position return cannot   be performed normally because the   reference position return start point   is too close to the reference position
or the speed is too slow. Separate		
the start point far enough from the		
reference position, or specify a suffi-		
ciently fast speed for reference posi-		
tion return. Check the program con-		
tents.		




Number	Message	Contents
096	P TYPE NOT ALLOWED (WRK OFS CHG)	P type cannot be specified when the program is restarted. (After the automatic operation was interrupted, the workpiece offset amount changed.) Perform the correct operation according to the operator's manual.
097	P TYPE NOT ALLOWED (AUTO EXEC)	$P$ type cannot be directed when the program is restarted. (After power ON, after emergency stop or P / S 94 to 97 reset, no automatic operation is performed.) Perform automatic operation.
098	G28 FOUND IN SEQUENCE RETURN	A command of the program restart was specified without the reference position return operation after power ON or emergency stop, and G28 was found during search.   Perform the reference position return.
099	MDI EXEC NOT ALLOWED   AFT. SEARCH	After completion of search in program restart, a move command is given with MDI. Move axis before a move command or don't interrupt MDI operation.
100	PARAMETER WRITE ENABLE	On the PARAMETER (SETTING) screen, PWE (parameter writing enabled) is set to 1 . Set it to 0 , then reset the system.
101	PLEASE CLEAR MEMORY	The power turned off while rewriting the memory by program edit operation. If this alarm has occurred, press <RESET> while pressing <PROG>, and only the program being edited will be deleted. Register the deleted program.
109	FORMAT ERROR IN G08	A value other than 0 or 1 was specified after $P$ in the G08 code, or no value was specified.
110	DATA OVERFLOW	The absolute value of fixed decimal point display data exceeds the allowable range. Modify the program.
111	CALCULATED DATA OVERFLOW	The result of calculation turns out to be invalid, an alarm No. 111 is issued. $-10^{47}$ to $-10^{-29}, 0,10^{-29}$ to $10^{47}$ Modify the program.
112	DIVIDED BY ZERO	Division by zero was specified. (including $\tan 90^{\circ}$ ) Modify the program.
113	IMPROPER COMMAND	A function which cannot be used in custom macro is commanded. Modify the program.
114	FORMAT ERROR IN MACRO	There is an error in other formats than <Formula>. Modify the program.



9. ERROR CODE LIST

Number	Message	Contents
115	ILLEGAL VARIABLE NUMBER	A value not defined as a variable number is designated in the custom macro or in high-speed cycle machining.   The header contents are improper. This alarm is given in the following cases:   High speed cycle machining   1) The header corresponding to the specified machining cycle number called is not found.   2) The cycle connection data value is out of the allowable range ( $0-$ 999).   3) The number of data in the header is out of the allowable range ( $0-$ 32767).   4) The start data variable number of executable format data is out of the allowable range (\#20000 \#85535).   5) The last storing data variable number of executable format data is out of the allowable range (\#85535).   6) The storing start data variable number of executable format data is overlapped with the variable number used in the header.   Modify the program.
116	WRITE PROTECTED VARIABLE	The left side of substitution statement is a variable whose substitution is inhibited. Modify the program.
118	PARENTHESIS NESTING ERROR	The nesting of bracket exceeds the upper limit (quintuple). Modify the program.
119	ILLEGAL ARGUMENT	The SQRT argument is negative. Or $B C D$ argument is negative, and other values than 0 to 9 are present on each line of BIN argument. Modify the program.
122	FOUR FOLD MACRO MODAL-CALL	The macro modal call is specified four fold. Modify the program.
123	CAN NOT USE MACRO COMMAND IN DNC	Macro control command is used during DNC operation. Modify the program.
124	MISSING END STATEMENT	DO - END does not correspond to 1 :1. Modify the program.
125	FORMAT ERROR IN MACRO	<Formula> format is erroneous. Modify the program.
126	ILLEGAL LOOP NUMBER	In DOn, $1 \leqq n \leqq 3$ is not established. Modify the program.
127	NC, MACRO STATEMENT IN SAME BLOCK	NC and custom macro commands coexist.   Modify the program.



Number	Message	Contents
128	ILLEGAL MACRO   SEQUENCE NUMBER	The sequence number specified in   the branch command was not 0 to   9999. Or, it cannot be searched.   Modify the program.
129	ILLEGAL ARGUMENT   ADDRESS	An address which is not allowed in   <Argument Designation > is used.   Modify the program.
130	ILLEGAL AXIS OPERATION	An axis control command was given   by PMC to an axis controlled by   CNC. Or an axis control command   was given by CNC to an axis con-   trolled by PMC. Modify the program.
131	TOO MANY EXTERNAL   ALARM MESSAGES	Five or more alarms have generated   in external alarm message.   Consult the PMC ladder diagram to   find the cause.
132	ALARM NUMBER NOT   FOUND	No alarm No. concerned exists in ex-   ternal alarm message clear.   Check the PMC ladder diagram.
133	ILLEGAL DATA IN EXT.   ALARM MSG	Small section data is erroneous in   external alarm message or external   operator message. Check the PMC   ladder diagram.
138	ILLEGAL SCALE RATE   (M series)   IN CRC   (M series)	SAN
CONTROLing magnification is comman-		
ded in other than 1 - 9999999.		
Correct the scaling magnification		
setting (G51 Pp... or parameter 5411		
or 5421).		


9. ERROR CODE LIST

Number	Message	Contents
143	SCALED MOTION DATA OVERFLOW   (M series)	The scaling results, move distance, coordinate value and circular radius exceed the maximum command value. Correct the program or scaling mangification.
144	ILLEGAL PLANE SELECTED (M series)	The coordinate rotation plane and arc or cutter compensation C plane must be the same. Modify the program.
145	ILLEGAL CONDITIONS IN POLAR COORDINATE INTERPOLATION	The conditions are incorrect when the polar coordinate interpolation starts or it is canceled.   1) In modes other than G40, G12.1/G13.1 was specified.   2) An error is found in the plane selection. Parameters No. 5460 and No. 5461 are incorrectly specified.   Modify the value of program or parameter.
146	IMPROPER G CODE	G codes which cannot be specified in the polar coordinate interpolation mode was specified. See Chapter 4 and modify the program.
148	ILLEGAL SETTING DATA (M series)	Automatic corner override deceleration rate is out of the settable range of judgement angle. Modify the parameters (No. 1710 to No.1714)
149	FORMAT ERROR IN G10L3 (M series)	A code other than Q1,Q2,P1 or P2 was specified as the life count type in the extended tool life management.
150	ILLEGAL TOOL GROUP NUMBER	Tool Group No. exceeds the maximum allowable value. Modify the program.
151	TOOL GROUP NUMBER NOT FOUND	The tool group commanded in the machining program is not set. Modify the value of program or parameter.
152	NO SPACE FOR TOOL ENTRY	The number of tools within one group exceeds the maximum value registerable. Modify the number of tools.
153	T-CODE NOT FOUND	In tool life data registration, a T code was not specified where one should be. Modify the program.
154	NOT USING TOOL IN LIFE GROUP (M series)	When the group is not commanded, H99 or D99 was commanded. Modify the program.
155	ILLEGAL T-CODE IN M06 (M series)	In the machining program, M06 and T code in the same block do not correspond to the group in use. Modify the program.
	ILLEGAL T-CODE IN M06 (T series)	Group No. $\Delta \Delta$ which is specified with $T \Delta \Delta 88$ of the machining program do not included in the tool group in use. Modify the program.
156	P/L COMMAND NOT FOUND	P and L commands are missing at the head of program in which the tool group is set. Modify the program.

377




Number	Message	Contents
157	TOO MANY TOOL GROUPS	The number of tool groups to be set exceeds the maximum allowable value. (See parameter No. 6800 bit 0 and 1) Modify the program.
158	ILLEGAL TOOL LIFE DATA	The tool life to be set is too excessive. Modify the setting value.
159	TOOL DATA SETTING INCOMPLETE	During executing a life data setting program, power was turned off. Set again.
160	MISMATCH WATING   M-CODE   T series (At two-path)	Diffrent M code is commanded in heads 1 and 2 as waiting M code. Modify the program.
	G72.1 NESTING ERROR (M series)	A subprogram which performs rotational copy with G72.1 contains another G72.1 command.
161	G72.2 NESTING ERROR (M series)	A subprogram which performs parallel copy with G72.2 contains another G72.2 command.
163	COMMAND G68/G69 INDEPENDENTLY (T series (At two-path))	G68 and G69 are not independently commanded in balance cut. Modify the program.
169	ILLEGAL TOOL GEOMETRY DATA (T series (At two-path))	Incorrect tool figure data in interference check.   Set correct data, or select correct tool figure data.
175	ILLEGAL G107 COMMAND	Conditions when performing circular interpolation start or cancel not correct. To change the mode to the cylindrical interpolation mode, specify the command in a format of "G07.1 rotation-axis name radius of cylinder."
176	IMPROPER G-CODE IN G107 (M series)	Any of the following $G$ codes which cannot be specified in the cylindrical interpolation mode was specified.   1) G codes for positioning: G28,, G73, G74, G76, G81 - G89, including the codes specifying the rapid traverse cycle   2) G codes for setting a coordinate system: G52,G92,   3) G code for selecting coordinate system: G53, G54-G59   Modify the program.
	IMPROPER G-CODE IN G107   (T series)	Any of the following $G$ codes which cannot be specified in the cylindrical interpolation mode was specified.   1) G codes for positioning: G28, G76, G81 - G89, including the codes specifying the rapid traverse cycle   2) G codes for setting a coordinate system: G50, G52   3) G code for selecting coordinate system: G53, G54-G59   Modify the program.
177	CHECK SUM ERROR (G05 MODE)	Check sum error Modify the program.



9. ERROR CODE LIST

Number	Message	Contents
178	G05 COMMANDED IN G41/G42 MODE	G05 was commanded in the G41/G42 mode.   Correct the program.
179	PARAM. (NO. 7510) SETTING ERROR	The number of controlled axes set by the parameter 7510 exceeds the maximum number. Modify the parameter setting value.
180	COMMUNICATION ERROR (REMOTE BUF)	Remote buffer connection alarm has generated. Confirm the number of cables, parameters and I/O device.
181	FORMAT ERROR IN G81 BLOCK   (M series)   (hobbing machine, EGB)	G81 block format error   1) $T$ (number of teeth) has not been instructed.   2) Data outside the command range was instructed by either T, $\mathrm{L}, \mathrm{Q}$ or P .   3) Calculation of the synchronization coefficient has resulted in an overflow.   Modify the program.
182	G81 NOT COMMANDED (M series) (hobbing machine)	G83 (C axis servo lag quantity offset) was instructed though synchronization by G81 has not been instructed. Correct the program.
183	DUPLICATE G83 (COMMANDS) (M series) (hobbing machine)	G83 was instructed before canceled by G82 after compensating for the C axis servo lag quantity by G83.
184	ILLEGAL COMMAND IN G81   (M series) (hobbing machine, EGB)	A command not to be instructed during synchronization by G81 was instructed.   1) A C axis command by G00, G27, G28, G29, G30, etc. was instructed.   2) Inch/Metric switching by G20, G21 was instructed.
185	RETURN TO REFERENCE POINT   (M series) (hobbing machine)	G81 was instructed without performing reference position return after power on or emergency stop. Perform reference position return.
186	PARAMETER SETTING ERROR   (M series) (hobbing machine, EGB)	Parameter error regarding G81   1) The $C$ axis has not been set to be a rotary axis.   2) A hob axis and position coder gear ratio setting error.   Modify the parameter.
190	ILLEGAL AXIS SELECT ( M series)	In the constant surface speed control, the axis specification is wrong. (See parameter No. 3770.) The specified axis command $(\mathrm{P})$ contains an illegal value.   Modify the program.


Number	Message	Contents
194	SPINDLE COMMAND IN SYNCHRO-MODE	A contour control mode, spindle positioning (Cs-axis control) mode, or rigid tapping mode was specified during the serial spindle synchronous control mode. Correct the program so that the serial spindle synchronous control mode is released in advance.
195	MODE CHANGE ERROR	Switching command to contouring mode, Cs axis control or rigid tap mode or switching to spindle command mode is not correctly completed.   (This occurs when the response to switch to the spindle control unit side with regard to the switching command from the NC is incorrect.   This alarm is not for the purposes of warning against mistakes in operation, but because continuing operation in this condition can be dangerous it is a P/S alarm.)
197	C-AXIS COMMANDED IN SPINDLE MODE	The program specified a movement along the Cs-axis when the signal CON(DGN=G027\#7) was off. Correct the program, or consult the PMC ladder diagram to find the reason the signal is not turned on.
199	MACRO WORD UNDEFINED	Undefined macro word was used. Modify the custom macro.
200	ILLEGAL S CODE COMMAND	In the rigid tap, an $S$ value is out of the range or is not specified. Modify the program.
201	FEEDRATE NOT FOUND IN RIGID TAP	In the rigid tap, no $F$ value is specified.   Modify the program.
202	POSITION LSI OVERFLOW	In the rigid tap, spindle distribution value is too large. (System error)
203	PROGRAM MISS AT RIGID TAPPING	In the rigid tap, position for a rigid M code (M29) or an S command is incorrect. Modify the program.
204	ILLEGAL AXIS OPERATION	In the rigid tap, an axis movement is specified between the rigid M code (M29) block and G84 or G74 for M series (G84 or G88 for T series) block. Modify the program.
205	RIGID MODE DI SIGNAL OFF	Rigid mode DI signal is not ON when G84 or G74 for M series (G84 or G88 for T series) is executed though the rigid M code (M29) is specified.Consult the PMC ladder diagram to find the reason the DI signal (DGNG061.1) is not turned on.
206	CAN NOT CHANGE PLANE (RIGID TAP) (M series)	Plane changeover was instructed in the rigid mode. Modify the program.



9. ERROR CODE LIST

Number	Message	Contents		
210	$\begin{array}{l}\text { CAN NOT COMAND } \\ \text { M198/M199 }\end{array}$	$\begin{array}{l}\text { M198 and M199 are executed in the } \\ \text { schedule operation. M198 is } \\ \text { executed in the DNC operation. } \\ \text { Modify the program. }\end{array}$		
1) The execution of an M198 or				
M99 command was attempted				
during scheduled operation. Al-				
ternatively, the execution of an				
M198 command was attempted				
during DNC operation. Modify				
the program.			$\}$	2)The execution of an M99 com-   mand was attempted by an inter-   rupt macro during pocket ma-   chining in a multiple repetitive   canned cycle.
:---				
211				




Number	Message	Contents
218	NOT FOUND P/Q COMMAND IN G251 (T series)	P or Q is not commanded in the G251 block, or the command value is out of the range. Modify the program.
219	COMMAND G250/G251 INDEPENDENTLY (T series)	G251 and G250 are not independent blocks.
220	ILLEGAL COMMAND IN SYNCHR-MODE (T series)	In the synchronous operation, movement is commanded by the NC program or PMC axis control interface for the synchronous axis.
221	ILLEGAL COMMAND IN SYNCHR-MODE (T series)	Polygon machining synchronous operation and axis control or balance cutting are executed at a time. Modify the program.
222	DNC OP. NOT ALLOWED IN BG.-EDIT (M series)	Input and output are executed at a time in the background edition.   Execute a correct operation.
224	RETURN TO REFERENCE POINT   (M series)	Reference position return has not been performed before the automatic operation starts. Perform reference position return only when bit 0 of parameter 1005 is 0.
	TURN TO REFERENCE POINT   (T series)	Reference position return is necessary before cycle start.
225	SYNCHRONOUS/MIXED CONTROL ERROR (T series (At two-path))	This alarm is generated in the following circumstances. (Searched for during synchronous and mixed control command.)   1) When there is a mistake in axis number parameter setting.   2) When there is a mistake in control commanded.   Modify the program or the parameter.
226	ILLEGAL COMMAND IN SYNCHRO-MODE (T series (At two-path))	A travel command has been sent to the axis being synchronized in synchronous mode. Modify the program or the parameter.
229	CAN NOT KEEP SYNCHRO-STATE (T series (2-path control))	This alarm is generated in the following circumstances.   1) When the synchro/mixed state could not be kept due to system overload.   2) The above condition occurred in CMC devices (hardware) and synchro-state could not be kept.   (This alarm is not generated in normal use conditions.)
230	R CODE NOT FOUND (M series (grinding machine))	The infeed quantity $R$ has not been instructed for the G161 block. Or the $R$ command value is negative. Modify the program.



9. ERROR CODE LIST

Number	Message	Contents
231	ILLEGAL FORMAT IN G10 OR L50	Any of the following errors occurred in the specified format at the pro-grammable-parameter input.   1) Address $N$ or $R$ was not entered.   2) A number not specified for a parameter was entered.   3) The axis number was too large.   4) An axis number was not specified in the axis-type parameter.   5) An axis number was specified in the parameter which is not an axis type. Correct the program.   6) An attempt was made to reset bit 4 of parameter 3202 (NE9) or change parameter 3210 (PSSWD) when they are protected by a password.   Modify the program.
232	TOO MANY HELICAL AXIS COMMANDS (M series)	Three or more axes (in the normal direction control mode two or more axes) were specified as helical axes in the helical interpolation mode. Modify the program
233	DEVICE BUSY	When an attempt was made to use a unit such as that connected via the RS-232-C interface, other users were using it.
239	BP/S ALARM	While punching was being performed with the function for controlling external I/O units ,background editing was performed.
240	BP/S ALARM	Background editing was performed during MDI operation.
241	ILLEGAL FORMAT IN G02.2/G03.2 (M series)	The end point, I, J, K, or R is missing from a command for involute interpolation.
242	ILLEGAL COMMAND IN G02.2/G03.2 (M series)	An invalid value has been specified for involute interpolation.   - The start or end point is within the basic circle.   - $I, J, K$, or $R$ is set to 0 .   - The number of rotations between the start of the involute curve and the start or end point exceeds 100.
243	OVER TOLERANCE OF END POINT (M series)	The end point is not on the involute curve which includes the start point and thus falls outside the range specified with parameter No. 5610.
244	P/S ALARM   (T series)	In the skip function activated by the torque limit signal, the number of accumulated erroneous pulses exceed 32767 before the signal was input. Therefore, the pulses cannot be corrected with one distribution.   Change the conditions, such as feed rates along axes and torque limit, and try again.





9. ERROR CODE LIST

Number	Message	Contents
5006	TOO MANY WORD IN ONE BLOCK   (M series)	The number of words specified in a block exceeded 26 in the HPCC mode.
5007	TOO LARGE DISTANCE (M series)	In the HPCC mode, the machine moved beyond the limit.
5009	PARAMETER ZERO (DRY RUN) (M series)	The maximum feedrate (parameter No. 1422) or the feedrate in dry run (parameter No. 1410) is 0 in the HPCC model.
5010	END OF RECORD	The end of record (\%) was specified. $\mathrm{I} / \mathrm{O}$ is incorrect. modify the program.
5011	PARAMETER ZERO (CUT MAX)   (M series)	The maximum cutting feedrate (parameter No. 1422)is 0 in the HPCC mode.
5012	G05 P10000 ILLEGAL   START UP   (HPCC)   (M series)	G05 P10000 has been specified in a mode from which the system cannot enter HPCC mode.
5013	HPCC: CRC OFS REMAIN AT CANCEL (M series)	G05P0 has been specified in G41/G42 mode or with offset remaining.
5014	TRACE DATA NOT FOUND (M series)	Transfer cannot be performed because no trace data exists.
5015	NO ROTATION AXIS (M series)	The specified rotation axis does not exist for tool axis direction handle feed.
5016	ILLEGAL COMBINATION OF M CODE	M codes which belonged to the same group were specified in a block. Alternatively, an M code which must be specified without other $M$ codes in the block was specified in a block with other M codes.
5018	POLYGON SPINDLE SPEED ERROR (T series)	In G51.2 mode, the speed of the spindle or polygon synchronous axis either exceeds the clamp value or is too small. The specified rotation speed ratio thus cannot be maintained.
5020	PARAMETER OF RESTART ERROR	An erroneous parameter was specified for restarting a program. A parameter for program restart is invalid.
5030	$\begin{aligned} & \hline \text { ILLEGAL COMMAND } \\ & \text { (G100) } \\ & \text { (T series) } \end{aligned}$	The end command (G110) was specified before the registratioin start command (G101, G102, or G103) was specified for the B-axis.
5031	ILLEGAL COMMAND   (G101, G102, G103) (T series)	While a registration start command (G101, G102, or G103) was being executed, another registration start command was specified for the Baxis.
5032	NEW PRG REGISTERED IN B-AXS MOVE (T series)	While the machine was moving about the B-axis, at attempt was made to register another move command.




Number	Message	Contents
5033	$\begin{array}{l}\text { NO PROG SPACE IN } \\ \text { MEMORY B-AXS (T series) }\end{array}$	$\begin{array}{l}\text { Commands for movement about the } \\ \text { B-axis were not registered because } \\ \text { of insufficient program memory. }\end{array}$
5034	$\begin{array}{l}\text { PLURAL COMMAND IN } \\ \text { G110 } \\ \text { (T series) }\end{array}$	$\begin{array}{l}\text { Multiple movements were specified } \\ \text { with the G110 code for the B-axis. }\end{array}$
5035	$\begin{array}{l}\text { NO FEEDRATE } \\ \text { COMMANDED B-AXS (T } \\ \text { series) }\end{array}$	$\begin{array}{l}\text { A feedrate was not specified for cut- } \\ \text { ting feed about the B-axis. }\end{array}$
5036	$\begin{array}{l}\text { ADDRESS R NOT DEFINED } \\ \text { IN G81-G86 (T series) }\end{array}$	$\begin{array}{l}\text { Point R was not specified for the } \\ \text { canned cycle for the B-axis. }\end{array}$
5037	$\begin{array}{l}\text { ADDRESS Q NOT DEFINED } \\ \text { IN G83 } \\ \text { (T series) }\end{array}$	$\begin{array}{l}\text { Depth of cut Q was not specified for } \\ \text { the G83 code (peck drilling cycle). } \\ \text { Alternatively, O was specified in Q for } \\ \text { the B-axis. }\end{array}$
5038	$\begin{array}{l}\text { TOO MANY START } \\ \text { M-CODE COMMAND } \\ \text { (T series) }\end{array}$	$\begin{array}{l}\text { More than six M codes for starting } \\ \text { movement about the B-axis were } \\ \text { specified. }\end{array}$
5039	$\begin{array}{l}\text { START UNREGISTERED } \\ \text { B-AXS PROG (T series) }\end{array}$	$\begin{array}{l}\text { An attempt was made to execute a } \\ \text { program for the B-axis which had not } \\ \text { been registered. }\end{array}$
5040	$\begin{array}{l}\text { CAN NOT COMMANDED } \\ \text { B-AXS MOVE (T series) }\end{array}$	$\begin{array}{l}\text { The machine could not move about } \\ \text { the B-axis because parameter } \\ \text { No.8250 was incorrectly specified, } \\ \text { or because the PMC axis system } \\ \text { could not be used. }\end{array}$
5041	$\begin{array}{l}\text { CAN NOT COMMANDED } \\ \text { G110 BLOCK (T series) }\end{array}$	$\begin{array}{l}\text { Blocks containing the G110 codes } \\ \text { were successively specified in tool- } \\ \text { tip radius compensation for the B- } \\ \text { axis. }\end{array}$
G68 FORMAT ERROR		
(M series)		
(M series)		

Three-dimensional coordinate con- <br>
version G68 has been specified <br>
three or more times.\end{array}\right\}\)


9. ERROR CODE LIST

Number	Message	Contents
5046	ILLEGAL PARAMETER (ST.COMP)	The parameter settings for straightness compensation contain an error. Possible causes are as follows:   1) A parameter for a movement axis or compensation axis contains an axis number which is not used.   2) More than 128 pitch error compensation points exist between the negative and positive end points.   3) Compensation point numbers for straightness compensation are not assigned in the correct order.   4) No straightness compensation point exists between the pitch error compensation points at the negative and positive ends.   5) The compensation value for each compensation point is too large or too small.
5050	ILL-COMMAND IN CHOPPING MODE (M series)	A command for switching the major axis has been specified for circular threading. Alternatively, a command for setting the length of the major axis to 0 has been specified for circular threading.
5051	M-NET CODE ERROR	Abnormal character received (other than code used for transmission)
5052	M-NET ETX ERROR	Abnormal ETX code
5053	M-NET CONNECT ERROR	Connection time monitoring error (parameter No. 175)
5054	M-NET RECEIVE ERROR	Polling time monitoring error (parameter No. 176)
5055	M-NET PRT/FRT ERROR	Vertical parity or framing error
5057	M-NET BOARD SYSTEM DOWN	Transmission timeout error (parameter No. 177)   ROM parity error CPU interrupt other than the above
5058	G35/G36 FORMAT ERROR (T series)	A command for switching the major axis has been specified for circular threading. Alternatively, a command for setting the length of the major axis to 0 has been specified for circular threading.
5059	RADIUS IS OUT OF RANGE (T series)	A radius exceeding nine digits has been specified for circular interpolation with the center of the arc specified with I, J, and K.





9. ERROR CODE LIST

Number	Message	Contents
5082	DATA SERVER ERROR	This alarm is detailed on the data   server message screen.
5085	SMOOTH IPL ERROR 1	The smooth interpolation command   block contains an invalid command   format.

NOTE HPCC : High precision contour control

### 9.1.2 Background edit alarm (BP/S alarm)

Number	Message	Contents
$? ? ?$	BP/S alarm	BP/S alarm occurs in the same num-   ber as the P/S alarm that occurs in   ordinary program edit. (070, 071,   $072,073,074 ~ 085,086,087$ etc.)
140	BP/S alarm	It was attempted to select or delete in   the background a program being se-   lected in the foreground. (Note) Use   background editing correctly.

NOTE Alarm in background edit is displayed in the key input line of the background edit screen instead of the ordinary alarm screen and is resettable by any of the MDI key operation.

### 9.1.3 Absolute pulse coder (APC) alarm

Number	Message	Contents
300	nth-axis origin return	Manual reference position return is   required for the nth-axis ( $\mathrm{n}=1-8$ ).
301	APC alarm: $n$ nh-axis   communication	nth-axis ( $\mathrm{n}=1-8$ ) APC communica-   tion error. Failure in data transmis-   sion   Possible causes include a faulty   APC, cable, or servo interface mod-   ule.
302	APC alarm: nth-axis over   time	nth-axis ( $\mathrm{n}=1-8$ ) APC overtime er-   ror.   Failure in data transmission.   Possible causes include a faulty   APC, cable, or servo interface mod-   ule.
303	APC alarm: nth-axis framing	nth-axis ( $\mathrm{n}=1-8$ ) APC framing error.   Failure in data transmission.   Possible causes include a faulty   APC, cable, or servo interface mod-   ule.
304	APC alarm: nth-axis parity	nth-axis ( $\mathrm{n}=1-8$ ) APC parity error.   Failure in data transmission.   Possible causes include a faulty   APC, cable, or servo interface mod-   ule.
305	APC alarm: nth-axis pulse   error	nth-axis ( $n=1-8$ ) APC pulse error   alarm.   APC alarm.APC or cable may be   faulty.

389



Number	Message	Contents
306	APC alarm: nth-axis battery   voltage 0	nth-axis (n=1 - 8) APC battery volt-   age has decreased to a low level so   that the data cannot be held.   APC alarm. Battery or cable may be   faulty.
307	APC alarm: nth-axis battery   low 1	nth-axis (n=1 - 8) axis APC battery   voltage reaches a level where the   battery must be renewed.   APC alarm. Replace the battery.
308	APC alarm: nth-axis battery   low 2	nth-axis (n=1 - 8) APC battery volt-   age has reached a level where the   battery must be renewed (including   when power is OFF).   APC alarm .Replace battery.
309	APC ALARM:   n AXIS ZRN IMPOSSIBL	Return to the origin has been at-   tempted without first rotating the mo-   tor one or more times. Before return-   ing to the origin, rotate the motor one   or more times then turn off the power.

### 9.1.4 Serial pulse coder (APC) alarm

When either of the following alarms is issued, a possible cause is a faulty serial pulse coder or cable.

Number	Message	Contents
350	SPC ALARM: $n$ AXIS   PULSE CODER	The n axis (axis 1-8) pulse coder has   a fault. Refer to diagnosis display   No. 202 for details.
351	SPC ALARM: n AXIS   COMMUNICATION	n axis (axis 1-8) serial pulse coder   lommunication error (data transmis-   sion fault)   Refer to diagnosis display No. 203   for details.

- The details of serial pulse coder alarm No. 350

The details of serial pulse corder alarm No. 350 (pulse corder alarm) are displayed in the diagnosis display (No. 202) as shown below.

	\#7	\#6	\#5	\#4	\#3	\#2	\#1

\#6 (CSA) : The serial pulse corder is defective. Replace it. \#5 (BLA) : The battery voltage is low. Replace the batteries. This alarm has nothing to do with alarm No. 350 (serial pulse coder alarm).
\#4 (PHA) : The serial pulse coder or feedback cable is defective. Replace the serial pulse coder or cable.
\#3 (RCA) : The serial pulse coder is defective. Replace it.
\#2 (BZA) : The pulse coder was supplied with power for the first time.
Make sure that the batteries are connected.
Turn the power off, then turn it on again and perform a reference position return. This alarm has nothing to do with alarm No. 350 (serial pulse coder alarm).
\#1 (CKA) : The serial pulse coder is defective. Replace it.
\#0 (SPH) : The serial pulse coder or feedback cable is defective. Replace the serial pulse coder or cable.


## 9. ERROR CODE LIST

- The details of serial pulse coder alarm No. 351

The details of serial pulse coder alarm No. 351 (communication alarm) are displayed in the diagnosis display (No. 203) as shown below.

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
DTE	CRC	STB	PRM				

\#7 (DTE) : The serial pulse coder encountered a communication error. The pulse coder, feedback cable, or feedback receiver circuit is defective. Replace the pulse coder, feedback cable, or NC-axis board
\#6 (CRC) : The serial pulse coder encountered a communication error. The pulse coder, feedback cable, or feedback receiver circuit is defective. Replace the pulse coder, feedback cable, or NC-axis board.
\#5 (STB) : The serial pulse coder encountered a communication error. The pulse coder, feedback cable, or feedback receiver circuit is defective. Replace the pulse coder, feedback cable, or NC-axis board.
\#4 (PRM) : An invalid parameter was found. Alarm No. 417 (invalid servo parameter) is also issued.

### 9.1.5 Servo alarms

Number	Message	Contents
400	SERVO ALARM: n-TH AXIS   OVERLOAD	The n-th axis (axis 1-8) overload   signal is on. Refer to diagnosis dis-   play No. 201 for details.
401	SERVO ALARM: n-TH AXIS   VRDY OFF	The n-th axis (axis 1-8) servo ampli-   fier READY signal (DRDY) went off.   Refer to procedure of trouble shoot-   ing.
404	SERVO ALARM: n-TH AXIS   VRDY ON	Even though the n-th axis (axis 1-8)   READY signal (MCON) went off, the   servo amplifier READY signal   (DRDY) is stillon. Or, when the pow-   er was turned on, DRDY went on   even though MCON was off.   Check that the servo interface mod-   ule and servo amp are connected.
405	SERVO ALARM:   (ZERO POINT RETURN   FAULT)	Position control system fault. Due to   an NC or servo system fault in the   reference position return, there is the   possibility that reference position re-   turn could not be executed correctly.
Try again from the manual reference		
position return.		

391




9. ERROR CODE LIST

Number	Message	Contents
420	SERVO ALARM: n AXIS   SYNC TORQUE   (M series)	During simple synchronous control,   the difference between the torque   commands for the master and slave   axes exceeded the value set in pa-   rameter No. 2031.
421	SERVO ALARM: n AXIS   EXCESS ER (D)	The difference between the errors in   the semi-closed loop and closed   loop has become excessive during
dual position feedback. Check the		
values of the dual position conver-		
sion coefficients in parameters No.		
2078 and 2079.		

NOTE If any of servo alarms 400 to 421 occurs, investigate the cause of the alarm and take appropriate action, as described in the maintenance manual.

- Details of servo alarm No. 414

The details of servo alarm No. 414 are displayed in the diagnosis display (No. 200 and No.204) as shown below.

\#7	\#6	\#5	\#4	\#3	\#2		\#1
OVL	LV	OVC	HCA	HVA	DCA	FBA	OFA

\#7 (OVL) : An overload alarm is being generated. (This bit causes servo alarm No. 400. The details are indicated in diagnostic data No.201).
\#6 (LV) : A low voltage alarm is being generated in servo amp.
\#5 (OVC) : A overcurrent alarm is being generated inside of digital servo.
\#4 (HCA) : An abnormal current alarm is being generated in servo amp.
\#3 (HVA) : An overvoltage alarm is being generated in servo amp.
\#2 (DCA) : A regenerative discharge circuit alarm is being generated in servo amp.
\#1 (FBA) : A disconnection alarm is being generated. (This bit causes servo alarm No.416. The details are indicated in diagnostic data No.201).
\#0 (OFA) : An overflow alarm is being generated inside of digital servo.

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
	OFS	MCC	LDA	PMS			

\#6 (OFS) : A current conversion error has occured in the digital servo.
\#5 (MCC) : A magnetic contactor contact in the servo amplifier has welded.
\#4 (LDA) : The LED indicates that serial pulse coder $C$ is defective
\#3 (PMS) : A feedback pulse error has occured because the feedback cable is defective.



- Details of servo alarms No. 400 and No. 416

The details of servo alarms No. 400 and No. 416 are displayed in the diagnosis display (No. 201) as shown below.

201

| \#7 | \#6 | \#5 | \#4 | \#3 | \#2 | \#1 | \#0 |
| :---: | :---: | :---: | ---: | :---: | :---: | :---: | :---: | :---: |
| ALD |  |  | EXP |  |  |  |  |

When OVL equal 1 in diagnostic data No. 200 (servo alarm No. 400 is being generated):

$$
\begin{array}{ll}
\text { \#7 (ALD) } 0: \text { Motor overheating } \\
& 1: \text { Amplifier overheating }
\end{array}
$$

When FBAL equal 1 in diagnostic data No. 200 (servo alarm No. 416 is being generated):

ALD	EXP	Alarm details
1	0	Built-in pulse coder disconnection (hardware)
1	1	Separately installed pulse coder disconnection   (hardware)
0	0	Pulse coder is not connected due to software.

### 9.1.6 Overtravel alarms

If this alarm occurs, manually move the machine in the direction opposite to that in which the machine was moving when the alarm occurred, then reset the alarm.

Number	Message	Contents
500	OVER TRAVEL : +n	Exceeded the n-th axis (axis 1-8) + side stored stroke limit I.   (Parameter No. 1320 or 1326 Note)
501	OVER TRAVEL : -n	Exceeded the n-th axis (axis 1-8) - side stored stroke limit I.   (Parameter No. 1321 or 1327 Note)
502	OVER TRAVEL : +n	Exceeded the $n$-th axis (axis 1-8) + side stored stroke limit II.   (Parameter No. 1322 )
503	OVER TRAVEL : -n	Exceeded the n-th axis (axis 1-8) - side stored stroke limit II.   (Parameter No.1323)
504	OVER TRAVEL : +n	Exceeded the $n$-th axis (axis 1-8) + side stored stroke limit III.   (Parameter No. 1324 )
505	OVER TRAVEL : -n	Exceeded the $n$-th axis (axis 1-8) - side stored stroke limit III.   (Parameter No. 1325 )
506	OVER TRAVEL : +n	Exceeded the n-th axis (axis 1-8) + side hardware OT.
507	OVER TRAVEL : -n	Exceeded the n -th axis (axis 1-8) - side hardware OT.
508	INTERFERENCE: +n (T series (two-path control))	A tool moving in the positive direction along the n axis has fouled another tool post.
509	INTERFERENCE: -n (T series (two-path control))	A tool moving in the negative direction along the n axis has fouled another tool post.



9. ERROR CODE LIST

Number	Message	Contents
510	OVER TRAVEL: +n	Alarm for stroke check prior to movement.   The end point specified in a block falls   within the forbidden area defined with the   stroke limit in the positive direction along   the $N$ axis. Correct the program.
511	OVER TRAVEL: -n	Alarm for stroke check prior to movement.   The end point specified in a block falls   within the forbidden area defined with the   stroke limit in the negative direction along   the $N$ axis. Correct the program.

NOTE1 Overtravel alarm numbers 504 and 505 apply only to the T series. NOTE2 Parameters 1326 and 1327 are effective when EXLM(stroke limit switch signal) is on.

### 9.1.7 Overheat alarms

Number	Message	Contents
700	$\begin{array}{l}\text { OVERHEAT: } \\ \text { CONTROL UNIT }\end{array}$	$\begin{array}{l}\text { Control unit overheat } \\ \text { Check that the fan motor operates normal- } \\ \text { ly, and clean the air filter. }\end{array}$
701	$\begin{array}{l}\text { OVERHEAT: FAN } \\ \text { MOTOR }\end{array}$	$\begin{array}{l}\text { The fan motor on the top of the cabinet for } \\ \text { the contorl unit is overheated. Check the } \\ \text { operation of the fan motor and replace the } \\ \text { motor if necessary. }\end{array}$
704	OVERHEAT: SPINDLE	$\begin{array}{l}\text { Spindle overheat in the spindle fluctuation } \\ \text { detection }\end{array}$
1) If the cutting load is heavy, relieve the		
cutting condition.		


share.\end{array}\right\}\) 3) | Another possible cause is a faulty |
| :--- |
| spindle amp. |

### 9.1.8 Rigid tapping alarms

Number	Message	Contents
740	RIGID TAP ALARM:   EXCESS ERROR	The positional deviation of the stopped   spindle has exceeded the set value dur-   ing rigid tapping.
741	RIGID TAP ALARM:   EXCESS ERROR	The positional deviation of the moving   spindle has exceeded the set value dur-   ing rigid tapping.
742	RIGID TAP ALARM:   LSI OVERFLOW	An LSI overflow has occurred for the   spindle during rigid tapping.




### 9.1.9 Serial spindle alarms

Number	Message	Contents
749	S-SPINDLE LSI ERROR	It is serial communication error while system is executing after power supply on. Following reasons can be considered.   1) Optical cable connection is fault or cable is not connected or cableis cut.   2) MAIN CPU board or option 2 board is fault.   3) Spindle amp. printed board is fault. If this alarm occurs when CNC power supply is turned on or when his alarm can not be cleared even if CNC is reset, turn off the power supply also turn off the power supply in spindle side.
750	SPINDLE SERIAL LINK START FAULT	This alarm is generated when the spindle control unit is not ready for starting correctly when the power is turned on in the system with the serial spindle.   The four reasons can be considered as follows:   1) An improperly connected optic cable, or the spindle control unit's power is OFF.   2) When the NC power was turned on under alarm conditions other than SU-01 or AL-24 which are shown on the LED display of the spindle control unit. In this case, turn the spindle amplifier power off once and perform startup again.   3) Other reasons (improper combination of hardware)   This alarm does not occur after the system including the spindle control unit is activated.   4) The second spindle (when SP2, bit 4 of parameter No. 3701, is 1 ) is in one of the above conditions 1) to 3).   See diagnostic display No. 409 for details.
751	FIRST SPINDLE ALARM DETECTION (AL-XX)	This alarm indicates in the NC that an alarm is generated in the spindle unit of the system with the serial spindle. The alarm is displayed in form $A L-X X(X X$ is a number). Refer to 9.1.11 Alarms displayed on spindle servo unit .The alarm number $X X$ is the number indicated on the spindle amplifier. The CNC holds this number and displays on the screen.
752	FIRST SPINDLE MODE CHANGE FAULT	This alarm is generated if the system does not properly terminate a mode change. The modes include the Cs contouring, spindle positioning, rigid tapping, and spindle control modes. The alarm is activated if the spindle control unit does not respond correctly to the mode change command issued by the NC.
754	SPINDLE-1   ABNORMAL TORQUE   ALM	Abnormal first spindle motor load has been detected.



9. ERROR CODE LIST

Number	Message	Contents
761	SECOND SPINDLE   ALARM DETECTION   (AL-XX)	Refer to alarm No. 751. (For 2nd axis)
762	SECOND SPINDLE   MODE CHANGE   FAULT	Refer to alarm No. 752.(For 2nd axis)
764	SPINDLE-2   ABNORMAL TORQUE   ALM	Same as alarm No. 754 (for the second   spindle)
771	SPINDLE-3   ALARM DETECT   (AL-XX)	Same as alarm No. 751 (for the third   spindle)
772	SPINDLE-3   MODE CHANGE   EROR	Same as alarm No. 752 (for the third   spindle)
774	SPINDLE-3   ABNORMAL TORQUE   ALM	Same as alarm No. 754 (for the third   spindle)

- The details of spindle alarm No. 750

The details of spindle alarm No. 750 are displayed in the diagnosis display (No. 409) as shown below.

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
				SPE	S2E	S1E	SHE

\#3 (SPE) 0 : In the spindle serial control, the serial spindle parameters fulfill the spindle unit startup conditions.

1: In the spindle serial control, the serial spindle parameters do not fulfill the spindle unit startup conditions.
\#2 (S2E) 0 : The second spindle is normal during the spindle serial control startup
1 : The second spindle was detected to have a fault during the spindle serial control startup.
\#1 (S1E) 0 : The first spindle is normal during the spindle serial control startup.
1: The first spindle was detected to have a fault during the spindle axis serial control startup.
\#0 (SHE) 0 : The serial communications module in the CNC is normal.

1: The serial communications module in the CNC was detected to have a fault.



### 9.1.10 System alarms

(These alarms cannot be reset with reset key.)

Number	Message	Contents
900	ROM PARITY	ROM parity error (CNC/OMM/Servo) Replace the number of ROM.
914	SRAM PARITY (2N)	A RAM parity error occurred in RAM for part program storage or additional SRAM. Clear the memory, or replace the main
915	SRAM PARITY (2+1)	CPU board or additional SRAM. Then, set all data, including parameters, again.
916	DRAM PARITY	RAM parity error in DRAM module. Replace the DRAM module.
920	SERVO ALARM (MAIN)	Servo alarm (1st to 4th axis). A watchdog alarm or a RAM parity error in the servo module occurred.   Replace the servo control module on the main CPU board.
922	SERVO ALARM (OPT2)	Servo alarm (5th to 8th axis). A watchdog alarm or a RAM parity error in the servo module occurred.   Replace the servo control module on the option 2 board.
924	SERVO MODULE SETTING ERROR	The digital servo module is not installed. Check that the servo control module or servo interface module on the main CPU or option 2 board is mounted securely.
930	CPU INTERRUPUT	CPU error (abnormal interrupt) The main CPU board is faulty.
950	PMC SYSTEM ALARM	Fault occurred in the PMC.The PMC control module on the main CPU board or option 3 board may be faulty.
951	PMC WATCH DOG ALARM	Fault occurred in the PMC-RC (watchdog alarm). Option 3 board may be faulty.
972	NMI OCCURRED IN OTHER MODULE	NMI occurred in a board other than the main CPU board.   Option 1 to 3 may be faulty.
973	NON MASK INTERRUPT	NMI occurred for an unknown reason.
974	F-BUS ERROR	FANUC BUS is error. MAIN CPU board and option 1 to 3 boards may be faulty.
975	BUS ERROR (MAIN)	MAIN CPU board is BUS error. MAIN CPU board may be faulty.



9. ERROR CODE LIST
9.1.11 Alarms displayed on spindle servo unit

Alarm No.	Meaning	Description	Remedy
"A" display	Program ROM abnormality (not installed)	Detects that control program is not started (due to program ROM not installed, etc.)	Install normal program ROM
AL-01	Motor overheat	Detects motor speed exceeding specified speed excessively.	Check load status. Cool motor then reset alarm.
AL-02	Excessive speed deviation	Detects motor speed exceeding specified speed excessively.	Check load status. Reset alarm.
AL-03	DC link section fuse blown	Detects that fuse F4 in DC link section is blown (models 30S and 40S).	Check power transistors, and so forth. Replace fuse.
AL-04	Input fuse blown. Input power open phase.	Detects blown fuse (F1 to F3), open phase or momentary failure of power (models 30S and 40S).	Replace fuse.   Check open phase and power supply regenerative circuit operation.
AL-05	Control power supply fuse blown	Detects that control power supply fuse AF2 or AF3 is blown (models 30S and 40S).	Check for control power supply short circuit .   Replace fuse.
AL-07	Excessive speed	Detects that motor rotation has exceeded $115 \%$ of its rated speed.	Reset alarm.
AL-08	High input voltage	Detects that switch is flipped to 200 VAC when input voltage is 230 VAC or higher (models 30S and 40S).	Flip switch to 230 VAC.
AL-09	Excessive load on main circuit section	Detects abnormal temperature rise of power transistor radiator.	Cool radiator then reset alarm.
AL-10	Low input voltage	Detects drop in input power supply voltage.	Remove cause, then reset alarm.
AL-11	Overvoltage in DC link section	Detects abnormally high direct current power supply voltage in power circuit section.	Remove cause, then reset alarm.
AL-12	Overcurrent in DC link section	Detects flow of abnormally large current in direct current section of power cirtcuit.	Remove cause, then reset alarm.
AL-13	CPU internal data memory abnormality	Detects abnormality in CPU internal data memory. This check is made only when power is turned on.	Remove cause, then reset alarm.
AL-15	Spindle switch/output switch alarm	Detects incorrect switch sequence in spindle switch/output switch operation.	Check sequence.




Alarm No.	Meaning	Description	Remedy
AL-16	RAM abnormality	Detects abnormality in RAM for external data. This check is made only when power is turned on.	Remove cause, then reset alarm.
AL-18	Program ROM sum check error	Detects program ROM data error.This check is made only when power is turned on.	Remove cause, then reset alarm.
AL-19	Excessive U phase current detection circuit offset	Detects excessive U phase current detection ciucuit offset.   This check is made only when power is turned on.	Remove cause, then reset alarm.
AL-20	Excessive V phase current detection circuit offset	Detects excessive V phase current detection circuit offset.   This check is made only when power is turned on.	Remove cause, then reset alarm.
AL-24	Serial transfer data error	Detects serial transfer data error (such as NC power supply turned off, etc.)	Remove cause, then reset alarm.
AL-25	Serial data transfer stopped	Detects that serial data transfer has stopped.	Remove cause, then reset alarm.
AL-26	Disconnection of speed detection signal for Cs contouring control	Detects abnormality in position coder signal(such as unconnected cable and parameter setting error).	Remove cause, then reset alarm.
AL-27	Position coder signal disconnection	Detects abnormality in position coder signal (such as unconnected cable and adjustment error).	Remove cause, then reset alarm.
AL-28	Disconnection of position detection signal for Cs contouring control	Detects abnormality in position detection signal for Cs contouring control (such as unconnected cable and adjustment error).	Remove cause, then reset alarm.
AL-29	Short-time overload	Detects that overload has been continuously applied for some period of time (such as restraining motor shaft in positioning).	Remove cause, then reset alarm.
AL-30	Input circuit overcurrent	Detects overcurrent flowing in input circuit.	Remove cause, then reset alarm.



9. ERROR CODE LIST

Alarm No.	Meaning	Description	Remedy
AL-31	Speed detection signal disconnection motor restraint alarm or motor is clamped.	Detects that motor cannot rotate at specified speed or it is detected that the motor is clamped. (but rotates at very slow speed or has stopped).   (This includes checking of speed detection signal cable.)	Remove cause, then reset alarm.
AL-32	Abnormality in RAM inside the LSI used for serial data transfer. This check is made only when power is turned on.	Detects abnormality in RAM inside the LSI used for serial data transfer. This check is made only when power is turned on.	Remove cause, then reset alarm.
AL-33	Insufficient DC link section charging	Detects insufficient charging of direct current power supply voltage in power circuit section when magnetic contactor in amplifier is turned on (such as open phase and defectifve charging resistor).	Remove cause, then reset alarm.
AL-34	Parameter data setting beyond allowable range of values	Detects parameter data set beyond allowable range of values.	Set correct data.
AL-35	Excessive gear ratio data setting	Detects gear ratio data set beyond allowable range of values.	Set correct data.
AL-36	Error counter overflow	Detects error counter overflow.	Correct cause, then reset alarm.
AL-37	Speed detector parameter setting error	Detects incorrect setting of parameter for number of speed detection pulses.	Set correct data.
AL-39	Alarm for indicating failure in detecting 1-rotation signal for Cs contouring control	Detects 1-rotaion signal detection failure in Cs contouring contorl.	Make 1-rotaion signal adjustment. Check cable shield status.
AL-40	Alarm for indicating 1-rotation signal for Cs contouring control not detected	Detects that 1-rotation signal has not occurred in Cs contouring control.	Make 1-rotaion signal adjustment.
AL-41	Alarm for indicating failure in detecting position coder 1-rotaion signal.	Detects failure in detecting position coder 1-rotation signal.	Make signal adjustment for signal conversion circuit. Check cable shield status.
AL-42	Alarm for indicating position coder 1-rotation signal not detected	Detects that position coder 1-rotation signal has not issued.	Make 1-rotation signal adjustment for signal conversion circuit.




Alarm No.	Meaning	Description	Remedy
AL-43	Alarm for indicating disconnection of position coder signal for differential speed mode	Detects that main spindle position coder signal used for differential speed mode is not connected yet (or is disconnected).	Check that main spindle position coder signal is connected to connector CN12.
AL-46	Alarm for indicating failure in detecting position coder 1-rotation signal in thread cutting operation.	Detects failure in detecting position coder 1-rotation signasl in thread cutting operation.	Make 1-rotation signal adjustment for signal conversion circuit.   Check cable shield status.
AL-47	Position coder signal abnormality	Detects incorrect position coder signal count operation.	Make signal adjustment for signal conversion circuit. Check cable shield status.
AL-48	Position coder 1-rotation signal abnormailty	Detects that occurrence of position coder 1-rotation signal has stopped.	Make 1-rotation signal adjustment for signal conversion circuit.
AL-49	The converted differential speed is too high.	Detects that speed of other spindle converted to speed of local spindle has exceeded allowable limit in differential mode.	Calculate differential speed by multiplying speed of other spindle by gear ratio. Check if calculated value is not greater than maximum speed of motor.
AL-50	Excessive speed command calculation value in spindle synchronization control	Detects that speed command calculation value exceeded allowable range in spindle synchronization control.	Calculate motor speed by multiplying specified spindle speed by gear ratio. Check if calculated value is not greater than maximum speed of motor.
AL-51	Undervoltage at DC link section	Detects that DC power supply voltage of power circuit has dropped (due to momentary power failure or loose contact of magnetic contactor).	Remove cause, then reset alarm.
AL-52	ITP signal abnormality I	Detects abnormality in synchronization signal (ITP signal) used in software.	Replace servo amp. PCB.
AL-53	ITP signal abnormality II	Detects abnormality in synchronization signal (ITP signal) used in hardware.	Replace servo amp. PCB.
AL-54	Overload current alarm	Detects that excessive current flowed in motor for long time.	Remove overload of motor and reset the alarm.
AL-55	Power line abnormality in spindle switching/output switching	Detects that switch request signal does not match power line status check signal.	Check if power line status, check signal is processed normally.



### 10.1 Dynamic Display of Sequence Program

(1) Display method

1 Press the svstem key, then press the soft key [PMC].
2 Dynamic display of sequence program by pressing [PMCLAD] soft key.
(2) Display contents

(3) Searching for the signal (SEARCH)

1 Press the [SEARCH] soft key.
2 Using the following keys as described below, search for desired signal.

- The signals being displayed can be changed by using the \(\begin{gathered}Page <br>

\downarrow\end{gathered},\)| $\mathbf{\dagger}$ |
| :---: |
| Page |,$\downarrow$, and $\boldsymbol{\uparrow}$ keys.

- [TOP]: Locates the top of the ladder program.
- [BOTTOM] : Locates the end of the ladder program.
- Address.bit [SRCH] or Single name [SRCH] : Search a specified address unconditionally.
- Address.bit [W-SRCH] or Single name or [W-SRCH] : Searches for a specified address, for the write coils.
- Net number [N-SRCH]:

Displays the ladder program from the specified net address.

- Function instruction number [F-SRCH] or

Function instruction name [F-SRCH]: Searches for the specified function instruction.

- [ADRESS]:

Displays the address and bit number of the specified signal.

- [SYMBOL]:

Displays the symbol of the specified signal. (The address of the specified signal is displayed if a symbol was not specified when the program was created.)


(4) Turning off the monitor display when the trigger signal changes (TRIGER)
When the preset trigger signal changes, the system turns off the monitor display. By using this function, the states of all signals can be accurately read when the trigger signal changes.
1 Press the [TRIGER] soft key.
2 Press the [INIT] soft key to initialize the trigger parameters.
3 Specify the trigger conditions.

- To turn off the monitor display at the signal's rising edge (as the signal changes from 0 to 1), enter the desired data and press the required keys in the order shown below.

* Trigger checkpoint:

0: Before the first level of the ladder program is executed
1: After the first level of the ladder program is executed
2: After the second level of the ladder program is executed
3: After the third level of the ladder program is executed
Example) To set the system so that it turns off the monitor display when the external reset signal (ERS) is input three times, enter the required data and press the required keys in the order shown below:


The specified trigger conditions are displayed at the top of the screen.

TRIGER *MODE:ON G008. 7:2:003 NET 0001-00005


To turn off the monitor display at the signal's falling edge (as the signal changes from 1 to 0 ), enter the desired data and press the required keys in the order shown below.

Signal name/address	EOB	Trigger checkpoint
EOUnt		

4 Press the [START] soft key to activate the trigger function.

* While the trigger function is operating, TRG is displayed at the lower right corner of the screen. When the trigger conditions are satisfied, TRG disappears and the monitor screen is locked.
5 To interrupt the trigger function, press the [STOP] soft key while the function is effective.
$\rightarrow$ In this case, the specified trigger conditions remain effective. Pressing the [START] soft key reinstates the trigger function.
6 To search for the instruction where the program was stopped by the trigger function and blink that instruction, press the [TRGSRC] soft key.



## 10. PMC

(5) Displaying a divided ladder program (WINDOW)

A ladder program can be divided into up to six sections, and the individual sections displayed on the screen simultaneously.
1 Press the [WINDOW] soft key.
2 Press the [DIVIDE] soft key to divide the dynamic display screen into the desired number of sections.

* Each time the key is pressed, the screen is divided.


3 To select the desired divided screen, press the [SELECT] soft key as many times as necessary to move the purple bar to the desired screen.

* The normal search function can be used within each divided screen.
4 To change the width of a selected divided screen, press the [WIDTH] soft key.
- Pressing the [EXPAND] soft key increases the number of lines displayed on a divided screen.
- Pressing the [SHRINK] soft key decreases the number of lines displayed on a divided screen.
5 To terminate the display of a selected divided screen, press the [DELETE] soft key.
* To terminate screen division, press the [CANCEL] soft key.
(6) Dumping (DUMP)

The states of the signals corresponding to a ladder program can be displayed in hexadecimal, together with the ladder program itself.
1 Press the [DUMP] soft key.



LADDER * XXX. ............. XXX*NET 0001-0004 MONIT RUN


ADDRESS DUMP
G0000 00 1A 5C 32220 D 651001020010000010 40.......
G0016 0100102340 OF 0320 1A FF 0000 3A 9B $1684 \ldots \ldots$. .

* When the screen is divided, the states of the signals are displayed in the lower divided screen.
- To change the data notation
[BYTE]: Data is displayed in units of bytes.
Example) G0000 00168400 ...
[WORD] : Data is displayed in units of two bytes.
Example) G0000 16000084 ...
[D.WORD] : Data is displayed in units of two words, or four bytes.
Example) G0000 00841600 ..
* When WORD or D.WORD is specified, data is displayed with the high-order byte placed first.
- To search for an address

Use the $\begin{gathered}\text { PAGE } \\ \vdots\end{gathered}, \begin{gathered}\mathbf{t} \\ \text { PAGE }\end{gathered}$, and $[\mathrm{SRCH}]$ keys, as in the normal search function.
(7) Displaying the function-instruction parameters (DPARA/NDPARA) The states of the control parameters used in function instructions are displayed together with the ladder program.
1 Press the [DPARA] soft key.
LADDER * XXX. . . . . . . . . . . XXX * NET 0001-0004 MONIT RUN




* The data notation (binary or BCD) varies with the function instructions.
2 To terminate the display of parameters, press the [NDPARA] soft key.
(8) Editing the program being executed (ONLEDT: on-line editing) A sequence program can be edited while a program is being executed, without stopping its execution.
* This function is available only while the edit function is enabled.

1 Press the [ONLEDT] soft key to start the on-line editing function. The cursor appears on the screen.
2 Modify the program, following the usual editing procedure. The following changes can be made by means of on-line editing.

- Changing the type of contacts ( $-\vdash$, সF )
- Changing the addresses of contacts and coils
- Changing the addresses of control parameters used in function instructions
* The operations that can be performed in on-line editing are restricted to those that do not change the memory size of the program. To perform other operations, such as addition, insertion, and deletion, use the ordinary editing function.
3 To terminate on-line editing, press the $\square$ key.
* Changes made in on-line editing are temporary. To save a changed program, set K18.3 (K901.3 for the RB6/RC4) to 1 or transfer the program to the DRAM by using the COPY function from the I/O screen. To enable the use of the program when the system is next turned on, write it to the FROM from the I/O screen.

PMCPRM

\#3 0: The ladder program is not transferred to the RAM after on-line editing.
$\rightarrow$ To transfer the program, press the following keys in the order shown, using the COPY function from the I/O screen: [COPY], [EXELAD], [EXEC]
1: A ladder program is automatically transferred to the RAM after on-line editing.


### 10.2 Display of PMC Diagnosis Screen

(1) Display method

1 Press the ssstem key.
2 Press the [PMC] soft key.
3 Display of PMC diagnosis screen by pressing [PMC/DGN] soft key.

### 10.2.1 Title screen (TITLE)

Display of the title data which is wrote at the ladder programming time.





## 10. PMC

2) 2nd page

MACHINE TOOL BUILDER NAME :
MACHINE TOOL NAME :
CNC \& PMC TYPE NAME : PROGRAM DRAWING NO. :
3) 3rd page

DATE OF PRGRAMING :
PROGRAM DESIGNED BY :
ROM WRITTEN BY :
REMARKS:

Set at
LADDER
diagram programming time.

### 10.2.2 Status screen (STATUS)

Display of ON/OFF condition for I/O signals, internal relays, etc.


1 Search the diagnosis number by pressing $\begin{gathered}\mathbf{T} \text { PAGE }\end{gathered} \begin{gathered}\text { PAGE } \\ \downarrow\end{gathered}$ keys.
2 Searching the specified address or signal name by pressing [SEARCH] soft key when inputted of Address and number or Single name

### 10.2.3 Alarm screen (ALARM)

Display of an alarm when an alarm occured in PMC program.
$\left.\begin{array}{|llll|}\hline \text { PMC ALARM MESSAGE } & & & \text { MONIT RUN } \\ \text { ALARM NOTHING }\end{array}\right]$

409




### 10.2.4 Trace screen (TRACE)

Record the signal status to the trace memory when the specified signal is changed.
(1) Trace parameter screen (TRCPRM)

(a) TRACE MODE: Select the trace mode.
$0=1$ byte address signal trace
1= Independent 2 byte address signal trace
$2=$ Continuous 2 byte address signal trace
(b) ADDRESS TYPE: $0=$ Set the trace address by PMC address
$1=$ Set the trace address by physical address (Using mainly by C language)
(c) ADDRESS

Set the trace address
(d) MASK DATA : Specify the trace bit by hexadecimal code. For example, set the "E1" when trace the bit $7,6,5$ and 0 . Not execute the tracing when the bit $4,3,2$ and 1 is changed, but, the signal status should recorded at tracing time.
(e.g) \#7 \#6 \#5 \#4 \#3 \#2 \#1 \#0
< Correspond table between binary and hexadecimal code $\gg$

$0000_{2}: 0_{16}$	$0001_{2}: 1_{16}$	$0010_{2}: 2_{16}$	$0011_{2}: 3_{16}$
$0100_{2}: 4_{16}$	$0101_{2}: 5_{16}$	$0110_{2}: 6_{16}$	$0111_{2}: 7_{16}$
$1000_{2}: 8_{16}$	$1001_{2}: 9_{16}$	$1010_{2}: A_{16}$	$1011_{2}: B_{16}$
$1100_{2}: C_{16}$	$1101_{2}: D_{16}$	$1110_{2}: \mathrm{E}_{16}$	$1111_{2}: F_{16}$

(e) [EXEC] soft key:

Start of tracing.
Clear the trace memory and trace memory contents are update when the specified signal are changed from previous ones.
The trace memory are always maintained up to the previous results for 256 bytes from the latest ones regardless of the time lapse.
( 2 byte tracing = 128 times.)
(f) [T.DISP] soft key : Display of trace memory contents.

10. PMC
(2) Trace memory screen (T.DISP)

[TRCPRM] soft key : Return to trace parameter setting screen
[STOP] soft key : Stop the trace operation.
[EXEC] soft key : Re-start of tracing (Clear the memory).

### 10.2.5 Displaying memory data (M.SRCH)

(1) Displaying memory data on the screen

- Enter the physical start address of the memory area storing the data to be displayed, then press the [SEARCH] soft key. Then, 256 bytes of memory data, starting from the specified address, appear on the screen
- The memory storing the data to be displayed can be changed by using the $\left.\begin{array}{|c}\mathbf{t} \\ \text { PAGE }\end{array}\right] \begin{gathered}\text { PAGE } \\ \vdots\end{gathered}$ keys.
- The display format can be changed by using the [BYTE], [WORD], and [D.WORD] soft keys.
(2) Memory data input function
- Setting K17.4 (K900.4 for the RB6/RC4) to 1 enables data to be input, in hexadecimal, to the address to which the cursor is positioned.
10.2.6 Signal waveform display function screen (ANALYS)
(1) Parameter setting screen (1st page)


SAMPLE TIME: Set the sampling time.




TRIGGER ADDRESS: Specify the trigger address when execute the record by trigger.
CONDITION: Set the recording start condition.
0 : Execute by [START] soft key.
1: Press [START] soft key than execute a rising edge of trigger signal.
2: Press [START] soft key than execute a fall edge of trigger signal.
TRIGGER MODE: Set the trigger mode.
0: Record the PMC signal AFTER trigger signal.
1: Record the PMC signal AROUND trigger signal.
2: Record the PMC signal BEFORE trigger signal.
3: Record the PMC signal ONLY trigger signal be formed.
(2) Parameter setting screen (2nd page)

(a) [SCOPE] soft key : Select the signal wave display screen.
(b) [DELETE] soft key : Delete of the data on the cursor.
(c) [INIT] soft key : Initializes the signal waveform display parameters.
(d) [ADRESS] or [SYMBOL] soft key : Toggles between address display and symbol display.


10. PMC

NOTE The above figure is a screen for the attachment to a graphic function.
If a graphic function is not attached, it is displayed "
(a) [SGNPRM] soft key : Return to PMC parameter screen
(b) [START] soft key : Start register
(c) [T. SRCH] soft key :
(d) [ADRESS] or [SYMBOL] soft key: Change to address or symbol of signal.
(e) [EXCHG] soft key : Change the signal displaying procedure

- Press [EXCHG] soft key.
- Move the cursor to an exchanging signal.
- Press [SELECT] soft key.
- Move the cursor to one' s new address.
- Exchange the signal when press [TO] soft key then press [EXEC] soft key
(f) [SCALE] soft key: Change the holizontal scaling time for graphics.
Scaling time is changed 256, 512 and 1024 msec when press this key.
(g) $\square$ $\leqslant \rightarrow$ CURSOR: Move the holizontal time of displaying on CRT to BEFORE/REVERSE.



### 10.3 PMC Parameter

### 10.3.1 Input of PMC parameter from MDI

1 Select MDI mode or depress EMERGENCY STOP button.
2 [PWE] set to "1" on SETTING screen or PROGRAM PROTECT signal (KEY4) turn to "1".

	PWE	KEY4
Timer	$\bigcirc$	
Counter	$\bigcirc$	$\bigcirc$
Keep relay	$\bigcirc$	
Data table	$\bigcirc$	$\bigcirc$

3 Select the display screen by soft key.
[TIMER] : Timer screen
[COUNTER] : Counter screen
[KEEPRL] : Keep relay screen
[DATA] : Data table screen
4 Move the cursor to desired number.
5 Input the Numeral and press wout key then the data inputted.
6 [PWE] on SETTING screen or [KEY4] return to "0" after data set.

### 10.3.2 Timer screen (TIMER)

The variable timer (SUB 3) time is set.


Setting time : Timer No. 1-8 =Max. $=1572.8 \mathrm{sec}$, each 48 msec . Up to 262.1 seconds in units of 8 ms for timer Nos. 9 to 40 subsequent timers (timer Nos. 9 to 150 in the RB6/RC4)



## 10. PMC

### 10.3.3 Counter screen (COUNTER)

Set and display the preset values and integrated values of the counter instruction (SUB 5)

Page number (change by page cursor key)

10.3.4 Keep relay screen (KEEPRL)

Refer the address by ladder program						
PMC PARAMETER (KEEP RELAY) M MONIT STOP						
NO. AD	DRESS	DATA	NO.	ADDRESS	DATA	
01	K00	00000000		K10	00000000	
02	K01	00000000		K11	00000000	
03	K02	00000000		K12	00000000	
04	K03	00000000		K13	00000000	
05	K04	00000000		K14	00000000	Reserved
06	K05	00000000		K15	00000000	by PMC
07	K06	00000000		K16	00000000	control
08	K07	00000000		K17	00000000	software.
09	K08	00000000		K18	00000000	Can't used
10	K09	00000000		K19	00000000	other pur-
[TIMER]	[COUN	TR] [KEE	PRL]	[DATA]	[SETING]	


i) Control of battery-powered memory

## K16



MWRTF2
\#6 MWRTF1 : Write status for battery-powered memory

ii) PMC system parameter

Since the system uses keep relays K17 to K19 (K900 to K902 for the RB6/RC4), they cannot be used by a sequence program.

\#7 (DTBLDSP) 0 : The PMC parameter data table control screen is displayed.
1: The PMC parameter data table control screen is not displayed.
\#6 (ANASTAT) 0 : Pressing the soft key to execution starts sampling by the signal waveform display function.
1: The signal waveform display function automatically starts sampling at power on.

* This bit is only effective for those models for which the signal waveform display function is applicable.
\#5 (TRCSTAT) 0 : Pressing the [EXEC] soft key starts tracing by the signal trace function.
1: The signal trace function automatically starts tracing at power on.
\#4 (MEMINP) 0: Data cannot be input by using the memory contents display function.
1: Data can be input by using the memory contents display function.
\#2 (AUTORUN) 0 : The sequence program automatically starts at power on.
1: Pressing the soft key to sequence program execution starts the sequence program.
\#1 (PRGRAM) 0: The built-in programmer function does not operate. (Also, the programmer menu is not displayed.)
1: The built-in programmer function operates. (The programmer menu is displayed.)
\#0 (LADMASK) 0 : The ladder programs are displayed dynamically (PCLAD).
1: The ladder programs are not displayed dynamically (PCLAD).


\#7 (IGNDINT) 0 : The system initializes the CRT when the screen is switched to the PMCMDI screen.
1: The system does not initialize the CRT when the screen is switched to the PMCMDI screen.
* This flag is valid for the PMC-RC3/RC4. When the screen is switched to the PMCMDI screen, PMC control software determines whether the system initialize the CRT, by checking this flag. When this flag is on, an application program must initialize the CRT.
\#5 (CHKPRTY) 0 : The system performs parity check for the system ROM, program ROM and program RAM.
1: The system does not perform parity check for the system ROM, program ROM, or program RAM.
\#4 (CALCPRTY)0 : The built-in programmer function calculates the RAM parity.
1: The built-in programmer function does not calculate the RAM parity.
\#3 (TRNSRAM) 0 : After on-line editing, the ladder program is not automatically transferred to the backup RAM.
1: After on-line editing, the ladder program is automatically transferred to the backup RAM.
\#2 (TRGSTAT) 0 : The trigger stop function does not automatically start at power on.
1: The trigger stop function starts automatically at power on.
\#1 (DBGSTAT) 0 : The C debug function does not start automatic break processing at power on.
1: The C debug function starts automatic break processing at power on.
* This flag is effective for the PMC-RC3/RC4.
\#0 (IGNKEY) 0 : Function keys are enabled for a user program on the user screen.
1: Function keys are disabled for a user program on the user screen.
* This flag is effective for the PMC-RC3/RC4. When this bit is set to 1 , the user screen cannot be switched to the NC screen by using the function keys. A program which invariably sets this bit to 0 , or which switches the user screen to the NC screen, must be prepared.

\#1 (C-REJECT) 0 : The system activates a C program.
1: The system does not activate a C program.
* This flag is effective for the PMC-RC3/RC4.
\#0 (FROM_WRT) 0 : After editing a ladder or C program, does not automatically write it to F-ROM.
1: After editing a ladder or C program, automatically writes it to $\mathrm{F}-\mathrm{ROM}$.
NOTE Set all unused bits to 0 .


### 10.3.5 Data table screen (DATA)

1) DATA TABLE SETTING screen (C. DATA)

(a) [G.DATA] soft key : Select the data display screen of data table.
(b) No. of group [G.CONT] : Set the number of group for data table.
(c) No. of group [NO.SRH] : Move the cursor to specified group.
(d) [INIT] soft key : Initialize of data table setting.

No. of group is 1, ADDRESS is D0000, PARAMETER is 00000000 , TYPE is 0 , NO. OF DATA is 3000 ( 8000 for the RB6/RC4).
<Table parameter»


0 : Binary format 1 : BCD format
Protection of input data,
0 : not provided.
1 : provided.
0 : Displayed in binary or BCD (bit 0 is enabled)
1 : Displayed in hexadecimal (bit 0 is disabled)
<TYPE»
$0: 1$ byte $1:$ byytes $2: 4$ bytes


## 10. PMC

2) Data setting screen (G. DATA)

(a) [C.DATA] soft key : Return to data table setting screen.
(b) Group No. [G-SRCH]: Move the cursor to head of specified group.
(c) $\qquad$ [SEARCH] : Searching the specified address in currentup group.

### 10.3.6 Setting screen

Part of the PMC system parameters can be set on this screen.


* Only for the PMC-RC3/RC4
* Values in parentheses indicate the addresses of the corresponding keep relays.




### 10.4 Input/Output of PMC Data

### 10.4.1 Start of the built-in type PMC programmer

When the PMC data are input/output with I/O device unit via reader/puncher interface, the built-in type PMC programmer should starts by as following operation.

* As following operation is not required when the data set from MDI.

1 Select the PMC screen
Press ssstrem key and press [PMC] softkey.
2 Confirm to the built-in type PMC programmer is running.


parts are displayed, starts of the built-in type PMC programmer. The card editor is not used on FS16 but it has PMC-RB system. This case, [RUN/STOP] and [l/O] function can used but editing of sequence program is impossible.
3 Keep relay K17.1 (K900.1 for the RB6/RC4) should set to " 1 " if the built-in type PMC programmer is not start yet.

### 10.4.2 Input/output method

1 Press $\triangle$ key in the initial menu screen, then display to [I/O] softkey.
2 Display next screen



3 Enter the desired channel number, then press the wout key to set the number for CHANNEL.

1: JD5A of the main CPU board
2 : JD5B of the main CPU board
4 Specify the I/O unit to be used for DEVICE.
HOST: I/O operation with FAPT LADDER (on the P-G, P-G Mate, or personal computer)
FDCAS: I/O operation with a Floppy Cassette Adaptor
F-ROM: I/O operation with a flash EEPROM
M-CARD: I/O operation with a memory card
OTHERS: I/O operation with other I/O units
5 Specify the desired function with FUNCTION.
WRITE: Outputting data
READ: Inputting data
COMPARE: Comparing data in memory with that in an external device
DELETE: Deleting files on a floppy disk or memory card
LIST: Listing the files on a floppy disk or memory card
BLANK: Checking whether the flash EEPROM is empty
ERASE: Clearing the data in the flash EEPROM
FORMAT: Formatting a memory card (all data on the memory card is deleted.)
6 Specify the desired type of data to be output at KIND DATA.
ALL: Ladder programs and executable C data
LADDER: Ladder programs
PARAM: PMC parameters
7 When FDCAS or M-CARD is specified for the device, a file can be specified for FILE NO. by either its file number or file name.
8 Specify the RS-232C conditions for each device with SPEED.
9 Check that the settings are correct. Then, press the [EXEC] soft key.
10.4.3 Copy function (COPY)

Changes made during on-line editing are transferred to the corresponding editing ladder program.


### 10.5 Functional Instruction

10.5.1 Functional instruction list

1) Kind of functional instruction and contents of processing

No.	Instruction	SUB No.	Contents of processing	$\begin{aligned} & \text { PMC } \\ & \text {-RB5 } \end{aligned}$	$\begin{aligned} & \text { PMC } \\ & \text {-RB6 } \end{aligned}$	$\begin{aligned} & \text { PMC } \\ & \text {-RC3 } \end{aligned}$	$\begin{aligned} & \text { PMC } \\ & \text {-RC3 } \end{aligned}$
1	END 1	1	1st level program end				
2	END 2	2	2nd level program end				
3	END 3	48	3rd level program end	Not Provided	Not provided		
4	TMR	3	Timer				
5	TMRB	24	Fixed timer				
6	TMRC	54	Timer				
7	DEC	4	Decording				
8	DECB	25	Binary code decording				
9	CTR	5	Counter				
10	CTRC	55	Counter				
11	ROT	6	Rotation control				
12	ROTB	26	Binary rotation control				
13	COD	7	Code conversion				
14	CODB	27	Binary code conversion				
15	MOVE	8	Data transfer after logical product				
16	MOVOR	28	Data transfer after logical sum				
17	MOVB	43	One-byte transfer				
18	MOVW	44	Two-byte transfer				
19	MOVN	45	Specified-byte transfer				
20	COM	9	Common line control				
21	COME	29	Common line control end				
22	JMP	10	Jump				
23	JMPE	30	Jump end				
24	JMPB	68	Label jump 1				
25	JMPC	73	Label jump 2				
26	LBL	69	Label designation				
27	PARI	11	Parity check				
28	DCNV	14	Data conversion				


10. PMC

No.	Instruction	$\begin{aligned} & \text { SUB } \\ & \text { No. } \end{aligned}$	Contents of processing	$\begin{aligned} & \text { PMC } \\ & \text {-RB5 } \end{aligned}$	$\begin{aligned} & \text { PMC } \\ & \text {-RB6 } \end{aligned}$	$\begin{aligned} & \text { PMC } \\ & \text {-RC3 } \end{aligned}$	$\begin{aligned} & \text { PMC } \\ & \text {-RC3 } \end{aligned}$
29	DCNVB	31	Binary data conversion				
30	COMP	15	Comparison				
31	COMPB	32	Binary comparison				
32	COIN	16	Coincidence check				
33	SFT	33	Shift register				
34	DSCH	17	Data search				
35	DSCHB	34	Binary data search				
36	XMOV	18	Index data transfer				
37	XMOVB	35	Binary index data transfer				
38	ADD	19	BCD addition				
39	ADDB	36	Binary addition				
40	SUB	20	BCD   subtraction				
41	SUBB	37	Binary subtraction				
42	MUL	21	BCD   multiplication				
43	MULB	38	Binary multiplication				
44	DIV	22	BCD division				
45	DIVB	39	Binary division				
46	NUME	23	Definition of constant				
47	NUMEB	40	Definition of binary constant				
48	DISP	49	Message display	Note)	Note)	Note)	Note)
49	DISPB	41	Extended message display				
50	EXIN	42	External data input				
51	AXCTL	53	PMC axis control				
52	WINDR	51	Window data read				
53	WINDW	52	Window data write				
54	FNC9X	9X	Specified function instruction	Not provided	Not provided		
55	MMC3R	88	MMC-III window data read				
56	MMC3W	89	MMC-III window data write				
57	MMCWR	98	MMC-II window data read				




No.	Instruc-   tion	SUB   No.	Contents of   processing	PMC   -RB5	PMC   -RB6	PMC   -RC3	PMC   -RC3
58	MMCWW	99	MMC-II window   data write				
59	DIFU	57	Rising-edge   detection				
60	DIFD	58	Falling-edge   detection				
61	EOR	59	Logical   exclusive OR				
62	AND	60	Logical AND				
63	OR	61	Logical OR				
64	NOT	62	Logical not				
65	END	64	Program end				
66	CALL	65	Subprogram   conditional call				
67	CALLU	66	Subprogram   unconditional   call				
68	SP	71	Subprogram				
69	SPE	72	Subprogram   end				

NOTE For the Series 16-C, the DISP instruction can be used to support compatibility with the Series 16-A. For the Series 16-C, however, the DISPB instruction is recommended, as it supports extended functions, such as high-speed display and Kanji character display. When both DISP and DISPB instructions are used in the Series 16-C, the Kanji character display function supported by the DISPB instruction cannot be used.



## 10. PMC

### 10.5.2 Detail of function command

(1)

1st level program end

(2)

2nd level program end

(3)

3rd level program end (PMC-RC3/RC4 only)

(4)

Valiable timer

(5)

Fixed timer
(6)

Valiable timer

(7)

Decode

[Decode instruction]
$\bigcirc \bigcirc \bigcirc \bigcirc$ Pos. of digit
01 : Decodes lower 1-digit only.
10 : Decodes upper 1-digit only.
$11:$ Decodes 2-digit.
Number : Number to be decoded.
(8)
$\begin{aligned} & \text { Binary } \\ & \text { decode }\end{aligned}$

(9)
Counter

CNO			W1 (Count up)
$\stackrel{H}{ }$	CTR		
UPDOWN	SUB 5	OO	Counter no. (1-20)
RST			*1-50 for the RB6/RC4
ACT			
-1			




(11)

Rotation control

RNO	ROT	$\bigcirc 00$	W1 (Direction output;
BYT			1 : Reverse)
+	SUB 6		No. of indexing
DIR			
$\bigcirc$		0000	Current position address
POS			
-		$\bigcirc 000$	Goal position address
INC		$\bigcirc 000$	Output address
ACT			
1			




10. PMC


OE 0 : Even-parity check, 1 : Odd-parity check


CNV 0 : Binary to BCD-code, 1 : BCD to Binary-code



SIN When converts BCD to binary ; 0 : Positive, 1 : Negative
[Operation output register]

V : Overflow, Z : Zero, N : Negative
(30)

BYT			W1 (0 : Ref. data > Comp. data),
	COMP		- (1 : Ref. data $\leq$ Comp. data)
$\begin{gathered} \mathrm{ACT} \\ \dashv \vdash \end{gathered}$	SUB 15	$\bigcirc$	Format of reference data
			(0 : Constant data, 1 : Address)
		0000	Reference value
			(Constant data or address)
		0000	Comparison value




10. PMC


(34)	BYT			W1 (0. Searched data exist,
Data serch		DSCH		1 : Searched data not exist)
	$\longrightarrow \vdash$	SUB 17	0000	Size of data table
	ACT		$\bigcirc 000$	Starting address of data table
	-		0000	Search data address
			0000	Output address


(35)	RST			W1 (0 : Searched data exist,
Binary	$\dashv \vdash$	DSCHB		- 1 : Searched data not exist)
data	ACT	SUB 34	$\bigcirc$	
search				4-byte)
			$\bigcirc 000$	Address for size of data table
			$\bigcirc \bigcirc \bigcirc$	Starting address of data table
			$\bigcirc 000$	Search data address
			0000	Output address


(36)   Indexed data transfer	BYT	XMOV	0000	W1 (1 : Error)
				--
	$\begin{gathered} \text { RW } \\ -\vdash \end{gathered}$	SUB 18		Size of data table
	RST		0000	Starting address of data table
	-		$\bigcirc 000$	Input/output data storage address
	ACT		0000	Table no. storage address




$$
\text { RW } 0 \text { : Read mode, } 1 \text { : Write mode }
$$

(38)

Addition

BYT			W1 (1: Error)
$\cdots \vdash$	ADD		
$\begin{gathered} \text { RST } \\ -1 \vdash \end{gathered}$	SUB 19	$\bigcirc$	Data format
			(0 : Constant data, 1 : Address)
$\xrightarrow{\text { ACT }}$		$\bigcirc 000$	Summand address
		0000	Addend value
			(Address or constant data)
		0000	Output address




[Operation output register]



(42)	BYT			W1 (1: Error)
		MULSUB21		--
Multiplication	$\begin{gathered} \text { RST } \\ -\downharpoonleft \vdash \end{gathered}$		$\bigcirc$	Data format
				(0 : Constant data, 1 : Address)
	ACT		OOOO	Multiplicand address
	- $\vdash$		0000	Multiplier value
				(Address or constant data)
			$\bigcirc 000$	Output address


(43)	RST			W1 (1: Error)
Binary Multiplication	ACT	MULB SUB38		--
			0000	Data format
				(The conditions are same as ADDB.)
			OOOO	Multiplicand address
			0000	Multiplier value
				(Address or constant data)
			0000	Output address




## 10. PMC

(44)

Division

BYT			W1 (1 : Error)
	DIV		
$\begin{aligned} & \text { RST } \\ & -\downarrow \vdash \end{aligned}$	SUB22	$\bigcirc$	Data format
			(0 Constant data, 1 : Address)
ACT		0000	Dividend address
		0000	Devier value (Address or constant data)
		0000	Output address


(45)   Binary division	$\begin{aligned} & \text { RST } \\ & \neg \downarrow \\ & \text { ACT } \\ & \dashv \vdash \end{aligned}$	DIVB   SUB39		W1 (1 : Error)
				-0-
			0000	Data format
			$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	(The conditions are same as ADDB.) Dividend address Devier value
				(Address or constant data)
			0000	Output address   (The remainder-data is putput to operation register R9002-R9005.)




(48)	ACT		W1 (Processing end)
Message	DISP		
	SUB49	$\begin{aligned} & 0000 \\ & 0000 \end{aligned}$	Sum of step for message data No. of step for 1-message data
		0000	Message control address


(52)

Window
data
reading
\(\left.\neg \left\lvert\, \begin{array}{l|l|l}WINDR <br>

SUB51\end{array}\right.\right) 0000 |\)| W1 (Transfer end) |
| :--- |
| Control data address |


(57)

Window data reading
for MMC-




## 10. PMC

(62)

$$
\begin{aligned}
& \text { Logical } \\
& \text { AND }
\end{aligned}
$$

ACT		
AND SUB 60	$\square 00 \square$	Format designation
	0000	Address of data to be manipulated
	$\bigcirc 000$	Operating data (address or constant)
	$\bigcirc 0 \bigcirc 0$	Operation result output address

(63)
Logica

Logic
OR

ACT		
OR SUB 61		
	$\square 00 \square$	Format designation
	0000	Address of data to be manipulated
	$\bigcirc \bigcirc \bigcirc$	Operating data (address or
		constant)
	$\bigcirc 000$	Operation result output address


(64)	ACT		
Logical	$-1 \mapsto \begin{aligned} & \text { NOT } \\ & \text { SUB } 62 \end{aligned}$	$\square$	Format specification
NOT		$0000$	Address of data to be manipulated
		0000	Operation result output address





# 11．CORRESPONDENCE BETWEEN ENGLISH KEY AND SYMBOLIC KEY 

Table ：Correspondence between English key and Symbolic key

Name	English key	Symbolic key
CANCEL key	CAN	／1／
POSITION key	Pos	$\pm$
PROGRAM key	PROG	（0）
OFFSET／SETTING key	$\begin{array}{\|c\|} \hline \text { OFFSET } \\ \text { SETTING } \end{array}$	－
CUSTOM key	custom	（甸）
SYSTEM key	ssstem	0
MESSAGE key	Essace	$?$
GRAPH key	Graph	M4．4
CNC／MMC key	Conc	（ COCO
SHIFT key	SHIFT	介
INPUT key	UT	$\Rightarrow$
ALTER key	alter	$\$$
INSERT key	mserir	－
DELETE key	оelter	勿
PAGE UP key	¢PAGE	5
PAGE DOWN key	Page $\square$	吗
HELP key	HELP	（0）
RESET key	RESET	／／
CUSTOM／GRAPH key	cistum	会





MEMO

- No part of this manual may be reproduced in any form.
- All specifications and designs are subject to change without notice.

