

CNC MELD/IS AC SERVO/SPINDLE MDS-CH Series

SPECIFICATIONS MANUAL

BNP-C3016F(ENG)

MELDAS is a registered trademark of Mitsubishi Electric Corporation. Other company and product names that appear in this manual are trademarks or registered trademarks of their respective companies.

Introduction

Thank you for selecting the Mitsubishi numerical control unit.

This instruction manual describes the handling and caution points for using this AC servo/spindle.

Incorrect handling may lead to unforeseen accidents, so always read this instruction manual thoroughly to ensure correct usage.

Make sure that this instruction manual is delivered to the end user.

Always store this manual in a safe place.

All specifications for the MDS-CH Series are described in this manual. However, each CNC may not be provided with all specifications, so refer to the specifications for the CNC on hand before starting use.

Notes on Reading This Manual

- (1) Since the description of this specification manual deals with NC in general, for the specifications of individual machine tools, refer to the manuals issued by the respective machine manufacturers. The "restrictions" and "available functions" described in the manuals issued by the machine manufacturers have precedence to those in this manual.
- (2) This manual describes as many special operations as possible, but it should be kept in mind that items not mentioned in this manual cannot be performed.

Precautions for safety

Please read this manual and auxiliary documents before starting installation, operation, maintenance or inspection to ensure correct usage. Thoroughly understand the device, safety information and precautions before starting operation.

The safety precautions in this instruction manual are ranked as "WARNING" and "CAUTION".

When there is a potential risk of fatal or serious injuries if handling is mistaken.

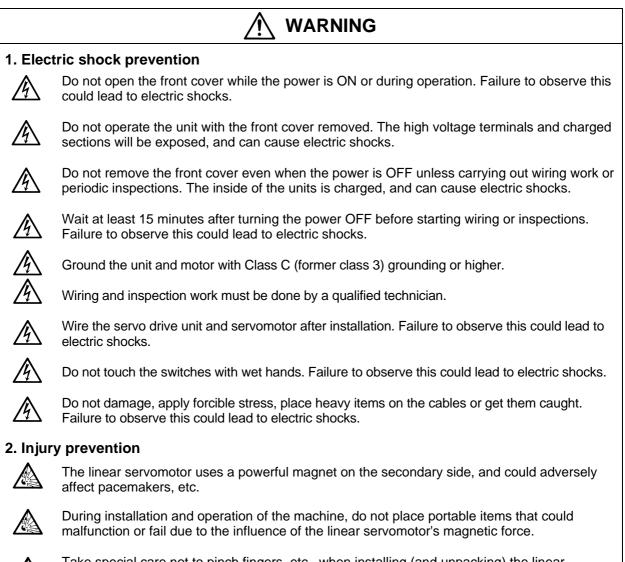
When a dangerous situation, or fatal or serious injuries may occur if handling is mistaken.

When a dangerous situation may occur if handling is mistaken leading to medium or minor injuries, or physical damage.

Note that some items described as **CAUTION** may lead to major results depending on the situation. In any case, important information that must be observed is described.

The numeric control unit is configured of the control unit, operation board, servo drive unit, spindle drive unit, power supply, servomotor and spindle motor, etc.

In this manual, the following items are generically called the "motor".


- Servomotor
- Linear servomotor
- Spindle motor

In this manual, the following items are generically called the "unit".

- Servo drive unit
- Spindle drive unit
- Power supply unit
- Scale I/F unit
- Magnetic pole detection unit

A DANGER

There are no "DANGER" items in this manual.

Take special care not to pinch fingers, etc., when installing (and unpacking) the linear servomotor.

1. Fire prevention

Install the units, motors and regenerative resistor on noncombustible material. Direct installation on combustible material or near combustible materials could lead to fires.

Shut off the power on the power supply unit side if a fault occurs in the units. Fires could be caused if a large current continues to flow.

Provide a sequence that shut off the power at the regenerative resistor error signal-ON when using the regenerative resistor. The regenerative resistor could abnormally overheat and cause a fire due to a fault in the regenerative transistor, etc.

The battery unit could heat up, ignite or rupture if submerged in water, or if the poles are incorrectly wired.

2. Injury prevention

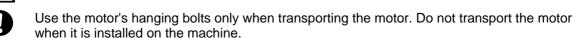
Do not apply a voltage other than that specified in Instruction Manual on each terminal. Failure to observe this item could lead to ruptures or damage, etc.

Do not mistake the terminal connections. Failure to observe this item could lead to ruptures or damage, etc.

Do not mistake the polarity (\oplus, \bigcirc) . Failure to observe this item could lead to ruptures or damage, etc.

Do not touch the radiation fin on unit back face, regenerative resistor or motor, etc., or place parts (cables, etc.) while the power is turned ON or immediately after turning the power OFF. These parts may reach high temperatures, and can cause burns.

Structure the cooling fan on the unit back face so that it cannot be touched after installation. Touching the cooling fan during operation could lead to injuries.


3. Various precautions

Observe the following precautions. Incorrect handling of the unit could lead to faults, injuries and electric shocks, etc.

(1) Transportation and installation

Correctly transport the product according to its weight.

Ŵ

Do not stack the products above the tolerable number.

Do not hold the cables, axis or detector when transporting the motor.

Do not hold the connected wires or cables when transporting the units.

Do not hold the front cover when transporting the unit. The unit could drop.

Follow this Instruction Manual and install the unit or motor in a place where the weight can be borne.

Do not get on top of or place heavy objects on the unit.

Always observe the installation directions of the units or motors.

Secure the specified distance between the units and control panel, or between the servo drive unit and other devices.

Do not install or run a unit or motor that is damaged or missing parts.

Do not block the intake or exhaust ports of the motor provided with a cooling fan.

Do not let foreign objects enter the units or motors. In particular, if conductive objects such as screws or metal chips, etc., or combustible materials such as oil enter, rupture or breakage could occur.

The units and motors are precision devices, so do not drop them or apply strong impacts to them.

Store and use the units under the following environment conditions.

Environment		Conditions			
		Unit	Motor		
Ambient	During operation	0°C to 55°C (with no freezing)	0°C to 40°C (with no freezing)		
temperature	During storage/ transportation	−15°C to 70°C (with no freezing)	–20°C to 65°C ^{Note 1)} (with no freezing)		
Ambient	During operation	90%RH or less (with no dew condensation)	20% to 90%RH (with no dew condensation)		
humidity	During storage/ transportation	90%RH or less (with no dew condensation)	90% RH or less (with no dew condensation)		
Atmosphere		Indoors (where unit is not subject to direct sunlight), with no corrosive gas, combustible gas, oil mist, dust or conductive particles			
Altitude		Operation/storage: 1,000m or less above sea level Transportation: 10,000m or less above sea level (This specified value may be exceeded only during air-transport)			
Vibration		To follow each unit and motor specifications			

Note 1) -15°C to 55°C for linear servomotor.

Securely fix the servomotor to the machine. Insufficient fixing could lead to the servomotor slipping off during operation.

 \triangle

Always install the servomotor with reduction gear in the designated direction. Failure to do so could lead to oil leaks.

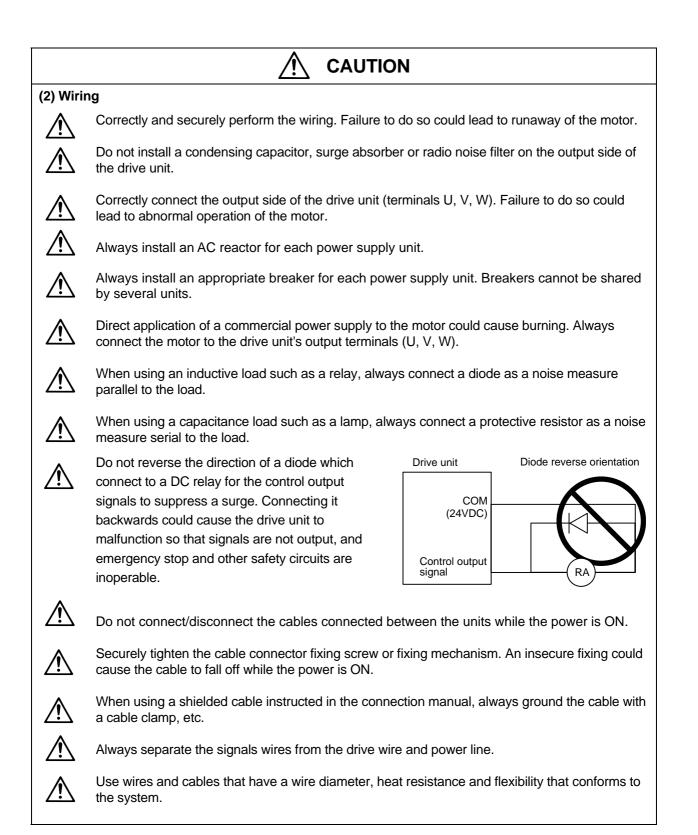
Structure the rotary sections of the motor so that it can never be touched during operation. Install a cover, etc., on the shaft.

When installing a coupling to a servomotor shaft end, do not apply an impact by hammering, etc. The detector could be damaged.

Do not apply a load exceeding the tolerable load onto the servomotor shaft. The shaft could break.

Store the motor in the package box.

When inserting the shaft into the built-in IPM motor, do not heat the rotor higher than 130°C. The magnet could be demagnetized, and the specifications characteristics will not be ensured.



Always use a nonmagnetic tool (explosion-proof beryllium copper alloy safety tool: NGK Insulators) when installing the linear servomotor.

Always provide a mechanical stopper on the end of the linear servomotor's travel path.

If the unit has been stored for a long time, always check the operation before starting actual operation. Please contact the Service Center or Service Station.

(3) Trial operation and adjustment

Check and adjust each program and parameter before starting operation. Failure to do so could lead to unforeseen operation of the machine.

Do not make remarkable adjustments and changes as the operation could become unstable.

The usable motor and unit combination is predetermined. Always check the models before starting trial operation.

If the axis is unbalanced due to gravity, etc., balance the axis using a counterbalance, etc.

The linear servomotor does not have a stopping device such as magnetic brakes. Install a stopping device on the machine side.

(4) Usage methods

 \langle

Install an external emergency stop circuit so that the operation can be stopped and power shut off immediately.

Turn the power OFF immediately if smoke, abnormal noise or odors are generated from the unit or motor.

Unqualified persons must not disassemble or repair the unit.

Never make modifications.

Reduce magnetic damage by installing a noise filter. The electronic devices used near the unit could be affected by magnetic noise.

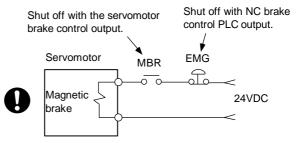
Use the unit, motor and regenerative resistor with the designated combination. Failure to do so could lead to fires or trouble.

The brake (magnetic brake) assembled into the servomotor are for holding, and must not be used for normal braking. Do not apply the brakes in the servo ON state. Doing so will lead to a drop in the brake life. Always turn the servo OFF before applying the brakes.

There may be cases when holding is not possible due to the magnetic brake's life or the machine construction (when ball screw and servomotor are coupled via a timing belt, etc.). Install a stop device to ensure safety on the machine side.

After changing the programs/parameters or after maintenance and inspection, always test the operation before starting actual operation.

Do not enter the movable range of the machine during automatic operation. Never place body parts near or touch the spindle during rotation.


Follow the power supply specification conditions given in the separate specifications manual for the power (input voltage, input frequency, tolerable sudden power failure time, etc.).

(5) Troubleshooting

If a hazardous situation is predicted during power failure or product trouble, use a servomotor with magnetic brakes or install an external brake mechanism.

Use a double circuit configuration that allows the operation circuit for the magnetic brakes to be operated even by the external emergency stop signal.

Always turn the input power OFF when an alarm occurs.

Never go near the machine after restoring the power after a power failure, as the machine could start suddenly. (Design the machine so that personal safety can be ensured even if the machine starts suddenly.)

(6) Maintenance, inspection and part replacement

Always backup the programs and parameters in the CNC device before starting maintenance or inspections.

The capacity of the electrolytic capacitor will drop over time due to self-discharging, etc. To prevent secondary disasters due to failures, replacing this part every five years when used under a normal environment is recommended. Contact the Service Center or Service Station for replacement.

Do not perform a megger test (insulation resistance measurement) during inspections.

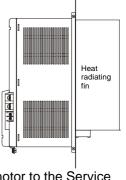
If the battery low warning is issued, back up the machining programs, tool data and parameters with an input/output unit, and then replace the battery.

Do not short circuit, charge, overheat, incinerate or disassemble the battery.

The heat radiating fin used in the 37kW and smaller unit contains substitute Freon as the refrigerant.

Take care not to damage the heat radiating fin during maintenance and replacement work.

(7) Disposal


Do not dispose of this unit as general industrial waste. The 37kW and smaller unit with heat radiating fin protruding from the back of the unit contains substitute Freon. Do not dispose of this type of unit as general industrial waste. Always return to the Service Center or Service Station.

Do not disassemble the unit or motor.

Dispose of the battery according to local laws.

Always return the secondary side (magnet side) of the linear servomotor to the Service Center or Service Station.

(8) Transportation

The unit and motor are precision parts and must be handled carefully.

According to a United Nations Advisory, the battery unit and battery must be transported according to the rules set forth by the International Civil Aviation Organization (ICAO), International Air Transportation Association (IATA), International Maritime Organization (IMO), and United States Department of Transportation (DOT), etc.

(9) General precautions

The drawings given in this Specifications and Maintenance Instruction Manual show the covers and safety partitions, etc., removed to provide a clearer explanation. Always return the covers or partitions to their respective places before starting operation, and always follow the instructions given in this manual.

CONTENTS

1. Prefac	e	
1-1 Insp	pection at purchase	1-2
1-1-1	Package contents	1-2
1-1-2	Rating nameplate	1-2
1-1-3	Power supply unit model	1-2
1-1-4	Servo drive unit model	1-3
1-1-5	Spindle drive unit model	1-3
1-2 Exp	planation of each part	1-4
1-2-1	Explanation of each power supply unit part	1-4
1-2-2	Explanation of each servo drive unit part	1-5
1-2-3	Explanation of each spindle drive unit part	1-5
	and Connection	
2-1 Par	t system connection diagram	2-3
2-2 Mai	in circuit terminal block/control circuit connector	2-5
	Connector pin assignment	2-5
2-2-2	Names and applications of main circuit terminal block signals and control circuit connectors	\$ 2-7
2-2-3	How to use the control circuit terminal block (MDS-CH-SP-750)	2-8
2-3 NC	and drive unit connection	2-10
2-4 Mot	tor and detector connection	2-11
2-4-1	Connection of HC-H Series	2-11
2-4-2	Connection of the spindle motor	2-14
2-4-3	Connection of the linear servomotor LM-NP Series	2-15
2-5 Cor	nnection of power supply	2-16
2-5-1	Standard connection	2-16
2-5-2	DC connection bar	2-18
	Two-part system control of power supply unit	2-19
2-5-4	Using multiple power supply units	
2-6 Cor	nnection of AC reactor	
2-6-1		
2-6-2	Wiring of AC reactor	
	ing of contactors	
2-7-1	Contactor power ON sequences	2-23
2-7-2	Contactor shutoff sequences	2-23
2-7-3	Contactor control signal (MC1) output circuit	2-24
	ing of the motor brake	
2-8-1	Motor brake release sequence	
2-8-2	Control during the servo OFF command	
2-8-3	Operation sequences when an emergency stop occurs	2-25
2-8-4	Motor brake control connector (CN20) output circuit	2-26
	ing of an external emergency stop	
2-9-1	External emergency stop setting	
	Operation sequences of CN23 external emergency stop function	2-28
	Example of emergency stop circuit.	2-29
	onnecting the Grounding Cable	2-30
2-10-1		2-30
-	Grounding cable size	2-30
2 10 2		2 00
3. Installa	ation	
	allotion of the units	3-2
3-1-1	Environmental conditions	3-2 3-2
3-1-1 3-1-2	Installation direction and clearance	3-2 3-3
3-1-2 3-1-3		3-3 3-3
	Prevention of entering of foreign matter	3-3 3-4
3-1-4 3-1-5	Panel installation hole work drawings (Panel cut drawings)	3-4 3-5
	Heating value	
3-1-6	Heat radiation countermeasures	3-6

3-2 Installation of servomotor/spindle motor	 -7
3-2-1 Environmental conditions	 -7
3-2-2 Cautions for mounting load (prevention of impact on shaft)	 -8
3-2-3 Installation direction	
3-2-4 Tolerable load of axis	-9
3-2-5 Oil and waterproofing measures	 10
3-2-6 Cable stress	
3-3 Installing the linear servomotor	 13
3-3-1 Installation environment	
3-3-2 Installing the linear servomotor	 13
3-3-3 Cooling the linear servomotor	
3-4 Noise measures	

4. Setup

4-1 Initia	al setup	4-2
4-1-1	Setting the rotary switch	4-2
4-1-2	Transition of LED display after power is turned ON	4-3
4-2 Serv	vo drive unit initial parameter settings	4-4
	List of servo parameters	4-4
		4-19
4-2-3	Setting excessive detection error width	4-19
4-2-4	Setting motor and detector model	4-20
		4-21
4-2-6	Initial setup of the linear servo system	4-22
4-2-7	Standard parameter list according to motor	4-31
4-3 Spir	ndle drive unit initial parameter settings	4-33
4-3-1	List of spindle parameters	4-33
		4-50
4-3-3	Setting spindle drive unit and motor model	4-54
	Spindle specification parameters screen	4-55
4-3-5	Spindle control signals	4-58
5. Adjustr	ment	
5-1 Serv	vo adjustment data output function (D/A output)	5-2
	D/A output specifications	5-2
5-1-2	Setting the output data	5-2
	Setting the output magnification	5-2
5-2 Gaiı	n adjustment	5-3
5-2-1	Current loop gain	5-3
5-2-2	Speed loop gain	5-3
	Position loop gain	5-5
5-3 Cha	aracteristics improvement	5-8
5-3-1	Optimal adjustment of cycle time	5-8
5-3-2	Vibration suppression measures	5-11
	Improving the cutting surface precision	5-15
	Improvement of protrusion at quadrant changeover	5-23
		5-26
		5-29
		5-29
	Deceleration control	5-31
		5-32
		5-33
5-6 Spir		5-36
5-6-1		5-36
	Parameter settings	5-36
	- · [· · · · · · · · · · · · · · · · ·	5-36
5-6-4	Setting the output magnification	5-37

	ndle adjustment	
5-7-1	Items to check during trial operation	5-40
5-7-2	Adjusting the spindle rotation speed	5-40
5-7-3	Adjusting the acceleration/deceleration	5-40
5-7-4	Adjusting the orientation	5-42
5-7-5	Synchronous tap adjustment	5-49
5-7-6	Z-phase (magnetic) automatic adjustment (Only when using IPM spindle motor)	5-51
5-7-7	PLG automatic adjustment	5-51
5-7-8	Calculating the theoretical acceleration/deceleration	5-52
5-8 Spi	ndle specifications	5-54
5-8-1	Spindle coil changeover	5-54
6. Dedica	ated Options	
	Dynamic brake unit	6-2
	Outline dimension drawings of dynamic brake unit	6-3
	tery option	6-4
6-2-1	Battery unit	6-4
6-2-2	Connection	6-8
6-2-3		6-8
	bles and connectors	6-9
6-3-1	Cable option list	6-10
6-3-2	Connector outline dimension drawings	6-14
6-3-3	Flexible conduits	6-21
6-3-4	Cable wire and assembly	6-23
6-3-5	Option cable connection diagram	6-25
6-3-6	Main circuit cable connection drawing	6-28
	ale I/F unit	6-29
6-4-1	Outline	6-29
-		
6-4-2	Model configuration.	6-29
6-4-3	List of specifications.	6-29
6-4-4	Unit outline dimension drawing	6-30
6-4-5	Description of connector	6-30
6-4-6	Example of detector conversion unit connection	6-31
6-4-7	Cables	6-32
	gnetic pole detection unit	
6-5-1		6-36
6-5-2	Model configuration	6-36
6-5-3	List of specifications	6-36
6-5-4	Outline dimensions	
6-5-5	Assignment of connector pins	6-37
6-5-6	Installing onto the linear servomotor	6-37
6-6 Det	tectors	6-38
6-6-1	List of detector specifications	6-38
6-6-2	Outline dimension drawings	6-39
6-6-3	Cable connection diagram	6-41
6-6-4	Maintenance	6-42
6-7 Spi	ndle option specification parts	6-43
6-7-1	Magnetic sensor orientation (one-point orientation)	6-44
6-7-2	Multi-point orientation using encoder (4096-point orientation)	6-48
6-7-3	Multi-point orientation using motor built-in encoder (4096-point orientation)	6-51
6-7-4	Contour control (C axis control) encoder	6-53
6-7-5	Integrated rotary encoder (Special order part)	6-56
	reactor	6-57
6-8-1	Combination with power supply unit	6-57
6-8-2	Outline dimension drawings	6-57

7. Peripheral Devices7-1 Selection of wire	7-2	
7-1-1 Example of wires by unit		
7-2 Selection of main circuit breaker and contactor		
7-2-1 Selection of earth leakage breaker	7-5	
7-2-2 Selection of no-fuse breaker	7-6	
7-2-3 Selection of contactor	7-7	
7-3 Control circuit related	7-8 7-8	
7-3-1 Circuit protector 7-3-2 Fuse protection	7-8 7-9	
7-3-2 Fuse protection	7-9	
7-3-3 Kerdys	7-11	
8. Troubleshooting		
8-1 Points of caution and confirmation	8-2	
8-2 Troubleshooting at start up		
8-3 Protective functions list of units		
8-3-1 List of alarms	8-4	
8-3-2 List of warnings		
8-3-3 Protection functions and resetting methods	8-17	
8-3-4 Parameter numbers during initial parameter error	8-19	
8-3-5 Troubleshooting	8-20	
8-4 Spindle system troubleshooting8-4-1 Introduction	8-39 8-39	
8-4-2 First step	8-39	
8-4-3 Second step		
8-4-4 When there is no alarm or warning		
U		
9. Characteristics		
9-1 Overload protection characteristics		
9-1-1 Servomotor (HC-H series)	9-2	
9-1-2 Linear servomotor (LM-NP Series)	9-9	
9-2 Duty characteristics		
9-3 Magnetic brake characteristics		
9-4 Dynamic brake characteristics		
9-4-1 Deceleration torque9-4-2 Determining the coasting amount with emergency stop	9-17	
9-4-2 Determining the coasting amount with emergency stop		
	5 20	
10. Specifications		
10-1 Power supply unit/drive unit	10-2	
10-1-1 Installation environment conditions	10-2	
10-1-2 Servo drive unit	10-2	
10-1-3 Spindle drive unit	10-3	
10-1-4 Power supply unit	10-3	
10-1-5 Outline dimension drawings	10-4	
10-1-6 Terminal layout	10-8	
10-1-7 The combination of servo drive unit and a motor	10-9	
10-2 Servomotor		
10-2-1 Specifications list		
10-2-2 Torque characteristics		
10-2-3 Outline dimension drawings		
	10.10	

10-3 Linear servomotor	10-21
10-3-1 List of specifications	
10-3-2 Outline dimension drawings	
-	
11. Selection	
11-1 Selection of servomotor	
11-1-1 Servomotor	
11-1-2 Regeneration methods	
11-1-3 Motor series characteristics	
11-1-4 Servomotor precision	
11-1-5 Selection of servomotor capacity	
11-1-6 Example of servo selection	
11-1-7 Motor shaft conversion load torque	
11-1-8 Expressions for load inertia calculation	
11-1-9 Other precautions	
11-2 Selection of linear servomotor	
11-2-1 Maximum feedrate	
11-2-2 Maximum thrust	
11-2-3 Continuous thrust	
11-3 Selection of the power supply unit	
11-3-1 Selection of the power supply unit capacity	
11-3-2 Selection with continuous rated capacity	
11-3-3 Selection with maximum momentary rated capacity	11-22
12. Inspection	
12-1 Inspections	
12-2 Service parts	
12-3 Daily inspections	
12-3-1 Maintenance tools	
12-3-2 Inspection positions	
12-4. Replacement methods of units and parts	12-4
12-4-1 Drive unit and power supply unit replacements	
12-4-2 Battery unit replacements	
12-4-3 Cooling fan replacements	12-4
Appendix 1. Compliance to EC Directives	
1. European EC Directives	
2. Cautions for EC Directive compliance	A1-2
Appendix 2. EMC Installation Guidelines	
1. Introduction	A2-2
2. EMC Instructions	
3. EMC Measures	
4. Measures for panel structure	
4.1 Measures for control box unit	
4.1 Measures for door	
4.4 Shielding of the power supply input section5. Measures for various cables	
5.1 Measures for wiring in box	
5.2 Measures for shield treatment	
5.3 Servomotor power cable	
5.4 Servomotor feedback cable	
5.5 Spindle motor power cable5.6 Cable between control box and operation board panel	
	+\2-1

6. EMC Countermeasure Parts	A2-8
6.1 Shield clamp fitting	A2-8
6.2 Ferrite core	A2-9
6.3 Power line filter	A2-10
6.4 Surge protector	A2-12
Appendix 3. EC Declaration of conformity	
1. Low voltage equipment	A3-2
2. Electromagnetic compatibility	A3-12
Appendix 4. Instruction Manual for Compliance with UL/c-UL Standard	
1. UL/c-UL listed products	
2. Operation surrounding air ambient temperature	
3. Notes for AC servo/spindle system	
3.1 General Precaution	
3.2 Installation	
3.3 Short-circuit ratings	
3.6 Motor Over Load Protection	
3.7 Flange of servomotor	
3.8 Spindle Drive / Motor Combinations	
4. AC Servo/Spindle System Connection	A4-8
Appendix 5. Higher Harmonic Suppression Measure Guidelines	
1. Calculating the equivalent capacity of the higher harmonic generator	
1.1 Calculating the total equivalent capacity (Step 1)	
1.2 Calculating the higher harmonic current flow (Step 2)	A5-4
Appendix 6. Transportation Restrictions for Lithium Batteries	
Appendix 6-1 Transportation restrictions for lithium batteries	
Appendix 6-1-1 Restriction for packing	
Appendix 6-1-2 Issuing domestic law of the United State for primary lithium battery transportation	i A6-5
Annandix 7 Compliance with Chine Compulsory Draduct Cartification (CCC Cartification) System	
Appendix 7. Compliance with China Compulsory Product Certification (CCC Certification) System Appendix 7-1 Outline of China Compulsory Product Certification System	A7 0
Appendix 7-3 Precautions for Shipping Products Appendix 7-4 Application for Exemption	
Appendix 7-5 Mitsubishi NC Product Subject to/Not Subject to CCC Certification	H1-0

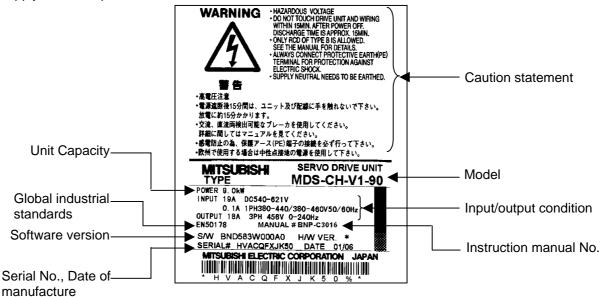
1. Preface

1-1 Inspection at purchase	1-2
1-1-1 Package contents	
1-1-2 Rating nameplate	1-2
1-1-3 Power supply unit model	1-2
1-1-4 Servo drive unit model	1-3
1-1-5 Spindle drive unit model	1-3
1-2 Explanation of each part	1-4
1-2-1 Explanation of each power supply unit part	1-4
1-2-2 Explanation of each servo drive unit part	1-5
1-2-3 Explanation of each spindle drive unit part	

1-1 Inspection at purchase

Open the package, and read the rating nameplates to confirm that the drive units, power supply unit and servomotor are as ordered.

1-1-1 Package contents


Packaged parts	Qty.
Power supply unit	1
Servo/spindle motor	1

Packaged parts	Qty.
Servo drive unit	1
Spindle drive unit	1

1-1-2 Rating nameplate

The rating nameplate is attached to the front of the unit.

The following rating nameplate is for the servo drive unit. The same matters are indicated on the power supply unit and spindle drive unit.

1-1-3 Power supply unit model

<u>MDS - CH</u> - <u>CV</u> - []					
	Symbol	Rated Output [kW]		Symbol	Rated Output [kW]
Power supply unit	37	2.2		260	22.0
	55	3.7		300	26.0
Series	75	5.5		370	30.0
	110	7.5		450(Note)	37.0
	150	11.0		550(Note)	45.0
	185	15.0		750(Note)	55.0
	220	18.5]		

(Note) DC connection bar is required. Always install a large capacity drive unit in the left side of power supply unit, and connect with DC connection bar.

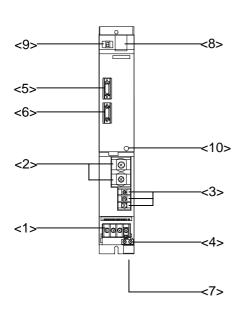
1-1-4 Servo drive unit model

<u>MDS - CH - V1 - []</u>					
1-axis servo drive unit	Symbol	Rated Output [kW]	Sym	bol	Rated Output [kW]
Series	05	0.5	70	0	7.0
Series	10	1.0	90	0	9.0
	20	2.0	11	0	11.0
	35	3.5	15	50	15.0
	45	4.5	185(N	Note)	18.5

(Note) DC connection bar is required. Always install a large capacity drive unit in the left side of power supply unit, and connect with DC connection bar.

MDS	S-CH-V2-[]				
		Symbol	Rated Output [kW]	Symbol	Rated Output [kW]
	2-axis servo drive unit	0505	0.5/0.5	3510	3.5/1.0
0		1005	1.0/0.5	3520	3.5/2.0
Ser	IES	1010	1.0/1.0	3535	3.5/3.5
		2010	2.0/1.0	4520	4.5/2.0
		2020	2.0/2.0	4535	4.5/3.5

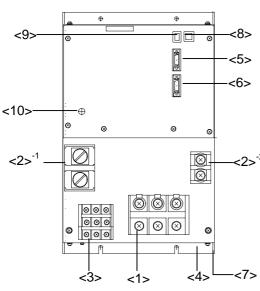
1-1-5 Spindle drive unit model


MDS - CH - SP[]-[]	Symb	ol	Cont. Rating [kW]		Symbol	Cont. Rating [kW]
		15		0.75		185	15.0
Spindle drive unit		22		1.5		220	18.5
		37		2.2		260	22.0
		55		3.7		300	26.0
		75		5.5		370(Note)	30.0
		110		7.5		450(Note)	37.0
		150		11.0		550(Note)	45.0
						750(Note)	55.0
		Symbol		Corres	pon	ding spindle	motor
		None	Sta	ndard spec	ifica	tions part	
		Н	• H	igh-speed	part:	10000r/min c	or more
				axis detec	```	,	
						ERM280 (H	EIDENHAIN)
			(0			or compatible PM class has	

(Note) DC connection bar is required. Always install a large capacity drive unit in the left side of power supply unit, and connect with DC connection bar.

Each part name

1-2 Explanation of each part

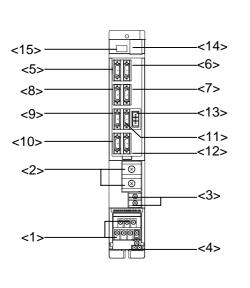

1-2-1 Explanation of each power supply unit part

/		N	ame	Description
<1>		TE1	L1, L2, L3	Power supply input terminal (3-phase AC input)
<2>	it	TE2	L+, L–	Converter voltage output terminal (DC output)
<3>	Main circuit	TE3	L11, L21	Control power input terminal (single-phase AC input)
	Aair		MC1	External contactor control terminal
<4>	2	PE 🖨		Grounding terminal
<10>		CHARGE LAMP		TE2 output charging/discharging circuit indication LED
<5>	uit	CN4		Servo/spindle communication connector (master)
<6>	Control circuit	CN9		Servo/spindle communication connector (slave)
<7>	ntro	CN23		External emergency stop input connector
<8>	ပိ	SW1		Power supply setting switch
<9>		LED		Power supply status indication LED

Precautions

CN23 is located at the bottom of the power supply unit.

Name Description Power supply input terminal (3-phase AC input) TE1 L1, L2, L3 <1> Voltage output terminal (DC output) <2>⁻¹ TE2-1 L+, L-CV-450/550/750 Voltage output terminal (DC output) <2>-2 circuit TE2-2 L+, L-CV-450/550 Control power input terminal L11, L21 Main <3> TE3 (single-phase AC input) MC1, MC2 External contactor control terminal <4> ΡE Grounding terminal CHARGE TE2 output charging circuit indication <10> ---LAMP LED Servo/spindle communication connector <5> CN4 ---(master) circuit Servo/spindle communication connector <6> CN9 ---(slave) Control <7> CN23 External emergency stop input connector ---<8> SW1 Power supply setting switch ---Power supply status indication LED <9> LED ----


Each part name

Precautions

CN23 is located at the bottom of the power supply unit.

TE2-2 is used to connect a 30kW or smaller drive unit.

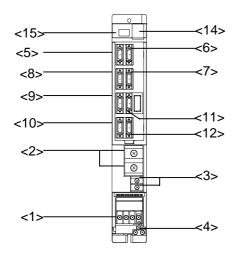
The connector layout will differ according to the units being used. Check each unit outline drawing for details.

1-2-2 Explanation of each servo drive unit part

F							
	_		Name	Description			
<1>	t	TE1	MU, MV, MW LU, LV, LW	Motor drive output terminal (3-phase AC output)			
<2>	TE2 L+, L- TE3 L11, L2		L+, L–	Converter voltage input terminal (DC input)			
<3>	Main	TE3	L11, L21	Control power input terminal (single-phase AC input)			
<4>			\oplus	Grounding terminal			
<5>		CN1A		NC or upward axis communication connector			
<6>	CN1B			Battery unit/terminator Lower axis communication connector			
<7>		CN4		Power supply communication connector			
<8>		CN9		Maintenance connector (normally not used)			
<9>	tin CN2L			Motor side detector connection connector (L axis)			
<10>	Control circuit	CN2M		Motor side detector connection connector (M axis)			
<11>	CN3L CN3M			Machine side detector connection connector (L axis)			
<12>				Machine side detector connection connector (M axis)			
<13>	> CN20			Electromagnetic/dynamic brake connector			
<14>		SW1		Axis No. setting switch			
<15>		LED		Unit status indication LED			

Each part name

Precautions


1. The connector names differ for the V1 drive unit.

(CN2L/CN3L \rightarrow CN2/CN3, CN2M/CN3M \rightarrow Not mounted)

The MU, MV and MW terminals are not provided. The LU, LV and LW terminals are named U, V and W.

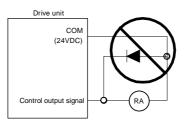
1-2-3 Explanation of each spindle drive unit part

Each part name

/	/	Na	ame	Description		
<1>		TE1	U, V, W	Motor drive output terminal (3-phase AC output)		
<2>	TE2 L+, L-		L+, L–	Converter voltage input terminal (DC input)		
<3>	Main	TE3	L11, L21	Control power input terminal (single-phase AC input)		
<4>				Grounding terminal		
<5>		CN1A		NC or upward axis communication connector		
<6>	CN1B			CN1B		Battery unit/terminator lower axis communication connector
<7>	it	CN4		Power supply communication connector		
<8>	till CN9 O CN9 O CN5 V CN7 V CN6			Maintenance connector (normally not used)		
<9>	ol ci	CN5		Internal PLG encoder connection connector		
<10>	ntro	CN7		C axis control encoder connection connector		
<11>	1> 0 CN6			Magnetic sensor connection connector		
<12>	2> CN8			CNC connection connector		
<14>	14> SW1			Axis No. setting switch		
<15>		LED		Unit status indication LED		

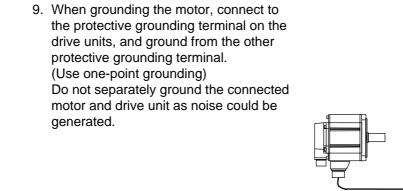
Precautions

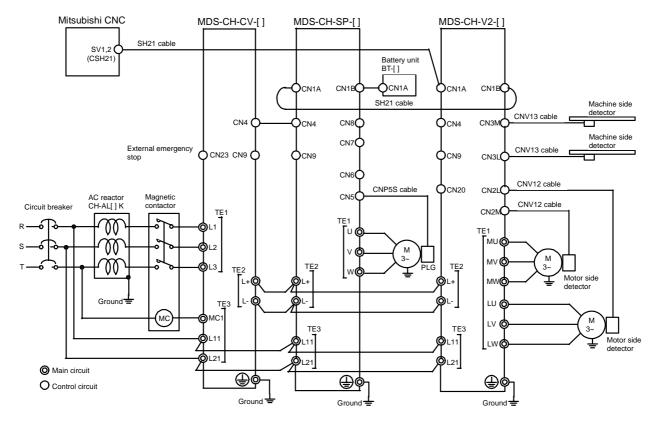
The connector and terminal block layout will differ according to the units being used.


Check each unit outline drawing for details.

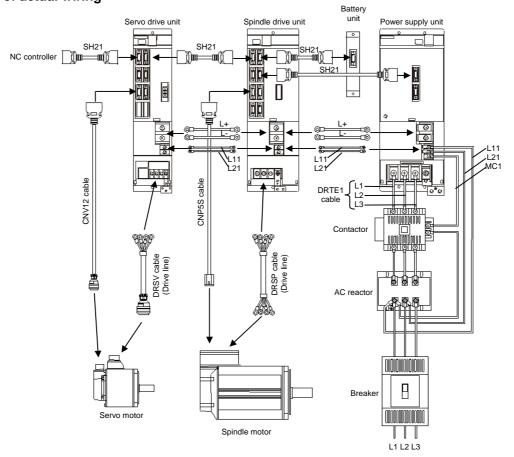
2. Wiring and Connection

2-1 Part system connection diagram	. 2-3
2-2 Main circuit terminal block/control circuit connector	. 2-5
2-2-1 Connector pin assignment	. 2-5
2-2-2 Names and applications of main circuit terminal block signals and control circuit connectors .	. 2-7
2-2-3 How to use the control circuit terminal block (MDS-CH-SP-750)	
2-3 NC and drive unit connection	2-10
2-4 Motor and detector connection	2-11
2-4-1 Connection of HC-H Series	
2-4-2 Connection of the spindle motor	2-14
2-4-3 Connection of the linear servomotor LM-NP Series	2-15
2-5 Connection of power supply	2-16
2-5-1 Standard connection	2-16
2-5-2 DC connection bar	
2-5-3 Two-part system control of power supply unit	2-19
2-5-4 Using multiple power supply units	
2-6 Connection of AC reactor	
2-6-1 Features of the AC reactor	
2-6-2 Wiring of AC reactor	2-21
2-7 Wiring of contactors	2-22
2-7-1 Contactor power ON sequences	2-23
2-7-2 Contactor shutoff sequences	2-23
2-7-3 Contactor control signal (MC1) output circuit	2-24
2-8 Wiring of the motor brake	
2-8-1 Motor brake release sequence	2-25
2-8-2 Control during the servo OFF command	2-25
2-8-3 Operation sequences when an emergency stop occurs	2-25
2-8-4 Motor brake control connector (CN20) output circuit	2-26
2-9 Wiring of an external emergency stop	2-27
2-9-1 External emergency stop setting	2-27
2-9-2 Operation sequences of CN23 external emergency stop function	2-28
2-9-3 Example of emergency stop circuit	
2-10 Connecting the Grounding Cable	2-30
2-10-1 Connecting the Frame Ground (FG)	2-30
2-10-2 Grounding cable size	


 Wiring work must be done by a qualified technician. Wait at least 15 minutes after turning the power OFF and check the voltage with a tester, etc., before starting wiring. Failure to observe this could lead to electric shocks.
Securely ground the drive units and servo/spindle motor with Class 3 grounding or higher.
 Wire the drive units and servo/spindle motor after installation. Failure to observe this could lead to electric shocks.
Do not damage, apply forcible stress, place heavy items on the cables or get them caught. Failure to observe this could lead to electric shocks.
 Always insulate the power terminal connection section. Failure to observe this could lead to electric shocks.


- 1. Correctly and securely perform the wiring. Failure to do so could lead to runaway of the servo/spindle motor.
- Do not mistake the terminal connections.
 Failure to observe this item could lead to ruptures or damage, etc.
- 3. Do not mistake the polarity (+, -). Failure to observe this item could lead to ruptures or damage, etc.
- 4. Do not mistake the direction of the diodes for the surge absorption installed on the DC relay for the motor brake and contactor (magnetic contactor) control. The signal might not be output when a failure occurs.

- 5. Electronic devices used near the drive units may receive magnetic obstruction. Reduce the effect of magnetic obstacles by installing a noise filter, etc.
- 6. Do not install a phase advancing capacitor, surge absorber or radio noise filter on the power line (U, V, W) of the servo/spindle motor.
- 7. Do not modify this unit.


8. The half-pitch connector (CN1A, etc.) on the front of the drive units have the same shape. If the connectors are connected incorrectly, faults could occur. Make sure that the connection is correct.

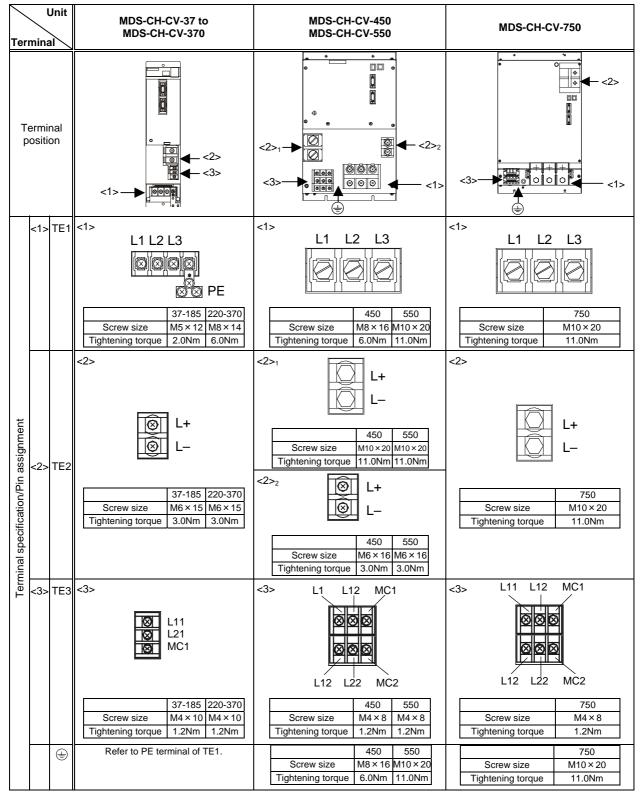
2-1 Part system connection diagram

- (Note 1) The total length of the SH21 cable must be within 30m.
- (Note 2) The connection method will differ according to the used motor.
- (Note 3) When not using an absolute position detector, connect the terminal connector (R-TM).
- (Note 4) The main circuit (^(O)) and control circuit (^(O)) are safely separated.

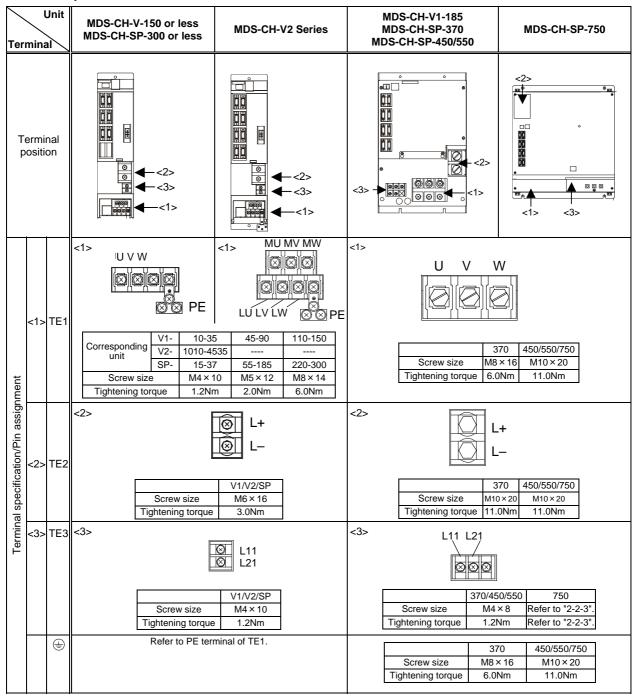
Example of actual wiring

Note)

The main circuit cable wiring must be prepared by the user.


The wiring to the grounding cable is not shown. Refer to section "2-10 Wiring the Grounding Cable".

2-2 Main circuit terminal block/control circuit connector


CAUTION Do not apply a voltage other than that specified in Instruction Manual on each terminal. Failure to observe this item could lead to rupture or damage, etc.

2-2-1 Connector pin assignment

Power supply unit

Servo/spindle drive unit

2-2-2 Names and applications of main circuit terminal block signals and control circuit connectors

The following table shows the details for each terminal block signal.

Name	Signal name	Description
L1 · L2 · L3	Main circuit power supply	Main circuit power supply input terminal Connect a 3-phase 380 to 480VAC, 50/60Hz power supply.
L11 · L21 (L12 · L22)	Control circuit power supply	Control circuit power supply input terminal Connect a single-phase 380 to 480VAC, 50/60Hz power supply. Connect the same power supply phase for L11 and L12, and L21 and L22.
MC1 (MC2)	Contactor control	Contactor control terminal The MC1 terminal has the same phase as L21. Connect to a different phase than the phase connected to L21. (Connect MC2 with L21.)
U·V·W	Motor output	Servo/spindle motor power output terminal The servo/spindle motor power terminal (U, V, W) is connected.
LU · LV · LW MU · MV · MW	Motor output	Servo motor power output terminal (L-axis/M-axis) The servo/spindle motor power terminal (U, V, W) is connected.
<u>(</u>	Protective grounding (PE)	Grounding terminal The servomotor/spindle motor grounding terminal is connected and grounded.

 Always use one AC reactor per power supply unit. Failure to observe this could lead to unit damage.
When sharing a breaker for several power supply units, of a short-circuit fault occurs in a small capacity unit, the breaker could trip. This can be hazardous, so do not share the breaker.
3. Be sure to use the breaker of proper capacity for each Power Supply Unit.

2-2-3 How to use the control circuit terminal block (MDS-CH-SP-750)

The control power for the 75kW spindle unit is not connected to the terminal block, so wire according to the following instructions.

<1> Treatment of wire end

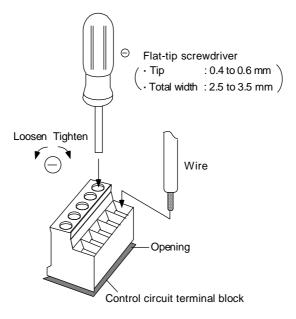
Single wire: Peel the wire sheath, and use the wire. (Wire size: 0.25 to 2.5 mm²)

Stranded wire: Peel the wire sheath, and then twist the core wires.

Take care to prevent short circuits with the neighboring poles due to the fine strands of the core wires. Solder plating onto the core wire section could cause a contact defect and must be avoided. (Wire size: $0.25 \text{ to } 2.5 \text{ mm}^2$)

Use a bar terminal and bundle the strands. (Made by Phoenix contact)

Bar terminal for one wire (Bar terminal phenol with insulation sleeve) Bar terminal for two wires (TWIN phenol with insulation sleeve)

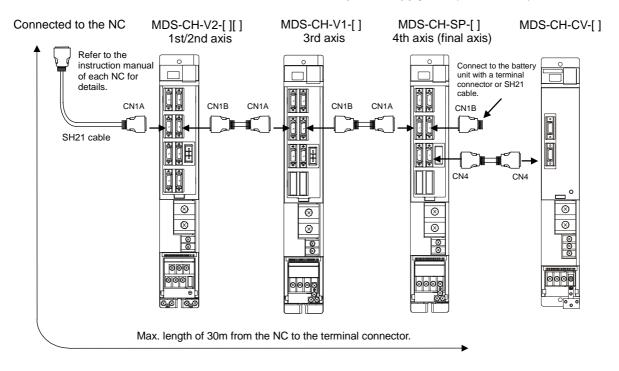

Length to peel

Approx, 10mm

Wire	size	Bar term	inal type	Crimping tool
[mm ²]	AWG	For one wire	For two wires	Children in the second
0.25	24	AI0.25-6YE AI0.25-8YE	_	
0.5	20	AI0.5-6WH AI0.5-8WH	-	
0.75	18	AI0.75-6GY AI0.75-8GY	AI-TWIN2×0.75-8GY AI-TWIN2×0.75-10G Y	CRIMPFOX-UD6
1	18	AI1-6RD AI1-8RD	AI-TWIN2×1-8RD AI-TWIN2×1-10RD	
1.5	16	AI1.5-6BK AI1.5-8BK	AI-TWIN2×1.5-8BK AI-TWIN2×1.5-12BK	
2.5	14	AI2.5-8BU AI2.5-8BU-1000	AI-TWIN2×2.5-10BU AI-TWIN2×2.5-13BU	

<2> Connection method

Insert the core wire section of the wire into the opening, and tighten with a screwdriver so that the wire does not come out. (Tightening torque: 0.5 to 0.6 N•m) When inserting the wire into the opening, make sure that the terminal screw is sufficiently loose. When using a wire that is 1.5 mm^2 or less, two wires can be inserted into one opening.



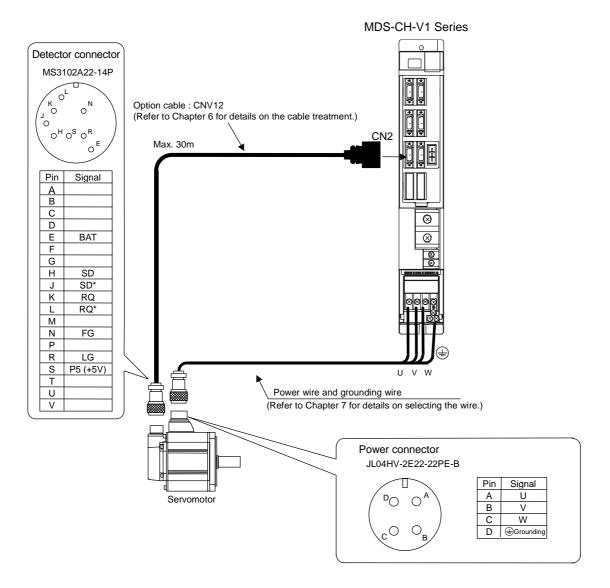
2-3 NC and drive unit connection

The NC bus cables are connected from the NC to each drive unit so that they run in a straight line from the NC to the terminal connector (battery unit). And up to 7 axes can be connected per system. (Note that the number of connected axes is limited by the CNC. The following drawing shows an example with 4 axes connected.)

< Connection >

- CN1A : CN1B connector on NC or previous stage's drive unit
- CN1B : CN1A connector on next stage's drive unit or terminal connector (battery unit)
- CN4 : Connector for communication between power supply unit (master side) and drive unit

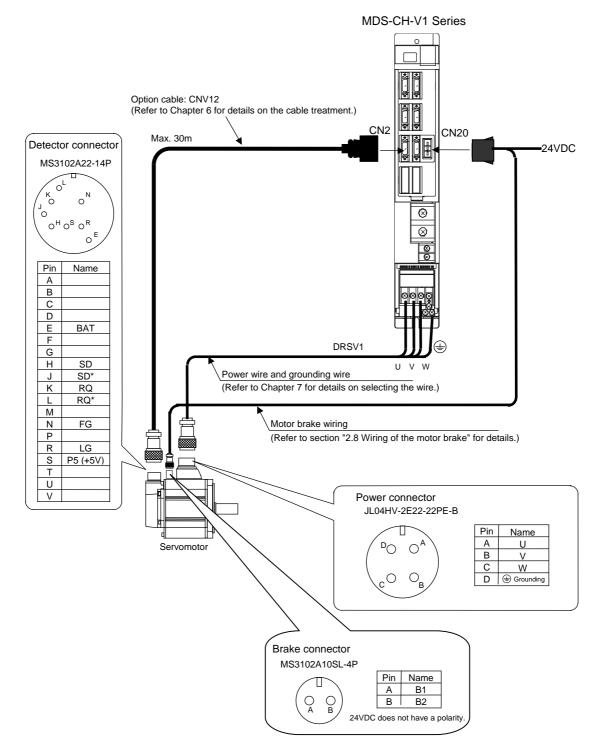
Wire the SH21 cable between the NC and drive unit so that the distance between the NC and terminal connector (battery unit) is within 30m.

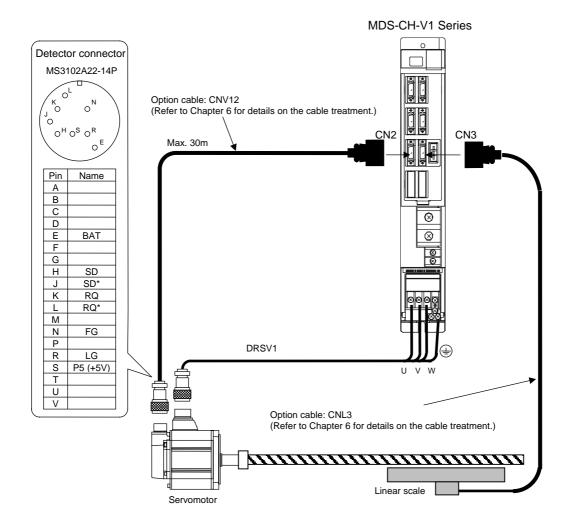

Axis Nos. are determined by the rotary switch for setting the axis No. (Refer to section "4-1-1 Setting the rotary switch".) The axis No. has no relation to the order for connecting to the NC.

2-4 Motor and detector connection

2-4-1 Connection of HC-H Series

The OSE105, OSA105, OSE104 or OSA104 detector can be used. The detector connection method is the same for all models.

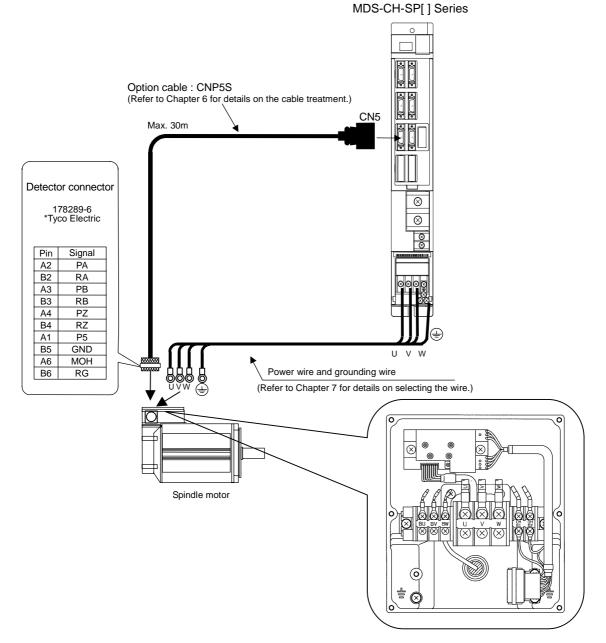

(1) Connecting the servomotor without brakes


Note) The above connection is used for the single-axis servo drive unit.

(2) Connecting the servomotor with brakes

Use the same wiring as the servomotor without brakes, and add the wiring for the brakes. The brakes can be released when 24VDC is supplied. To ensure safety, use a twisted wire or shielded wire for the motor brake wiring, and sequence it with the emergency stop switch.

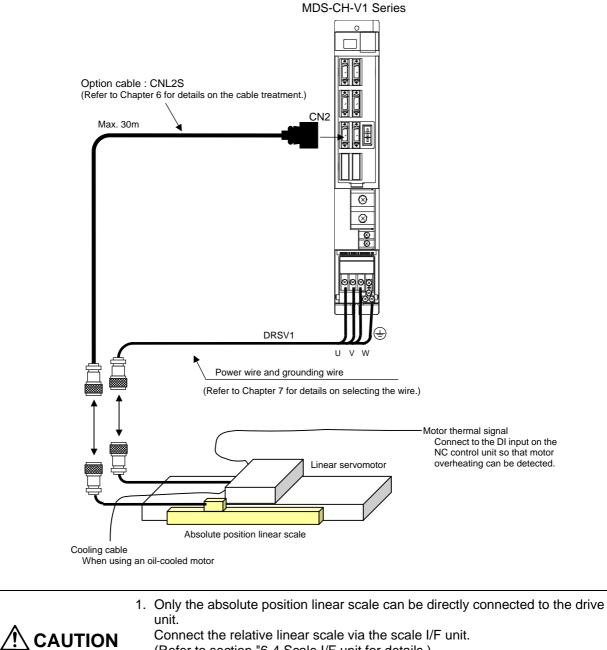
Note) The above connection is used for the single-axis servo drive unit. Refer to section "2.8 Wiring of the motor brake" for details on the motor brake wiring.



(3) When linear scale is connected as a closed system

Note) The above connection is used for the single-axis servo drive unit. Refer to section "6-4-6 Example of scale I/F unit connection" for details on connecting the linear scale.

2-4-2 Connection of the spindle motor

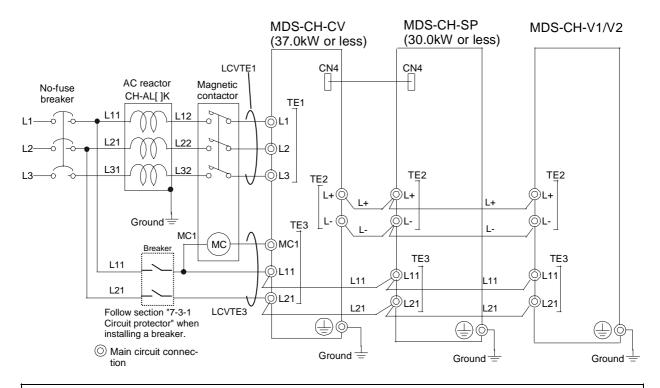

Refer to each motor specifications for details on the motor side connection destination, specifications and outline, and for the spindle PLG detector specifications.

2-4-3 Connection of the linear servomotor LM-NP Series

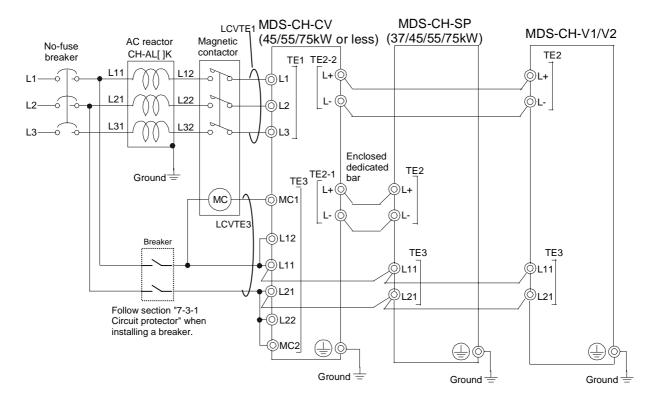
Refer to section "6-4 Scale I/F unit" when connecting the linear scale via the scale I/F unit

(1) Connecting the linear scale directly to the drive unit

- Connect the relative linear scale via the scale I/F unit. (Refer to section "6-4 Scale I/F unit for details.)
- 2. Only the MDS-CH-V1 Series can drive the linear servomotor.


2-5 Connection of power supply

 Make sure that the power supply voltage is within the specified range of the power supply unit. Failure to observe this could lead to damage or faults. For safety purposes, always install a circuit breaker (CB), and make sure that the circuit is cut off when an error occurs or during inspections. Refer to Chapter 7 and select a circuit breaker. The wire size will differ according to each unit capacity. Refer to Chapter 7 and select the size. For safety purposes, always install a magnetic contactor (contactor) on the main circuit power supply input. Large rush currents will flow when the power is turned ON. Refer to Chapter 7 and select the correct contactor. A semiconductor element (bidirectional thyristor) is used in the power supply unit's magnetic contact drive circuit. A surge absorber is incorporated to protect this element, and a leakage current of up to 15mA is passed. Check with the maker beforehand to confirm that the exciting coil (contactor) will not malfunction with this leakage current. Do not connect anything to the MC1 terminal when not using the contactor. The semiconductor element in the power supply unit will be damaged if the


2-5-1 Standard connection

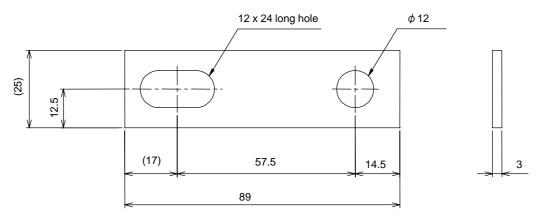
Directly drive the magnetic contactor (contactor) using the power supply unit's TE3 terminal (MC1)

(1) For MDS-CH-CV-370 and smaller

The power supply unit is a power supply regenerative type converter; an AC reactor is installed in the power supply line. When connecting to the TE3 terminal, connect to the power supply side (primary side) of the AC reactor.
 Connect the power supply unit's CN4 connector with the spindle drive unit in the same system. (Connect with the servo drive unit if there is no spindle drive unit.)

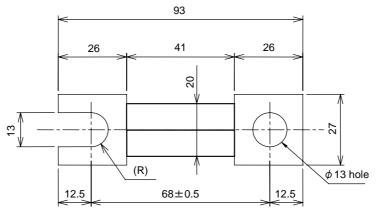
(2) For MDS-CH-CV-450 and larger

The TE3 MC2 is used to control the magnetic contactor (contactor) with an independent power supply. Normally, use the wiring shown above. (MC1 and L21 are the same phase.)


2-5-2 DC connection bar

When connecting a large capacity drive unit with the L+L- terminal of power supply unit, DC connection bar is required. In use of the following large capacity drive units, use a dedicated DC connection bar. The DC connection bar to be used depends on the connected power supply, so make a selection according to the following table. Also refer to the section "3-1-4 Panel installation hole work drawings".

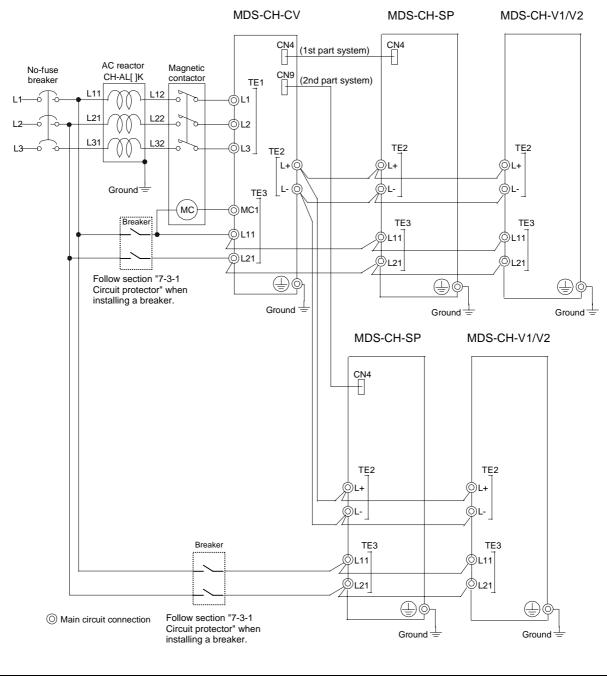
Large capacity drive unit	Power supply unit	Required connection bar
MDS-CH-V1-185	MDS-CH-CV-450	Following (1)
MDS-DH-SP-370	MDS-CH-CV-550	
MDS-CH-SP-450		
MDS-CH-SP-550		
MDS-CH-SP-750	MDS-CH-CV-750	Following (2)


< Outline dimension drawings >

(1) For connecting MDS-CH-CV-450/550

(Note) This DC connection bar is a set of two DC connection bars.

(2) For connecting MDS-CH-CV-750

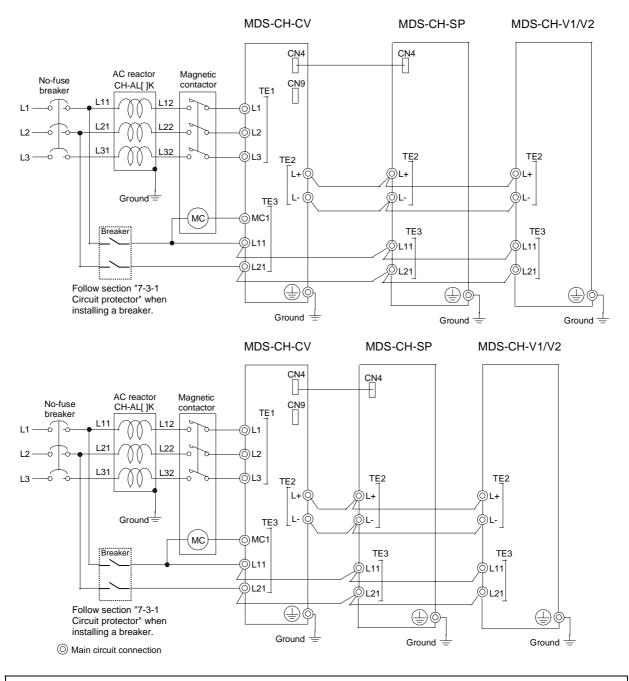


- 1. These DC connection bars are accessories.

- 2. Always install a large capacity drive unit in the left side of power supply unit, and connect with DC connection bar.

2-5-3 Two-part system control of power supply unit

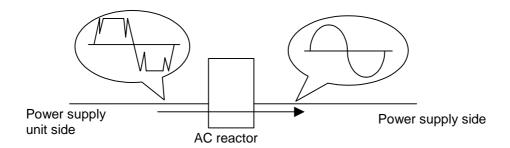
Confirm that the total capacity of the drive units does not exceed the power supply unit's capacity. The axis controlled to the power supply unit's CN4 connector is the axis controlled by the power supply unit. The final axis connected to the CN4 connector must be the spindle drive unit.



Arrange the units next to each other so that the TE2 (L+, L-) wiring is as short as possible. The above drawing shows the units in two stages for explanatory purposes.

2-5-4 Using multiple power supply units

In a system configured of multiple spindle drive units, etc., there may be cases when the units cannot be driven with one power supply unit. Use several power supply units in this case. Refer to section "11-7 Selecting the power supply unit" for details on making a selection.

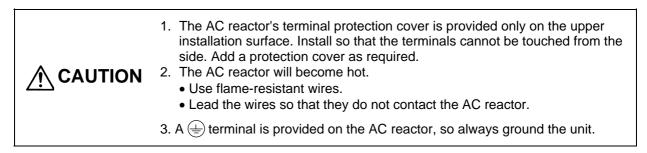

 An AC reactor and breaker must be installed for each power supply unit.
 The communication cable connected with the NC can be split for each power supply unit. (Refer to section 2-3. NC and drive unit connection.)

2-6 Connection of AC reactor

2-6-1 Features of the AC reactor

This AC reactor smoothes out distorted waveforms when regenerating unnecessary energy into the power, and is effective in suppressing unnecessary higher harmonics. These features prevent other devices from malfunctioning. A radio noise filter is assembled in the AC reactor.

During power regeneration



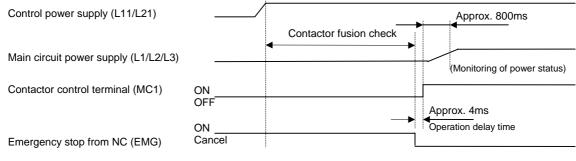
2-6-2 Wiring of AC reactor

The installation direction of the AC reactor is set. If installed in reverse, the effective of the AC reactor will not be sufficiently achieved, and the noise suppressing effect may also drop.

Refer to section "6-7 AC reactor" for the outline dimensions of the AC reactor.

2-7 Wiring of contactors

A contactor (magnetic contactor) is inserted in the main circuit power supply input (L1, L2, L3) of a power supply unit, and the power supply input is shut off when an emergency stop or servo alarm occurs.


When an emergency stop or servo alarm occurs, the servo drive unit stops the motor using deceleration control or a dynamic brake. The spindle drive unit performs the deceleration stop control. The power supply unit must maintain the power supply (power regeneration) while returning the energy from each axis being decelerated to the power line. Thus, the contactor cannot be shut off. Therefore, the NC controls the contactors. The NC confirms that all axes are stopped, or confirms the dynamic brake operation, and then it outputs a contactor shutoff command of the power supply unit via the drive unit. Give consideration to the above, and examine the contactor drive method in the following order of priority.

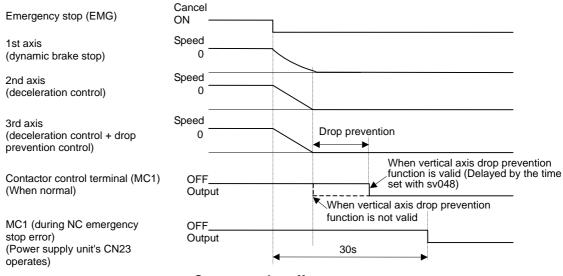
	 The contactors cannot be driven other than from a power supply unit. Undervoltage (alarm) may occur if the contactors are shut off at the same time as an emergency stop occurrence. Do not directly shut off the contactors with an external sequence. They may shut off faster than the emergency stop input, and the input power supply may be shut off during the deceleration control or vertical axis drop prevention control. If this happens, an undervoltage alarm will occur, and deceleration control or drop hold may not be possible. When double-protecting, use a power supply unit external emergency stop input. (Refer to section "2-9 Wiring of an external emergency stop.)
--	--

No.	Abbrevia- tion	Parameter name	Descriptions		
SV036	ΡΤΥΡ	Power supply type	The following parameter must be set. F E D C B A 9 8 7 6 5 4 3 2 1 0 AMP RTYP PTYP PTYP		

2-7-1 Contactor power ON sequences

The main circuit power supply is turned ON in the sequences in the following drawing when the contactor control output (TE3: MC1) of the power supply unit is used. Each interface voltage of the main circuit power supply (L1/L2/L3) is checked. If voltage is applied on any voltage (if the contactor is melted), contactor melting (alarm 6A) is detected.

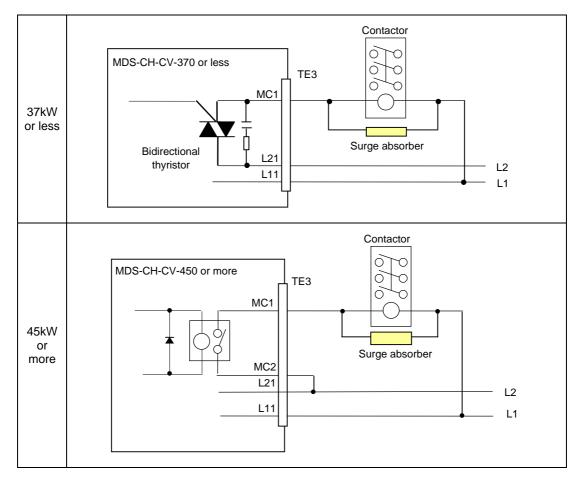
Contactor power ON sequences


- 1. The parameters must be set when controlling the contactor (MC1)
- 2. The power supply unit's power state is monitored approx. 800ms after the contactor control terminal (MC1) turns ON. If the voltage is insufficient, the main circuit error (alarm 6C) or open phase (alarm 67) will occur. In all other cases, a ground fault (alarm 69) will occur.

2-7-2 Contactor shutoff sequences

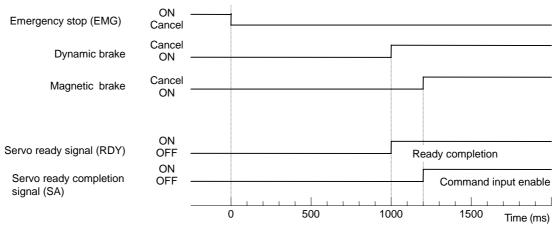
POINT

When an emergency stop or servo alarm occurs, the NC confirms the zero speed (motor stop or dynamic brake operation) for all axes, and then shuts off the contactors.


If MC shut off enabled is not output, an external emergency stop signal (EMGX) will be output in 30 seconds from the power supply unit's CN23 connector to forcibly shut off the MC1 terminal. The spindle will coast after that.

2-7-3 Contactor control signal (MC1) output circuit

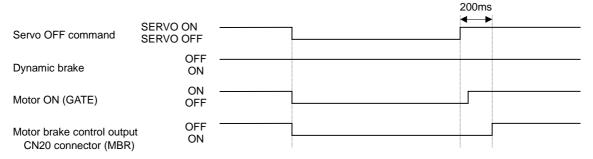
A contactor or AC relay, etc., can be driven. Install a surge absorber when using a conductive load.


The 45kW and larger units have MC1 and MC2. For normal use, connect MC2 and L21. MC2 is used when controlling the contactor with an independent power supply.

2-8 Wiring of the motor brake

The magnetic brake of servomotors with a magnetic brake is driven by the motor brake control connector (CN20) on the servo drive unit. The servo drive unit releases the brake when the motor is ON. (Servo ON means when torque is generated in the motor.)

2-8-1 Motor brake release sequence


The motor brake control connector (CN20: MBR) releases the magnetic brake in the sequences in the following drawing when canceling the emergency stop. The brake is released after the start of the power ON to the servomotor.

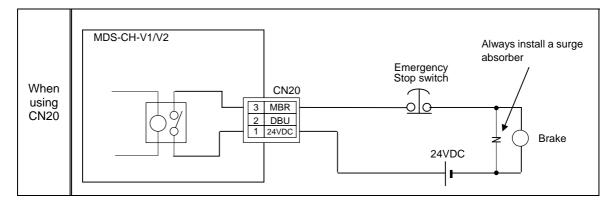
Motor brake control sequences when an emergency stop is canceled

2-8-2 Control during the servo OFF command

When a servo OFF command is input by an NC sequence input, the motor brake turns ON simultaneously when the motor ON is shut off. Note that the vertical axis drop prevention control is not validated, so a drop due to the brake operation lag occurs. When the servo OFF is canceled, a drop due to an uncontrolled state does not occur.

Motor brake control sequences when a servo OFF command is output

CAUTION The vertical axis drop prevention control only is performed during an emergency stop (including alarms and power failures). It is not performed when a servo OFF command is input.

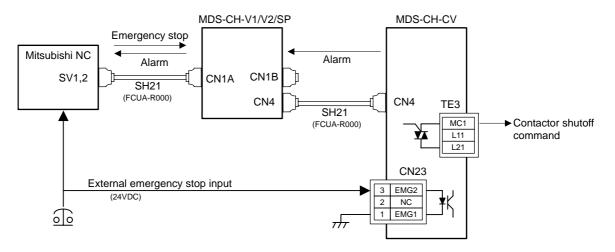

2-8-3 Operation sequences when an emergency stop occurs

The motor brake control output operation when an emergency stop occurs differs according to the motor deceleration stop method. Refer to section "5-4 Setting for emergency stop" for details on the operation sequences for each stop method.

2-8-4 Motor brake control connector (CN20) output circuit

The motor brakes can be controlled with the CN20 connector.

The brakes controlled with the CN20 connector include the magnetic brakes and dynamic brakes (external dedicated option for MDS-CH-V1-110 or more). (Unit internal relay specifications: 30VDC-5A/ 250VAC-8A)



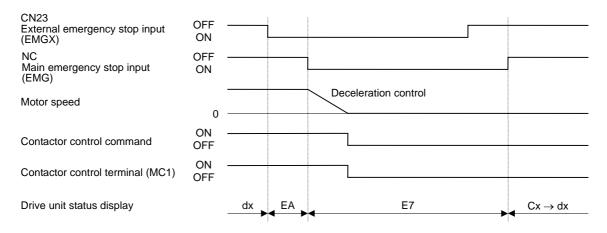
To ensure safety in an emergency, make sure that the magnetic brakes are applied in sequence with the emergency stop switch.
 Always install a surge absorber near the motor's brake terminal to eliminate noise and protect the contacts. Refer to section "7-4-3 Surge absorber". The brakes cannot be released just by connecting the CN20 and motor brake terminal. 24VDC must be supplied.

2-9 Wiring of an external emergency stop

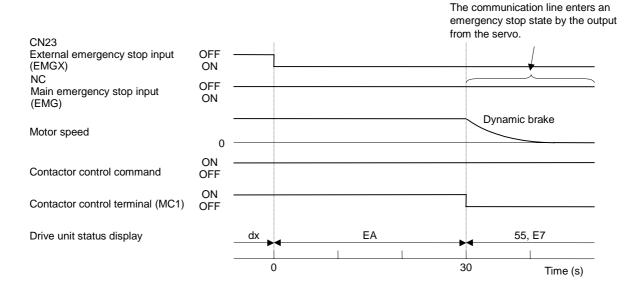
2-9-1 External emergency stop setting

Besides the emergency stop input from the NC communication cable (CN1A, CN1B), double-protection when an emergency stop occurs can be provided by directly inputting an external emergency stop to the CN23 connector on the power supply unit. Even if the emergency stop is not input from CNC for some reason, the contactors will be shut off by the external emergency stop input from CN23 connector on the power supply unit.

No.	Abbrevia- tion	Parameter name		Des	criptions
SV036	PTYP	Power supply unit type	Set the exter to the power	0,1	e PTYP parameter of the drive unit connected
SP041				Setting value	External emergency stop invalid
				Setting value +40 [hex]	External emergency stop valid
			. /	or CV-300, change PTYP [: cting with a unit SP370 or a	


CAUTION The emergency stop signal input to the CNC side cannot be used as for the external emergency stop function (CN23).	
POINT	 The parameter must be set for the CN23 external emergency stop function. The emergency stop signal input to the CNC side cannot be used as a substitute for the external emergency stop function.

2-9-2 Operation sequences of CN23 external emergency stop function


If only CN23, an external emergency stop, is input when external emergency stop valid is set in the parameters (the emergency stop is not input in CNC), an "In external emergency stop" (warning EA) will be detected. At this time, the system itself does not enter an emergency stop status. (There will be no deceleration control or dynamic brake stop).

If a contactor shutoff command is not issued from the CNC within 30 seconds after the external emergency stop is input, the power supply unit itself outputs contactor shutoff signal (MC1), and then it shuts off the contactors, and an external emergency stop error (alarm 55) is detected. If the emergency stop is input from CNC within 30 seconds, the warning EA replaces the "In CNC emergency stop" (warning E7). A normal emergency stop status (warning E7) will result if the contactor shutoff command from the CNC are further input.

Ready ON is possible even if CN23, an external emergency stop has been input when the emergency stop is canceled, but an external emergency stop error (alarm 55) will occur after 30 seconds.

External emergency stop input sequences

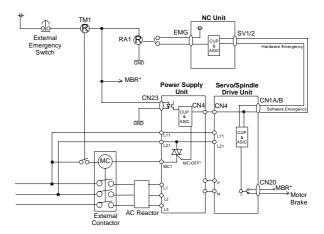
When neither a main emergency stop nor contactor shutoff command is input

2-9-3 Example of emergency stop circuit

(1) Outline of function

The power supply unit's external emergency stop can be validated by wiring to the CN23 connector, and setting the parameters and rotary switch. If the emergency stop cannot be processed and the external contractor cannot be shut off (due to a fault) by the CNC unit, the external contactor can be shut off by the power supply unit instead of the CNC. At this time, the spindle motor will coast and the servomotor will stop with the dynamic brakes.

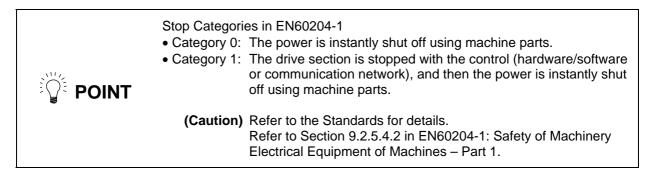
EN60204-1 Category 1 can be basically complied with by installing the external emergency stop switch and contactor.


- 1. The power supply unit external emergency stop function is a function that assists the NC emergency stop.
- 2. The emergency stop signal input to the CNC side cannot be used as a substitute for the external emergency stop function (CN23).
- 3. It will take 30 seconds for the external contactor to function after the emergency stop is input to CN23. (This time is fixed.)

The emergency stop is a signal used to stop the machine in an emergency. This is connected to the CNC unit. Wire to the power supply unit when necessary.

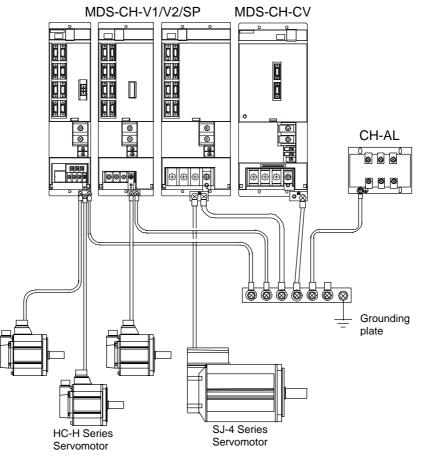
The servo/spindle unit will be decelerated and controlled by the software according to the deceleration stop command issued from the CNC unit.

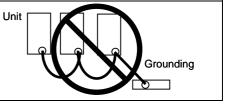
(2) Example of emergency stop circuit


The diagram on the right shows an example of the emergency stop circuit (EN60204-1 Category 0 stop) in which an off delay timer (TM1) is installed as a power shutoff method independent from

the NC emergency stop input. The required safety category may be high depending on the machine and the Safety Standards may not be met. Thus, always pay special attention when selecting the parts and designing the circuit.

Setting the off delay timer (TM1) time Set the TM1 operation time so that it functions after it has been confirmed that all axes have stopped. If the set time is too short, the spindle motor will coast to a stop. $tm \geq All \ axes \ stop \ time$


Provide a mechanism that shuts off the power even if the CNC system fails.


2-10 Connecting the Grounding Cable

2-10-1 Connecting the Frame Ground (FG)

Each unit has an FG connection terminal. Please connect an earth wire to the main ground of a cabinet or a machine frame.

Connect the grounding cable from each unit directly to the grounding plate. Noise from other units could result in malfunctions.

2-10-2 Grounding cable size

POINT

Earth wire size should follow the following table.

Туре	Grounding cable size
MDS-CH-CV Unit	Same as TE1 (L1/L2/L3)
MDS-CH-V1/V2/SP[] Unit	Same as TE1 (U/V/W)
CH-AL (AC Reactor)	5.5 mm ² (AWG10) or more

3. Installation

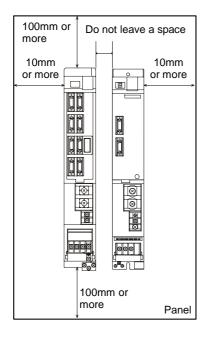
3-1 Installation of the units	3-2
3-1-1 Environmental conditions	3-2
3-1-2 Installation direction and clearance	3-3
3-1-3 Prevention of entering of foreign matter	3-3
3-1-4 Panel installation hole work drawings (Panel cut drawings)	3-4
3-1-5 Heating value	3-5
3-1-6 Heat radiation countermeasures	3-6
3-2 Installation of servomotor/spindle motor	3-7
3-2-1 Environmental conditions	3-7
3-2-2 Cautions for mounting load (prevention of impact on shaft)	3-8
3-2-3 Installation direction	3-8
3-2-4 Tolerable load of axis	
3-2-5 Oil and waterproofing measures	3-10
3-2-6 Cable stress	3-12
3-3 Installing the linear servomotor	3-13
3-3-1 Installation environment	3-13
3-3-2 Installing the linear servomotor	3-13
3-3-3 Cooling the linear servomotor	3-15
3-4 Noise measures	3-16

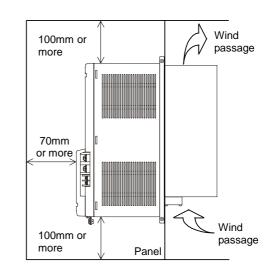
	 Install the unit on noncombustible material. Direct installation on combustible material or near combustible materials may lead to fires. Follow the instructions in this manual and install the unit while allowing for the unit weight. Do not get on top of the units or motor, or place heavy objects on the unit. Failure to observe this could lead to injuries. Always use the unit within the designated environment conditions. Do not let conductive objects such as screws or metal chips, etc., or combustible materials such as oil enter the units. Do not block the units intake and outtake ports. Doing so could lead to failure. The units and servomotor are precision devices, so do not drop them or apply strong impacts to them. Do not install or run units or servomotor that is damaged or missing parts. When storing for a long time, please contact your dealer.
--	---

3-1 Installation of the units

3-1-1 Environmental conditions

Environment	Conditions	
Ambient temperature	0°C to +55°C (with no freezing)	
Ambient humidity	90% RH or less (with no dew condensation)	
Storage temperature	-15°C to +70°C (with no freezing)	
Storage humidity	90% RH or less (with no dew condensation)	
Atmosphere	Indoors (Where unit is not subject to direct sunlight)	
	With no corrosive gas, combustible gas, oil mist or dust	
Altitude	Operation/storage: 1000m or less above sea level	
	Transportation: 10000m or less above sea level	
Vibration	Operation/storage: 4.9m/s ² (0.5G) or less	
	Transportation: 49m/s ² (5G) or less	

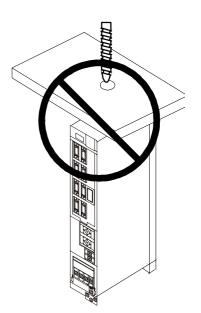

Caution) When installing at 1,000m or higher above sea level, the unit's heat dissipation characteristics will drop as the altitude gets higher.


The upper limit of the ambient temperature drops by 1°C per each 100m increase in altitude. (The ambient temperature at an altitude of 2000m is 0 to 45°C.).

3-1-2 Installation direction and clearance

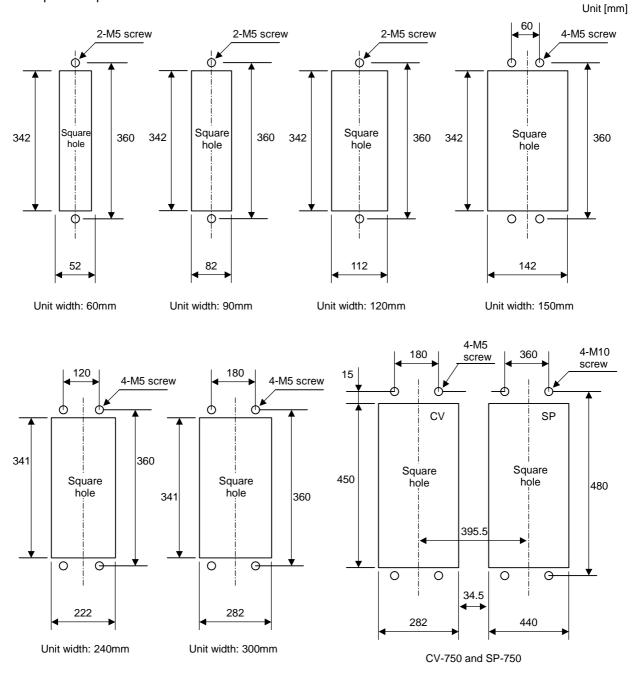
Wire each unit in consideration of the maintainability and the heat dissipation, also secure sufficient space for ventilation.

Do not leave a space between the power supply unit and drive unit when installing.


The ambient temperature condition for the power supply unit or the drive units is 55° C or less. Because heat can easily accumulate in the upper portion of the units, give sufficient consideration to heat dissipation when designing the panel. If required, install a fan in the panel to agitate the heat in the upper portion of the units.

3-1-3 Prevention of entering of foreign matter

Treat the cabinet with the following items.


- Make sure that the cable inlet is dust and oil proof by using packing, etc.
- Make sure that the external air does not enter inside by using head radiating holes, etc.
- Close all clearances.

- Securely install door packing.
- If there is a rear cover, always apply packing.
- Oil will tend to accumulate on the top. Take special measures such as oil-proofing to the top so that oil does not enter the cabinet from the screw holds.
- After installing each unit, avoid machining in the periphery. If cutting chips, etc., stick onto the electronic parts, trouble may occur.

3-1-4 Panel installation hole work drawings (Panel cut drawings)

Prepare a square hole to match the unit width.

3-1-5 Heating value

Each heating value is calculated with the following values.

The value for the spindle drive unit includes the continuous rated output, the value for the servo drive unit includes the rated output, and the value for the power supply unit includes the AC reactor's heating value.

Type Heating amount [W]		Type [W]		Туре	Heating amount [W]		Туре	Heating amount [W]			
MDS-CH-	Inside	Outside	MDS-CH-	Inside	Outside	MDS-CH-		Outside	MDS-CH-	Inside	Outside
	panel	panel		panel	panel		panel	panel		panel	panel
CV-37	34	21	SP[]-15	20	50	V1-05	11	25	V2-0505	22	50
CV-55	35	30	SP[]-37	50	54	V1-10	18	41	V2-1005	29	66
CV-75	38	43	SP[]-55	55	88	V1-20	28	76	V2-1010	35	82
CV-110	44	81	SP[]-75	61	121	V1-35	35	115	V2-2010	44	134
CV-150	49	106	SP[]-110	70	170	V1-45	44	164	V2-2020	47	155
CV-185	55	140	SP[]-150	81	231	V1-70	60	258	V2-3510	49	166
CV-220	57	153	SP[]-185	102	353	V1-90	68	302	V2-3520	53	189
CV-260	65	196	SP[]-220	107	380	V1-110	76	327	V2-3535	61	232
CV-300	74	247	SP[]-260	131	513	V1-150	95	455	V2-4520	62	238
CV-370	86	315	SP[]-300	158	668	VI-185	225	575	V2-4535	69	276
CV-450	148	353	SP[]-370	306	797						
CV-550	173	428	SP[]-450	355	945						
CV-750	235	615	SP[]-550	420	1140						
			SP[]-750	566	1579						

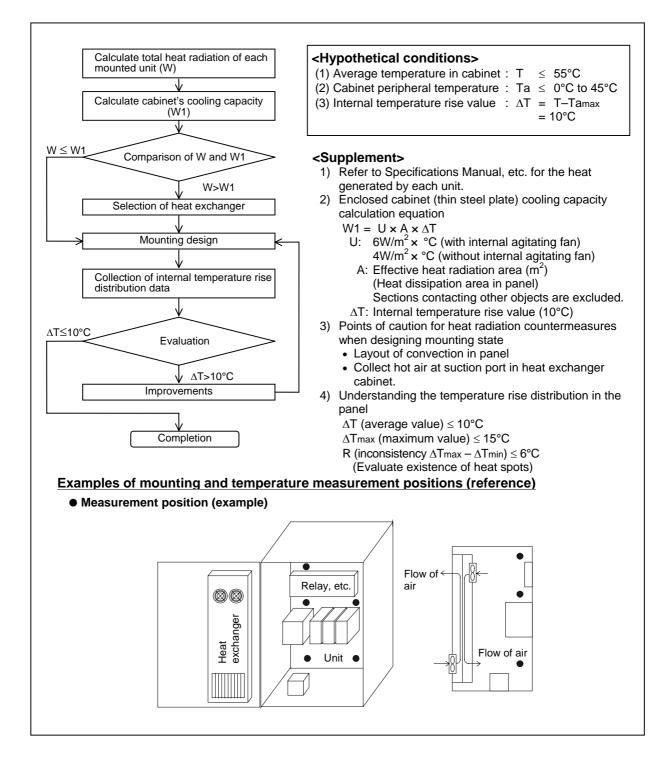
POINT

Design the panel's heating value taking the actual axis operation (load rate) into consideration. With a general machine tool, the servo drive unit's load rate is approx. 50%, so the heating values inside the panel are half the values shown above. (Excluding the power supply and spindle drive unit.)

(Example 1)

When using MDS-CH-CV-260, MDS-CH-SP[]-185 and MDS-CH-V2-3535

Total heating value = (65 + 196) + (102 + 353) + (61 + 232) = 1009 [W]


Heating value in panel = $(65) + (102) + (61 \times 0.5) = 197.5$ [W]

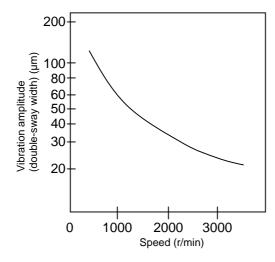
3-1-6 Heat radiation countermeasures

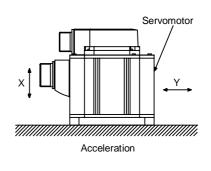
In order to secure reliability and life, design the temperature in the panel so that the ambient temperature of each unit is 55°C or less.

If heat accumulates at the top of the unit, etc., install a fan so that the temperature in the panel remains constant.

Please refer to following method for heat radiation countermeasures.

3-2 Installation of servomotor/spindle motor

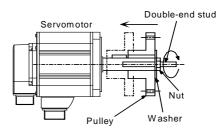

	 Do not hold the cables, axis or detector when transporting the motor. Failure to observe this could lead to faults or injuries. Securely fix the motor to the machine. Insufficient fixing could lead to the motor deviating during operation. Failure to observe this could lead to injuries. When coupling to a servomotor shaft end, do not apply an impact by hammering, etc. The detector could be damaged. Never touch the rotary sections of the motor during operations. Install a cover, etc., on the shaft. Do not apply a load exceeding the tolerable load onto the servomotor shaft. The shaft could break. Do not connect or disconnect any of the connectors while the power is ON.
--	---


3-2-1 Environmental conditions

Environment		Conditions	
Ambient temperature	0°C to +40°C	(with no freezing)	
Ambient humidity	20% to 90%RH or less	(with no dew condensation)	
Storage temperature	-20°C to +65°C	(with no freezing)	
Storage humidity	20% to 90%RH or less	(with no dew condensation)	
Atmosphere	 Indoors (Where unit is not subject to direct sunlight) No corrosive gases, flammable gases, oil mist or dust 		
Altitude	Operation/storage: 1000m or less above sea level Transportation: 10000m or less above sea level		
Vibration	HC-H Series (Servomoto	or) X: 19.6m/s ² (2G) Y: 19.6m/s ² (2G)	
	SJ Series (Spindle motor	r) Refer to each specifications.	

Refer to section "3-3 Installing the linear servomotor" for the linear servomotor's environmental conditions.

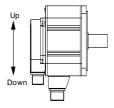
The vibration conditions are as shown below.



Refer to each spindle motor specifications for details on the spindle motor vibration conditions.

3-2-2 Cautions for mounting load (prevention of impact on shaft)

- <1> When using the servomotor with key way, use the screw hole at the end of the shaft to mount the pulley onto the shaft. To install, first place the double-end stud into the shaft screw holes, contact the coupling end surface against the washer, and press in as if tightening with a nut. When the shaft does not have a key way, use a frictional coupling, etc.
- <2> When removing the pulley, use a pulley remover, and make sure not to apply an impact on the shaft.

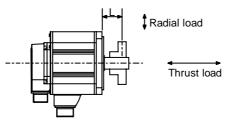

- <3> Install a protective cover on the rotary sections such as the pulley installed on the shaft to ensure safety.
- <4> The direction of the detector installed on the servomotor cannot be changed.

CAUTION Never hammer the end of the shaft during assembly.

3-2-3 Installation direction

<1> There are no restrictions on the installation direction. Installation in any direction is possible, but as a standard the motor is installed so that the motor power line and detector cable cannon plugs (lead-in wires) face downward. Installation in the standard direction is effective against dripping. Measure to prevent oil and water must be taken when not installing in the standard direction. When the motor is not installed in the standard direction, refer to section "3-2-5 Oil and waterproofing measures" and take the appropriate measures.

The brake plates may make a sliding sound when a servomotor with magnetic brake is installed with the shaft facing upward, but this is not a fault.

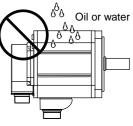

Standard installation direction

3-2-4 Tolerable load of axis

There is a limit to the load that can be applied on the motor shaft. Make sure that the load applied on the radial direction and thrust direction, when mounted on the machine, is below the tolerable values given below. These loads also affect the motor output torque, so consider them when designing the machine.

Servomotor	During operation			
	Tolerable radial load	Tolerable thrust load		
HC-H52T, 53T, 102T, 103T, 152T, 153T (Taper shaft)	392N (L=52.7)	490N		
HC-H52S, 53S, 102S, 103S, 152S, 153S (Straight shaft)	980N (L=52.7)	490N		
HC-H202S, 203S, 352S, 353S, 452S, 453S (Straight shaft)	1500N (L=52.7)	490N		
HC-H702S, 703S (Straight shaft)	1300N (L=52.7)	590N		
HC-H902S, 903S (Straight shaft)	2500N (L=52.7)	1100N		
HC-H1102S, 1103S (Straight shaft)	2700N (L=52.7)	1500N		

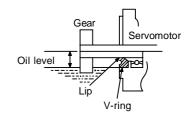
Caution: The symbols in the table follow the drawing below.



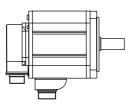
L : Length from flange installation surface to center of load weight [mm]

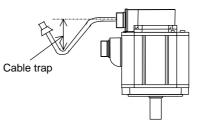
	Use a flexible coupling when connecting with a ball screw, etc., and keep the shaft core deviation to below the tolerable radial load of the shaft.
2.	When directly installing the gear on the motor shaft, the radial load increases as the diameter of the gear decreases. This should be carefully considered when designing the machine.
3.	When directly installing the pulley on the motor shaft, carefully consider so that the radial load (double the tension) generated from the timing belt
4.	tension is less than the values shown in the table above. In machines where thrust loads such as a worm gear are applied, carefully consider providing separate bearings, etc., on the machine side so that loads exceeding the tolerable thrust loads are not applied to the motor.
5.	Do not use a rigid coupling as an excessive bending load will be applied on the shaft and could cause the shaft to break.

3-2-5 Oil and waterproofing measures

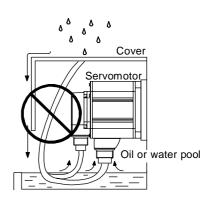

<1> A format based on IEC Standards (IP types) is displayed as the motor protective format (refer to "10-2-1 Specifications list."). However, these Standards are short-term performance specifications. They do not guarantee continuous environmental protection characteristics. Measures such as covers, etc., must be provided if there is any possibility that oil or water will fall on the motor, or the motor will be constantly wet and permeated by water. Note that the motor's IP-type is not indicated as corrosion-resistant.

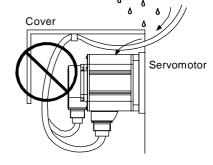
Servomotor


<2> When a gear box is installed on the servomotor, make sure that the oil level height from the center of the shaft is higher than the values given below. Open a breathing hole on the gear box so that the inner pressure does not rise.

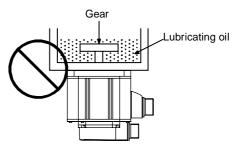

Servomotor	Oil level (mm)
HC-H52, 53, 102, 103, 152, 153	20
HC-H202, 203, 352, 353	25
HC-H452, 453, 702, 703	25
HC-H902, 903, 1102, 1103	30

<3> When installing the servomotor horizontally, set the power cable and detector cable to face downward.


When installing vertically or on an inclination, provide a cable trap.


	The servomotors, including those having IP65 and IP67 spenave a completely waterproof (oil-proof) structure. Do not a constantly contact the motor, enter the motor, or accumulation has also enter the motor through cutting chip accumulation his also. When the motor is installed facing upwards, take measures side so that gear oil, etc., does not flow onto the motor sha Do not remove the detector from the motor. (The detector in reated for sealing.)	llow oil or water to e on the motor. Oil a, so be careful of s on the machine ft.
--	---	---

<4> Do not use the unit with the cable submerged in oil or water. (Refer to right drawing.)



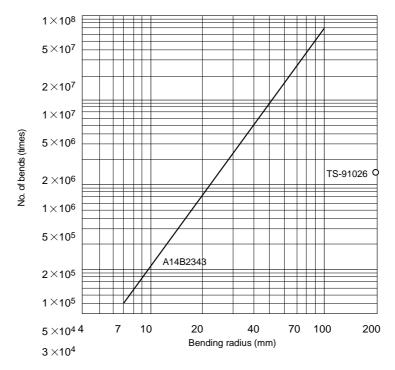
<Fault> Capillary tube Phenomenon

<5> Make sure that oil and water do not flow along the cable into the motor or detector. (Refer to right drawing.)

<Fault> Respiration

Servomotor

<6> When installing on the top of the shaft end, make sure that oil from the gear box, etc., does not enter the servomotor. The servomotor does not have a waterproof structure.


3-2-6 Cable stress

- <1> Sufficiently consider the cable clamping method so that bending stress and the stress from the cable's own weight is not applied on the cable connection part.
- <2> In applications where the servomotor moves, make sure that excessive stress is not applied on the cable.

If the detector cable and servomotor wiring are stored in a cable bear and the servomotor moves, make sure that the cable bending part is within the range of the optional detector cable.

Fix the detector cable and power cable enclosed with the servomotor.

- <3> Make sure that the cable sheathes will not be cut by sharp cutting chips, worn, or stepped on by workers or vehicles.
- <4> The bending life of the detector cable is as shown below. Regard this with a slight allowance. If the servomotor/spindle motor is installed on a machine that moves, make the bending radius as large as possible.

Detector cable bending life

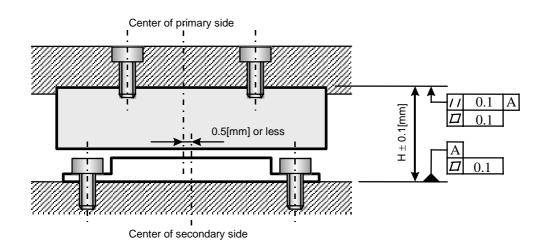
Note: The values in this graph are calculated values and are not guaranteed.

<5> The oil resistance characteristics are given below. Note that these values are not guaranteed for all types of oils.

	ltem		Characteristics
	Sheath	Tensile strength	65% or more of value before immersion in oil
Oil	Sheath	Elongation	65% or more of value before immersion in oil
resistance	Oil resistance conditions		70°C for four hours (JIS C 2320 Class 1 No. 2 insulation oil)

<6> The detector cable sheath is made of flame retardant PVC.

3-3 Installing the linear servomotor

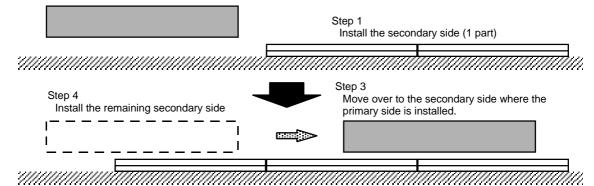

 Securely fix the linear servomotor onto the machine. Incomplete fixing could cause the servomotor to come off during operation, and lead to injuries. The connectors, cooling ports, etc., cannot be repaired or replaced. The entire servomotor must be replaced, so take special care when handling. Use nonmagnetic tools during installation. An attraction force is generated in the magnetic body by the secondary side permanent magnet. Take care not to catch fingers or hands. Take special care when installing the primary side after the secondary side. Install the counterbalance for the vertical axis and the holding brakes on the machine side. The balance weight cannot track at 9.8m/s² or more, so use a pneumatic counterbalance, etc., having high trackability. Always install an electrical and mechanical stopper at the stroke end. Take measure to prevent metal cutting chips from being attracted to the secondary side permanent magnet.

3-3-1 Installation environment

Environment	Conditions			
Ambient temperature	0°C to 40°C	(with no freezing)		
Ambient humidity	80% RH or less	(with no dew condensation)		
Storage temperature	-15°C to 50°C	(with no freezing)		
Storage humidity	90% RH or less	(with no dew condensation)		
Atmosphere		nit is not subject to direct sunlight)		
	With no corrosive gas, flammable gas or dust			
Vibration	4.9m/s ² or less			

3-3-2 Installing the linear servomotor

(1) Installing the primary side Dimensions for tie-in with secondary side


Caution: H dimensions = (primary side height dimensions) + (secondary side height dimensions) + (clearance length: 0.5[mm]).

Example of installation procedures

An example of the installation procedures is shown below.

Step 2

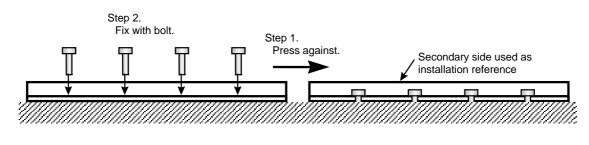
Install the primary side on the position where there is no secondary side

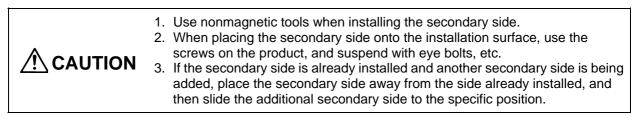
	 Installing the primary side on the position where there is no secondary side, as shown above, is recommended to avoid risks posed by the attraction force of the permanent magnet between the primary side and secondary side. If the primary side must be installed over the secondary side, use a material handling device, such as a crane, which can sufficiently withstand the load such as the attraction force. Note that an attraction force will be generated even after the primary side has been installed and is moved over to the secondary side.
--	--

2. 3. 4. POINT 5. 6. 7.	Keep the moving sections (primary side) as light as possible, and the base section (secondary side) as heavy and rigid as possible. Make the machine's rigidity as high as possible. Securely fix the base section (secondary side) onto the foundation with anchor bolts. Keep the primary resonance frequency of the entire machine as high as possible. (Should be 200Hz or more.) Install the servomotor so that the thrust is applied on the center of the moving sections. If the force is not applied on the center of the moving parts, a moment will be generated. Use an effective cooling method such as circulated cooling oil. Select a motor capacity that matches the working conditions. Create a mechanism that can withstand high speeds and high acceleration/ deceleration.
--	---

(2) Installing the secondary side

Direction


When using multiple secondary sides, lay the units out so that the nameplates on the products all face the same direction in order to maintain the pole arrangement.


Rating nameplate

Procedures

Install with the following procedure to eliminate clearances between the secondary sides.

3-3-3 Cooling the linear servomotor

- (1) A cooling pipe is embedded on the primary side of the linear servomotor. Flow at least 5 liters of cooling oil per minute.
- (2) When using with natural cooling, the continuous rating will be dropped to 50% compared to when using cooling oil.

3-4 Noise measures

Noise includes "propagation noise" generated from the power supply or relay, etc., and propagated along a cable causing the power supply unit or drive unit to malfunction, and "radiated noise" propagated through air from a peripheral device, etc., and causing the power supply unit or drive unit to malfunction.

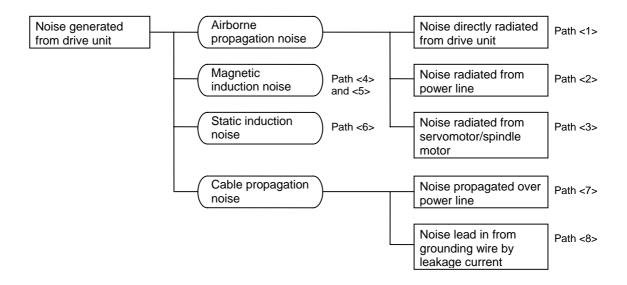
Always implement these noise measures to prevent the peripheral devices and unit from malfunctioning. The measures differ according to the noise propagation path, so refer to the following explanation and take appropriate measures.

(1) Mandatory noise measures

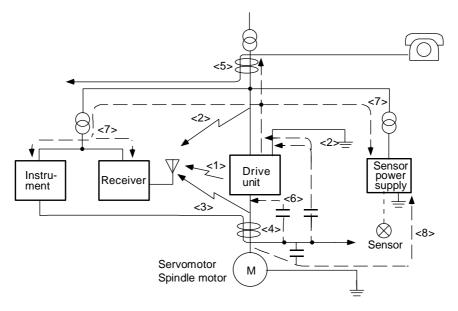
• Accurately ground all of the cables connected to this unit and requiring shielding treatment with clamp fittings. (The communication cable connected to the NC can be grounded with one clamp fitting on the NC side. However, the communication cables connected between each drive unit are not required to ground with the clamp fitting.)

Make sure that the detector cable or the signal wire (FG wire) for the communication cable to the NC is accurately grounded to the connector shell section.

- Do not lay the "drive unit input/output power wire" and "signal wires" bundled in a parallel state. Always separate these wires.
- Use one-point grounding for the drive unit and motor. (Refer to section "2-10 Wiring the grounding cable.)
- Accurately ground the AC reactor using the FG terminal on the terminal block in addition to the PE terminal on the body.
- Install a surge killer on devices (magnetic contactor, relay, etc.) that generate high levels of noise.
- Accurately ground all of the detector cables with clamp fittings. (The FG wire to the connector shell must also be grounded.)
- Always take the measures given in "Appendix 2 EMC Installation Guidelines" for the European EMC Directives.


(2) Propagation noise measures

Always take the following measures when noise generating devices are installed near this unit.


- Install a power line filter in the stage before the power supply unit.
- Install a ferrite core on the signal wire.
- Wire the spindle PLG detector cable away from other wires.

(3) Measures against radiated noise

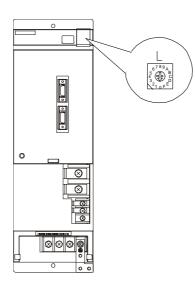
The types of propagation paths of the noise and the noise measures for each propagation path are shown below.

Example) Drive system

Noise propagation path	Measures
<1> <2> <3>	 When devices such as instrument, receiver or sensor, which handle minute signals and are easily affected by noise, or the signal wire of these devices, are stored in the same panel as the drive units and the wiring is close, the device could malfunction due to airborne propagation of the noise. In this case, take the following measures. (1) Install devices easily affected as far away from the drive units as possible. (2) Lay devices easily affected as far away from the signal wire of the drive unit as possible. (3) Do not lay the signal wire and power line in parallel or in a bundled state. (4) Insert a line noise filter on the input/output wire to suppress noise radiated from the wires. (5) Use a shield wire for the signal wire and power line, or place in separate metal ducts.
<4> <5> <6>	 If the signal wire is laid in parallel to the power line, or if it is bundled with the power line, the noise could be propagated to the signal wire and cause malfunction because of the magnetic induction noise or static induction noise. In this case, take the following measures. (1) Install devices easily affected as far away from the drive unit as possible. (2) Lay devices easily affected as far away from the signal wire of the drive unit as possible. (3) Do not lay the signal wire and power line in parallel or in a bundled state. (4) Use a shield wire for the signal wire and power line, or place in separate metal ducts.
<7>	If the power supply for the peripheral devices is connected to the power supply in the same system as the drive units, the noise generated from the power supply unit could back flow over the power line and cause the devices to malfunction. In this case, take the following measures. • Install a power line filter on the power supply unit's power line.
<8>	If a closed loop is created by the peripheral device and drive unit grounding wire, the noise current could be fed back causing the device to malfunction. In this case, change the device grounding methods and the grounding place.

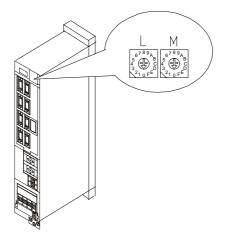
4. Setup

4-1 Init	al setup	
4-1-1	Setting the rotary switch	
	Transition of LED display after power is turned ON	
4-2 Ser	vo drive unit initial parameter settings	
	List of servo parameters	
4-2-2	Limitations to electronic gear setting value	
4-2-3	Setting excessive detection error width	
4-2-4	Setting motor and detector model	
4-2-5	Setting servo specifications	
4-2-6	Initial setup of the linear servo system	
4-2-7	Standard parameter list according to motor	
4-3 Spi	ndle drive unit initial parameter settings	
	List of spindle parameters	
4-3-2	Details of bit-corresponding parameters	
4-3-3	Setting spindle drive unit and motor model	
4-3-4	Spindle specification parameters screen	
4-3-5	Spindle control signals	


4-1 Initial setup

Check the combination of the drive unit and motor connected. The linear servomotor can be driven with the MDS-CH-V1 Series software version "BND-583W000-B0" and higher.

4-1-1 Setting the rotary switch

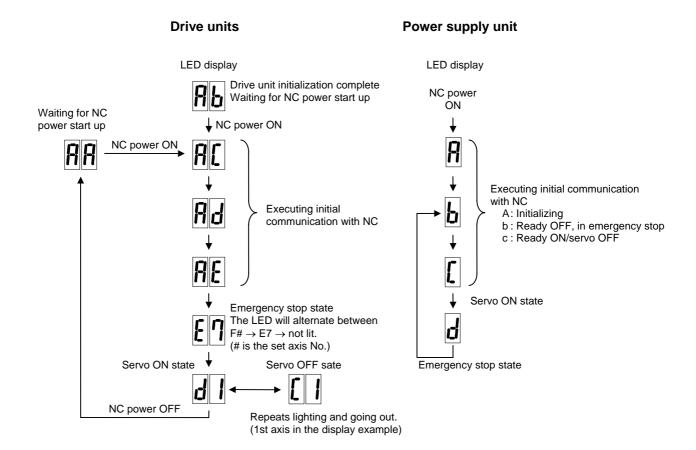

Before turning on the power, the axis No. must be set with the rotary switch. The rotary switch settings will be validated when the units are turned ON.

(1) Setting the power supply unit

SW1	MDS-CH-CV setting		
0	With contactor (melting detection)	External emergency	
1	With no contactor	stop (Not used CN23)	
2	Setting prohibited		
3			
4	With contactor (melting detection)	External emergency stop (Used CN23)	
5	With no contactor	stop (Osed Civ23)	
6			
7			
8			
9			
А	Setting prohibited		
В			
С			
D			
Е			
F			

(2) Setting the servo/spindle drive unit

Rotary switch setting	Set axis No.	
0	1st axis	
1	2nd axis	
2	3rd axis	
3	4th axis	
4	5th axis	
5	6th axis	
6	7th axis	
7		
8		
9	Not usable	
А		
В		
С		
D		
E		
F	Axis not used	


When MDS-CH-V2 Series are used

When an axis that is not used is selected, that axis will not be controlled when the power is turned ON, and "Ab" will remain displayed on the LED. If the power of the axis not in use is disconnected, the NC system's emergency stop cannot be released.

4-1-2 Transition of LED display after power is turned ON

When CNC, each drive unit and the power supply unit power have been turned ON, each unit will automatically execute self-diagnosis and initial settings for operation, etc. The LEDs on the front of the units will change as shown below according to the progression of these processes. If an alarm occurs, the alarm No. will appear on the LEDs. Refer to "Chapter 8 Troubleshooting" for details on the alarm displays.

4 - 3

4-2 Servo drive unit initial parameter settings

Refer to each CNC instruction manual for details on the operation methods and system specification parameter settings.

4-2-1 List of servo parameters

No.	Abbrev.	Parameter name	Explanation	Setting range (Unit)
SV001	PC1*	Motor side gear ratio	Set the motor side and machine side gear ratio. For the rotary axis, set the total deceleration (acceleration) ratio.	1 to 32767
SV002	PC2*	Machine side gear ratio	Even if the gear ratio is within the setting range, the electronic gears may overflow and cause an alarm.	1 to 32767
SV003	PGN1	Position loop gain 1	Set the position loop gain. The standard setting is "33". The higher the setting value is, the more precisely the command can be followed and the shorter the positioning time gets, however, note that a bigger shock is applied to the machine during acceleration/deceleration. When using the SHG control, also set SV004 (PGN2) and SV057 (SHGC). (If "201" or bigger is set, the SHG control cannot be used.)	1 to 200 (rad/s)
SV004	PGN2	Position loop gain 2	When using the SHG control, also set SV003 (PGN1) and SV057 (SHGC). When not using the SHG control, set to "0".	0 to 999 (rad/s)
SV005	VGN1	Speed loop gain 1	Set the speed loop gain. Set this according to the load inertia size. The higher the setting value is, the more accurate the control will be, however, vibration tends to occur. If vibration occurs, adjust by lowering by 20 to 30%. The value should be determined to be 70 to 80% of the value at the time when the vibration stops.	1 to 10000
SV006	VGN2	Speed loop gain 2	If the noise is bothersome at high speed during rapid traverse, etc, lower the speed loop gain. As in the right figure, set the speed loop gain of the speed 1.2 times as fast as the motor's rated speed, and use this with SV029 (VCS). When not using, set to "0".	-1000 to 1000
			Set this when the limit cycle occurs in the full-closed loop, or overshooting occurs in positioning. Select the control method with SV027 (SSF1)/bit1, 0 (vcnt). Normally, use "Changeover type 2". When you set this parameter, make sure to set the torque offset (SV032 (TOF)). When not using, set to "0".	
		Speed loop delay	No changeover When SV027 (SSF1)/ bit1, 0 (vcnt)=00 The delay compensation control is always valid.	
SV007	VIL	compensation	Changeover type 1 When SV027 (SSF1)/ bit1, 0 (vcnt)=01 The delay compensation control works when the command from the NC is "0". Overshooting that occurs during pulse feeding can be suppressed.	0 to 32767
			Changeover type 2 When SV027 (SSF1)/ bit1, 0 (vcnt)=10 The delay compensation control works when the command from the NC is "0" and the position droop is "0". Overshooting or the limit cycle that occurs during pulse feeding or positioning can be suppressed.	
SV008	VIA	Speed loop lead compensation	Set the gain of the speed loop integration control. The standard setting is "1364". During the SHG control, the standard setting is "1900". Adjust the value by increasing/decreasing it by about 100 at a time. Raise this value to improve contour tracking precision in high-speed cutting. Lower this value when the position droop vibrates (10 to 20Hz).	1 to 9999

No.	Abbrev.	Parameter name	Explanation	Setting range (Unit)
SV009	IQA	Current loop q axis lead compensation	Set the gain of current loop. As this setting is determined by the motor's electrical characteristics, the	1 to 20480
SV010	IDA	Current loop d axis lead compensation	setting is fixed for each type of motor. Set the standard values for all the parameters depending on each motor type.	1 10 20480
SV011	IQG	Current loop q axis gain		1 to 4096 In case of
SV012	IDG	Current loop d axis gain		MDS-B-Vx4, 1 to 8192
SV013	ILMT	Current limit value	Set the normal current (torque) limit value. (Limit values for both + and - direction.) When the value is "500" (a standard setting), the maximum torque is determined by the specification of the motor.	0 to 999 (Stall [rated] current %)
SV014	ILMTsp	Current limit value in special control	Set the current (torque) limit value in a special control (initial absolute position setting, stopper control, etc). (Limit values for both of the + and - directions.) Set to "500" when not using.	0 to 999 (Stall [rated] current %)
SV015	FFC	Acceleration rate feed forward gain	When a relative error in the synchronous control is large, apply this parameter to the axis that is delaying. The standard setting value is "0". For the SHG control, set to "100". To adjust a relative error in acceleration/deceleration, increase the value by 50 to 100 at a time.	0 to 999 (%)
			Set this when the protrusion (that occurs due to the non-sensitive band by friction, torsion, backlash, etc) at quadrant change is too large. This compensates the torque at quadrant change. This is valid only when the lost motion compensation (SV027 (SSF1/lmc)) is selected.	
			Type 1: When SV027 (SSF1)/bit9, 8 (Imc)=01 Set the compensation amount based on the motor torque before the quadrant change. The standard setting is "100". Setting to "0" means the compensation amount is zero. Normally, use Type 2.	-1 to 200 (%)
SV016	LMC1	Lost motion compensation 1	Type 2: When SV027 (SSF1)/bit9, 8 (Imc)=10 Set the compensation amount based on the stall (rated) current of the motor. The standard setting is double of the friction torque. Setting to "0" means the compensation amount is zero.	-1 to 100 (Stall [rated] current %)
			 When you wish different compensation amount depending on the direction When SV041 (LMC2) is "0", compensate with the value of SV016 (LMC1) in both of the + and -directions. If you wish to change the compensation amount depending on the command direction, set this and SV041 (LMC2). (SV016: + direction, SV041: - direction. However, the directions may be opposite depending on other settings.) When "-1" is set, the compensation won't be performed in the direction of the command. 	

No.	Abbrev.	Parameter name	Explanation	Setting range (Unit)
No.	Abbrev.	Parameter name	F E D C B A 9 8 7 6 5 4 3 2	range (Unit) HEX setting 1 0 h dfbx fdir2 is set e polarity tart cop 'se polarity
3.017	SFLO	selection	7 abs Incremental control Absolute position control 8 mp MP scale 360P (2mm pitch) MP scale 720P (1mm p 9 mpt3 MP scale ABS detection NC control MP scale ABS detection automatic (Standard sw A A A A B 2 : Rotary servomotor 8 : Linear servomotor F 2 : Rotary servomotor 8 : Linear servomotor Kl other setting values are prohibited F	itch) า
SV018	PIT*	Ball screw pitch	Set the ball screw pitch. Set to "360" for the rotary axis.	1 to 32767
50010	1 11	Pole pitch	Set the pole pitch when using the linear servomotor.	(mm/rev)

No.	Abbrev.	Parameter name	Explanation	Setting range (Unit)					
			In the case of the semi-closed loop control Set the same value as SV020 (RNG2). (Refer to the explanation of SV020.)	1 to 9999 (kp/rev)					
			In the case of the full-closed loop control Set the number of pulses per ball screw pitch.						
			Detector model name Resolution SV019 setting						
			OHE25K-ET, OHA25K-ET 100,000 (p/rev) 100						
			OSE104-ET,OSA104-ET 100,000 (p/rev) 100						
			OSE105-ET,OSA105-ET 1,000,000 (p/rev) 1000						
			RCN723 (Heidenhain) 8,000,000 (p/rev) 8000						
			Relative position Refer to specification PIT/Resolution						
			detection scale manual for each detector (m)						
			AT41 (Mitsutoyo) 1 (m/p) The same as SV018 (PIT)						
			FME type, FLE type Refer to specification PIT/Resolution						
			(Futaba) manual for each detector (m)	1 to 9999					
		Desition datastan	MP type (Mitsubishi Refer to specification PIT/Resolution Heavy Industries) manual for each detector (m)	(kp/pit)					
SV019	RNG1*	Position detector	Twice as big as						
		resolution	AT342 (Mitsutoyo) 0.5 (m/p) SV018 (PIT)						
			AT343 (Mitsutoyo) 0.05 (m/p) 20 times as big						
			as SV018 (PIT)						
			AT543 (Mitsutoyo) 0.05 (m/p) PIT/Resolution (m)						
			LC191M (Heidenhain) Refer to specification PIT/Resolution						
			manual for each detector. (m)						
			LC491M (Heidenhain) Refer to specification PIT/Resolution manual for each detector. (m)						
			PIT/Resolution						
			MDS-B-HR Analog cycle/500 (m)						
			For linear servomotor control Set the number of pulses (K pulses) per pole pitch. (Set the same value for SV020: RNG2.) AT342 LC191M HR + relative position detector HR + AT342 120 600 or 1200 PIT/Resolution (m) Note) The above value applies for the linear servomotor with 60mm pole pitch.	1 to 9999 (kp/pit)					
			Set the number of pulses per one revolution of the motor side detector.						
			Detector model name SV020 setting						
		Spood dotactor	OSE104. OSA104 100	1 to 0000					
SV020	RNG2*	Speed detector resolution	OSE105, OSA105 1000	1 to 9999 (kp/rev)					
				(rp/iev)					
			Set the same value as SV019: RNG1 when using linear servomotor control.						
0./22.	o: =	Overload detection	Set the detection time constant of Overload 1 (Alarm 50).	1 to 999					
SV021	OLT	time constant	Set to "60" as a standard. (For machine tool builder adjustment.)	(S)					
		Overload detection	Set the current detection level of Overload 1 (Alarm 50) in respect to the	110 to 500					
SV022	OLL	level	stall (rated) current.	(Stall [rated]					
		10701	Set to "150" as a standard. (For machine tool builder adjustment.)						
			Set the excessive error detection width when servo ON.						
		Excessive error	<standard rapid="" rate<="" td="" traverse=""></standard>						
SV023	OD1	detection width	setting value> OD1=OD2= (mm/min) /2 (mm)	0 to 32767 (mm)					
		during servo ON	60*PGN1	()					
			When "0" is set, the excessive error detection will not be performed.						
			Set the in-position detection width.						
SV024	INP	In-position	Set the accuracy required for the machine.	0 to 32767					
		detection width	The lower the setting is, the higher the positioning accuracy gets, however						
			the cycle time (setting time) becomes longer. The standard setting is "50"						

No.	Abbrev.	Parameter name							E	Exp	olanation								
																		HEX	sett
			F	Е	D	С	В	А	9		8 7	6	5	4	3	2	Ý	1	0
				pe	en			er	nt					mt	ур				
			-																
			bi	t	_				_		Explana	tion							
			0		Set	the m	otor t	ype.	Se	t tl	his along w	ith S	V01	7 (S	PEC	;)/spi	m.		
			1		1) <u>V</u>	Vhen S					otary serve								,
			2		S	Setting	0	x	1x		2x	3	х	4x	5	ox (6x	7x	
			3	mtyp		x0								÷					
			4			x1													
			5			x2 x3													
			6 7			x4													
						 x5								†		·····			
						x6								†	1				
						x7								1	1				
						x8								<u> </u>					
						x9													
						хA								[1	ĺ			
						хB										Ţ			
						хС													
						xD													
						xE													
						хF								<u> </u>					
					S	Setting	8x	9x	Ax	(Bx		Сх		Dx	Ex		Fx	
						x0					HC-H52	HC-	H53						
						x1			<u> </u>]	HC-H102	HC-	H103	I			l		
						x2						HC-					_		
SV025	MTYP*	Motor/Detector type				x3			ļ			HC-							
						x4						HC-							
						x5						HC-							
						x6						HC- HC-							
						x7 x8				-	HC-H902 HC-H1102								
						x9					HC-H1502	110-		<u> </u>					
						xA				Ì					Ì				
						хB			1	1									
						xC													
						хD													
						хE				_									
						xF													I
					2) 1/	Nhon (21/04	7/000	~_0	/1 :	noor oor o	moto	(
						Setting	5001	0x	11=0		inear servo 1x	mole	ן (ו 2 צ	3v	/v	5x	6v	7×	1
						x0		0.			14		2.	3.	47	37	0.	1.	
						x1													
						x2													
						x3													
						x4													
						x5													
						x6													
						x7													
						x8		IP5G-			LM-NP5G-								
					-		(Natu	irai co	oling)	(Oil cooled)							
					-	x9													
						xA xB													
					-	хС													
					-	xD													
						xE													
					· · · - · · · · ·										ġ			1	
						xF													

No.	Abbrev.	Parameter name	Explanation	Setting range (Unit)																		
			8Set the detector type.9AASet the position detector type for "pen", and the speed de for "ent". In the case of the semi-closed loop control, se value for "pen" and "ent".Cpen entpen 																			
			D 0 0 OSE104																			
			E pen 1 1 OSA104																			
			F 2 2 OSE105, OSA105																			
			3 3																			
			4 Setting impossible OHE25K-ET, OSE104-ET																			
			5 Setting impossible OHA25K-ET, OSA104-ET																			
			6 Setting impossible OSE105-ET, OSA105-ET, RCN723	3																		
			7 Setting impossible																			
		Motor/Detector type	8 Setting impossible Relative position detection scale, N (Mitsubishi Heavy Industries)	IP type																		
SV025	MTYP*		Motor/Detector type	Motor/Detector type	Motor/Detector type	Motor/Detector type	Motor/Detector type	Motor/Detector type	Motor/Detector type	Motor/Detector type	Motor/Detector type	Motor/Detector type	Motor/Detector type	Motor/Detector type	Motor/Detector type	Motor/Detector type	Motor/Detector type	Motor/Detector type	Motor/Detector type	Motor/Detector type	9 Setting impossible AT41 (Mitsutoyo), FME type, FLE t (Futaba)	ype
															A A A AT342, AT343, AT543 (Mitsutoyo), LC191M/491M (Heidenhain), MDS							
			B Setting impossible																			
			C - For semi-closed speed synchroniza																			
			C The setting of the slave axis in the sp C (Current synchronization control. synchronization) When the master axis is the semi-clos																			
			D - For closed-loop speed control																			
			D A Settings for slave axis in 2-scale 2- servomotor system (Using CN3 con	nnector)																		
			D D D The setting of the slave axis in the spi synchronization control. When the master axis is the full-close For linear servomotor current synchro	eed/ current d control.																		
			D E For V2 closed-loop current synchro																			
			E Setting impossible F Setting impossible																			
SV026	OD2	Excessive error detection width	Set the excessive error detection width when servo ON. For the standard setting, refer to the explanation of SV023 (OD1).	0 to 32767																		
-		during servo OFF	Vhen "0" is set, the excessive error detection will not be performed.	(mm)																		

No.	Abbrev.	Parameter name	Explanation Setting range (Unit)									
			F E D C B A 9 8 7 6 5 4 3 2 aflt zrn2 afse ovs Imc omr zrn3 vfct bit Meaning when "0" is set Meaning when "1" is set Meaning when "1" is set	HEX setting								
SV027	SSF1	Servo function selection 1	0 Vent Set the execution changeover type of the speed loop delay compensation 00: Delay compensation changeover invalid 10: Delay compensation changeover invalid 10: Delay compensation 01: Delay compensation 01: Delay compensation 01: Delay compensation changeover type 1 11: Setting prohibited 2 3 3 11: Setting prohibited 3 4 Set the number of compensation pulses of the jitter compensation. 5 vfct 00: Jitter compensation invalid 10: Jitter compensation 2 pulses 6 zrn3 ABS scale: Set to "1" in using AT342, AT343, AT543, LC191M/491M. 7 orn Machine side compensation invalid Machine side compensation anount with SV016 (LMC1) and SV041 (LMC2) 9 Imc 00: Lost motion compensation stop 10: Lost motion compensation type 1 11: Setting prohibited A B Set the compensation amount with SV031 (OVS1) and SV042 (OVS2) 00: Overshooting compensation stop 10: Overshooting compensation type 1 11: Setting prohibited A B OVS 00: Adoptive filter sensitivity standard 11: Adoptive filter sensitivity standard 11: Adoptive filter stensitivity increase (Set 2bits at a time) E zrn2 Set to "1". F aftt Adoptive filter stop Adoptive fil	n type 2 Ilses Ilses d on type 2								
SV028	MSFT	Pole shift amount	Set the pole shift amount for the linear servomotor. This is not used for the rotary servomotor. Set to "0".	-32768 to 32767 (µm)								
SV029	VCS	Speed at the change of speed loop gain	If the noise is bothersome at high speed during rapid traverse, etc, lower the speed loop gain. Set the speed at which the speed loop gain changes, and use this with SV006 (VGN2). When not using, set to "0". The setting unit differs for the linear servo, but the function is the same as that evaluated here.	0 to 9999 (r/min) 0 to 9999								
	Abbrev.	Parameter name	that explained here. Explanation Setting range (Unit)	(mm/s)								
SV030	IVC	Voltage dead time compensation	When 100% is set, the voltage equivalent to the logical non-energized time will be compensated. When "0" is set, a 100% compensation will be performed. Adjust in increments of 10% from the default value 100%. If increased too much, vibration or vibration noise may be generated.0 to 255 (%)	0 to 255								

No.	Abbrev.	Parameter name	Explanation	Setting range (Unit)				
			Set this if overshooting occurs during positioning. This compensates the motor torque during positioning. This is valid only when the overshooting compensation SV027 (SSF1/ovs) is selected.					
			Type 1: When SV027 (SSF1)/ bitB, A (ovs)=01 Set the compensation amount based on the motor's stall current. This compensates overshooting that occurs during pulse feeding. Normally, use Type 2.					
			Type 2: When SV027 (SSF1)/ bitB, A (ovs)=10 Set the compensation amount based on the motor's stall current. Increase by 1% and determine the amount that overshooting doesn't occur.	-1 to 100				
SV031	OVS1	Overshooting compensation 1	In Type 2, compensation during the feed forward control during circular cutting won't be performed.	(Stall [rated]				
			Type 3: When SV027 (SSF1)/ bitB, A (ovs)=11 Use this to perform the overshooting compensation during circular cutting or the feed forward control. The setting method is the same in Type 2.	current %)				
	When you wish different compensation amount depending on the direction When SV042 (OVS2) is "0", compensate with the value of SV031 (OVS1) in both of the + and -directions. If you wish to change the compensation amount depending on the command direction, set this and SV042 (OVS2). (SV031: + direction, SV042: - direction. However, the directions may be opposite depending on other settings.) When "-1" is set, the compensation won't be performed in the direction of the command.							
SV032	TOF	Torque offset	Set the unbalance torque of vertical axis and inclined axis.	-100 to 100 (Stall [rated] current %)				
				HEX setting				
			F E D C B A 9 8 7 6 5 4 3 2	1 0				
			dos nfd2 nf3 nfd1	zck				
			bit Meaning when "0" is set Meaning when "1" i	s set				
			0 zck Z phase check valid (Alarm 42) Z phase check invalid 1 Set the filter depth for Notch filter 1 (SV038).					
			2 nfd1 Value 000 001 010 011 100 101 110	111				
			Depth (dB) Infntly -18.1 -12.0 -8.5 -6.0 -4.1 -2.5	-1.2				
			3 deep Deep←	Shallow→				
			4 nf3 Notch filter 3 stop Notch filter 3 start (1125					
			5 Set the operation frequency of Notch filter 2 (SV046).					
				111 -1.2				
SV033	SSF2	Servo function selection 2	7 deep	Shallow→				
			8					
			9 A					
			B					
			C D dos E F	al output				
			(Note) Set to "0" for bits with no particular description.					

No.	Abbrev.	Parameter name	Explanation	Setting ran (Unit)
				HEX settir
			F E D C B A 9 8 7 6 5 4 3 2	1 0
			ovsn zeg moh	n has2 has1
			bit Meaning when "0" is set Meaning when "1" i	s set
			Setting for normal use. HAS control 1 valid	
			(High acceleration rate su HAS control 2 valid	ιρροπ)
			1 nasz (Overshooting support)	
			2 mohnMDS-B-HR motor thermal valid MDS-B-HR motor therma	lignored
			4	
SV034	SSF3	Servo function selection 3	5 zeg Z phase normal edge detection (Valid only when SV027/b	
		Selection 5	6	10-1)
			7	
			8 9 IINN Set the number of linear servos connected in parallel	
			A Set the number of linear servos connected in parallel.	
			B Set the non-sensitive band of the overshooting compensation	n type 3 in
			D lincrements of 2 m at a time.	
			In the feed forward control, the non-sensitive band of the model is ignor	
			F Set the same value as the standard SV040.	cu.
			(Note) Set to "0" for bits with no particular description.	
				HEX setti
			F E D C B A 9 8 7 6 5 4 3 2	1 0
			clt clG1 cl2n clet cltq	
			bit Meaning when "0" is set Meaning when "1"	is set
			0	10 001
			1	
			2	
			3 4	
			5	
C)/005	0054	Servo function	6	
SV035	SSF4	selection 4	7	
			8 Set the retracting torque for collision detection in respect to Cltg maximum torque of the motor.	the
			9 00: 100% 01: 90% 10: 80% (Standard) 11: 7	70%
			Setting for normal use The disturbance torque	beak of the
			A clet latest two seconds is dis MPOS of the servo moni	
			B cl2n Collision detection method 2 valid Collision detection metho	
			Collision detection method 1	
			C Collision detection method 1 Set the collision detection level during cutting feed (G1).	
			C Collision detection method 1 Set the collision detection level during cutting feed (G1). D clG1 The G1 collision detection level=SV060*clG1.	n feed
			C Collision detection method 1 Set the collision detection level during cutting feed (G1).	0

No.	Abbrev.	Parameter name							Explan	ation					Se		g ran Init)
															HE	EX s	etting
				F		D np	C	В	A 9 rtyp	8	7 6	5	4 3 ptyp		2	1	0
				bi	t					E	xplanat	ion					
				0 1						or of the		unit and	the pov	ver	supply	/ are	9
				2		То			externa	emerg	ency sto	pp functi	on, add	40	h.		-
				3			Setting		1x	2x	3x	4x	5x	6x	7x	8x	
				4	ptyp		x0	Not used			CV-300						
				5			x1		CV-110								
				6			x2			CV-220							
SV036			_	7			x3	01/ 07									•
57030	PTYP*	Power supply type						CV-37	CV-150			CV-450	CV-550		CV-75	0	
							x5 x6	CV-55		CV-260		01-400	0 0-000		01-13	0	
							x7				CV-370					1	
							x8	CV-75								1	
							x9		CV-185								
				A B C D E F	rtyp amp	Se	et "O".										
SV037	JL	Load inertia scale	motor	inert	tia.		rtia + m <u>JI+Jm</u> Jm			Moto	or inertia	1	respect		(5000 %)
			Set to	tal w	/eigh	nt of	the mo	oving s	ection f	or the li	near se	rvomoto	r as a k	g ur	nit.		5000 kg)
SV038	FHz1	Notch filter frequency 1							suppres ot using			oration o	occurs.		() to	9000 Iz)
SV039	LMCD	Lost motion compensation timing							ompens by 10 a		0	est not	match.		(2000 ns)
	Abbrev.	Parameter name						xplana					etting rai (Unit)	nge			
SV040	LMCT	Lost motion compensation non-sensitive band	Set the non-sensitive band of the lost motion compensation 0 to 100 in the feed forward control. 0 to 100 When "0" is set, the actual value that is set is 2 m. (μm) Adjust by increasing by 1 m at a time. 0										0 to	100			

No.	Abbrev.	Parameter name	Explanation	Setting range (Unit)
SV041	LMC2	Lost motion compensation 2	Set this with SV016 (LMC1) only when you wish to set the lost motion compensation amount to be different depending on the command directions Set to "0" as a standard.	-1 to 200 . (Stall [rated] current %)
SV042	OVS2	Overshooting compensation 2	Set this with SV031 (OVS1) only when you wish to set the overshooting compensation amount to be different depending on the command directions Set to "0" as a standard.	-1 to 100 . (Stall [rated] current %)
SV043	OBS1	Disturbance observer filter frequency	Set the disturbance observer filter band. Set to "100" as a standard. To use the disturbance observer, also set SV037 (JL) and SV044 (OBS2). When not using, set to "0".	0 to 1000 (rad/s)
SV044	OBS2	Disturbance observer gain	Set the disturbance observer gain. The standard setting is "100" to "300". To use the disturbance observer, also set SV037 (JL) and SV043 (OBS1). When not using, set to "0".	0 to 500 (%)
0.4045	Abbrev.	Parameter name	Explanation Setting range (Unit)	0 10 100
SV045	TRUB	Frictional torque	When you use the collision detection function, set the frictional torque. 0 to 100 (Stall [rated] current %)	0 to 100
SV046	FHz2	Notch filter frequency 2	Set the vibration frequency to suppress if machine vibration occurs. (Valid at 36 or more) When not using, set to "0".	0 to 9000 (Hz)
SV047	EC	Inductive voltage compensation gain	Set the inductive voltage compensation gain. Set to "100" as a standard. If the current FB peak exceeds the current command peak, lower the gain.	0 to 200 (%)
SV048	EMGrt	Vertical axis drop prevention time	Input a length of time to prevent the vertical axis from dropping by delaying Ready OFF until the brake works when the emergency stop occurs. Increase the setting by 100msec at a time and set the value where the axis does not drop.	0 to 20000 (ms)
SV049	PGN1sp	Position loop gain 1 in spindle synchronous control	Set the position loop gain during the spindle synchronous control (synchronous tapping, synchronous control with spindle/C axis). Set the same value as the value of the spindle parameter, position loop gain in synchronous control. When performing the SHG control, set this with SV050 (PGN2sp) and SV058 (SHGCsp).	n 1 to 200 (rad/s)
SV050	PGN2sp	synchronous control	Set this with SV049 (PGN1sp) and SV058 (SHGCsp) if you wish to perform the SHG control in the spindle synchronous control (synchronous tapping, synchronous control with spindle/C axis). When not performing the SHG control, set to "0".	0 to 999 (rad/s)
SV051	DFBT		Set the control time constant in dual feed back. When "0" is set, the actual value that is set is 1msec. The higher the time constant is, the closer it gets to the semi-closed control so the limit of the position loop gain is raised.	0 to 9999 , (ms)
SV052	DFBN	Dual feedback control dead zone	Set to "0" as a standard. Set the dead zone in the dual feedback control.	0 to 9999 (µm)
SV053	OD3	Excessive error detection width in special control	Set the excessive error detection width when servo ON in a special control (initial absolute position setting, stopper control, etc.). If "0" is set, excessive error detection won't be performed.	0 to 32767 (mm)

No.	Abbrev.	Parameter name	Explanation	Setting range (Unit)
SV054	ORE	Overrun detection width in closed loop control	Set the overrun detection width in the full-closed loop control. If the gap between the motor side detector and the linear scale (machine side detector) exceeds the value set by this parameter, it is judged to be overrun and Alarm 43 will be detected. When "-1" is set, the alarm detection won't be performed. When "0" is set, overrun is detected with a 2mm width.	-1 to 32767 (mm)
SV055	EMGx	Max. gate off delay time after emergency stop	Set a length of time from the point when the emergency stop is input to the point when READY OFF is compulsorily executed. Normally, set the same value as the absolute value of SV056. In preventing the vertical axis from dropping, the gate off is delayed for the length of time set by SV048 if SV055's value is smaller than that of SV048.	0 to 20000 (ms)
SV056	EMGt	Deceleration time constant at emergency stop	In the vertical axis drop prevention time control, set the time constant used for the deceleration control at emergency stop. Set a length of time that takes from rapid traverse rate (rapid) to stopping. Normally, set the same value as the rapid traverse acceleration/deceleration time constant. When executing the synchronous operation, put the minus sign to the settings of both of the master axis and slave axis.	-20000 to 20000 (ms)
SV057	SHGC	SHG control gain	When performing the SHG control, set this with S003 (PGN1) and SV004 (PGN2). When not performing the SHG control, set to "0".	0 to 1200 (rad/s)
SV058	SHGCsp	SHG control gain in spindle synchronous control	Set this with SV049 (PGN1sp) and SV050 (PGN2sp) if you wish to perform the SHG control in the spindle synchronous control (synchronous tapping, synchronous control with spindle/C axis). When not performing the SHG control, set to "0".	0 to 1200 (rad/s)
SV059	TCNV	Collision detection torque estimating gain	Set the torque estimating gain when using the collision detection function. After setting as SV035/bitF(clt)=1 and performing acceleration/deceleration, set the value displayed in MPOS of the NC servo monitor screen. Set to "0" when not using the collision detection function.	-32768 to 32767
SV060	TLMT	Collision detection level	When using the collision detection function, set the collision detection level during the G0 feeding. If "0" is set, none of the collision detection function will work.	0 to 999 (Stall [rated] current %)
SV061	DA1NO	D/A output channel 1 data No.	Input the data number you wish to output to D/A output channel. In the case of MDS-C1-V2, set the axis on the side to which the data will not be output to "-1".	-1 to 127
SV062	DA2NO	D/A output channel 2 data No.		
SV063	DA1MPY	D/A output channel 1 output scale	Set the scale with a 1/256 unit. When "0" is set, output is done with the standard output unit.	-32768 to
SV064	DA2MPY	D/A output channel 2 output scale		32767 (Unit: 1/256)
SV065	TLC	Machine side compensation spring constant	Set the spring constant of the machine side compensation. In the semi-closed loop control, the machine side compensation amount is calculated with the following equation. Compensation amount= $\frac{F (mm/min)^{2*}SV065}{R (mm)*10^9}$ (m) When not using, set to "0".	-32768 to 32767

No.	Abbrev.	Parameter name	Explanation						
			F E D C B A 9 8 7 6 5 4 3 2 1 0 Image:	<u> </u>					
			bit Meaning when "0" is set Meaning when "1" is set	7					
			0						
			1 Normal setting Rotary axis machine end absolut position control	te					
			2						
			3						
			4 pabs Normal setting Speed/current synchronous control absolute position control						
SV081	SPEC2*	Servo specification	5						
50001	SPEC2	selection 2	6						
			7						
			C						
			D						
			E						
			(Note) Set to "0" for bits with no particular description.						
			F E D C B A 9 8 7 6 5 4 3 2 1 0)					
			obshj Imc3 Im	nct					
			bit Meaning when "0" is set Meaning when "1" is set	_					
			bit Meaning when "0" is set Meaning when "1" is set Setting for normal use Lost motion compensation 3						
			0 Imct adjustment time measurement						
			valid 1 Imc3 Lost motion compensation 3 stop Lost motion compensation 3 star	rt					
			3						
			4						
0.4000		Servo function							
SV082	SSF5	selection5	6 Normal use Disturbance observer						
			7 obshj High-load inertia compatible						
			control						
			B						
			С						
			(Note) Set to "0" for bits with no particular description.						

No.	Abbrev.	Parameter name					E	Explan	ation								ing rang (Unit)
			F	EC) C	В	A	9	8	7	6 nfd5	5	4	3	2 nfd4	1	0
				bit	1	Mear	ning w	hen se	et to 0			N	leanir	ng wh	en set	to 1	
			0											-			
			1		Set the			or Noto									
			2		Setting						,					\rightarrow	Shallow
			3	nfd4	J		000	001	(010	011	1	00	101	1.	10	111
			5				000	001	,	510			00	101	'	10	
					Depth (dB)	-∞	-18.	1 -'	12.0	-8.5	-6	5.0	-4.1	-2	.5	-1.2
			4														
		Servo function	5	nfd5	Set the	filter o	depth f	or Noto	h filte	r 5 (S∖	/046).						
SV083	SSF6	selection 6	6		Setting	value	Deep	←								\rightarrow	Shallow
			7		Ū		000	001	(010	011	1	00	101	1.	10	111
			-		_												
					Depth (dB)	-00	-18.	1 -'	12.0	-8.5	-6	6.0	-4.1	-2	.5	-1.2
			9														
			Α														
			В														
			С														
			D														
			Е														
			F														
			(Note	e) Set to "	0" for bi	ts wit	th no p	particu	ılar de	escrip	tion.						
						-								1 -			
			F	EC) C	В	A	9	8	7	6	5	4	3	2	1	0
				bit		Mear	ning w	hen se	et to O			N	leanir	ng wh	en set	to 1	
			0														
			1														
			2		[
			3														
			4														
		Servo function	5														
SV084	SSF7	selection 7	6		Ι												
			7														
			8														
			9														
			A		1												
			В														
			C														
			D														
			E														
			F														
					0" fc = !: '	to'			lor -	o o o minim	tion						
			(NOte	e) Set to "	U" TOT DI	ts wit	in no p	Darticu	llar de	escrip	tion.						

No.	Abbrev.	Parameter name	Explanation	Setting range (Unit)
SV085	LMCk	Lost motion compensation spring constant	Set the machine system's spring constant when using lost motion compensation type 3.	0 to 32767
SV086	LMCc	Lost motion compensation viscous coefficient	Set the machine system's viscous coefficient when using lost motion compensation type 3.	0 to 32767
SV087	FHz4	Notch filter frequency 4	Set the vibration frequency to suppress if machine vibration occurs. (Valid at 141 or more) When not using, set to "0".	0 to 2250 (Hz)
SV088	FHz5	Notch filter frequency 5	To use this function, set to not "0" (normally "1") when turning the power ON. This function cannot be used with adaptive filter.	
SV089 : SV100			Not used. Set to "0".	0

4-2-2 Limitations to electronic gear setting value

The servo drive unit has internal electronic gear. The command value from the NC is converted into a detector resolution unit to carry out position control. The electronic gears are single gear ratios calculated from multiple parameters. However, each value (ELG1, ELG2) must be 32767 or less. If the value overflows, the initial parameter error (alarm 37) will be output.

If an alarm occurs, the mechanical specifications and electrical specifications must be revised so that the electronic gears are within the specifications range.

Parameters related to electronic gears SV001 (PC1), SV002 (PC2), SV003 (PGN1) (SV049 (PGN1sp)), SV018 (PIT), SV019 (RNG1), SV020 (RNG2)

Reduced fraction of

 $\frac{\text{ELG1}}{\text{ELG2}} = \frac{\text{PC2} \times \text{RANG}}{\text{PC1} \times \text{PIT} \times \text{IUNIT}} \text{ (reduced fraction)}$

<semi-closed loop=""></semi-closed>	<closed loop=""></closed>
RANG = RNG1	$RANG = (RNG2 \times PGN1sp)$
IUNIT = $2/NC$ command unit (μ m)	1μm: IUNIT = 2, 0.1μm: IUNIT = 20

When the above is calculated, the following conditions must be satisfied.

 $ELG1 \leq 32767$ $ELG2 \leq 32767$

Method of confirming maximum setting range for PC1 and PC2 (Example)

For semi-closed loc	For semi-closed loop, 10mm ball screw lead, 1µm command unit and OSA104 motor side detector.								
The following parameters can be determined with the above conditions.									
SV018 (PIT) = 10, SV019 (RNG1) = 100, SV020 (RNG2) = 100, IUNIT = 2									
Accordin	According to the specifications, the maximum setting value for ELG1 and ELG2 is 32767.								
ELG1	PC2 × 100	_	5 × PC2	Thus, the maxi-	PC2 < 6553				
ELG2 =									
Set the PC1 and PC	Set the PC1 and PC2 gear ratio to within the above calculation results.								

4-2-3 Setting excessive detection error width

The following parameters are determined according to each axis' feedrate.

No.	Abbrev.	Parameter name	Explanation
SV023	OD1	Excessive error detection width at servo ON	Set "6" as a standard. A protective function will activate if the error between the position command and position feedback is excessive. If
SV026	OD2	Excessive error detection width at servo OFF	the machine load is heavy and problems occur with the standard settings, gradually increase the setting value. < Calculation of standard setting value> OD1 = OD2 = $\frac{\text{Rapid traverse rate (mm/min)}}{60 \times \text{PGN1}} \div 2 \text{ (mm)}$

4-2-4 Setting motor and detector model

The settings are made as shown below according to the motor and detector model being used. Check the model in the specifications, and set accordingly.

No.	Abbr.	Parameter name				Exp	lanatior	n			
SV025	MTYP	Motor/detector	Set the se	rvomotor	and d				a)		
2.020		model	FE		B		8 7		9/ 4 3	2	1 0
				pen		ent	• .		mon		
				2011	I	ont					
			nen (Po	sition dete	ector)						
			bit	Semi-clos		pp bit		Clo	sed lo	ap	
				SE104	500 100	4	OSE10		00010	- P	
				SA104		5	OSA10				
			2 0	SA105 / OS	SE105	6	OSA10)5-ET/OSE	105-E	T	
			0	BA13/OBA	14/OB/	A17 8	ABZ S	CALE			
						9	ABS S	CALE (AT	41, FN	IE, FLE	type)
						A	Scale I	2, 343, 543 I/F unit			
						С	(MDS-I	ronous cor B-HR type)	-	e axis)
						D	2-scale	e 2-linear s -loop sync	ervo s	system	
							ciosed	-ioop sync			Л
			ent (Sn	eed detect	or)						
			bit		51)		Explanat	ion			
				HE25K/OS	E104		-Apialiat				
				HA25K/OS							
			_	SA105/OS	-)BA13/00	A14/09A	17			
			_Δ Fo	or normal co					ar ser	vo (ABS	SCALE,
			C Dedicated for synchronous control semi-closed loop (current instructed)						structed		
			D Fo	nchronizati or speed sy	nchror		ol, curren	t comman	d sync	hronizat	ion/
			_ lin	near current							
			E CI	losed curre	nt sync	chronizatio	n				
			The scale d be <u>low.</u>	letectors us	sed in c	combinatio	n with the	e linear sei	vomo	tor are s	hown
			Mode		olution Im)	Detector ID	Displ	ay type	Туре	Pen	ent
			LC191	1M 0).1	B0h					
			2013	0.	.05	B1h	H-A	BS-LS			
			LC491	1 1 1 / 1).1	B0h					
				0.	.05	B1h			ABS	A or D	A or D
			AT34 AT34).5 .05	24h 25h	- A1	Г342		A OF D	A OF D
			AT54		.05	25h	M-A	BS-LS			
				Δn	alog	51h		+ AT32			
			MDS-B	-HR cycle	e/500	52h, 56h	BHR-	Version			
			When co	onnecting t							
			mon (M	otor mode							
			bit 0	to 7 Se	etting	Motor I	nodel	Setting		Motor m	odel
		1	I I —			HC-H52		C0		-H53	
								C1	HC	-H103	
						HC-H102					
					B2	HC-H152		C2	HC	-H153	
					B2 B3	HC-H152 HC-H202		C2 C3	HC HC	-H153 -H203	
			Hex sett		B2 B3 B4	HC-H152 HC-H202 HC-H352		C2 C3 C4	HC HC HC	-H153 -H203 -H353	
			Hex sett	ting	B2 B3 B4 B5	HC-H152 HC-H202 HC-H352 HC-H452		C2 C3 C4 C5	HC HC HC HC	-H153 -H203 -H353 -H453	
			Hex sett	ting	B2 B3 B4 B5 B6	HC-H152 HC-H202 HC-H352 HC-H452 HC-H702		C2 C3 C4	HC HC HC HC HC	-H153 -H203 -H353 -H453 -H702	
			Hex sett	ting	B2 B3 B4 B5 B6 B7	HC-H152 HC-H202 HC-H352 HC-H452	2	C2 C3 C4 C5 C6	HC HC HC HC HC HC	-H153 -H203 -H353 -H453	
			Hex sett	ting	B2 B3 B4 B5 B6 B7 B8 B9	HC-H152 HC-H202 HC-H352 HC-H452 HC-H702 HC-H902 HC-H110 HC-H110	2	C2 C3 C4 C5 C6 C7	HC HC HC HC HC HC	-H153 -H203 -H353 -H453 -H702 -H903 -H1103	
			Hex sett	ting	B2 B3 B4 B5 B6 B7 B8 B9	HC-H152 HC-H202 HC-H352 HC-H452 HC-H702 HC-H902 HC-H110	2 -60P	C2 C3 C4 C5 C6 C7	HC HC HC HC HC HC HC HC	-H153 -H203 -H353 -H453 -H702 -H903	

Note 1) For synchronous control, the master axis is set as the standard, and synchronous control is set for the slave axis.
 Note 2) When carrying out synchronous control with the MDS-CH-V2 Series, set the L axis as the master and the M axis as the slave.

Note 3) Synchronous control with the MDS-CH-V1 Series is compatible only with the absolute position system.

4-2-5 Setting servo specifications

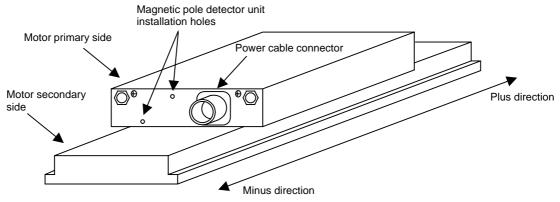
No.	Abbr.	Parameter name		Explanatio	Explanation						
SV017	SPEC	Servo specifications	se parameters are set v o specifications.		. Set as s	hown below to match the					
				when set to 0		aning when set to 1					
				ck forward polarity control invalid		eedback reverse polarity					
			2		Duariee						
			3 spwv Speed feedba	ck filter invalid	Speed f	eedback filter valid					
			4 fdir Position feedb	ack forward	Position polarity	feedback reverse					
			5								
			7 abs Relative positi			e position detection					
			8 mp MP scale 3601	· · · /		e 720P (1mm pitch) e absolute position					
			detection type	1, 2	detectio	n type 3					
			A B								
			с "0010": НС-Н	motor (hexadecim	nal setting	"2")					
			o F ^{Spin} "1001": LN-NF	25G linear servom	otor (hexa	decimal setting "8")					
			Set "0" for all bits other that	h those above.							
SV036	PTYP	Power supply type	se parameters are set v	vith HEX values							
					-						
			F E D C B A		6 5	4 3 2 1 0					
			amp	rtyp		ptyp					
			bit	Explan	ation						
			Set a power supply	unit model. (Only	units with v	wiring to CN4 connector)					
			Setting value	Content	Setting value	Content					
				power supply unit	22	CH-CV-220 22kW					
			04 CH-C\		26	CH-CV-260 26kW					
			ptyp 06 CH-C\ 08 CH-C\		30 37	CH-CV-300 30kW CH-CV-370 37kW					
			11 CH-C		45	CH-CV-450 45kW					
			15 CH-C\	′-150 15kW	55	CH-CV-550 55kW					
			19 CH-C\	′-185 18.5kW	75	CH-CV-750 75kW					
			Normally, set "00". Always set "0". (Po	wer regeneration	type)						
			Set "1" when conn	ecting V1-185.	()po)						
			Amp Always set "0". (Fo	r MDS-CH)							
SV027	SSF1	Special servo function selection 1	mally, set "4000".								
SV033	SSF2	Special servo function selection 2	mally, set "0000".								
SV001	PC1	Motor gear ratio	the motor gear ratio in I								
SV002	PC2	Machine gear ratio	the rotary axis, set the	otal deceleration	n (accele	ration) ratio.					
SV018	PIT	Ball screw pitch	the ball screw pitch as	an mm unit. Set	360 for th	he rotary axis.					
SV019	RNG1	Position detector resolution	the motor detector reso er to section "4-2-4 Sett								
SV020	RNG2	Speed detector resolution	ngs.								
SV003	PGN1	Position loop gain 1	mally, set "33".								

4-2-6 Initial setup of the linear servo system

The methods of setting up the poles for the linear servomotor are explained in this section.

The motor is driven by the magnetic force created by the coil and the magnetic force of the permanent magnet. Thus, it is necessary to comprehend at which pole of the permanent magnet the coil is located. With the conventional rotary motor, the coil and permanent magnet are located in the motor, and the relation of the two parts is fixed. The relation of the detector installed on the motor and the motor itself is also fixed.

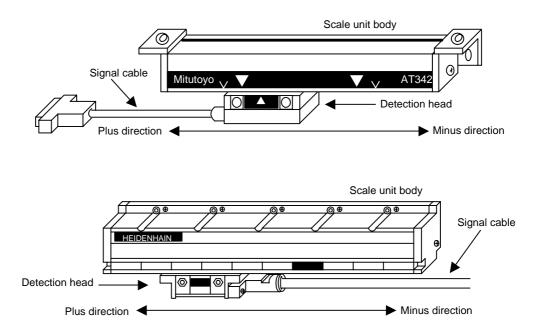
With the linear servo system the coil (motor primary side), permanent magnet (motor secondary side) and linear are installed independently, so the pole must be adjusted according to the linear servomotor and linear scale relation.


If this pole is not adjusted, the motor may not operate or may not operate correctly, so always set as explained below.

(1) Installing the linear servomotor and linear scale

The installation direction of the linear servomotor and linear scale is explained in this section.

1) Linear servomotor's pole direction


The pole direction of the linear servomotor is shown below. As shown in the drawing, if moved in the direction having the power cable connector or MDS-B-MD installation hole, the pole will move in the minus direction. If moved in the opposite direction, the pole will move in the plus direction.

2) Linear scale feedback direction

The linear scales include the Mitutoyo scale and Heidenhain scale, etc. The feedback direction of the Mitutoyo AT342 scale is shown below. When moved to the left, looking from the direction with the detector head facing downward and the AT342 display facing forward, the feedback moves in the plus direction. When moved in the opposite direction, the position moves in the minus direction.

The polarity (plus/minus) of the Heidenhain scale is the opposite of the Mitutoyo scale.

If the linear servomotor's pole direction and linear scale's feedback direction are same, the state is called forward polarity. If these directions differ, the state is called reverse polarity. Normally, these are installed to achieve forward polarity, but can be installed to achieve reverse polarity. Set the parameters as shown below. When this parameter is set, the servo drive unit's position direction can be reversed. Thus, the position data displayed on the Servo Monitor screen will have a plus/minus direction opposite from the linear scale feedback direction.

(The Heidenhain scale indicates the case of the A, B phase analog output of the measurement length system LS, LIDA and LIF. Thus, when using another scale, confirm that the A and B phase analog outputs have the same relation.)

No.	Abbr.	Parameter name	Explanation						
SV017	SPEC	Servo specifications	HEX setting parameter. Set as shown below according to the servo specifications. F E D C B A 9 8 7 6 5 4 3 2 1 0 spm drvall drvup mpt3 mp abs vmh vdir fdir seqh dfbx vdir2						
			bit Meaning when set to 0 Meaning when set to 1						
			4 fdir Main side (CN2) feedback Main side (CN2) feedback reverse polarity						

Connected s	cale	AT342 sc	ale	Heidenhain	scale
ltem		Polarity	SPEC (fdir)	Polarity	SPEC (fdir)
	1	Forward polarity	0	Reverse polarity	1
	2	Reverse polarity	1	Forward polarity	0
	3	Reverse polarity	1	Forward polarity	0
Installation No.	4	Forward polarity	0	Reverse polarity	1
installation no.	5	Reverse polarity	0	Forward polarity	1
	6	Forward polarity	0	Reverse polarity	1
	7	Forward polarity	1	Reverse polarity	0
	8	Reverse polarity	1	Forward polarity	0

Table of feedback polarity according to linear servomotor and linear scale installation direction

Installation 1

Installation 2

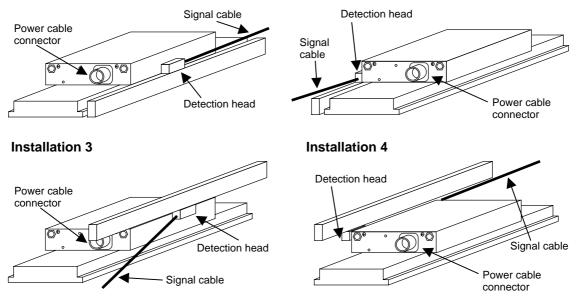


Fig. (1)-1 When linear scale detection head is installed on motor's primary side (This is for the AT342. The signal cable direction is reversed for the Heidenhain scale.)

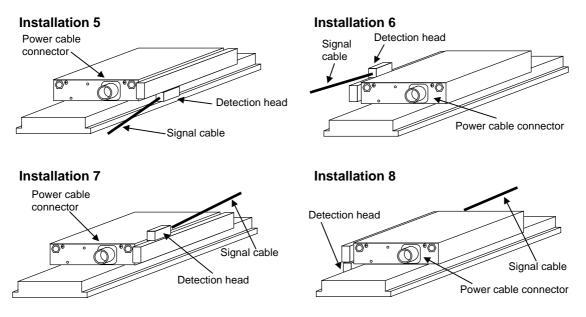


Fig. (1)-2 When linear scale body is installed on motor's primary side (This is for the AT342. The signal cable direction is reversed for the Heidenhain scale.)

(2) DC excitation function

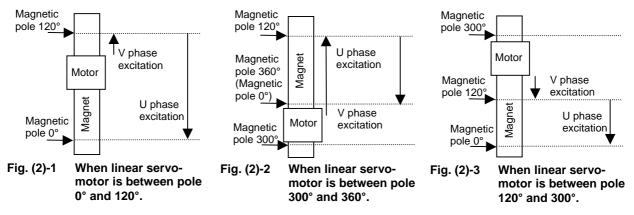
By using the DC excitation function, the linear servomotor can be moved to 0° on the pole regardless of the feedback from the linear scale.

This DC excitation function is required to determine the pole shift amount. When determining the pole shift amount, carry out DC excitation after confirming that the cycle counter displayed on the Servo Monitor screen is not "0" (Z phase passed).

The following parameters are used for DC excitation.

No.	Abbr.	Parameter name		Explanation						
SV034	SSF3	Servo function selection 3	HEX setting pa	D C B A 9 8 7	6 5 4 3 2 1 0 os2 dcd test mohn has2 has1					
			bit Meaning when set to 0 Meaning when set to 1							
			4 dcd	Setting for normal use.	DC excitation mode					

No.	Abbrev.	Parameter name	Explanation	Setting range (Unit)
SV061	I A I N()			0 to 100 [Stall rated current %]
	DAZNO	data No	Normally 40 is set	0 to 100 [Stall rated current %]
SV063	DA1MPY	D/A output channel 1 output scale	Set the initial excitation time for DC excitation. (ms) Normally, 500 is set.	-32768 to 32767 [Stall rated current %]


* Set to |SV061| ≤ |SV062|.

<Adjustment methods>

- 1. Secure the distance (PIT) that the linear servomotor moves during DC excitation.
- 2. Set SV034:dcd to "1", and the setting values for starting DC excitation in SV061 to SV063.
- 3. Release emergency stop. (Start DC excitation.)
- 4. Apply emergency stop. (Stop DC excitation)

<Operation>

- 1. When the emergency stop is released, the value set in SV061 will flow to the V phase (V phase excitation) for (SV063 setting value \times 1/2) msec, and the motor will move toward the pole 120°. The movement direction and distance depend on the position of the linear servomotor when emergency stop is released as shown below. (It may not be possible to confirm movement when already near pole 120°.)
- 2. Next, the current set in SV061 will flow the U phase (U phase excitation) for (SV063 setting value \times 1/2) msec, and the servomotor will move toward the pole 0°. In this case, the movement will be in the same direction for all examples shown below.
- 3. Finally, the current set in SV062 will flow to the U phase, and the magnetic pole 0° position will be established.

<Confirmation>

1. During DC excitation, confirm the value displayed at MAX CURRENT 2 on the NC Servo Monitor screen.

If the linear servomotor does not move even when the MAX CURRENT 2 value is 100 or more, the cable connection may be incorrect, so confirm the connection.

2. Confirm the MAIN side feedback polarity (SPEC/fdir) achieved with DC excitation. The MAIN side feedback polarity can be confirmed with the direction that the linear servomotor moves during U phase excitation, and the increment/decrement of the cycle counter displayed on the NC Servo Monitor screen. Judge whether the polarity confirmed with DC excitation matches the polarity set with the servo parameters. Correct the servo parameter polarity if incorrect.

fdir correction table ac	cording to lin	near servomoto	or moveme	ent with DC exc	itation.

Motor movement	Linear servor Minus d	notor polarity lirection	Linear servomotor polarity Plus direction						
Cycle counter increment/decrement	Increment	Decrement	Increment	Decrement					
ABS SCALL	Correctly set	Incorrectly set	Incorrectly set	Correctly set					
MDS-B-HR	Incorrectly set	Correctly set	Correctly set	Incorrectly set					

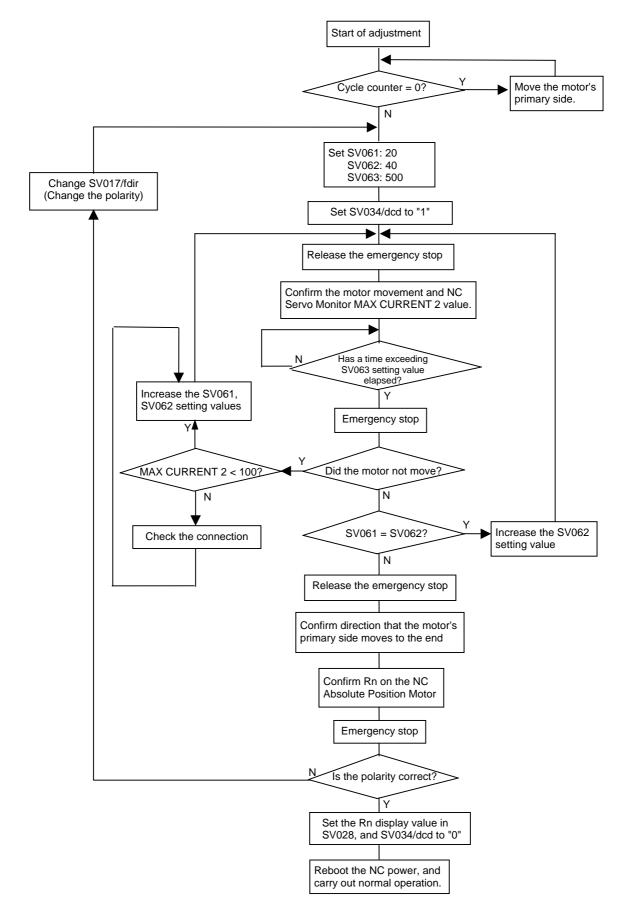
(3) Setting the pole shift

When the linear servomotor and linear scale are installed, the linear servomotor does not know which pole the permanent magnet is at. Thus, if the linear servomotor is driven in that state, it may not move or could runaway. By setting the pole shift amount, the linear servomotor can be driven correctly no matter which pole it is at.

For the pole shift amount, set the data displayed at Rn on the NC Absolute Position Monitor screen during DC excitation (while the emergency stop is released).

No.	Abbrev.	Parameter name	Explanation	Setting range (Unit)
SV028	MSFT	Pole shift amount	Set the pole shift amount	-30000 to 30000 (µm)

* The SV028 setting value is validated after the NC power is rebooted.


1) For system to which MDS-B-MD is not connected

If the pole shift amount is set, it will be validated after the NC power is rebooted.

2) For system to which MDS-B-MD is connected

Normally, the motor is driven with the pole created by MDS-B-MD. However, if this pole shift amount is set, it will be validated when the Z phase has been passed once after the NC power has been rebooted. However, if there is a deviation of 30° or more between the pole before and after pole shifting, the pole shift amount will not be validated, and instead the 9B warning (Pole shift warning) will be detected. The motor will be driven with the pole achieved before pole shifting.

If the "9B alarm" occurs, carry out DC excitation again to determine the pole shift amount. The correct pole shift amount can be achieved even if a value is set in SV028 at this time.

Flow chart for DC excitation and pole shift amount setting

(4) Setting the parallel drive system

When driving the linear servomotor with a parallel drive system, confirm that the following parameters are correctly set for each control method. If incorrectly set, correct the setting and reboot the NC power supply.

When using a parallel drive system, do not simultaneously DC excite the master side and slave side. When carrying out DC excitation of either axis, make sure that current is not flowing to the other axis.

No.	Abbr.	Parameter name						Ex	plaı	natio	on							
SV017	SPEC	Servo specifications		X setting p cifications		ter. S	Set as	sho	wn l	belo	w ac	cord	ing t	o th	es	serv	0	
			ΙF	FEC) C	В	А	9	8	7	6	5	4	3		2	1	0
				spm		drvali	drvup	npt3 :	mp	abs	vmn	vdir	Tair		s	eqn :	ardx	vdir2
				bit	М	eanir	ng who	en se	t to	0		Ме	anin	g wł	nen	ı set	to '	1
				4 fdir	Main s forwar			eedba	ack				de (C pola		fee	edba	ıck	
				0 vdir2	Sub-s forwar			edba	ick				le (Cl pola		iee	dbao	ck	
SV025	MTYP	Motor/detector type	HE:	X setting p		ter. S	Set as A en	9	vs ao 8	7	ling t	o det	4	type 3 ityp		2	1	0
			Т	bit						De	Details							
				8 9 A B	Set th	e pos	ition d	etecto	or ty	pe. (ł	Refer	to se	ectior	action 4-2-4.)				
				C D E F	Set the speed detector type. (Refer to section 4-2-4.)													

No.	Abbrev.	Parameter name	Explanation	Setting range (Unit)
SV028	MSFT	Pole shift amount	Set the pole shift amount	-30000 to 30000 (μm)

Setting parameter	Master axis	Slave axis
SV017/fdir	Normally, set the setting value for control.	Normally, set the setting value for control.
SV017/vdir2	Set "0".	Set "0".
SV025/pen, ent	Set AAxx.	Set AAxx.
SV028	Normally, set the setting value for control.	Normally, set the setting value for control.

2-scale 2-drive control (System using only main side (CN2 connector side) feedback)

2-scale 2-drive control (System also using sub- side (CN3 connector side) feedback)

Setting parameter	Master axis	Slave axis
SV017/fdir	Normally, set the setting value for control.	Normally, set the setting value for control.
SV017/vdir2	Set "0".	If the master axis and linear servomotor pole directions are the same, set to the same setting as SV017/fdir for the master axis. If the pole directions are reversed, set the opposite setting as SV017/fdir for the master axis.
SV025/pen, ent	Set AAxx.	Set DAxx.
SV028	Normally, set the setting value for control.	Normally, set the setting value for control.

1-scale 2-drive control

Setting parameter	Master axis	Slave axis
SV017/fdir	Normally, set the setting value for control.	If the master axis and linear motor pole directions are the same, set to the same setting as SV017/fdir for the master axis. If the pole directions are reversed, set the opposite setting as SV017/fdir for the master axis.
SV017/vdir2	Set "0".	Set "0".
SV025/pen, ent	Set AAxx.	Set DDxx.
SV028	Normally, set the setting value for control.	Set the pole shift amount when DC excitation is carried out with the connected detector.

 When carrying out DC excitation with the parallel drive system, if the current flows to the parallel axis the machine could break down or the accuracy may not be satisfied.
When carrying out DC excitation with the parallel drive system, make sure that current does not flow to the parallel axis.

(5) Settings when motor thermal is not connected

POINT	When driving the motor with a system connected to the MDS-B-HR, the servo drive unit's protection function will activate if the motor reaches an abnormal temperature. If the system does not require the motor abnormal temperature detection, set the following parameter to ignore the signal from the MDS-B-HR.
-------	---

No.	Abbr.	Parameter name		Explanation														
SV034	SSF3	Servo function selection 3	Set the	Ē	ther D	mal w C	ith th B	e foll	owin 9	g para	amete 7 toff	6	5	4 dcd	3	2 moh	1 n has2	0 has1
				bit		Me	eanin	ıg wl	nen s	set to	0	Meaning when set to 1						l
			2	mohr	n H	HR motor thermal valid							HR motor thermal invalid					

	HC-H Standard motor																		
Motor	52	53	102	103	152	153	202	203	352	353	452	453	702	703	902	903	1102	1103	1502
Unit	05	05	10	10	20	20	20	35	35	45	45	70	70	90	90	110	150	150	185
name SV001		-	-			20		-		-	-	-	-	-	-			-	
SV001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SV003	47	47	47	47	47	47	47	47	47	47	47	47	47	47	47	47	47	47	47
SV004	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125
SV005	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75
SV006 SV007	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SV008	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
SV009	4096	4096	4096	4096	4096	4096	4096	4096	4096	4096	4096	4096	4096	4096	4096	4096	4096	4096	4096
SV010	4096	4096	4096	4096	4096	4096	4096	4096	4096	4096	4096	4096	4096	4096	4096	4096	4096	4096	4096
SV011 SV012	1024 1024	1024 1024	1024 1024	1280 1280	1024 1024	1280 1280	1024 1024	1024 1024	1024 1024	768 768	1024 1024	768 768							
SV012	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500
SV014	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500
SV015	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
SV016	0	0	0 2008	0	0	0	0 2008	0 2008	0	0	0 2008	0 2008	0	0	0	0 2008	0 2008	0	0 2008
SV017 SV018	2008	2008	2006	2008	2008	2008	2006	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2008	2006
SV019	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SV020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SV021	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60
SV022 SV023	150 6	150 6	150 6	150 6	150 6	150 6	150 6	150 6	150 6	150 6	150 6	150 6	150 6	150 6	150 6	150 6	150 6	150 6	150 6
SV023 SV024	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
SV025	xxB0	xxC0	xxB1	xxC1	xxB2	xxC2	xxB3	xxC3	xxB4	xxC4	xxB5	xxC5	xxB6	xxC6	xxB7	xxC7	xxB8	xxC8	xxB9
SV026	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
SV027 SV028	4000 0	4000 0	4000 0	4000 0	4000 0	4000 0	4000 0	4000 0	4000 0	4000 0	4000 0	4000 0	4000 0	4000 0	4000 0	4000 0	4000 0	4000 0	4000 0
SV028	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SV030	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SV031	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SV032	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SV033 SV034	0010	0010	0010	0010	0010	0010	0010	0010	0010	0010	0010	0010	0010	0010	0010	0010	0010	0010	0010
SV035	0000	0000	0000	0000	0000	0000	0000	0000	0000	0040	0000	0040	0040	0000	0000	0000	0000	0000	0000
SV036	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
SV037	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SV038 SV039	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SV039	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SV041	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SV042	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SV043 SV044	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SV044	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SV046	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SV047	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
SV048 SV049	0 15	0 15	0 15	0 15	0 15	0 15	0 15	0 15	0	0	0	0 15	0 15	0 15	0 15	0 15	0 15	0	0 15
SV049	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SV051	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SV052	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SV053	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SV054 SV055	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SV055	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SV057	281	281	281	281	281	281	281	281	281	281	281	281	281	281	281	281	281	281	281
SV058	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SV059 SV060	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SV060 SV061	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SV062	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SV063	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SV064 SV065	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(Svstem)	-	-	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
SV081	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
SV082	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
SV083	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
SV084 SV085	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
SV085 SV086	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SV080 SV087	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SV088	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SV089	0	^	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	~
: SV100	0	0	U	U	0	U	U	0	U	0	0	0	0	U	U	0	0	0	0

4-2-7 Standard parameter list according to motor(1) HC-H Series (2000, 3000r/min rating)

Note) Set the detector model in the xx of SV025. Normally, "00", "11" or "22" is set.

Motor	LM-N Series (Natural cooling)	LM-N Series (Oil-cooled
	LM-NP5G-60P-X0	LM-NP5G-60P-X0
Unit name	150	150
SV001	1	1
SV002	1	1
SV003	47	47
SV004	125	125
SV005	-	-
SV006	0	0
SV007	0	0
SV008	1364	1364
SV009	10240	10240
SV010	10240	10240
SV010	10240	10240
SV012	1024	1024
SV013	500	500
SV014	500	500
SV015	0	0
SV016	0	0
SV017	8xxx	8xxx
SV018	60	60
SV019	-	-
SV020	-	-
SV020	60	60
SV021 SV022	150	150
SV022	20	20
SV023 SV024	50	
		50
SV025	Xx08	Xx18
SV026	20	20
SV027	4000	4000
SV028	-	-
SV029	0	0
SV030	0	0
SV031	0	0
SV032	0	0
SV033	0000	0000
SV034	0003	0003
SV035	0000	0000
SV035	0000	0000
SV037	0	0
SV038	0	0
SV039	0	0
SV040	0	0
SV041	0	0
SV042	0	0
SV043	0	0
SV044	0	0
SV045	0	0
SV046	0	0
SV040 SV047	100	100
SV047 SV048	0	0
SV048 SV049	15	15
SV050	0	0
SV051	0	0
SV052	0	0
SV053	0	0
SV054	0	0
SV055	0	0
SV056	0	0
SV057	281	281
SV058	0	0
SV059	0	0
SV059 SV060	0	0
SV061	0	0
SV062	0	0
SV063	0	0
SV064	0	0
OS1		

(2) Linear servomotor LM-N Series

4-3 Spindle drive unit initial parameter settings

Refer to each CNC instruction manual for details on the operation methods and system specification parameter settings.

4-3-1 List of spindle parameters

- (Note 1) The settings of parameters with an asterisk in the CNG column can be changed without turning the CNC power OFF.
- (Note 2) "DEC" in the TYP column means that the parameter is set with a decimal, and "HEX" means that the parameter is set with a hexadecimal.
- (Note 3) If "0002" is set for SP257 (RPM)", the speed (r/min) set with each parameter will be doubled. (Example: If SP017 is set to 20000r/min, the motor's actual maximum speed will be 40000r/min.)

Name	Abbr.	Parameter name	Details	ТҮР	C N G	Stand- ard setting	Unit	Permissible setting range
SP001	PGM	Magnetic sensor, motor built-in encoder orientation position loop gain	As the set value is larger, the orientation time becomes shorter and servo rigidity is increased. However, vibration is increased and the machine becomes likely to overshoot.	DEC	*	100	1/10 s ⁻¹	0 to 2000
SP002	PGE	Encoder orientation position loop gain	As the set value is larger, the orientation time becomes shorter and servo rigidity is increased. However, vibration is increased and the machine becomes likely to overshoot.	DEC	*	100	1/10 s ⁻¹	0 to 2000
SP003	PGC	Position gain during C-axis non-cutting	Set the position loop gain for the C-axis non-cutting mode. (Valid when the control input 1 bit F is set to "0" in the C-axis control mode.)	DEC	*	15	s⁻¹	0 to 200
SP004	OINP	Orientation in-position width	Set the position error range in which an orientation completion signal is output.	DEC	*	16	1/16°	0 to 2880
SP005	OSP	Orientation mode changing speed limit value	Set the motor speed limit value to be used when the speed loop is changed to the position loop in orientation mode. When this parameter is set to "0", SP017 (TSP) becomes the limit value. If the orientation is not stable when using a machine with two or more gear stages with a large deceleration rate, the operation may be stabilized by setting the SP037 bit D to "1".	DEC		0	r/min	0 to 32767
SP006	CSP	Orientation mode deceleration rate	As the set value is larger, the orientation time becomes shorter. However, the machine becomes likely to overshoot.	DEC	*	20		0 to 1000
SP007	OPST	Position shift amount for orientation	 Set the stop position for orientation. (1) Motor built-in encoder and encoder orientation Set a value obtained by dividing 360° by 4096. (2) Magnetic sensor orientation Divide -5°C to +5° by 1024, and set 0° as "0". 	DEC	*	0		(1) -4095 to 4095 (2) -512 to 512
SP008			Not used. Set "0".	_		0	_	_
SP009	PGT	Synchronous tap position loop gain	Set the spindle position loop gain for synchronous tapping.	DEC	*	15	S ⁻¹	0 to 200
SP010	PGS	Spindle synchronization position loop gain	Set the spindle position loop gain for spindle synchronization.	DEC	*	15	S ⁻¹	0 to 200
SP0111	to SP016		Not used. Set "0".	-		0	-	_
SP017	TSP	Maximum motor speed	Set the maximum motor speed.	DEC		6000	r/min	1 to 32767
SP018	ZSP	Motor zero speed	Set the motor speed for which zero-speed output is performed. The spindle will coast at speeds less than the set speed.	DEC		50	r/min	1 to 1000

<Class: Spindle specifications>

Name	Abbr.	Parameter name	Details	ТҮР	C N G	Stand- ard setting	Unit	Permissible setting range
SP019	CSN1	Speed command acceleration/ deceleration time constant	Set the time constant for a speed command from "0" to the maximum speed. (This parameter is invalid in position loop mode.)	DEC		30	10ms	1 to 32767
SP020	SDTS	Speed detection set value	Set the motor speed for which speed detection output is performed. Usually, the setting value is 10% of SP017 (TSP).	DEC		600	r/min	0 to 32767
SP021	TLM1	Torque limit 1	Set the torque limit rate for torque limit signal 001.	DEC	*	10	%	1 to 120
SP022	VGNP1	Speed loop gain proportional term under speed control	Set the speed loop proportional gain in speed control mode. When the gain is increased, response is improved but vibration and sound become larger.	DEC		63	rad/s	1 to 1000
SP023	VGNI1	Speed loop gain integral term under speed control	Set the speed loop integral gain in speed control mode. Normally, this is set so that the ratio in respect to SP022 (VGNP1) is approximately constant.	DEC		60	1/10 rad/s	1 to 1000
SP024			Not used. Set "0".	DEC		0		-
SP025	GRA1	Spindle gear teeth count 1	 Set the number of gear teeth of the spindle corresponding to gear 00. When spindle speed is slower than motor speed GRA[] > GRB [] will be established. When GRA or GRB is larger than 32767 Adjust to less than 32767 	DEC		1		1 to 32767
SP026	GRA2	Spindle gear teeth count 2	Set the number of gear teeth of the spindle corresponding to gear 01.	DEC		1		1 to 32767
SP027	GRA3	Spindle gear teeth count 3	Set the number of gear teeth of the spindle corresponding to gear 10.	DEC		1		1 to 32767
SP028	GRA4	Spindle gear teeth count 4	Set the number of gear teeth of the spindle corresponding to gear 11.	DEC		1		1 to 32767
SP029	GRB1	Motor shaft gear teeth count 1	Set the number of gear teeth of the motor shaft corresponding to gear 00.	DEC		1		1 to 32767
SP030	GRB2	Motor shaft gear teeth count 2	Set the number of gear teeth of the motor shaft corresponding to gear 01.	DEC		1		1 to 32767
SP031	GRB3	Motor shaft gear teeth count 3	Set the number of gear teeth of the motor shaft corresponding to gear 10.	DEC		1		1 to 32767
SP032	GRB4	Motor shaft gear teeth count 4	Set the number of gear teeth of the motor shaft corresponding to gear 11.	DEC		1		1 to 32767

<clas< th=""><th>s: Spine</th><th>dle/machine spe</th><th>ecifications></th></clas<>	s: Spine	dle/machine spe	ecifications>

Name	Abbr.	Parameter name	Details	ТҮР	C N G	Stand- ard setting	Unit	Permissible setting range
SP033	SFNC1	Spindle function 1	Set the spindle function 1 in bit units. Refer to the section "4-3-2" for details.	HEX		0000		0000 to FFFF
SP034	SFNC2	Spindle function 2	Set the spindle function 2 in bit units. Refer to the section "4-3-2" for details.	HEX		0000		0000 to FFFF
SP035	SFNC3	Spindle function 3	Set the spindle function 3 in bit units. Refer to the section "4-3-2" for details.	HEX		0000		0000 to FFFF
SP036	SFNC4	Spindle function 4	Set the spindle function 4 in bit units. Refer to the section "4-3-2" for details.	HEX		0000		0000 to FFFF
SP037	SFNC5	Spindle function 5	Set the spindle function 5 in bit units. Refer to the section "4-3-2" for details.	HEX		0000		0000 to FFFF
SP038	SFNC6	Spindle function 6	Set the spindle function 6 in bit units. Refer to the section "4-3-2" for details.	HEX		0000		0000 to FFFF
SP039	ATYP	Drive unit type	Set the drive unit type. Set the compatible unit No. from the standard motors indicated in section "4-3-3".	HEX		0000		0000 to 0011
SP040	MTYP	Motor type	This parameter is valid when SP034 (SFNC2) bit0 is set to "0". Set the compatible motor No. from the standard motors indicated in section "4-3-3". (Set 0 for the CH Series.)	HEX		0000		0000 to 001F
SP041	PTYP	Power supply unit type	Set the power supply unit type. Set according to the table in section "4-3-3". Set 0 when not connecting the unit.	HEX		0000		0000 to FFFF
SP042	CRNG	C-axis detector range	Set to 0 unless especially designated.	DEC		0		0 to 11
SP043	TRNG	Synchronous tap, spindle synchronization detection range	Set to 0 unless especially designated.	DEC		0		0 to 7
SP044	TRANS	NC communication frequency	Set a frequency of data communication with NC.	DEC		Standard=0 Special=1028		-32768 to 32767
SP045	CSNT	Fixed control constant	Set to 0 unless especially designated.	DEC	*	0		0 to 1000
SP046	CSN2	Speed command dual cushion	For an acceleration/deceleration time constant defined in SP019 (CSN1), this parameter is used to provide smooth movement only at the start of acceleration/deceleration. As the value of this parameter is smaller, it moves smoother but the acceleration/deceleration time becomes longer. To make this parameter invalid, set "0".	DEC		0		0 to 1000
SP047	SDTR	Speed detection reset value	Set the reset hysteresis width for a speed detection set value defined in SP020 (SDTS).	DEC		30	r/min	0 to 1000
SP048	SUT	Speed reach range	Set the speed deviation rate with respect to the commanded speed for output of the speed reach signal.	DEC		15	%	0 to 100
SP049	TLM2	Torque limit 2	Set the torque limit rate for the torque limit signal 010.	DEC	*	20	%	0 to 120
SP050	TLM3	Torque limit 3	Set the torque limit rate for the torque limit signal 011.	DEC	*	30	%	0 to 120
SP051	TLM4	Torque limit 4	Set the torque limit rate for the torque limit signal 100.	DEC	*	40	%	0 to 120
SP052	TLM5	Torque limit 5	Set the torque limit rate for the torque limit signal 101.	DEC	*	50	%	0 to 120
SP053	TLM6	Torque limit 6	Set the torque limit rate for the torque limit signal 110.	DEC	*	60	%	0 to 120
SP054	TLM7	Torque limit 7	Set the torque limit rate for the torque limit signal 111.	DEC	*	70	%	0 to 120
SP055	SETM	Excessive speed deviation timer	Set the timer value until the excessive speed deviation alarm is output. The value of this parameter should be longer than the acceleration/ deceleration time. Set a value approx. 1.5-fold of the acceleration/ deceleration time.	DEC		12	S	0 to 60

Name	Abbr.	Parameter name	Details	ТҮР	C N G	Stand- ard setting	Unit	Permissible setting range
SP056	PYVR	Variable excitation	 Set the minimum value of the variable excitation rate. Select a smaller value when gear noise is too high. However, a larger value is effective for impact response. If "50" or higher is set to improve the impact load response, check that there are no problems with the gear noise, motor excitation noise, vibration during position control excluding C-axis control, and vibration during orientation stop. If "50" or less is set to improve the gear noise, motor excitation noise or vibration during orientation, check that there are no problems with the impact load response, cutting accuracy during position control excluding C-axis control, and the holding force during orientation stop. If there is any problem with the vibration or cutting accuracy during position control excluding C-axis control, or if an insufficient rigidity or vibration occurs during orientation stop, set the variable excitation minimum value for only position control and orientation separately in SP116. (Practical setting range: 20 to 75) 	DEC	*	50	%	0 to 100
SP057	STOD	Fixed control constant	Set the value shown in the parameter list. The standard setting is 7.	DEC		7	r/min	0 to 50
SP058	SDT2	Fixed control constant	Set the value shown in the parameter list. The standard setting is 0.	DEC		0	r/min	0 to 32767
SP059	МКТ	Coil changeover base cutoff timer	Set the base cutoff time when changing the contactor during coil changeover. If the value is too small, the contactor could melt. The value must be set higher than the standard setting value (150ms) when controlling a large contactor. Set the maximum delay time for ON/OFF of the contactor + 50ms.	DEC		150	ms	0 to 10000
SP060	MKT2	Current limit timer after coil changeover	Set the time to limit the current after changing the contactor when the coil is changed.	DEC		500	ms	0 to 10000
SP061	MKIL	Current limit value after coil changeover	Set the current limit value after changing the contactor when the coil is changed. The limit time is SP060.	DEC		75	%	0 to 120
SP062	_	-	Not used. Set "0".	DEC		0	-	-
SP063	OLT	Overload alarm detection time	Set the detection time constant for the motor overload alarm detection process.	DEC		60	S	0 to 1000
SP064	OLL	Overload alarm detection level	Set the detection level for the motor overload alarm detection process.	DEC		120	%	0 to 180

<Class: Speed control>

Name	Abbr.	Parameter name	Details	ТҮР	C N G	Stand- ard setting	Unit	Permissible setting range
SP065	VCGN1	Target value of variable speed loop proportional gain	Set the magnification of speed loop proportional gain with respect to SP022 (VGNP1) at the maximum motor speed defined in SP017 (TSP).	DEC		100	%	0 to 100
SP066		Change starting speed of variable speed loop proportional gain	Set the speed when the speed loop proportional gain change starts. Proportional gain SP022 x SP065 100 SP066 SP017	DEC		0	r/min	0 to 32767
SP067	VIGWA	Change starting speed of variable current loop gain	Set the speed where the current loop gain change starts.	DEC		0	r/min	0 to 32767
SP068	VIGWB	Change ending speed of variable current loop gain	Set the speed where the current loop gain change ends.	DEC		0	r/min	0 to 32767
SP069	VIGN	Target value of variable current loop gain	Set the magnification of current loop gain (torque component and excitation component) for a change ending speed defined in SP068 (VIGWB). When this parameter is set to "0", the magnification is 1. Gain SP069 x (1/16)-fold 1-fold 1-fold 1-fold SP067 SP068 SP017 Use the following table for reference when setting SP067 to SP069. Motor maximum SP067 SP068 SP069 SP017 (TSP) (VIGWA) (VIGWB) (VIGN) 6000 or less 0 0 6001 to 8000 5000 8000 32 Observe the following when setting this parameter: 1) If the motor seems to hunt (high frequency vibration) when rotating at high speeds, decrement SP069 (VIGN) by "-8" at a time, and set a value at which hunting does not occur. 2) If the motor seems to groan (low frequency vibration) when rotating at high speeds, increment SP069 (VIGN) by "-8" at a time, and set a value at which groaning does not occur. 3) If "AL32" (overcurrent) or "AL75" (overvoltage) occurs when decelerating from the maximum speed, decrement or increment SP069 (VIGN) by "+8" or "-8" to a value where the alarm does not occur. 4) If there is no problem when rotating at the maximum speed, but phenomenon 1) or 2) occurs during rotation in the medium-speed range, change the SP067 (VIGWA) and SP068 (VIGWB) setting. Also refer to section 5-7. Spindle adjustment.	DEC		0	1/16- fold	0 to 32767
SP070	FHz	Machine resonance	Also refer to section 5-7. Spindle adjustment. If mechanical vibration occurs during speed or	DEC	*	0	Hz	0 to 2250
	_	suppression filter frequency 1	position control, set the frequency for suppressing the vibration. Set a value higher than 100Hz. Set "0" when not using this function.	-				

Name	Abbr.	Parameter name	Details	ТҮР	C N G	Stand- ard setting	Unit	Permissible setting range
SP071	VR2WA	Fixed control constant	These parameters are determined by Mitsubishi. Do not change them unless specially designated.	DEC		0	r/min	0 to 32767
SP072	VR2WB	Fixed control constant		DEC		0	r/min	0 to 32767
SP073	VR2GN	Fixed control constant		DEC		0	r/min	0 to 32767
SP074	IGDEC	Fixed control constant		DEC		0	%	0 to 1000
SP075	R2KWS	Fixed control constant		DEC	*	0		-32768 to 32767
SP076	FONS	Machine resonance suppression filter operation speed	If the vibration increases while the motor is stopped (ex., during orientation stop) when the machine vibration suppression filter is activated with SP070 and SP084, set this parameter to activate the machine vibration suppression filter at a speed higher than that set with this parameter. The filter is valid in all speed ranges when "0" is set.	DEC	*	0	r/min	0 to 32767
SP077	TDSL	Fixed control constant	These parameters are determined by Mitsubishi. Do not change them unless specially designated.	DEC		14		0 to 63
SP078	FPWM	Fixed control constant		DEC		0		0 to 3
SP079	ILMT	Fixed control constant		DEC		0		0 to 32767
SP080	SWTD	Fixed control constant		DEC		0		0 to 32767
SP081	-	-	Not used. Set "0".	-		0		
SP082	-	-	Not used. Set "0".	-		0		
SP083	VGPYR	Fixed control constant	These parameters are determined by Mitsubishi. Do not change them unless specially designated.	DEC	*	0	%	0 to 100
SP084	FHz2	Machine resonance suppression filter frequency 2	If the machine vibrates during speed or position control, and the vibration cannot be eliminated only with the previous machine resonance filter 1, set the frequency for controlling the vibration here. Set a value higher than 71Hz. Set "0" when not using this function.	DEC	*	0	Hz	0 to 2250
SP085	AIQM	Fixed control constant	These parameters are determined by Mitsubishi. Do not change them unless specially designated.	DEC		0	%	0 to 150
SP086	AIQN	Fixed control constant		DEC		0	r/min	0 to 32767
SP087	DIQM	Target value of variable torque limit magnification at deceleration	Set the minimum value of variable torque limit at deceleration.	DEC		75	%	0 to 150
SP088	DIQN		 Set the speed where the torque limit value at deceleration starts to change. Torque limit 100% Inversely proportional to speed SP087 SP066 SP017 1) When using the high-speed rotation (10000r/min or higher) specifications motor, and occurrence of the "AL32" (overcurrent) or "AL75" (overvoltage) alarm during deceleration is not improved by changing the SP067 (VIGWA) to SP069 (VIGN) setting values, decrement the SP087 (DIQM) value by "-15" at a time until the alarms no longer occur. 2) If the above problems are not occurring, and the deceleration time is longer than the acceleration time, change the SP087 (DIQM) value following the acceleration/deceleration adjustment procedures explained in section "5-7 Spindle adjustment". Adjust the deceleration time so that it is the same as the acceleration time. 	DEC		3000	r/min	0 to 32767

Name	Abbr.	Parameter name	Details	ТҮР	C N G	Stand- ard setting	Unit	Permissible setting range
SP089	to SP092		Not used. Set "0".	DEC		0		-
SP093	ORE	Fixed control constant	These parameters are determined by Mitsubishi. Do not change them unless specially designated.	DEC		0		0 to 32767
SP094	LMAV	Load meter output filter	Set the filter time constant of load meter output. When "0" is set, a filter time constant is set to 200ms.	DEC		0	4ms	0 to 32767
SP095	VFAV	Fixed control constant	These parameters are determined by Mitsubishi. Do not change them unless specially designated	DEC		0		-
SP096	EGAR	Encoder gear ratio	Set the gear ratio between the spindle side and the encoder side (except for the motor-built-in encoder) as indicated below. <1> 1:1 Setting value = 0 <2> 1:2 Setting value = 1 <3> 1:4 Setting value = 2 <4> 1:8 Setting value = 3 <5> 1:16 Setting value = 4 <6> 2:1 Setting value = -1 <7> 4:1 Setting value = -2 <8> 3:1 Setting value = -3	DEC		0		-3 to 4

<Class: Orientation control>

Name	Abbr.	Parameter name	Details	ТҮР	C N G	Stand- ard setting	Unit	Permissible setting range
SP097	SPECO	Orientation specification	Set the orientation specifications in bit units. Refer to the section "4-3-2".	HEX		0000		0000 to FFFF
SP098	VGOP	Speed loop gain proportional term in orientation mode	Set the speed loop proportional gain in orientation mode. When this parameter value is increased, response is improved but vibration and sound become larger.	DEC		63	rad/s	0 to 2000
SP099	VGOI	Speed loop gain integral term in orientation mode	Set the speed loop integral gain in orientation mode. Set so that the percentage in respect to SP098 (VGOP) is approximately constant. (Setting value approx. 1:1)	DEC		60	1/10 rad/s	0 to 2000
SP100	VGOD		Set the speed loop gain delay advance gain in orientation mode. The impact responsiveness will increase when the value is increased, but the deviation of the orientation stop position from forward run, and the orientation stop position from reverse run could increase. PI control is applied when "0" is set. This is effective for a machine with large frictional torque, and for reducing the inconsistency in orientation stop position. Note that when "0" is set, a torque limit signal must always be input for clamping if the spindle is mechanically clamped during orientation stop. Set "15" if there are no particular problems.	DEC		15	1/10 rad/s	0 to 1000
SP101	DINP	Orientation dummy in-position width	This is valid when SP097 (SPEC0) -bit2 is set to "1". If this value is set larger than the normal in-position width (SP004:OINP) to shorten the ATC time, it will appear that orientation is completed earlier. However, if the value is too large, the ATC operation may start before the spindle position reaches the ATC position. Carefully check the operation when using this parameter.	DEC		16	1/16°	0 to 2880
SP102	OODR	Excessive error value in orientation mode	Set the excessive error width for detecting the excessive error alarm during orientation. Normally set "32767". The excessive error alarm will not be	DEC		32767	1/4 pulse	0 to 32767
			output when "0" is set.				•••	ulse = 0.088°)
SP103	FTM	Positioning completion OFF time timer	Set the time for forcedly turning OFF the index positioning completion signal (different from the orientation completion signal) after the leading edge of the indexing start signal.	DEC		200	ms	0 to 10000

Name	Abbr.	Parameter name	Details	ТҮР	C N G	Stand- ard setting	Unit	Permissible setting range
SP104	TLOR	Torque limit value for orientation servo locking	Set the torque limit value for orientation in-position output. The external torque limit value will have the priority when the external torque limit signal is input.	DEC		100	%	0 to 120
SP105	IQGO	Current loop gain magnification 1 in orientation mode	 Set the magnification for current loop gain (torque component) at orientation completion. The magnification will be 100% (1-fold) when "100" is set. If vibration occurs during orientation stop, and the vibration cannot be eliminated by changing the SP001 (PGM), SP002 (PGE), SP098 (VGOP) and SP099 (VGOI) settings, the state may be improved by changing this parameter. 1) Reduce the setting value when minute vibration occurs in the frequency. 2) Increase the setting value if minute vibration occurs at low frequencies. Always change the SP106 (IDGO) value to the same value when changing this parameter. (Practical setting range: 50 to 300) 	DEC		100	%	0 to 1000
SP106	IDGO	Current loop gain magnification 2 in orientation mode	Set the magnification for current loop gain (excitation component) at orientation completion. Refer to SP105 (IQGO) for details on setting this parameter.	DEC		100	%	0 to 1000
SP107	CSP2		Set the deceleration rate in orientation mode corresponding to the gear 01. When this parameter is set to "0", the rate will be the same as SP006 (CSP).	DEC	*	0		0 to 1000
SP108	CSP3		Set the deceleration rate in orientation mode corresponding to the gear 10. When this parameter is set to "0", the rate will be the same as SP006 (CSP).	DEC	*	0		0 to 1000
SP109	CSP4	Deceleration rate 4 in orientation mode	Set the deceleration rate in orientation mode corresponding to the gear 11. When this parameter is set to "0", the rate will be the same as SP006 (CSP).	DEC	*	0		0 to 1000
SP110	WCML	Fixed control constant	These parameters are determined by Mitsubishi. Do not change them unless specially designated.	DEC	*	0	Fold	0 to 32767
SP111	WDEL	Fixed control constant		DEC	*	0	1/256 fold	0 to 32767
SP112	WCLP	Fixed control constant		DEC	*	0	r/min	0 to 32767
SP113	WINP	Fixed control constant		DEC	*	0	360/ 4096 fold	0 to 32767
SP114	OPER	Orientation pulse miss check value	If the pulse miss value during orientation stop exceeds this setting, the alarm "5C" will occur. (Set 0 to invalidate.) The orientation start memo setting must always be invalidated when this parameter is set to a value other than "0". (Set SP038 (SFNC6) bit6 to "0".) Establish the following expression when using this setting. SP114 setting value ≥ SP004 setting value/16/ (360/4096) + 20, or set a multiple of 4 larger or equal to the value calculated with the right side when using PLG orientation.	DEC	*	0	360/ 4096°	0 to 32767
SP115	OPS2	Index clamp speed	When the control input 4 bitC is set to "1", the value set in this parameter is used for the orientation changeover speed instead of SP005 (OSP). In all other cases, if SP097 (SPECO) -bit4 is set to "1", the maximum spindle speed for indexing is set here.	DEC		0	r/min	0 to 32767

Name	Abbr.	Parameter name	Details	ТҮР	C N G	Stand- ard setting	Unit	Permissible setting range
SP116	OPYVR	Variable constant rate during position loop	When the control input 4-bitB is set to "1", the value set in this parameter is used for the minimum excitation rate instead of SP056 (PYVR). In all other cases, if this parameter is set to a value other than "0", the value set in this parameter will be used instead of SP056 (PYVR) for the minimum excitation rate during position control including orientation control (excluding C-axis control).	DEC	*	0	%	0 to 100
SP117	ORUT	Orientation changeover speed reach range	Set this value when using a machine with large inertia, and the motor continues to run when orientation is executed from the stopped state, or if it takes a long time for orientation to stop. Normally set this to "0".	DEC	*	0	r/min	0 to 32767
SP118	ORCT	Number of orientation retries	Set the number of times to retry orientation when an orientation pulse miss occurs. This parameter is invalid when SP114 (OPER) is set to "0". Alarm "A9" will appear while retrying orientation, and alarm "5C" will appear if there is a pulse miss even after the designated number of retires.	DEC	*	0	times	0 to 100
SP119	MPGH	Orientation position loop gain H coil magnification	Set the orientation position loop gain for the H coil when using the coil changeover motor. Set the magnification in respect to SP001 (PGM) and SP002 (PGE), using "256" as 1-fold. The magnification will also be 1-fold when "0" is set. This is used to shorten the orientation time for each coil. However, normally the time is adjusted with SP121 (MPCSH). Use this parameter when the time cannot be adjusted sufficiently with SP121.	DEC	*	0	1/256 fold	0 to 2560
SP120	MPGL	Orientation position loop gain L coil magnification	Set the orientation position loop gain for the L coil when using the coil changeover motor. The setting method is the same as SP119 (MPGH).	DEC	*	0	1/256 fold	0 to 2560
SP121	MPCSH	Orientation deceleration rate H coil magnification	When using the coil changeover motor, set the deceleration rate for orientation with the H coil. Set the magnification in respect to SP006 (CSP), using "256" as 1-fold. The magnification will also be 1-fold when "0" is set. This is used to shorten the orientation time for each coil.	DEC	*	0	1/256 fold	0 to 2560
SP122	MPCAL	Orientation deceleration rate L coil magnification	When using the coil changeover motor, set the deceleration rate for orientation with the L coil. The setting method is the same as SP121 (MPCSH).	DEC	*	0	1/256 fold	0 to 2560
SP123	MGD0	Magnetic sensor output peak value	This parameter is used for adjusting the operation during magnetic sensor orientation. Set the peak value of the magnetic sensor output. If the gap between the sensor and magnet is small, set a large value. If the gap is large, set a small value. If the operation stops just before the stop point during orientation, change this parameter so that the target point is reached. Use the standard setting if there are no problems.	DEC	*	Standard magnet = 542 Compact magnet = 500	-	0 to 10000
SP124	MGD1	Magnetic sensor linear zone width	This parameter is used for adjusting the operation during magnetic sensor orientation. Set the width of the magnetic sensor linear zone. If the installation radius of the magnet is large, set a small value. If the radius is small, set a large value. Use the standard setting if there are no problems during orientation.	DEC	*	Standard magnet = 768 Compact magnet = 440	-	0 to 10000
SP125	MGD2	Magnetic sensor changeover point	This parameter is used for adjusting the operation during magnetic sensor orientation. Set the distance from the target stop point for changing the position feedback to magnetic sensor output. Normally, a value that is approx. half of SP124 (MGDI) is set.	DEC	*	Standard magnet = 384 Compact magnet = 220	-	0 to 10000
SP126	to SP128		Not used. Set "0".	DEC	-	0	-	_

<Class: C-axis control>

Name	Abbr.	Parameter name					De	etail	S		ТҮР	C N G	Stand- ard setting	Unit	Permissible setting range
SP129	SPECC	C-axis specification								ntrol with bit 2 for details.	HEX		0000		0000 to FFFF
SP130	PGC1	1st position loop gain for C-axis cutting	control	inpu SP1	it 1 k 30 to	bitFi 0 132	s "1	").		itting (when control input	DEC	*	15	S ⁻¹	0 to 200
SP131	PGC2	2nd position loop gain for C-axis cutting	[Contr bit4	bit	<u> </u>	it2	bit1		gain :	ion loop selection	DEC	*	15	S ⁻¹	0 to 200
SP132	PGC3	3rd position loop gain for C-axis cutting	0 0 0	1 1 1		1 1 1	0 0 1	. (1 S D S	P130 P131 P132	DEC	*	15	s ⁻¹	0 to 200
SP133	PGC3	Position loop gain when stopped during C-axis cutting	C-axis Regard	cutti less Je se	ng (v of ti et in	wher he co this	n co ontre para	ntrol ol inp ame	ter will be v		DEC	*	15	S ⁻¹	0 to 200
SP134	VGCP0	Speed loop proportional item for C-axis non-cutting	C-ax	he s is. T	peeo he r	d loo espo	onsiv	/ene	rtional gair ss will incr t vibration	ease when	DEC		63	rad/s	0 to 5000
SP135	VGCI0	Speed loop gain integral item for C-axis non-cutting		l iter he s	n: pee	d loc		tegra	al gain for	the C-axis.	DEC		60	1/10 rad/s	0 to 5000
SP136	VGCD0	Speed loop gain delay/advance item for C-axis non-cutting	C-ax wher	he s is. T n the	pee he ii vali	d loo mpao ue is	p de ct re inc	spor reas	advance g nsiveness ed, but the re inconsis	will increase stop	DEC		15	1/10 rad/s	0 to 5000
SP137	VGCP1	1st speed loop gain proportional time for C-axis cutting	"PI" (wher to im	conti n the prov	rol is ma re th	s app chin e ac	olied e's f cura	whe rictic acy c	en "0" is se onal torque luring C-ax	t. Set this is large, or tis cutting.	DEC		63	rad/s	0 to 5000
SP138	VGCI1	1st speed loop gain integral item for C-axis cutting	mect alwa	nanio ys in	cally	stop	pec	d dur	if the spine ing spindle t signal wh		DEC		60	1/10 rad/s	0 to 5000
SP139	VGCD1	1st speed loop gain delay/advance item for C-axis cutting		ecte						of the above ntrol input 1	DEC		15	1/10 rad/s	0 to 5000
SP140	VGCP2	2nd speed loop gain proportional time for C-axis cutting	and 3 b	oit fo	r C-a	axis 1, 3]	cont	rol.			DEC		63	rad/s	0 to 5000
SP141	VGCI2	2nd speed loop gain integral item for C-axis cutting	input 1 bitF			rol in bit2			Movement command present	election Movement command 0	DEC		60	1/10 rad/s	0 to 5000
SP142	VGCD2	2nd speed loop gain delay/advance item for C-axis cutting	0	0	1	1	0 or 1 0	0 or 1 0	SP134 SP135 SP136 SP137 SP138	Same as left	DEC		15	1/10 rad/s	0 to 5000
SP143	VGCP3	3rd speed loop gain proportional time for C-axis cutting	1	0	1	1	0	1	SP139 SP140 SP141 SP142	SP146	DEC		63	rad/s	0 to 5000
SP144	VGCI3	3rd speed loop gain integral item for C-axis cutting	1	0	1	1	1	0	SP143 SP144 SP145 SP137	SP147 SP148	DEC		60	1/10 rad/s	0 to 5000
	VGCD3	3rd speed loop gain delay/advance item for C-axis cutting	1	0	1	1	1	1	SP137 SP138 SP139		DEC		15	1/10 rad/s	0 to 5000
SP146	VGCP4	Speed loop gain proportional item when stopped during C-axis cutting									DEC		63	rad/s	0 to 5000

Name	Abbr.	Parameter name	Details	ТҮР	C N G	Stand- ard setting	Unit	Permissible setting range
SP147	VGCI4	Speed loop gain integral item when stopped during C-axis cutting		DEC		60	1/10 rad/s	0 to 5000
SP148	VGCD4	Speed loop gain delay/advance item when stopped during C-axis cutting		DEC		15	1/10 rad/s	0 to 5000
SP149	CZRN	C-axis zero point return speed	This is valid when the SP129 (SPECC) bitE is set to "0". Set the speed for changing from the speed loop to the position loop during C-axis automatic zero point return.	DEC	*	50	r/min	0 to 500
SP150	CPDT	C-axis zero point return deceleration rate	This is valid when the SP129 (SPECC) bitE is set to "0". Set the deceleration rate for decelerating from the C-axis zero point return speed to the target stop point. Decrease the setting if machine sways when stopping.	DEC	*	1		0 to 10000
SP151	CPSTL	C-axis zero point return position shift amount (Low byte)	This is valid when the SP129 (SPECC) bitE is set to "0". Set the C-axis zero point position.	HEX	*	0	1/ 1000°	0 to FFFFFFFF
SP152	CPSTH	C-axis zero point return position shift amount (High byte)		HEX	*	0		
SP153	CINP	C-axis in-position width	Set the position error range for outputting the in-position signal during C-axis control.	HEX	*	03E8	1/ 1000°	0 to FFF
SP154	CODRL	Excessive error width for C-axis (Low byte)	Set the excessive error width for the C-axis.	HEX		D4C0	1/ 1000°	0 to FFFFFFFF
SP155	CODRH	Excessive error width for C-axis (High byte)		HEX		0001		
SP156	OVSH	Fixed control constant	These parameters are determined by Mitsubishi. Set to "0" unless especially designated.	DEC	*	0	0.1%	0 to 1000
SP157	to SP158		Not used. Set "0".	DEC		0		
SP159	CPY0	Variable excitation rate during C-axis non-cutting	Set the minimum value of the variable excitation rate during C-axis non-cutting (when control input 1 bitF is "0").	DEC	*	50	%	0 to 100
SP160	CPY1	Variable excitation rate during C-axis cutting	Set the minimum value of the variable excitation rate during C-axis cutting (when control input 1 bitF is "1").	DEC	*	100	%	0 to 100
SP161	IQGC0	Current loop gain magnification 1 for C-axis non-cutting	Set the magnification of the current loop gain (torque amount) during C-axis non-cutting (when control input 1 bitF is "0").	DEC		100	%	0 to 1000
SP162	IDGC0	Current loop gain magnification 2 for C-axis non-cutting	Set the magnification of the current loop gain (excitation amount) during C-axis non-cutting (when control input 1 bitF is "0").	DEC		100	%	0 to 1000
SP163	IQGC1	Current loop gain magnification 1 for C-axis cutting	Set the magnification of the current loop gain (torque amount) during C-axis cutting (when control input 1 bitF is "1").	DEC		100	%	0 to 1000
SP164	IDGC1	Current loop gain magnification 2 for C-axis cutting	Set the magnification of the current loop gain (excitation amount) during C-axis cutting (when control input 1 bitF is "1").	DEC		100	%	0 to 1000
SP165	PGC2	C-axis position loop gain 2	Set the 2nd position loop gain for carrying out SHG control during C-axis control. This setting value is valid for both non-cutting and cutting.	DEC	*	0	S⁻¹	0 to 999
SP166	PGC3	C-axis position loop gain 3	Set the 3rd position loop gain for carrying out SHG control during C-axis control. This setting value is valid for both non-cutting and cutting.	DEC	*	0	S⁻¹	0 to 999

Name	Abbr.	Parameter name	Details	ТҮР	C N G	Stand- ard setting	Unit	Permissible setting range
SP167		Position loop gain during increased spindle holding force	Set the position loop gain when the disturbance observer is validated during C-axis control (when control input 4 bitF is "1"). This setting value is valid for both non-cutting and cutting.	DEC		15	S ⁻¹	0 to 200
SP168	VGUP	Speed loop gain proportional item during increased spindle holding force	Set the speed loop proportional gain when the disturbance observer is validated during C-axis control (when control input 4 bitF is "1"). This setting value is valid for both non-cutting and cutting.	DEC		0	rad/s	0 to 5000
SP169		Speed loop gain integral item during increased spindle holding force	Set the speed loop integral gain when the disturbance observer is validated during C-axis control (when control input 4 bitF is "1"). This setting value is valid for both non-cutting and cutting.	DEC		0	1/10 rad/s	0 to 5000
SP170	VGUD	Speed loop gain delay/advance item during increased spindle holding force	Set the speed loop delay/advance gain when the disturbance observer is validated during C-axis control (when control input 4 bitF is "1"). This setting value is valid for both non-cutting and cutting.	DEC		0	1/10 rad/s	0 to 5000
SP171	to SP176		Not used. Set "0".			0		

<Class: Spindle synchronization control>

Name	Abbr.	Parameter name	Details	ТҮР	C N G	Stand- ard setting	Unit	Permissible setting range
SP177	SPECS	Spindle specifications for spindle synchronization	Select the spindle specifications for spindle synchronous control with bit correspondence. Refer to the section "4-3-2" for details.	HEX		0000		0000 to FFFF
SP178	VGSP	Spindle synchronous speed loop gain proportional term	Set the speed loop proportional gain in spindle synchronous mode. The responsiveness will increase when the value is increased, but the vibration and noise will also increase.	DEC		63	rad/s	0 to 2000
SP179	VGSI	Spindle synchronous speed loop gain integral term	Set the speed loop integral gain in spindle synchronous mode.	DEC		60	1/10 rad/s	0 to 2000
SP180	VGSD	Spindle synchronous speed loop gain delay advance term	Set the speed loop delay advance gain in spindle synchronous mode. The impact responsiveness will increase when the value is increased, but the stop position may become more inconsistent. "PI" control is applied when "0" is set. Set "15" if there are no problems.	DEC		15	1/10 rad/s	0 to 1000
SP181	VCGS	Spindle synchronous target value of variable speed loop proportional gain	Set the percentage of the speed loop proportional gain in respect to the maximum speed set in SP178 (VGSP) for spindle synchronization SP017 (TSP).	DEC		100	%	0 to 100
SP182	VCSS	Spindle synchronous change starting speed of variable speed loop proportional gain	Set the speed to start changing the speed loop proportional gain during spindle synchronization.	DEC		0	r/min	0 to 32767

Name	Abbr.	Parameter name	Details	ТҮР	C N G	Stand- ard setting	Unit	Permissible setting range
SP183	SYNV	Spindle synchronous sync matching speed	Set the error range of the speed command for outputting the synchronous speed matching signal when changing from the speed loop to the position loop spindle synchronization.	DEC	*	20	r/min	0 to 1000
SP184			Not used. Set "0".			0		
SP185	SINP	Spindle synchronous in-position width	Set the error range of the position for outputting the in-position signal during spindle synchronization.	DEC	*	16	1/16°	0 to 2880
SP186	SODR	Spindle synchronous excessive error width	Set the excessive error width in the spindle synchronous mode.	DEC		32767	Pulse (1 pulse = 0.088°)	0 to 32767
SP187	IQGS	Spindle synchronous current loop gain magnification1	Set the magnification of current loop gain (torque component) in the spindle synchronous mode.	DEC		100	%	0 to 1000
SP188	IDGS	Spindle synchronous current loop gain magnification 2	Set the magnification of current loop gain (excitation component) in the spindle synchronous mode.	DEC		100	%	0 to 1000
SP189	PG2S	Position loop gain 2 for spindle synchronous	Set the second position loop gain for SGH control during spindle synchronous.	DEC	*	0	S ⁻¹	0 to 999
SP190	PG3S	Position loop gain 3 for spindle synchronous	Set the third position loop gain for SGH control during spindle synchronous.	DEC	*	0	S ⁻¹	0 to 999
SP191	to SP192		Not used. Set "0".			0		

<Class: Synchronous tap control>

Name	Abbr.	Parameter name	Details	ТҮР	C N G	Stand- ard setting	Unit	Permissible setting range
SP193	SPECT	Synchronized tapping specifications	Set the synchronized tapping specifications in bit units. Refer to the section "4-3-2" for details.	HEX		0000		0000 to FFFF
SP194	VGTP	Synchronized tapping speed loop gain proportional term	Set the speed loop proportional gain in synchronized tapping mode. The responsiveness will increase when the value is increased, but the vibration and noise will also increase.	DEC		63	rad/s	0 to 2000
SP195	VGTI	Synchronized tapping speed loop gain integral term	Set the speed loop integral gain in synchronized tapping mode.	DEC		60	1/10 rad/s	0 to 2000
SP196	VGTD	Synchronized tapping speed loop gain delay advance term	Set the speed loop delay advance gain in synchronized tapping mode. The impact responsiveness will increase when the value is increased, but the stop position may become more inconsistent. "PI" control is applied when "0" is set. Set "15" if there are no problems.	DEC		15	1/10 rad/s	0 to 1000
SP197			Not used. Set "0".			0		
SP198	VCGT	Synchronized tapping target value of variable speed loop proportional gain	Set the percentage of the speed loop proportional gain in respect to SP194 (VGTP) for the maximum speed set in SP017 (TSP) during synchronous tap control.	DEC		100	%	0 to 100

Name	Abbr.	Parameter name	Details	ТҮР	C N G	Stand- ard setting	Unit	Permissible setting range
SP199	VCST	Synchronized tapping change starting speed of variable speed loop proportional gain	Set the speed where the speed loop proportional gain change starts during synchronized tapping.	DEC		0	r/min	0 to 32767
SP200	FFC1	Synchronized tapping accelera- tion feed forward gain	Set the acceleration feed forward gain for selection of gear 00 at synchronized tapping. Set this value if the positional error with the Z axis increases when the motor's acceleration rate changes.	DEC	*	0	%	0 to 1000
SP201	FFC2	Synchronized tapping accelera- tion feed forward gain	Set the acceleration feed forward gain for selection of gear 01 at synchronized tapping. The setting method is the same as SP200 (FFC1).	DEC	*	0	%	0 to 1000
SP202	FFC3	Synchronized tapping accelera- tion feed forward gain	Set the acceleration feed forward gain for selection of gear 10 at synchronized tapping. The setting method is the same as SP200 (FFC1).	DEC	*	0	%	0 to 1000
SP203	FFC4	Synchronized tapping accelera- tion feed forward gain	Set the acceleration feed forward gain for selection of gear 11 at synchronized tapping. The setting method is the same as SP200 (FFC1).	DEC	*	0	%	0 to 1000
SP204	to SP213		Not used. Set "0".			0		
SP214	TZRN	Synchronized tapping zero point return speed	This parameter is valid when SP193 (SPECT) bitE is set to "0". Set the speed for changing from the speed loop to position loop during zero point return.	DEC	*	50	r/min	0 to 500
SP215	TPDT	Synchronized tapping zero point return deceleration rate	This parameter is valid when SP193 (SPECT) bitE is set to "0". Set the deceleration rate for decelerating from the synchronous tapping zero point return speed to the target stop point. Decrease the setting if machine sways during zero point return.	DEC	*	1	Pulse	0 to 10000
SP216	TPST	Synchronous tapping zero point return position shift amount	This parameter is valid when SP193 (SPECT) bitE is set to "0". Set the synchronized tapping zero point position.	HEX	*	0	360°/ 4096	0 to 4095
SP217	TINP	Synchronized tapping in-position width	Set the position error range for outputting the in-position signal during synchronous tapping.	DEC	*	16	1/16°	0 to 2880
SP218	TODR	Synchronized tapping excessive error width	Set the excessive error width during synchronized tapping.	DEC		32767	Pulse (1 pulse = 0.088°)	0 to 32767
SP219	IQGT	Synchronized tap- ping current loop gain magnification 1	Set the magnification of current loop gain (torque component) during synchronized tapping.	DEC		100	%	0 to 1000
SP220	IDGT	Synchronized tap- ping current loop gain magnification 2	Set the magnification of current loop gain (excitation component) during synchronized tapping.	DEC		100	%	0 to 1000

Name	Abbr.	Parameter name	Details	ТҮР	N	ard	Unit	Permissible setting range
SP221	PG2T		Set the second position loop gain for SGH control during synchronous tapping.	DEC	*	0	S ⁻¹	0 to 999
SP222	PG3T		Set the third position loop gain for SGH control during synchronous tapping.	DEC	*	0	S ⁻¹	0 to 999

<Class: Miscellaneous>

Name	Abbr.	Parameter name	Details	ТҮР	C N G	Stand- ard setting	Unit	Permissible setting range
SP223	SPDV	Fixed control constant	These parameters are determined by Mitsubishi. Set to "0" unless especially designated.	DEC	*	0	r/min	0 to 800
SP224	SPDF	Fixed control constant		DEC	*	0		0 to 2813
SP225	OXKPH	Fixed control constant		DEC	*	0	1/256 fold	0 to 2560
SP226	OXKPL	Fixed control constant		DEC	*	0	1/256 fold	0 to 2560
SP227	OXVKP	Fixed control constant		DEC	*	0	1/256 fold	0 to 2560
SP228	OXVKI	Fixed control constant		DEC	*	0	1/256 fold	0 to 2560
SP229	OXSFT	Fixed control constant		DEC	*	0	1/256 fold	0 to 2048
SP230	WIH	Fixed control constant		DEC	*	0	%	0 to 100
SP231	OL2T	Fixed control constant		DEC	*	0	min	0 to 60
SP232			Not used. Set "0".			0		
SP233	JL	Disturbance observer total inertia ratio	Set the ratio of the motor inertia + load inertia and motor inertia when using the disturbance observer (when control input 4 bitF is set to "1"). Setting value = $\frac{Motor inertia + Load inertia}{Motor inertia} \times 100$	DEC		0	%	0 to 5000
			Normally set a value higher than "100". This parameter is invalid when a value less than "50" is set.					
SP234	OBS1	Disturbance observer low pass filter frequency	Set the low pass filter frequency when using the disturbance observer (when control input 4 bitF is set to "1"). Setting value (1/s) = $2\pi f$ Input a value approx. 1.5-fold of the disturbance frequency in f.	DEC		0	1/s	0 to 1000
SP235	OBS2	Disturbance observer gain	Set the gain when using the disturbance observer (when control input 4 bitF is set to "1").	DEC		0	%	0 to 500
SP236	OBS3	Fixed control constant	These parameters are determined by Mitsubishi. Set to "0" unless especially designated.	DEC	*	0		-32768 to 32767
SP237	to SP241		Not used. Set "0".			0		
SP242	Vavx	Fixed control constant	These parameters are determined by Mitsubishi. Set to "0" unless especially designated.	DEC	*	0	r/min	0 to 32767
SP243	UTTM	Transient/steady judgment timer	When the difference between the speed command during motor acceleration/deceleration and the speed feedback is within the judgment value and the time set in this parameter has elapsed, the motor control is changed from the transient state to the steady state. Setting "0" is the same as 1000ms.	DEC	*	0	ms	0 to 1000

4. Setup

Name	Abbr.	Parameter name	Details	ТҮР	C N G	Stand- ard setting	Unit	Permissible setting range
SP244	OPLP	Torque command for open loop	Set the torque command value for an open loop. The value will be the same as 2048 (=50%) when "0" is set. If the load is heavy, and the motor does not rotate past a set speed, set a value higher than 2048. Wait at least five minutes before running the motor in this case as the drive unit or motor could be damaged.	DEC	*	0	100/ 4096 %	0 to 4096
SP245	PGHS	PLG compensation setting	Set "1" to validate the PLG waveform compensation function. Carry out compensation again when the value is set to "0".	DEC	*	0		0 to 1
SP246	TEST	Fixed control constant	These parameters are determined by Mitsubishi. Set to "0" unless especially designated.	DEC	*	0		-32768 to 32767
SP247	to SP248		Not used. Set "0".			0		
SP249	SMO	Speedometer speed	Set the motor speed for outputting 10V.	DEC	*	0	r/min	0 to 32767
SP250	LMO	Load meter voltage	Set the output voltage for a 120% load.	DEC	*	0	V	0 to 10
SP251	to SP252		Not used. Set "0".			0		
SP253	DA1NO	D/A output channel 1 data number	Set the output data NO. in channel 1 (CN9-9 pin) of the D/A output function. Normally set "0". Refer to section 5-6 for details on setting.	DEC	*	0		-32768 to 32767
SP254	DA2NO	D/A output channel 2 data number	Set the output data NO. in channel 2 (CN9-19 pin) of the D/A output function. Normally set "0". Refer to section 5-6 for details on setting.	DEC	*	0		-32768 to 32767
SP255	DA1MP	D/A output channel 1 magnification	Set the output magnification for the first channel (CN9-9) of the D/A output function. Refer to section 5-6 for details on setting.	DEC	*	0	1/256 fold	-32768 to 32767
SP256	DA2MP	D/A output channel 2 magnification	Set the output magnification for the second channel (CN9-19) of the D/A output function. Refer to section 5-6 for details on setting.	DEC	*	0	1/256 fold	-32768 to 32767

Name	Abbr.	Parameter name	Details	ТҮР	C N G	Stand- ard setting	Unit	Permissible setting range
SP257 to SP320	RPM to BSD	Motor constant (H)	 Set these parameters in the following cases. 1) When using the standard motor with the wide range output specifications and base slide function (when SP034 (SFNC2)-bit0 is set to "0", and SP035(SFNC3)-bit0 or bit2 is set to 1), set the values from SP314 (SPO) to SP320 (BSD). 2) When using a special motor without coil changeover (electronic output changeover) specifications (when SP034 (SFNC2)-bit0 is set to "1" or bit2 is set to "0"), set the values from SP257 (RPM) to SP320 (BSD). 3) When using the coil changeover (electronic output changeover) specifications motor (when SP034 (SFNC2)-bit0 is set to "1" or bit2 is set to "0"), set the values from SP257 (RPM) to SP320 (BSD). 3) When using the coil changeover (electronic output changeover) specifications motor (when SP034 (SFNC2)-bit0 is set to "1", and bit2 is set to "1"), set the H coil (high-speed output) motor constants in SP257 (RPM) to SP320 (BSD). This parameter is determined by Mitsubishi, and 	HEX		0000		0000 to FFFF
			must not be changed by the user.					
SP321 to SP384	RPML to BSDL	Motor constant (L)	Set this parameter when using the coil changeover motor (electronic output changeover motor). (When SP034 (SFNC2)-bit0 is set to "1" and bit2 is set to "1".) Set the L coil (low-speed output) motor constants for the coil changeover motor (electronic output changeover motor). This parameter is determined by Mitsubishi, and must not be changed by the user.	HEX		0000		0000 to FFFF

4-3-2 Details of bit-corresponding parameters

The bits not explained in the section "4-3-1 List of spindle parameters" are shown below. These parameters are designated in the "List of spindle parameter settings" enclosed when the spindle motor is delivered. Basically none of the settings need to be changed by the machine maker.

Name	Abbr.						De	tails								TYP
SP033	SFNC1	Spindle f	unction 1													HEX
		•	E D	С В	A	9	8	7	6	5	4	3	2	1	0	setting
		poff h	ZS	ront		pyca	l pychg		pyoff							
		bit	Abbr.		Conter	nt		0 se	tting	1 set	tina	Si	uppleme	ent		
		6	pyoff	Special fur					alid	Va					_	
		8	pychg	Special fur				Inv	alid	Va	lid					
		9	pycal	Motor temp function	perature	rise re	educe	Inv	alid	Va	lid	Only only of speed	luring hi operatio	gh- on		
		С	ront	READY O	N contro	I		Inv	alid	Va	lid					
		E	hzs	High-speed zero speed		FF du	ring	Inv	alid	Va	lid					
		F	poff	Contactor	hold duri	ing NC	OFF	Inv	alid	Va	lid					
SP034	SFNC2	Spindle f	unction 2													HEX
			E D	С В	A	9	8	7	6	5	4	3	2	1	0	setting
		n	fd2	nfd	11			sdir			nf3		mkc2		mts1	
		bit	Abbr.		Conter	nt		0 se	tting	1 set	ting	Si	uppleme	ent		
		0	mtsl	Special mo	otor cons	stant se	etting		alid	Va	lid					
		2	mkc2	Coil chang				avai	ot lable	Avail						
		4	nf3	3rd resona				Va	alid	Inva	alid					
		7	sdir	Speed dete direction				_	mal	Reve						
		A-C	nfd1	1st filter SF	P070 (FF			-	mach	ine res	onan	ce supp				
				Catting			Deep ←		240		00	104 4	\rightarrow Shal			
				Setting va Depth (D		SA)					00 ·		10 11 3 -1			
			afd0		,	1 <u>-</u>) do			maah				raaaian	filtor		
		D-F	nfd2	1st filter SF	2084 (FF	nz) de	_		mach	ine res	sonan	ce supp			_	
				Setting va	alue (CB	SA)	Deep ← 000 0		010 0	011 1	00	101 1 [.]	\rightarrow Shall 10 11			
				Depth (D		, y					-6		3 -1			
SP035	SFNC3	Spindle f	unotion 2													HEX
01 000	011100	•	E D	С В	А	9	8	7	6	5	4	3	2	1	0	setting
						9	0	7	0	5	4	lbsd		ı Iwid	hwid	
			1					I								
		bit	_		Conter				tting	1 set		SI	uppleme	ent		
		0	hwid Iwid	H-coil wide- L-coil wide-					alid alid	Va Va						
		2	hbsd	H-coil base	v	instant	output		alid	Va		Set in	SP320		-	
		3	lbsd	L-coil base					alid	Va			SP384			
SP036	SFNC4	Spindle f	inction 4													HEX
01 000	011104	•	E D	С В	А	9	8	7	6	5	4	3	2	1	0	setting
						9	°	/	0	5	4	3	2	1	0	
		bit	Abbr.		Conter	nt		0 se	tting	1 set	tina	S	uppleme	ent		
			-	_					alid	Inva					_	
			-	-					alid	Inva						
			-						alid	Inva						
			-	-					alid	Inva						
								Ther	e are r	no sett	ings.					

Bits with no explanation must be set to "0".

Name	Abbr.			De	tails				ТҮР
SP037	SFNC5	Spindle f F splg	Unction 5 E D	C B A 9 8	7 6	5 4	3 2 1 plgo nsno e	0 Inco	HEX setting
		bi	1	Content	0 setting	1 setting	Supplement	100	
		0	enco	Encoder orientation	Invalid	Valid	Also output to		
		_					CN8 when valid.		
		1	nsno	Magnetic sensor orientation	Invalid	Valid			
		2	plgo	PLG orientation	Invalid	Valid	Also output to CN8 when valid.		
		8	nosg	No-signal detection	Always	Only during position loop orientation	From immediately after position detector power is turned ON		
		9	pl80	Special function	Invalid	Valid	Set to "0"		
		А	noplg	Constant monitor of Z-phase no-signal detection	Invalid	Valid	Motor built-in encoder		
		В	nplgc	AB-phase error detection	Valid	Invalid	Motor built-in encoder		
		D	ospcl	Orientation changeover speed limit value	Motor side	Spindle side			
		F	splg	Special function	Invalid	Valid	Set to "0"		
SP038	SFNC6	Spindle	unction 6		•	•			HEX
51 030	51 1000	F	E D	C B A 9 8	76	54	3 2 1	0	setting
		open		XFzs dcsn P180 sdt2	orm	adin	plg2 pftm	alty	
		bi	Abbr.	Content	0 setting	1 setting	Supplement		
		0	alty	Decelerate to stop at specific alarm occurrence	Invalid	Valid			
		2	pftm	Encoder feedback serial communication	Invalid	Valid			
		3	Plg2	Semi-closed pulse signal output 2-fold	Invalid	Valid			
		5	adin	Special function	Invalid	Valid			
		6	orm	Orientation start memo	Invalid	Valid			
		8	sdt2	Special function	Invalid	Valid			
		9	pl80	Special function	Invalid	Valid			
		В	dcsn	Dual cushion valid range	Accelera- tion/de- celeration	Decelera- tion			
		С	XFzs	Special function	Invalid	Valid			
		F	open	Open loop operation	Invalid	Valid			

Name	Abbr.								D	etails								TYP
SP097	SPECO	Orien	tatior	n specifi	cations													HEX
		F	E	•	С	В	А	9	8	7	6	5	4	3	2	1	0	setting
				ksft	gcgh	tlmp	isp2	zdir	tlet	vg8x	mdir	fdir	ocsl	pyfx	dmin	odi2	odi1	
		1	bit	Abbr.		c	onter	nt		0 se	etting	1 se	tting	Su	pplen	nent		
			0	odi1	Orienta									Set wit				
			1	odi2	00: Pre 10: Mo	e 01 tor rev	: Moto	or forw un			tion ot pos:	sible		and 1				
			2	dmin	Orienta	ation p				Ť	alid		alid					
			2	unin	loading Excitat				-l.		and						_	
			3	pyfx	min. (5 SP056	0%)	•			Inv	alid	Va	alid	Movab rate du orienta	uring			
			4	ocsl	Maxim					SP	005	SP	115	During	index	ing		
			5	fdir	Encode						+	-					_	
			6	mdir	Magne polarity		nsor in	stallat	on		+	-	-					
			7	vg8x	Specia	l funct	ion			Inv	/alid	Va	alid	Set "0'	'.			
			8	tlet	Specia						/alid		alid	Set "0'				
			9	zdir	Specia						alid		alid	Set "0'			_	
			A B	isp2 tlmp	Specia Specia						/alid /alid	Va Va		Set "0' Set "0'			_	
			C	gcgh	Specia						alid /alid		alid	Set "0"			_	
			D	ksft	Specia						/alid		alid	Set "0'			_	
		Set a	ll oth	er bits to	o "0".													
0.0400	00500																	
SP129	SPECC	C-axi				_		_	_	_		_		_	_		_	HEX setting
		F	E		C	В	A	9	8	7	6	5	4	3	2	1	0	5
		zrtn	pty	/p fb9x	zrtd	zrn2				vg8x		fdir			rtrn	adin	fclx	
			bit	Abbr.		C	onter	nt		0 se	etting		tting	Su	ıpplen	nent		
			0	fclx	Droop					Clo	osed		mi- sed					
			1	adin	Interpo	lation	A/D co	omper	sation		/alid		alid					
			2	rtrn	Specia	l funct	ion				alid		alid				_	
			5	fdir	Positio					si	sitive ide	Nega	ative de				_	
			7	vg8x	Speed 1/8			torque	limit x	V	alid		alid					
			B C	zrn2 zrtd	Specia Specia						/alid /alid	-	alid alid					
			D	fb9x	Pulse s	selecti		speed		No	rmal Ilse	C-a con	axis htrol	During contro		5		
			Е	ptyp	Automa	atic ze	ro poi	nt retu	rn	+ ·	ilable	N	lse ot lable	During contro	C-axi	8	_	
			F	zrtn	Spindle	e rotat	ion dir	ection			ward un	-	erse In	During zero p	auton	natic turn		
SP177	SPECS	Spind	lle sv	nchrono	ous cont	rol												HEX
		F	E		C	В	А	9	8	7	6	5	4	3	2	1	0	setting
				odx8				-	-		-	fdir			rtrn	adin	fclx	
			bit	Abbr.		C	onten	t		0.56	etting	1 set	tting	S	pplen	nent		
			0	fclx	Spindle loop				rol		osed	Se	mi- sed		-ppion			
			1	adin	Interpol			mpen	sation		/alid	Va	alid					
			2	rtrn	Special	functi	on			Inv	/alid	Va	alid					
			5		Spindle detecto			is posi	tion	(+)	(-	-)	Directi comma NC	anded			
			D	odx8	Excess				4.00)		fold		old	Detect	ion wid	dth		

Name	Abbr.								D	etails								TYF
SP193	SPECT	Syncl	Inchronous tap control									HEX						
		F	E	D	С	В	А	9	8	7	6	5	4	3	2	1	0	settir
		zrtr	n pty	p odx8	3							fdir	cdir		rtrn	adin	fclx	
			bit	Abbr.		(Conte	nt		0 se	etting	1 se	tting		Suppl	ement		
			0	fclx	Droop					Clo	osed		mi- sed	For	[fdir] o	pposing		
			1	adin	Interp	olation	A/D c	ompei	nsation	Inv	valid	Va	alid			Ø-L		
			2	rtrn	Specia	al func	tion			Inv	/alid	Va	alid	71 r	П	Det	ector	
			4	cdir	Positio	on com	nmand	polari	ty	-	ward un	-	erse In		Spindle motor			
			5	fdir	Positio	on dete	ector p	olarity	,		(+) osing		orrect ition					
			D	odx8	Exces	sive e	rror wi	dth (S	P218)	1-	fold	8-f	old	During contro		nronous	tap	
			Е	ptyp	Autorr operat		ero poi	int retu	ırn	Ava	ilable		ot lable	During synchronous tap			tap	
			F	zrtn	Spino	dle rota	ation d	lirectio	n	-	ward		erse In	During	During zero point return			

Name	Abbr.										Det	ails												TYP
SP039	ATYP	Set the dr	ive ur	nit m	odel.																			HEX setting
			F	E	E [)	С	В	А	9	8	7	6	5	,	4	3	2	1	C)			
																AT	ΥP							
					ting lue			Co	nten	t		Set va	ting lue			С	onte	ent]			
				C)0		-					C	A		CH	I-SP-	·220		22	kW				
				C)1	(CH-S	P-07	75	0.7	5kW	C)B		CH	I-SP-	260		26	kW				
				C)2		CH-S	SP-1	5	1.	5kW	0	C		CH	I-SP-	300		30	kW				
				C)3		CH-S	SP-2	2	2.2	2kW	0	D		CH	I-SP-	370		37	kW				
				C)4		CH-S	SP-3	57	3.1	7kW	C)E		CH	I-SP-	450		45	kW				
				C)5		CH-S	SP-5	5	5.	5kW	C)F		CI	H-SP	-04		0.4	kW				
				C)6		CH-S	SP-7	'5	7.	5kW	1	0		CH	I-SP-	-550		55	kW				
				C)7	(CH-S	P-1	10	1	1kW	1	1		CH	I-SP-	750		75	kW				
				C)8	(CH-S	P-1	50	1:	5kW													
				C)9	(CH-S	P-18	85	18.	5kW													
SP040	MTYP	Set the mo product.) Note that		-							•					•		para	tely e	nclo	ose	d with	n the	HEX setting
				ting	N	loto	r mo	del		Maxi			Con	npati	ble	e driv	ve ur	nit m	odel					
		-	va	lue					sp	beed	(r/mi	n)		•						-				
		L							<u> </u>	<u> </u>										1				
									Set	0 for	the (CHS	Series	5.										
SP041	PTYP																							HEX setting
			F	E)	С	В	А	9	8	7	6	5	,	4	3	2	1	C)			
											**					pty	γp							
			pty	'р		Se	et the	po۱	ver s	upply	y type	ə. (C)nly ι	inits v	with	n wirii	ng to	O CN	4 con	nec	ctor)		
					Settin value				Cont	ent			Sett val				Co	nten	t					
					00				powe unit				2	2	(CH-C	:V-22	20	22	kW				
					04		CI	H-C۱	/-37		3.7k	W	2	6	(СН-С	:V-26	50	26	kW				
					06		Cł	H-C	/-55		5.5k	W	3	0	(CH-C	:V-30	00	30	kW				
					08		Cł	I-C	/-75		7.5k	W	3	7	(CH-C	:V-37	70	37	kW				
					11		CH	I-CV	′-110)	11k	W	4	5	(CH-C	:V-45	50	45	kW				
					15				′-150		15k		5		(CH-C	:V-58	50		kW				
					19		CH	I-CV	′-185	1	8.5k	W	7	5	(СН-С	:V-75	50	75	kW				
														nctior settir										
							Whe	en u	sing		xtern	al er	nerg	ency										
				Se	et bit	8 to	"1" w	/hen	con	nectii	ng a	unit	highe	er tha	n N	/DS-	CH-	SP[]	-370.					

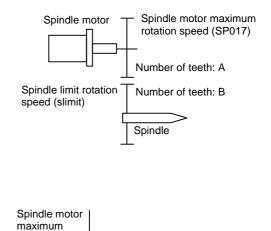
4-3-3 Setting spindle drive unit and motor model

4-3-4 Spindle specification parameters screen

The spindle parameters include parameters used with the spindle drive unit and on the NC side.

- (1) The 384 parameters transferred from the NC to the spindle drive unit are the parameters transferred when the power is turned ON.
- (2) Parameters used on NC side The spindle specification parameters indicated in this section are the parameters used on the NC side.

[SP	INDLE BA	ASE SPE	C. PA	RAM]	
#					
1	slimt 1	8000	17	stapt 1	200
2	2	8000	18	2	400
3	3	8000	19	3	1000
4	4	8000	20	4	2000
5	smax 1	6000	21	sori	0
6	2	6000	22	sgear	0
7	3	6000	23	smini	10
8	4	6000	24	serr	0
9	ssift 1	0	25	sname	0
10	2	0	26		
11	3	0	27	senc_pno	0
12	4	0	28	sana_pno	0
13	stap 1	1500	29	spfig	0
14	2	3000	30	senc_no	0
15	3	4000	31	sana_no	0
16	4	5000	32	smcp-no	0
#() Data()			


No.		Items	Details	Setting range (Unit)
1	slimt 1	Limit rotation speed Gear 00	Set spindle rotation speed for	
2	slimt 2	Limit rotation speed Gear 01	maximum motor rotation speed	0 to 99999 (r/min)
3	slimt 3	Limit rotation speed Gear 10	with gears 00, 01, 10, 11.	0 10 99999 (1/1111)
4	slimt 4	Limit rotation speed Gear 11		
5	smax 1	Maximum rotation speed Gear 00	Set maximum spindle rotation	
6	smax 2	Maximum rotation speed Gear 01	speed with gears 00, 01, 10, 11.	0 to 99999 (r/min)
7	smax 3	Maximum rotation speed Gear 10	Set the value that equal to or larger than "slimit" value.	0 10 99999 (1/1111)
8	smax 4	Maximum rotation speed Gear 11		
9	ssift 1	Shift rotation speed Gear 00	Set spindle rotation speed for	
10	ssift 2	Shift rotation speed Gear 01	gear shifting with gears 00, 01,	0 to 32767 (r/min)
11	ssift 3	Shift rotation speed Gear 10	10, 11.	0.10.52707 (171111)
12	ssift 4	Shift rotation speed Gear 11		
13	stap 1	Maximum tap rotation speed Gear 00	Set maximum spindle rotation	
14	stap 2	Maximum tap rotation speed Gear 01	speed during tap cycle with	0 to 99999 (r/min)
15	stap 3	Maximum tap rotation speed Gear 10	gears 00, 01, 10, 11.	0 10 99999 (1/1111)
16	stap 4	Maximum tap rotation speed Gear 11		
17	stapt1	Tap time constant Gear 00	Set the time constant to the	
18	stapt2	Tap time constant Gear 01	maximum tap speed during	0 to 5000 (ms)
19	stapt3	Tap time constant Gear 10	constant inclination tap cycle at gear 00, 01, 10, 11.	0 to 5000 (ms)
20	stapt4	Tap time constant Gear 11	goal 00, 01, 10, 11.	
22	sgear	Encoder gear ratio	Set the gear ratio between the spindle and encoder.	0 : 1/1 1 : 1/2 2 : 1/4 3 : 1/8
23	smini	Minimum rotation speed	Set the spindle's minimum rotation speed. Even if an S command lower than this value is input, the spindle will continue rotating at this rotation speed.	0 to 32767 (r/min)

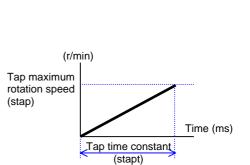
Limit rotation speed (slimit)

slimit sets the spindle's maximum rotation speed. Set a value obtained by multiplying the spindle motor's maximum rotation speed (SP017) with the gear ratio.

There are four slimit settings used for gear changeover.

Limit rotation speed = (SP017) $\times \frac{A}{B}$

rotation speed


(SP017)

Maximum rotation speed (Smax)

Set this when the spindle's maximum rotation speed is to be limited to below the limit rotation speed (slimit) depending on the gear specifications or machine specifications, etc. There are four Smax settings used for gear changeover.

Tap maximum rotation speed (Stap)

Set the spindle's maximum rotation speed (stap) for the tap cycle. The relation of the tap maximum rotation speed and spindle tap time constant is shown on the right.

Smax

slimit

Spindle speed (r/min)

(2) Spindle monitor screen

The spindle drive unit status can be confirmed on the NC screen. An example is shown below. The screen configuration may differ depending on the NC, but the items are the same.

[SPINDLE MONITOR]					
DROOP (i) 16 SPEED (r/min)	0 0 4	1L H 2L H 3L H 4L H 1L H 2L H 3L	00000000 2 00000000 0000000 0000000 0000000 000000	NIT NO /W VER WORK TIME ALM HIST 1 2 3 4 5 6 7 8 8 MNT	00000000 0000000 0000000 0000000 000000
		H 4L H	00000000 00000000 00000000	/SYS	00000000

Item	Unit	Display details
GAIN	1/s	Displays the position loop gain when operating with the position command.
DROOP	pulse	Displays the position deviation amount when operating with the position command.
SPEED	r/min	The motor rotation speed is displayed.
LOAD	%	The motor load ratio (load) is displayed.
		The short-term rating is 100%. (30-minute rating for standard spindle motor.)
AMP DISP		The data of the 7-segment LED display for the spindle drive unit is displayed.
ALARM		The alarm No. is displayed when an alarm other than that displayed on the AMP DISP 7-segment LED.
CYC CNT		Displays the current position from the position detector's reference Z-phase when operating with the position command.
D/I 1L		Control signal input 1
Н		Displays the control input signal sent from the NC to the spindle drive unit.
D/I 2L		Control signal input 2
Н		Displays the control input signal sent from the NC to the spindle drive unit.
D/I 3L		Control signal input 3
Н		Displays the control input signal sent from the NC to the spindle drive unit.
D/I 4L		Control signal input 4
Н		Displays the control input signal sent from the NC to the spindle drive unit.
D/O 1L		Control signal output 1
Н		Displays the control input signal sent from the spindle drive unit to the NC.
D/O 2L		Control signal output 2
Н		Displays the control input signal sent from the spindle drive unit to the NC.
D/O 3L		Control signal output 3
H		Displays the control input signal sent from the spindle drive unit to the NC.
D/O 4L		Control signal output 4
Н		Displays the control input signal sent from the spindle drive unit to the NC.
UNIT TYP		The spindle drive unit type is displayed.
UNIT NO		The spindle drive unit serial No. is displayed.
S/W VER		The software version in the spindle drive unit is displayed.
1 WORK TIME		The cumulative working time of the spindle drive unit is displayed.
2 ALM HIST 1~8		Displays the history of alarms occurring in the spindle drive. "1" indicates the alarm that occurred last.

Refer to section "4-3-5 Spindle control signals" for details on the control input and control output.

4-3-5 Spindle control signals

(1) Spindle control input

The control input signals are shown below. The corresponding control input bit changes from 0 to 1 while the command is received from the NC.

Note that some signals cannot be input depending on the NC specifications.

Name						Details				
Control input 1		7	6	5	4	3	2	1	0	
	1L /	ALMR	PRM				_	SRV	RDY	1
	·	F	Е	D	С	В	۸	9	0	
	1H	G1			C	D	A TL3	9 TL2	8 TL1	1
	····	01					TLU	1 62	161	
	bit	Abbr	ev.			D	etails			
	0	RD		Ready ON c	command					
	1	SR		Servo ON co						
	6	PR		Parameter c						
	7	ALM		Drive unit al		command				
	8			Forque limit Forque limit						
	A	TL		Forque limit						
	F	G1		Cutting	•					
Control input 2		7	6	5	4	3	2	1	0	
control input z	1L	·			-r	5	<u> </u>	1		
					0		•	0		
	1H	F	E	D	С	В	A	9	8	1
	·									
	TI	his signa	l is not u	ised.						
Control input 3		7	6	5	4	3	2	1	0	
	1L		GR2	GR1	SC5	SC4	SC3	SC2	SC1	
		F	Е	D	С	В	А	9	8	
	1H F	PCGH		LCS	ORC	WRI	WRN	SRI	SRN	I
	bit						etails	4		
	0	SC SC		Spindle cont Spindle cont						
	2	SC		Spindle cont						
	3	SC		Spindle cont						
	4	SC		Spindle cont						
	5	GR		Gear selecti						
	6	GR		Gear selecti						
	8	SR		Forward run						
	9 A	SR WR		Reverse run ndex forwai						
	B	WR		ndex revers						
	C	OR		Drientation						
	D	LC		coil selecti	on comma	and (Wher	n using coil	changeov	ver motor)	
Control input 4		7	6	5	4	3	2	1	0	
	1L									
	·	F	Е	D	С	В	А	9	8	
	1H .	TLUP				5	~	3	5	l l
	··· L			<u> </u>		I	1			
	bit	Abbr					etails			
	F	TLU		ndle holdin	g force up					

(2) Spindle control input signals

Each signal function and signal name for control input is shown below.

1) Speed command

When the speed command value is "0", the motor speed will be "0". The motor's maximum speed is designated with SP017 (TSP) when the speed command value is the maximum.

The run command must also be input to rotate the motor.

2) Forward run start command (SRN)

This is the run command. The speed command must also be input to rotate the motor.

SRN	Explanation	
1 (ON)	The motor rotates in the counterclockwise direction (CCW), looking from the shaft, according to the speed command.	
	The motor decelerates to a stop. The drive unit's power module is then turned OFF.	
Orientation	h has a priority when the orientation command is input.	

Spindle motor rotation direction Ο Counterclockwise direction

Speed

value

Max

command

r/min

Max.

rotation

SP017

(TSP)

3) Reverse run start command (SRI)

This is the run command. The speed command must also be input to rotate the motor.

SRI	Explanation
	The motor rotates in the clockwise direction (CW) according to the speed command.
0 (OFF)	The motor decelerates to a stop. The drive unit's power module is then turned OFF.
Orientation	has a priority when the orientation command is input.

4) Torque limit 1, 2, 3 (TL1, TL2, TL3)

Use this to temporarily decrease the spindle motor's output torque, such as when clamping the spindle motor on the machine side. Designate a percentage, using the motor's short-term rating as 100%, for the torque limit.

TL3	TL2	TL1	Torque limit value	TL3	TL2	TL1	Torque limit value
0	0	1	SP021	1	0	1	SP052
0	1	0	SP049	1	1	0	SP053
0	1	1	SP050	1	1	1	SP054
1	0	0	SP051				

Set the SP021 and SP049 to 054 torque limit values with a combination of TL1 to 3.

5) Orientation start command (ORC)

This signal starts orientation.

ORC	Explanation
1 (ON)	Orientation starts regardless of the run command (SRN, SRI).
0 (OFF)	When one of the run commands (SRN or SRI) is selected, the motor starts rotating at the commanded speed again.
Orientation	has a priority when the orientation command is input.

6) Gear selection command 1, 2 (GR1, GR2)

Select the number of spindle gear stages required to carry out orientation or various position control operations.

GR2	GR1	Gear ratio
0	0	SP025, 029
0	1	SP026, 030
1	0	SP027, 031
1	1	SP028, 032

Do not change the gear selection command signal while the orientation CAUTION Command or servo command is input.

7) Index forward run command (WRN), reverse run command (WRI)

This command is valid while the orientation start signal is ON.

WRN	Explanation	WRI	Explanation
1 (ON)	Indexing starts in the counterclockwise direction (CCW) looking from the motor shaft side.		Indexing starts in the clockwise direction (CW) looking from the motor shaft side.
0 (OFF)	Indexing is not carried out.	0 (OFF)	Indexing is not carried out.

8) L coil selection command (LCS)

This command is input to select the coil method when changing the coils.

LSC	Explanation
1 (ON)	Select low-speed coil.
0 (OFF)	Select high-speed coil.

9) READY ON command (MS)

This signal is input when the motor is ready to rotate. The forward run and reverse run start commands will not be accepted if input before this signal turns ON.

MS	Explanation
1 (ON)	Ready-ON
0 (OFF)	Ready-OFF

10) Cutting (G1)

This signal judges the cutting and non-cutting state during C-axis control.

G1	Explanation
1 (ON)	Judged as cutting.
0 (OFF)	Judged as not cutting.

11) Spindle control mode selection command 1, 2, 3, 4, 5 input (SC1, SC2, SC3, SC4, SC5)

The speed control mode is entered when the following bits are not selected.

SC5	SC4	SC3	SC2	SC1	Gear ratio	SC5	SC4	SC3	SC2	SC1	Gear ratio
0	1	0	0	0		1	0	0	0	0	
0	1	0	0	1	Synchronous tap control	1	0	0	0	1	Spindle synchronous
0	1	0	1	0	mode	1	0	0	1	0	control mode
0	1	0	1	1		1	0	0	1	1	
0	1	1	0	0							
0	1	1	0	1	C-axis control						
0	1	1	1	0	mode						
0	1	1	1	1							

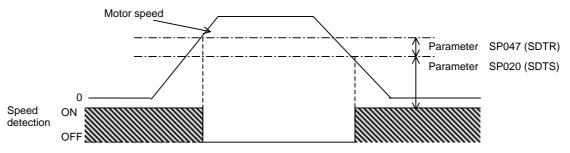
12) Servo ON command (SRV)

This command is input for position control, excluding orientation. If this signal is not ON, position control will not start even if the position control mode is selected with the spindle control mode selection command combination.

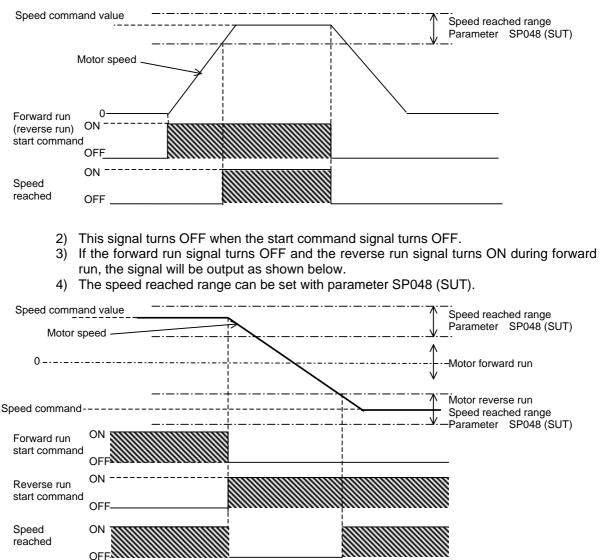
G1	Explanation
1 (ON)	Servo ON
0 (OFF)	Servo OFF

(3) Spindle control output bit

The control signal outputs are shown below. The corresponding control output bit will change from 0 to 1 while the command is output from the spindle drive unit to the NC.

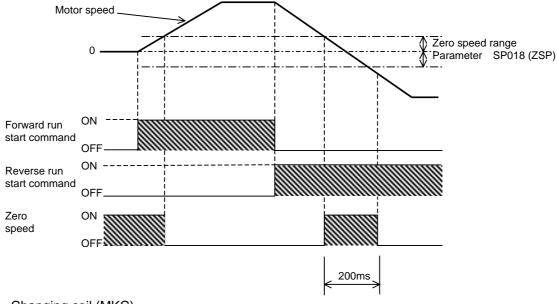

Name					Details				
Control output	7	6	5	4	3	2	1	0	
1	1L ALM	M PRM	A	WRN			SON	RON	
	F	E	D	С	В	А	9	8	
	1H CD) INP	ZFIN			TL3A	TL2A	TL1A	
	bit	Abbrev.			D	etails			
	0	RON	In ready ON						
	1	SON WRN	In servo ON In drive unit						
	6	PRMA	In paramete		on				
	7	ALM	In drive unit						
	8	TL1A	Inputting to						
	9 A	TL2A TL3A	Inputting to Inputting to						
	D	ZFIN	Z-phase pas	ssed					
	E	INP	In position le		ition				
	F	CL	Limiting cur	rent					
Control output	7	6	5	4	3	2	1	0	
2	1L				_				
	F	E	D	С	В	А	9	8	
	1H			_					
	This s	signal is no	t used.						
Control output	1L 7	6 GR2	5 A GR1A	4 SC5A	3 SC4A	2 SC3A	1 SC2A	0 SC1A	
			•						
	1H F	E	D LCSA	C ORCA	B WRIA	A WRNA	9 SRIA	8 SRNA	
			LUSA	URCA	WRIA	WKINA	SKIA	SKINA	
	bit	Abbrev.				etails			
	0	SC1A	Inputting sp						
	1 2	SC2A SC3A	Inputting sp Inputting sp						
	3	SC4A	Inputting sp					0	
	4	SC5A	Inputting sp	indle cont	rol mode s	selection c	ommand		
	5	GR1A	Inputting ge						
	8	GR2A SRNA	Inputting ge Motor in for		on comma	ind z signa	11		
	9	SRIA	Motor in rev	erse run					
	A	WRNA	In index for						
	B C	WRIA ORCA	In index rev Inputting or			and signa	1		
	D	LCSA	Selecting L)	
	_								
Control output	7 1L WRC	6 CF MKC	5	4 ORCF	3 ZS	2 US	1 SD	0 CD	
r				•	•				
	1H F	E TLU/	D A ATA	С	В	A	9 SD2	8	
1							302		
					D	etails			
	bit /	Abbrev.				ctuno			
	0	CD	Current dete			ctuno			
	0	CD SD	Speed dete	ction 1					
	0 1 2	CD SD US	Speed dete Speed reac	ction 1 hed					
	0 1 2 3 4	CD SD US ZS ORCF	Speed deter Speed reac Zero speed Orientation	ction 1 hed completed					
	0 1 2 3 4 5	CD SD US ZS ORCF SYSA	Speed deter Speed reac Zero speed Orientation Synchronou	ction 1 hed completed is speed m					
	0 1 2 3 4 5 6	CD SD US ZS ORCF SYSA MKC	Speed deter Speed reac Zero speed Orientation Synchronou In coil chang	ction 1 hed completed is speed m geover	Inatch				
	0 1 2 3 4 5 6 7	CD SD US ZS ORCF SYSA MKC WRCF	Speed dete Speed reac Zero speed Orientation Synchronou In coil chang Index positio	ction 1 hed completed is speed m geover oning com	Inatch				
	0 1 2 3 4 5 6	CD SD US ZS ORCF SYSA MKC	Speed deter Speed reac Zero speed Orientation Synchronou In coil chang	ction 1 hed completed is speed n geover oning com ction 2 c adjustme	natch pleted				

(4) Spindle control output signals

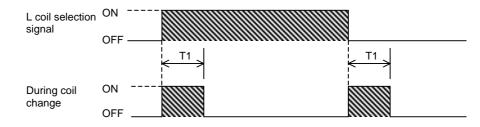

Each signal function and signal name for control output is shown below.

- <1> Orientation completed (ORCF)
 - 1) This signal turns ON when the orientation command is input and the spindle position has reached a set range (in-position range) in respect to the target stop position.
 - 2) This signal turns OFF when orientation is completed and the spindle position leaves the in-position range, and turns ON again when the spindle enters the in-position range again. When the orientation command turns OFF, this signal will turn OFF even if the spindle is in the in-position range.
 - 3) The in-position range can be set with parameter SP004 (OINP).
- <2> Index positioning completed (WRCF)
 - This signal turns ON during indexing when the spindle position has reached a set range (in-position range) in respect to the target stop position.
 Once this signal turns ON, it remains ON regardless of the spindle position until the orientation signal turns OFF or the next indexing signal is input.
 This signal will always turn OFF when the indexing signal is input even if the currently stopped position and next indexing position are within the in-position range. Minimum off
 - period = 200ms (standard value)
 - 2) The minimum off period can be set with parameter SP103 (FTM).
- <3> Inputting torque limit 1, 2, 3 signal (TL1A, TL2A, TL3A)
 - 1) This signal turns ON while the torque limit signal (1 to 3) is input.
- <4> Motor in forward run (SRNA)
 - 1) This signal turns ON while the start signal is input and the motor is rotating in the CCW direction looking from the motor shaft.
 - 2) This signal may turn ON and OFF if the motor speed is several r/min or less.
- <5> Motor in reverse run (SRIA)
 - 1) This signal turns ON while the start signal is input and the motor is rotating in the CW direction looking from the motor shaft.
 - 2) This signal may turn ON and OFF if the motor speed is several r/min or less.
- <6> In drive unit alarm (ALM)
 - 1) This signal turns ON while an alarm is occurring in the unit.
- <7> In READY ON (RON)
 - 1) If there is no abnormality, this signal turns ON one second after the READY ON signal is input from the NC.
 - 2) The motor will start rotating if the start signal (forward run, reverse run, orientation) is turned ON while this signal is ON.
 - 3) This signal turns OFF if the READY ON signal is input from the NC, or if an alarm occurs.
 - 4) If the READY ON signal from the NC turns OFF while the spindle motor is rotating, the motor will decelerate to a stop. This signal will remain ON until the motor stops.
- <8> Current detection (CD)
 - This signal turns ON if the current flowing to the motor is approx. 110% or more of the rating while the start signal (forward run, reverse run, orientation) is ON. (The motor output (current) guarantee value is 120% of the rating.)

- <9> Speed detection (SD)
 - 1) This signal turns ON if the motor speed drops to below the value set in parameter SP020 (SDTS).
 - 2) The ON to OFF hysteresis width is set with parameter SP047 (SDTR).
 - 3) This signal turns ON when the motor speed drops below the set speed regardless of the input signal status.



- <10> Speed reached (US)
 - 1) This signal turns ON when the start command signal (forward run, reverse run) turns ON and the motor speed reaches the $\pm 15\%$ (standard value) range of the speed command value.


<11> Zero speed (ZS)

- 1) This signal turns ON when the motor speed drops below the speed set in parameter SP018 (ZSP) regardless of the input signal state.
- 2) Once this signal turns ON, it will not turn OFF for at least 200ms.
- 3) If the parameter SP018 (ZSP) setting value is too small (approx. 10r/min or less), the output may not turn ON even if the motor is stopped.

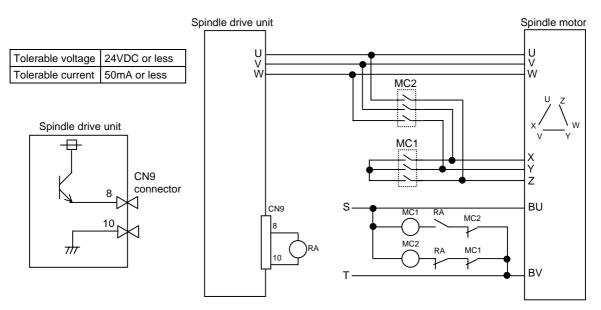
- <12> Changing coil (MKC)
 - 1) This signal turns ON for the time set in parameter SP059: MKT while the L coil selection signal is ON or OFF when using the coil changeover motor.
 - 2) The coil is not changed while the orientation command is input, so this signal will not turn ON even if the L coil selection signal turns ON or OFF. In this case, the coil will be changed after the orientation command turns OFF. This signal will turn ON at that time.

Do not turn the start command ON or OFF while this signal is ON.

- <13> Changing L coil selection (LCSA)
 - 1) This signal turns ON while the L coil is selected for the coil changing motor.
 - 2) This signal turns ON when the L coil selection signal is ON, and stays ON until the L coil selection signal turns OFF.
 - 3) The coil will not change when the orientation command is input, so this signal will not turn ON even if the L coil selection signal turns ON. In this case, the coil will be changed after the orientation command turns OFF. This signal will turn ON at that time.

- <14> In orientation start command signal (ORCA)
 - 1) This signal turns ON while the orientation start command (ORC) is input to the spindle drive unit.
- <15> Inputting gear selection 1, 2, signal (GR1A, GR2A)
 - 1) The corresponding output signal turns ON while the gear selection 1, 2 (GR1, GR2) is input to the spindle drive unit.
- <16> In forward run indexing (WRNA), in reverse run indexing (WRIA)
 - 1) The corresponding output signal turns ON while forward run indexing (WRN) or reverse run indexing (WRI) is input to the spindle drive unit.
- <17> Synchronization speed match (SYSA)
 - 1) During spindle synchronous control, this signal turns ON when the control changes from speed control to spindle synchronous control.
- <18> In drive unit warning (WRN)
 - 1) This signal turns ON when a warning is occurring in the spindle drive unit.
- <19> Z-phase passed (ZFIN)
 - 1) This signal turns ON when the Z-phase is passed for the first time after servo ON in position control.
- <20> In servo ON (SON)
 - 1) This signal turns ON after the servo ON signal (SRV) is input from the NC and the loop changes from the speed loop to the position loop.
- <21> In position loop in-position (INP)
 - This signal turns ON when the spindle position is in the rang set with SP153 (CINP) during C-axis control, SP185 (SINP) during spindle synchronous control, or SP217 (TINP) during synchronous tap control.
- <22> In spindle control mode selection command 1, 2, 3, 4, 5 signal input (SC1A, SC2A, SC3A, SC4A, SC5A)
 - 1) The corresponding output signal turns ON when the spindle control mode selection command 1, 2, 3, 4, 5 (SC1, SC2, SC3, SC4, SC5) is input.
- <23> Spindle holding force increased (TLUA)
 - 1) This signal turns ON while the spindle holding force up (TLUP) signal is input.
- <24> Limiting current (CL)
 - 1) This signal turns ON when a load exceeding the spindle's overload withstand level is applied during spindle motor rotation. This may also turn ON during motor acceleration/deceleration.

(5) Input/output interface


The spindle drive unit has a general-purpose input/output interface.

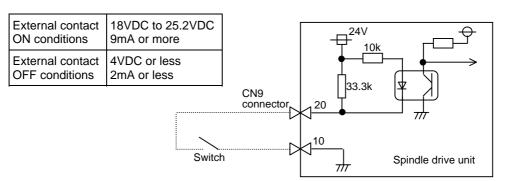
Output interface

The signals required for coil changeover can be output.

To output the coil changeover signal to the CN9 connector's pin 8, set SP034 (SFC2) bit2 (mkch) to "1".

The signal will be output if the L coil is designated for the control signal input.

Coil changeover wiring diagram


Low-speed coil selection : Y connection (MC1 ON, MC2 OFF) High-speed coil selection : \triangle connection (MC1 OFF, MC2 ON)

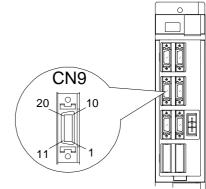
Use the contactors recommended in section "7-2-3 Selecting the contactor" for the MC1 and MC2 contactors.

Refer to section "5-8-1(4) Coil changeover contactor (magnetic contact)".

Input interface

A trigger is input to shift to the speed monitor mode. (Protective door open/close information, etc.) The spindle drive unit monitors the spindle motor's speed at this time. (Function to monitor whether spindle motor is below limit speed together with corresponding NC.) This function monitors the spindle monitor speed limit value designated with SP223 (SPDV) and the error speed detection time designated with SP224 (SPDF). The 5E alarm occurs when an error is detected. (This is not supported with the MDS-CH Series drive unit.)

5. Adjustment


5-1 Servo adjustment data output function (D/A output)	5-2
5-1-1 D/A output specifications	5-2
5-1-2 Setting the output data	5-2
5-1-3 Setting the output magnification	5-2
5-2 Gain adjustment	5-3
5-2-1 Current loop gain	5-3
5-2-2 Speed loop gain	5-3
5-2-3 Position loop gain	
5-3 Characteristics improvement	5-8
5-3-1 Optimal adjustment of cycle time	5-8
5-3-2 Vibration suppression measures	5-11
5-3-3 Improving the cutting surface precision	5-15
5-3-4 Improvement of protrusion at quadrant changeover	5-18
5-3-5 Improvement of overshooting	
5-3-6 Improvement of characteristics during acceleration/deceleration	5-26
5-4 Settings for emergency stop	
5-4-1 Vertical axis drop prevention control	
5-4-2 Deceleration control	
5-4-3 Dynamic braking stop	
5-5 Collision detection function	
5-6 Spindle adjustment data output function (D/A output)	5-36
5-6-1 D/A output specifications	
5-6-2 Parameter settings	
5-6-3 Output data settings	
5-6-4 Setting the output magnification	
5-7 Spindle adjustment	
5-7-1 Items to check during trial operation	
5-7-2 Adjusting the spindle rotation speed	
5-7-3 Adjusting the acceleration/deceleration	
5-7-4 Adjusting the orientation	
5-7-5 Synchronous tap adjustment	5-49
5-7-6 Z-phase (magnetic) automatic adjustment (Only when using IPM spindle motor)	5-51
5-7-7 PLG automatic adjustment	5-51
5-7-8 Calculating the theoretical acceleration/deceleration	
5-8 Spindle specifications	
5-8-1 Spindle coil changeover	5-54

5-1 Servo adjustment data output function (D/A output)

The MDS-CH-V1/V2 servo drive unit has a function to D/A output the various control data. The servo adjustment data required for setting the servo parameters to match the machine can be D/A output. Measure using a hi-coder, synchroscope, etc.

5-1-1 D/A output specifications

Item	Explanation
No. of channels	2ch
Output cycle	888µs
Output precision	8bit
Output voltage range	0 to +5V
Output magnification setting	±1/256 to ±128-fold
Output pins	CN9 connector Channel 1 = Pin 9
	Channel 2 = Pin 19 GND = Pins 1, 11

5-1-2 Setting the output data

No.	Abbrev.	Parameter name	name Explanation						
SV061	DA1NO	D/A output channel 1 data No.	Input the No. of the data to be output to each D/A output channel. (When "-1" is set, the D/A output for that channel will be invalid.)						
SV062			(When using the 2-axis integrated unit, set the D/A output for the axis not to be measured to invalid (-1).)						

No.	CH1 output data	Standard output unit	Output magnification standard setting value (SV063, SV064)	Output unit for standard setting	Output cycle
-1	D/A output not selected				
	CH1: Speed feedback	r/min	13 (2000 r/min)	1000 r/min / V	3.5ms
0	CITI: Speed reedback	1/11111	9 (3000 r/min)	1500 r/min / V	3.5ms
	CH2: Current command Rated (stall) current % 1 Current command Rated (stall) current %		131	Stall 100% / V	3.5ms
1	Current command	Rated (stall) current %	131	Stall 100% / V	3.5ms
2	Current command	Rated (stall) current %			
3	Current feedback	Rated (stall) current %	131	Stall 100% / V	3.5ms
6	Position droop low-order	Interpolation unit	328 (Display unit: 1µm)	10μm / 0.5V	3.5ms
7	-	_			
8	Position F∆T low-order	Interpolation unit/ NC communication cycle	55 (1µm, 3.5ms)	1000mm/min / 0.5V	3.5ms
9	-	-	_		
10	Position command low-order	Interpolation unit	328 (Display unit: 1µm)	10µm / 0.5V	3.5ms
11	-	-	_		
12	Feedback position low-order	Interpolation unit	328 (Display unit: 1µm)	10µm / 0.5V	3.5ms
13	-	-	-		
125	Test output saw tooth wave	0 to +5V	0 or 256	Cycle: 227.5ms	0.8ms
126	Test output oblong wave	0 to +5V	0 or 256	Cycle: 1.7ms	0.8ms
127	Test output 2.5V (data 0)		0 or 256	-	0.8ms

* Interpolation unit

This is the NC internal unit. The command unit (input unit) will be as shown on the right.

Command unit	Interpolation unit
10µm	5µm
1µm	0.5µm
0.1µm	0.05µm

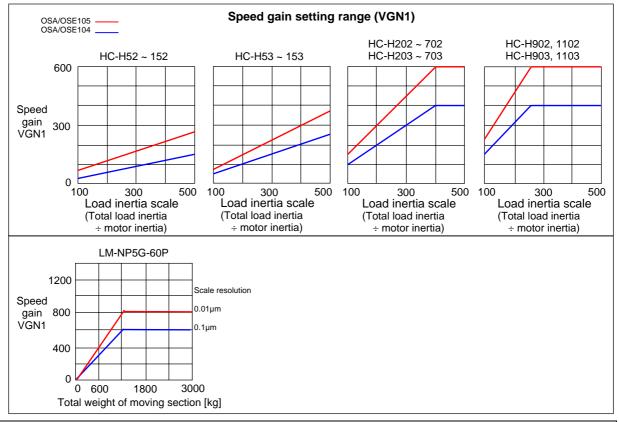
5-1-3 Setting the output magnification

No.	Abbrev.	Parameter name	Explanation	Setting range
		D/A output channel 1 output magnification	The magnification is set with a 1/256 unit. When 256 is set, the	-32768 to 32767
SV064	DA2MPY	D/A output channel 2 output magnification	magnification will be 1.	52700 10 52707

Analog output voltage = {(Output data value) x (Setting value of SV063 or SV064) x 76.3/1,000,000} + 2.5V

5-2 Gain adjustment

5-2-1 Current loop gain


No.	Abbrev.	Parameter name	Explanation	Setting range
SV009			This setting is determined by the motor's electrical characteristics. Set the standard parameters for all parameters.	1 to 20480
SV010	IDA	Current loop d axis leading compensation	(These are used for maker adjustments.)	1 to 20480
SV011	IQG	Current loop q axis gain		1 to 8192
SV012	IDG	Current loop d axis gain		1 to 8192

5-2-2 Speed loop gain

(1) Setting the speed loop gain

The speed loop gain (SV005 (VGN1)) is an important parameter for determining the responsiveness of the servo control. During servo adjustment, the highest extent that this value can be set to becomes important. The setting value has a large influence on the machine cutting precision and cycle time.

- 1) Refer to the following table and set the standard VGN1 according to the size of the entire load inertia (motor and machine load inertia).
- 2) If the standard speed gain setting value is exceeded, the current command fluctuation will increase even if the speed feedback fluctuates by one pulse. This can cause the machine to vibrate easily, so set a lower value to increase the machine stability.

The final VGN1 setting value is 70 to 80% of the maximum value at which the machine does not resonate.

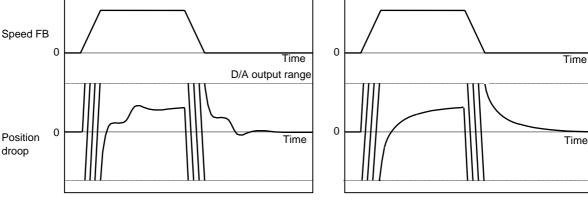
Suppressing the resonance with the vibration suppression function and increasing the VGN1 setting is effective for adjusting the servo later.

<When machine resonance does not occur at the standard VGN1>

Set the standard VGN1. Use the standard value if no problem (such as machine resonance) occurs. If sufficient cutting precision cannot be obtained at the standard VGN1, VGN1 can be raised above the standard value as long as a 70 percent margin in respect to the machine resonance occurrence limit is maintained. The cutting accuracy can also be improved by adjusting with the disturbance observer.

<When machine resonance occurs at the standard VGN1>

Machine resonance is occurring if the shaft makes abnormal sounds when operating or stopping, and a fine vibration can be felt when the machine is touched while stopped. Machine resonance occurs because the servo control responsiveness includes the machine resonance points. (Speed control resonance points occur, for example, at parts close to the motor such as ball screws.) Machine resonance can be suppressed by lowering VGN1 and the servo control responsiveness, but the cutting precision and cycle time are sacrificed. Thus, set a vibration suppression filter and suppress the machine resonance (Refer to section "5-3-2 Vibration suppression measures"), and set a value as close as possible to the standard VGN1. If the machine resonance cannot be sufficiently eliminated even by using a vibration suppression filter, then lower the VGN1.


No.	Abbrev.	Parameter name	Explanation	Setting range
SV005	VGN1	1 10	Set this according to the load inertia size.	1 to 10000
			If vibration occurs, adjust by lowering the setting by 20% to 30% at a time.	

(2) Setting the speed loop leading compensation

The speed loop leading compensation (SV008 (VIA)) determines the characteristics of the speed loop mainly at low frequency regions. 1364 is set as a standard, and 1900 is set as a standard during SHG control. The standard value may drop in respect to loads with a large inertia.

When the VGN1 is set lower than the standard value because the load inertia is large or because machine resonance occurred, the speed loop control band is lowered. If the standard value is set in the leading compensation in this status, the leading compensation control itself will induce vibration. In concrete terms, a vibration of 10 to 20Hz could be caused during acceleration/deceleration or stopping, and the position droop waveform could be disturbed when accelerating to a constant speed and when stopped. (Refer to the following graphs.)

This vibration cannot be suppressed by the vibration suppression functions. Lower the VIA in increments of 100 from the standard setting value. Set a value where vibration does not occur and the position droop waveform converges smoothly. Because lowering the VIA causes a drop in the position control's trackability, the vibration suppression is improved even when a disturbance observer is used without lowering the VIA. (Be careful of machine resonance occurrence at this time.)

Adjusted position droop waveform

If VIA is lowered, the position droop waveform becomes smooth and overshooting does not occur. However, because the trackability in respect to the position commands becomes worse, the positioning time and accuracy are sacrificed. VIA must be kept high (set the standard value) to guarantee precision, especially in high-speed contour cutting (generally F = 1000 or higher). When adjusting, the cutting precision will be better if adjustment is carried out to a degree where overshooting does not occur and a high VIA is maintained, without pursuing position droop smoothness.

If there are no vibration or overshooting problems, the high-speed contour cutting precision can be further improved by setting the VIA higher than the standard value. In this case, adjust by raising the VIA in increments of 100 from the standard value.

Setting a higher VIA improves the trackability regarding position commands in machines for which cycle time is important, and the time to when the position droop converges on the in-position width is shortened.

It is easier to adjust the VIA to improve precision and cycle time if a large value (a value near the standard value) can be set in VGN1, or if VGN1 can be raised equivalently using the disturbance observer.

No.	Abbrev.	Parameter name	Explanation	Setting range
SV008		compensation	1364 is set as a standard. 1900 is set as a standard during SHG control. Adjust in increments of approx. 100. Raise the VIA and adjust to improve the contour tracking precision in high-speed cutting. If the position droop vibrates (10 to 20Hz), lower the VIA and adjust.	1 to 9999 (0.0687rad/s)

Position droop vibration of 10Hz or less is not leading compensation control vibration. The position loop gain must be adjusted.

5-2-3 Position loop gain

(1) Setting the position loop gain

The position loop gain (SV003 (PGN1)) is a parameter that determines the trackability to the command position. 33 is set as a standard. Set the same position loop gain value between interpolation axes.

When PGN1 is raised, the trackability will be raised and the settling time will be shortened, but a speed loop that has a responsiveness that can track the position loop gain with increased response will be required. If the speed loop responsiveness is insufficient, several Hz of vibration or overshooting will occur during acceleration/deceleration. Vibration or overshooting will also occur when VGN1 is smaller than the standard value during VIA adjustment, but the vibration in the position loop occurs generally 10Hz or less. (The VIA vibration occurs from 10 to 20Hz.) When the position control includes machine resonance points (Position control machine resonance points occur at the machine end parts, etc.) because of insufficient machine rigidity, the machine will vibrate during positioning, etc. In either case, lower PGN1 and adjust so that vibration does not occur.

If the machine also vibrates due to machine backlash when the motor stops, the vibration can be suppressed by lowering the PGN1 and smoothly stopping.

If SHG control is used, an equivalently high position loop gain can be maintained while suppressing these vibrations. To adjust the SHG control, gradually raise the gain from a setting where 1/2 of a normal control PGN1 where vibration did not occur was set in PGN1. If the PGN1 setting value is more than 1/2 of the normal control PGN1 when SHG control is used, there is an improvement effect in position control. (Note that for the settling time the improvement effect is at $1/\sqrt{2}$ or more.)

No.	Abbrev.	Parameter name	Explanation	Setting range
SV003	PGN1		Set 33 as a standard. If PGN1 is increased, the settling time will be shortened, but a sufficient speed loop response will be required.	1 to 400 (rad/s)
SV004	PGN2	Position loop gain 2	Set 0. (For SHG control)	0 to 999
SV057	SHGC	SHG control gain	Set 0. (For SHG control)	0 to 1200

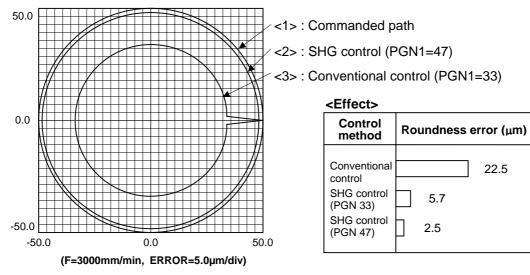
CAUTION Always set the same value for the position loop gain between the interpolation axes.

(2) Setting the position loop gain for spindle synchronous control

During spindle synchronous control (synchronous tapping control, etc.), there are three sets of position loop gain parameters besides the normal control.

No.	Abbrev.	Parameter name	Expla	anation	Setting range		
SV049		Position loop gain 1 during spindle synchronization	Set 15 as a standard.	Set the same parameter as the position loop gain for the spindle synchronous control.	1 to 200 (rad/s)		
SV050	-	Position loop gain 2 during spindle synchronization	Set 0 as a standard. (For SHG control)		0 to 999		
SV058		SHG control gain during spindle synchronization	Set 0 as a standard. (For SHG control)		0 to 1200		

Always set the same value for the position loop gain between the spindle and servo synchronous axes.


(3) SHG control (option function)

If the position loop gain is increased or feed forward control (NC function) is used to shorten the settling time or increase the precision, the machine system may vibrate easily.

SHG control changes the position loop to a high-gain by stably compensating the servo system position loop through a delay. This allows the settling time to be reduced and a high precision to be achieved. (SHG: Smooth High-Gain)

- (Feature 1) When the SHG control is set, even if PGN1 is set to the same value as the conventional gain, the position loop gain will be doubled.
- (Feature 2) The SHG control response is smoother than conventional position control during acceleration/deceleration, so the gain can be increased further with SHG control compared to the conventional position control.
- (Feature 3) With SHG control, a high gain is achieved so a high precision can be obtained during contour control.

The following drawing shows an example of the improvement in roundness characteristics with SHG control.

Shape error characteristics

During SHG control, PGN1, PGN2 and SHGC are set with the following ratio.

 $PGN1 : PGN2 : SHGC = 1 : \frac{8}{3} : 6$

During SHG control even if the PGN1 setting value is the same, the actual position loop gain will be higher, so the speed loop must have a sufficient response. If the speed loop response is low, vibration or overshooting could occur during acceleration/deceleration in the same manner as conventional control. If the speed loop gain has been lowered because machine resonance occurs, lower the position loop gain and adjust.

No.	Abbrev.	Parameter name	Setting ratio	Settind example				Explanation				Setting range		
	PGN1 (PGN1sp)	Position loop gain 1	1	23	26	33	38	47	60	70	80	90	100	1 to 400
	PGN2 (PGN2sp)	Position loop gain 2	<u>8</u> 3	62	70	86	102	125	160	186	213	240	266	0 to 999
	SHGC (SHGCsp)	SHG control gain	6	140	160	187	225	281	360	420	480	540	600	0 to 1200
SV008	VIA	Speed loop leading compensation	Set 1900 as	Set 1900 as a standard for SHG control.								1 to 9999		
SV015	FFC	Acceleration feed forward gain	Set 100 as	a star	ndard	for S⊦	IG co	ntrol.						0 to 999

The SHG control is an optional function. If the option is not set in the CNC, the alarm 37 (at power ON) or warning E4, Error Parameter No. 104 (2304 for M50/ M60 Series CNC) will be output.

5-3 Characteristics improvement

5-3-1 Optimal adjustment of cycle time

The following items must be adjusted to adjust the cycle time. Refer to the Instruction Manuals provided with each CNC for the acceleration/deceleration pattern.

- : This will affect the maximum speed during positioning. <1> Rapid traverse rate (rapid)
- <2> Clamp speed (clamp)
- <3> Acceleration/deceleration time : Set the time to reach the feedrate.
- : This will affect the maximum speed during cutting.
- constant (G0t*, G1t*)
 - : This will affect each block's movement command end time.
- <4> In-position width (SV024) <5> Position loop gain (SV003)

- : This will affect each block's movement command settling time.

(1) Adjusting the rapid traverse acceleration/deceleration time constants

To adjust the rapid traverse, the CNC axis specification parameter rapid traverse rate (rapid) and acceleration/deceleration time constant (G0t*) are adjusted. The rapid traverse rate is set so that the motor speed matches the machine specifications in the range below the maximum speed in the motor specifications. For the acceleration/deceleration time constants, carry out rapid traverse reciprocation operation, and set so that the maximum current command value at acceleration/ deceleration is within the range shown below.

If the drive unit's input voltage is less than the rated voltage, the torque will easily become insufficient, and excessive errors will occur easily during acceleration/deceleration.

(2) Adjusting the cutting feed acceleration/deceleration time constants

To adjust the cutting rate, the NC axis specification parameter clamp speed (clamp) and acceleration/ deceleration time constant (G1t*) are adjusted. The in-position width at this time must be set to the same value as actual cutting.

Determining the clamp rate and adjusting the acceleration/deceleration time constant

- (Features) The maximum cutting rate (clamp speed) can be determined freely.
- (Adjustment) Carry out cutting feed reciprocation operation with no dwell at the maximum cutting rate and adjust the acceleration/deceleration time constant to 90% or less (refer to following table).
- Setting the step acceleration/deceleration and adjusting the clamp speed
 - (Features) The acceleration/deceleration time constant is determined with the position loop in the servo, so the acceleration/deceleration $F\Delta T$ can be reduced.
 - (Adjustment) Set 1 (step) for the acceleration/deceleration time constant and carry out cutting feed reciprocation operation with no dwell. Adjust the cutting feed rate so that the maximum current command value during acceleration/deceleration is within the range shown below, and then set the value in the clamp speed.

2000r/min HC-H Series		3000r/min HC-H Series	
Motor model	Max. current command value	Motor model	Max. current command value
(HC-H52)	(385% or less)	(HC-H53)	(289% or less)
(HC-H102)	(353% or less)	HC-H103	276% or less
HC-H152	498% or less	HC-H153	351% or less
HC-H202	340% or less	HC-H203	318% or less
HC-H352	263% or less	HC-H353	243% or less
HC-H452	272% or less	HC-H453	243% or less
HC-H702	283% or less	HC-H703	194% or less
HC-H902	217% or less	HC-H903	219% or less
HC-H1102	200% or less	HC-H1103	187% or less
Natural cooling		Oil cooled	
Motor model	Max. current command value	Motor model	Max. current command value
LM-NP5G-60P	658% or less	LM-NP5G-60P	273% or less

(3) Adjusting the in-position width

Because there is a response delay in the servomotor drive due to position loop control, a "settling time" is also required for the motor to actually stop after the command speed from the CNC reaches 0. The movement command in the next block is generally started after it is confirmed that the machine has entered the "in-position width" range set for the machine.

Set the precision required for the machine as the in-position width. If a high precision is set needlessly, the cycle time will increase due to a delay in the settling time.

The in-position width is validated with the servo parameter settings, but there may be cases when the NC parameters must also be set. Refer to each NC Instruction Manual.

No.	Abbrev.	Parameter name	Unit	Explanation	Setting range
SV024		In-position detection width		Set 50 as a standard. Set the precision required for the machine.	0 to 32767

	The in-position width setting and confirmation availability depend on the CNC parameters.
--	---

F

0

0

G0tL

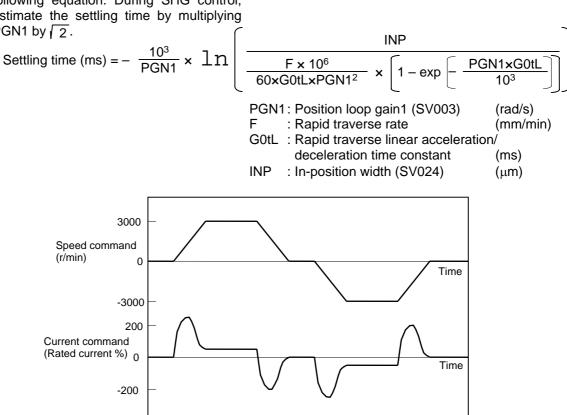
Setting time

Time

In-position

 $F\Delta T$

Position


droop

(4) Adjusting the settling time

The settling time is the time required for the position droop to enter the in-position width after the feed command (F Δ T) from the CNC reaches 0.

The settling time can be shortened by raising the position loop gain or using SHG control. However, a sufficient response (sufficiently large VGN1 setting) for the speed loop is required to carry out stable control.

The settling time during normal control when the CNC is set to linear acceleration/ deceleration can be calculated using the following equation. During SHG control, estimate the settling time by multiplying PGN1 by $\sqrt{2}$.

(Reference) The rapid traverse acceleration/deceleration time setting value G0tL for when linear acceleration/deceleration is set is calculated with the following expression.

$$\begin{array}{l} GotL = & \displaystyle \frac{(J_L + J_M) \times No}{95.5 \times (0.8 \times T_{MAX} - T_L)} & - \displaystyle \frac{6000}{\left(\mbox{ PGN1} \times K \right)^2} & (ms) \\ \\ & \displaystyle N_O & : \mbox{ Motor reach speed} & & (r/min) \\ & \displaystyle J_L & : \mbox{ Motor shaft conversion load inertia} & & (\times 10^{-4} \mbox{ kg} \cdot m^2) \\ & \displaystyle J_M & : \mbox{ Motor inertia} & & (\times 10^{-4} \mbox{ kg} \cdot m^2) \\ & \displaystyle T_{MAX} & : \mbox{ Motor max. torque} & & (N \cdot m) \\ & \displaystyle T_L & : \mbox{ Motor shaft conversion load (friction, unbalance) torque} & (N \cdot m) \\ & \displaystyle PGN1 : \mbox{ Position loop gain 1} & & (r/min) \\ & \displaystyle K & : "1" \mbox{ during normal control, "2" during SHG control} \end{array}$$

5-3-2 Vibration suppression measures

If vibration (machine resonance) occurs, it can be suppressed by lowering the speed loop gain (VGN1). However, cutting precision and cycle time will be sacrificed. (Refer to "5-2-2 Speed loop gain".) Thus, try to maintain the VGN1 as high as possible, and suppress the vibration using the vibration suppression functions.

If the VGN1 is lowered and adjusted because vibration cannot be sufficiently suppressed with the vibration suppression functions, adjust the entire gain (including the position loop gain) again.

<Examples of vibration occurrence>

- A fine vibration is felt when the machine is touched, or a groaning sound is heard.
- Vibration or noise occurs during rapid traverse.

POINT Suppress the vibration using the vibration suppression functions, and maintain the speed loop gain (SV005 (VGN1)) as high as possible.

(1) Machine resonance suppression filter

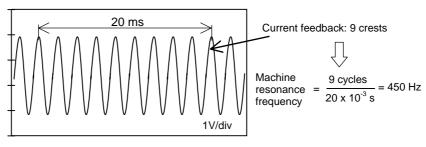
The machine resonance suppression filter will function at the set frequency. Use the D/A output function to output the current feedback and measure the resonance frequency. Note that the resonance frequency that can be measured is 0 to 500Hz. For resonance exceeding 500Hz, directly measure the phase current with a current probe, etc. (Refer to next page.)

When the machine resonance suppression filter is set, vibration may occur at a separate resonance frequency that existed latently at first. In this case, the servo control is stabilized when the machine resonance suppression filter depth is adjusted and the filter is adjusted so as not to operate more than required.

<Setting method>

- 1. Set the resonance frequency in the machine resonance suppression filter frequency (SV038 (FHz1), SV046 (FHz2)).
- 2. If the machine starts to vibrate at another frequency, raise (make shallower) the machine resonance suppression filter depth compensation value (SV033 (SSF2.nfd)), and adjust to the optimum value at which the resonance can be eliminated.
- 3. When the vibration cannot be completely eliminated, use another vibration suppression control (jitter compensation, adaptive filter) in combination with the machine resonance suppression filter.

No.	Abbrev.	Parameter name	Unit	Explanation	Setting range
SV038	FHz1	Machine resonance suppression filter frequency 1	Hz	Set the resonance frequency to be suppressed. (Valid at 36 or more). Set 0 when the filter is not to be used.	0 to 9000 (Hz)
SV046	FHz2	Machine resonance suppression filter frequency 2	Hz	Set the resonance frequency to be suppressed. (Valid at 36 or more). Set 0 when the filter is not to be used.	0 to 9000 (Hz)


No. Abbrev. Parameter name Explanation		Setting range (Unit)
FEDCBA98doshvxsvxbitMeaning when "0" is set0zckZ phase check valid (Alarm 42)1Set the filter depth for Notch filte2nfd1Value0000010Depth (dB)Infntly -18.1-12.13DeepDeep4nf3Notch filter 3 stop5Set the filter depth of Notch filte6nfd2Value000001	nfd2 nf3 n Meaning when " Z phase check invalid er 1 (SV038). 0 0 011 100 101 110 0 -8.5 -6.0 -4.1 -2.5 Notch filter 3 start (11) r 2 (SV046). 0 101 110 0 -8.5 -6.0 -4.1 -2.5 Notch filter 3 start (11) 0 101 110 0 0.11 100 101 110 0 -8.5 -6.0 -4.1 -2.5 on detection, offset demar utput 0 0.1 100	(Unit) HEX setting 2 1 0 fd1 zck 1" is set 0 111 5 -1.2 Shallow-> 25Hz) 0 111 5 -1.2 Shallow-> Shallow->

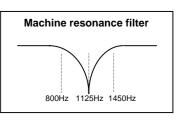
Measuring the phase current

Direct observation

The phase current is output to the CN9 pin. Connect a hi-corder between the GND (pin 1, 11) and the phase current to be measured, and observe the state.

- 7: Laxis U-phase current FB
- 17: Laxis V-phase current FB
- 6: Maxis U-phase current FB
- 16: Maxis V-phase current FB

Set the speed loop gain (SV005: VGN1) to approx. 50 to 100, disconnect the resonance filter, and measure the waveform while the axis is stopped.

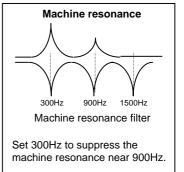

<Setting the machine resonance filter frequency when resonance cannot be eliminated>

This function is compatible with the MDS-CH-V1/V2 Series' machine resonance suppression filter (SV038: FHz1, SV046: FHz2). Some machines have three or more machine resonance points and the resonance cannot be eliminated. Try the following methods in this case.

1) When there are three machine resonance points including one exceeding 800Hz

When the 3rd machine resonance filter is set (SV033: nfd3), the resonance filter is applied at 1125Hz, and the machine may not resonate at 800Hz or more. Then, remove the remaining two machine resonances with the 1st and 2nd machine resonance suppression filters.

If the machine resonance cannot be eliminated even by setting the 1st and 2nd machine resonance suppression filter frequencies, it may be possible to suppress the machine resonance by additionally setting the 3rd machine resonance suppression filter.



[Example] If the machine resonance is approx. 1100Hz and high, validate the 3rd machine resonance suppression filter. Then, adjust the machine resonance suppression filters (SV038: FHz1, SV046: FHz2).

2) When there are three or more machine resonance points 1

Eliminate as much of the machine resonance as possible with the 1st and 2nd machine resonance filters. It may then be possible to eliminate the machine resonance by increasing the adaptive filter sensitivity (SV027: afse).

3) When there are three or more machine resonance points 2 With the MDS-CH-V1/V2 Series machine resonance suppression filter, the filter is also applied at the odd-fold of the set frequency. If one machine resonance is near the odd-fold of another machine resonance, set the machine resonance suppression filter frequency to the lower resonance, and try changing it by approx. 10 to 20Hz. It may be possible to eliminate two machine resonances by setting the most effective value.

- **[Example]** If the machine resonates at 300Hz and 900Hz, both machine resonances can be eliminated by setting 300Hz.
- **4)** When machine resonance does not change even when machine resonance filter is set Only the frequency calculated with the following expression can be set with the MDS-CH-V1/V2 Series machine resonance suppression filter. If the set frequency is not available, set a frequency that is 1 part of the odd amount (1/3, etc.). It may be possible to eliminate the machine resonance.

Machine resonance frequency setting range (Hz) = 9000/N (N = 4 to 128)

[Example] To set 1400Hz, setting 470Hz may be just as effective.

(2) Jitter compensation

The load inertia becomes much smaller than usual if the motor position enters the machine backlash when the motor is stopped. Because this means that an extremely large VGN1 is set for the load inertia, vibration may occur.

Jitter compensation can suppress the vibration that occurs at the motor stop by ignoring the backlash amount of speed feedback pulses when the speed feedback polarity changes.

Increase the number of ignored pulses by one pulse at a time, and set a value at which the vibration can be suppressed. (Because the position feedback is controlled normally, there is no worry of positional deviation.)

When jitter compensation is set to an axis that is not vibrating is set, vibration could be induced, so take care.

Abbrev.	Parameter name		Explanation															
SSF1	Special servo function selection 1	Se	t the	jitter	com	ipensa	tion v	vith tl	he fol	lowin	g para	amet	er.					
			F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
			aflt	zrn2	afro	g afse	ovs2	ovs1	lmc2	lmc1	omr		vfct2	vfct1		upc	vcnt2	vcnt1
				bit			-			•								
			4	vfct	1		0			1			C)			1	
			5	vfct	2		0			0			1				1	
		SSF1 Special servo function	SSF1 Special servo function Se	SSF1 Special servo function Set the selection 1	SSF1 Special servo function Set the jitter selection 1	SSF1 Special servo function Set the jitter complexity of the selection 1 F E D aflt zrn2 afrom selection bit 4 vfct1	SSF1 Special servo function selection 1 Set the jitter compensation F E D C aflt zrn2 afrg afse bit No compensation 4 vfct1	SSF1 Special servo function 1 Set the jitter compensation visual selection 1 F E D C B aflt zrn2 afrg afse ovs2 bit No jitter 4 vfct1 0	SSF1 Special servo function selection 1 Set the jitter compensation with the selection 1 F E D C B A afit zrn2 afrg afse ovs2 ovs1 bit No jitter compensation 4 vfct1 0	SSF1 Special servo function selection 1 Set the jitter compensation with the fol F E D C B A 9 aflt zrn2 afrg afse ovs2 ovs1 Imc2 bit No jitter Or 4 vfct1 0 0	SSF1 Special servo function selection 1 Set the jitter compensation with the followin F E D C B A 9 8 aflt zrn2 afrg afse ovs2 ovs1 Imc2 Imc1 bit No jitter One ompensition 1 4 vfct1 0 1 1	SSF1 Special servo function selection 1 Set the jitter compensation with the following para F E D C B A 9 8 7 aflt zrn2 afrg afse ovs2 ovs1 Imc2 Imc1 omr bit No jitter One pulse compensation 4 vfct1 0 1	SSF1 Special servo function selection 1 Set the jitter compensation with the following paramet F E D C B A 9 8 7 6 aflt zrn2 afrg afse ovs2 ovs1 Imc2 Imc1 omr bit No No One pulse T C 4 vfct1 0 1 0 1	SSF1 Special servo function selection 1 Set the jitter compensation with the following parameter. F E D C B A 9 8 7 6 5 aflt zrn2 afrg afse ovs2 ovs1 Imc2 Imc1 omr vfct2 bit No jitter One pulse Compensation compensation compensation 4 vfct1 0 1 0 0 0 0	SSF1 Special servo function selection 1 Set the jitter compensation with the following parameter. F E D C B A 9 8 7 6 5 4 aflt zrn2 afrg afse ovs2 ovs1 Imc2 Imc1 omr vfct2 vfct1 bit No jitter One pulse Two pulse Compensation Compensation 4 vfct1 0 1 0	SSF1 Special servo function selection 1 Set the jitter compensation with the following parameter. F E D C B A 9 8 7 6 5 4 3 afit zrn2 afrg afse ovs2 ovs1 Imc2 Imc1 omr vfct2 vfct1 bit No jitter One pulse Two pulse Compensation Compensation Compensation One pulse 4 vfct1 0 1 0 0 0 0 0	SSF1 Special servo function selection 1 Set the jitter compensation with the following parameter. F E D C B A 9 8 7 6 5 4 3 2 afit zrn2 afrg afse ovs2 ovs1 Imc1 omr vfct2 vfct1 upc bit No jitter One pulse Two pulse Thre 4 vfct1 0 1 0 1	SSF1 Special servo function selection 1 Set the jitter compensation with the following parameter. F E D C B A 9 8 7 6 5 4 3 2 1 aflt zrn2 afrg afse ovs2 ovs1 Imc2 Imc1 omr vfct2 vfct1 upc vcnt2 bit No jitter compensation One pulse compensation Two pulse compensation Three pulse compensation 4 vfct1 0 1 0 1 0 1

POINT

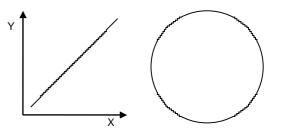
Jitter compensation vibration suppression is only effective when the motor is stopped.

(3) Adaptive filter (option function)

The servo drive unit detects the machine resonance point and automatically sets the filter constant. Even if the ball screw and table position relation changes causing the resonance point to change, the filter will track these changes.

Set the special servo function selection 1 (SV027 (SSF1)) bit F to activate the adaptive filter. If the adaptive filter's sensitivity is low, and the machine resonance cannot be suppressed, set (SV027 (SSF1)) bits 12 and 13.

No.	Abbrev.	Parameter name		Explanation										
SV027	SSF1	Special servo function selection 1	Ac	tivate	e the ada	aptive fil	ter by sett	ing the fol	lowing	parameters.				
				F aflt	E [zm2 af		B A ovs2 ovs1	9 8 Imc2 Imc1	7 omr	6 5 4 vfct2 vfct*	3 2 1 0 1 upc vcnt2 vcnt1			
					bit	Mea	aning whe	en "0" is s	set	Meaning	y when "1" is set			
				F	aflt	Adaptiv	/e filter sto	opped		Adaptive filt	er activated			
				D	afrg	00: No	rmal adap	tive filter		11: Increase	ed adaptive filter			
				С	afse	ser	nsitivity			sensitivi	ty			


The adaptive filter is an optional function. If the option is not set in the CNC, alarm 37 (at power ON) or warning E4 "Error Parameter No. 105" (2305 for M50/M60 Series CNC) will be output.

5-3-3 Improving the cutting surface precision

If the cutting surface precision or roundness is poor, these can be improved by increasing the speed loop gain (VGN1, VIA) or by using the disturbance observer function.

<Examples of faults>

- The surface precision in the 45° direction of a taper or arc is poor.
- The load fluctuation during cutting is large, causing vibration or surface precision defects to occur.

Adjust by raising the speed loop gain equivalently to improve cutting surface precision, even if the measures differ. In this case, it is important how much the machine resonance can be controlled, so adjust making sufficient use of vibration suppression functions.

(1) Adjusting the speed loop gain (VGN1)

If the speed loop gain is increased, the cutting surface precision will be improved but the machine will resonate easily.

The final VGN1 setting should be approx. 70 to 80% of the maximum value where resonance does not occur. (Refer to "5-2-2 (1) Setting the speed loop gain")

(2) Adjusting the speed loop leading compensation (VIA)

The VIA has a large influence on the position trackability, particularly during high-speed cutting (generally F1000 or more). Raising the setting value improves the position trackability, and the contour precision during high-speed cutting can be improved. For high-speed high-precision cutting machines, adjust so that a value equal to or higher than the standard value can be set.

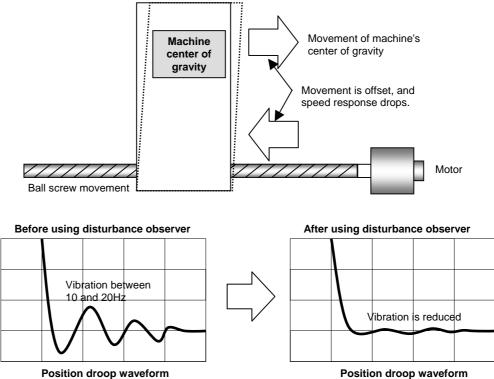
When VIA is set lower than the standard value and set to a value differing between interpolation axes, the roundness may worsen (the circle may distort). This is due to differences occurring in the position trackability between interpolation axes. The distortion can be improved by matching the VIA with the smaller of the values. Note that because the position trackability is not improved, the surface precision will not be improved.

No.	Abbrev.	Parameter name	Explanation	Setting range
SV005	VGN1		Increase the value by 10 to 20% at a time. If the machine starts resonating, lower the value by 20 to 30% at a time. The setting value should be 70 to 80% of the value where resonance does not occur.	1 to 999
SV008			1364 is set as a standard. 1900 is set as a standard during SHG control. Adjust in increments of approx. 100. Raise the VIA and adjust to improve the contour tracking precision in high-speed cutting. If the position droop vibrates (10 to 20Hz), lower the VIA and adjust.	1 to 9999 (0.0687rad/s)

(Refer to "5-2-2 (2) Setting the speed loop leading compensation")

(3) Disturbance observer

The disturbance observer can reduce the effect caused by disturbance, frictional resistance or torsion vibration during cutting by estimating the disturbance torque and compensating it. It also is effective in suppressing the vibration caused by speed leading compensation control.

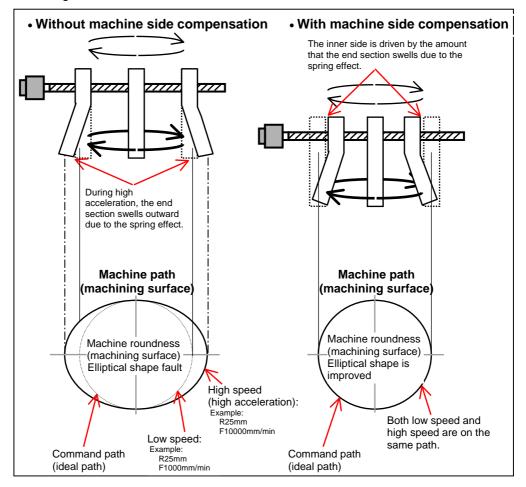

<Setting method>

- <1> Adjust VGN1 to the value where vibration does not occur, and then lower it 10 to 20%.
- <2> Set the load inertia scale (SV037 (JL)) with a percentage in respect to the motor inertia of the total load inertia.
- <3> Set the observer filter band (observer pole) in the disturbance observer 1 (SV043 (OBS1)), and estimate the high frequency disturbance to suppress the vibration. Set "600" as a standard.
- <4> Set the observer gain in disturbance observer 2 (SV044 (OBS2)). The disturbance observer will function here for the first time. Set 100 first, and if vibration does not occur, increase the setting by 50 at a time to increase the observer effect.
- <5> If vibration occurs, lower OBS1 by 50 at a time. The vibration can be eliminated by lowering OBS2, but the effect of the disturbance observer can be maintained by keeping OBS2 set to a high value.

No.	Abbrev.	Parameter name	Unit	Explanation	Setting range
SV037	JL	Load inertia scale		Set the load inertia that includes the motor in respect to the motor inertia. (When the motor is a single unit, set 100%) $JL = \frac{JI + Jm}{Jm} \qquad Jm : Motor inertia$ $JI : Machine inertia$	0 to 5000 (%)
			kg	Set the total weight of the moving section for the linear servo.	0 to 5000
SV043	OBS1	Disturbance observer 1	rad/s	Set the observer filter band (observer pole). Set "600" as a standard, and raise the setting by 50 at a time if vibration occurs.	0 to 1000 (rad)
SV044	OBS2	Disturbance observer 2		Set the observer gain. Set 100 to 300 as a standard, and lower the setting if vibration occurs.	0 to 500 (%)

Machine behavior when machine's center of gravity is high (Example)

If the machine's center of gravity is high, the speed response may drop in respect to the ball screw section's movement, making it difficult to attain a stable speed range. The disturbance observer is effective in this case.

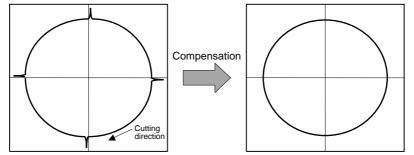


5 - 16

(4) Machine side compensation (Machining center)

This function compensates the shape of the machine end during high-speed and high acceleration/ deceleration. The spring effect from the tool (spindle) end to the motor (scale) end is compensated. If the machine has a large spring effect, the shape may be fine during low-speed operation. However, at high speeds (specially when using a small diameter), the section from the tool (shaft) end to the outer sides of the motor (scale) end could swell, and deteriorate the shape (cause the shape to round).

This function controls the movement of the motor (scale) end caused by the speed, and improves the tool (spindle) end accuracy at all speeds. This is particularly effective for the roundness accuracy during servo adjustment. Note that the roundness must be adjusted at the machine end with a DDB or grid encoder.


No.	Abbrev.	Parameter name	Explanation	Setting range (Unit)
SV027	SSF1	Servo function selection 1	The machine side compensation starts with the following parameter. F E D C B A 9 8 7 6 5 4 3 2 aflt zrn2 afse ovs Imc omr zrn3 vfct upc bit Meaning when "0" is set Meaning when "1" i 7 omr Machine side compensation invalid Machine side compensation	
SV065	TLC	Machine side compensation spring constant	The value calculated with the following expression is used as the compensation amount. Compensation amount (μ m) = $\frac{Command speed F (mm/min)^2 \times SV065 (TOF)}{Radius R (mm) \times 10^9}$ This is the value for an open loop and will actually vary according to the tool's spring constant. Determine the actual value when adjusting. Set to "0" when not using this function.	-32768 to 32767

CAUTION If an excessive value is set in the machine side compensation spring constant (SV065: TLC), the machine could vibrate when stopping.

5-3-4 Improvement of protrusion at quadrant changeover

The response delay (caused by dead band from friction, torsion, expansion/contraction, backlash, etc.) caused when the machine advance direction reverses is compensated with the lost motion compensation (LMC compensation) function.

With this, the protrusions that occur at the quadrant changeover in the DBB measurement method, or the streaks that occur when the quadrant changes during circular cutting can be improved.

Circle cutting path before compensation Circle cutting path after compensation DBB: Double Ball Bar

(1) Lost motion compensation (LMC compensation)

The lost motion compensation compensates the response delay during the reversal by adding the torque command set with the parameters when the speed direction changes. There are three methods of LMC compensation. Type 2 is explained below.

- Type 1: Compensation effective in areas where axis movement speed is slow.
 - (Usually, Type 2 is used.)
- Type 2: Compensation effective for lathe systems

Type 3: Compensation effective for machining centers

<Setting method>

- <1> Set the special servo function selection 1 (SV027 (SSF1)) bit 9. (The LMC compensation type 2 will start).
- <2> Set the compensation amount with a stall % (rated current % for the general-purpose motor) unit in the lost motion compensation 1 (SV016 (LMC1)). The LMC1 setting value will be used for compensation in the positive and negative directions when SV041 (LMC2) is 0.
- <3> If the compensation amount is to be changed in the direction to be compensated, set LMC2. The compensation direction setting will be as shown below with the CW/CCW setting in the NC parameter. If only one direction is to be compensated, set the side not to be compensated as -1.

Compensation point	cw	ссw	D The Y axis command direc- tion changes from + to
А	X axis: LMC2	X axis: LMC1	A The X axis command the tion changes from + to
В	Y axis: LMC1	Y axis: LMC2	
С	X axis: LMC1	X axis: LMC2	-X / / +X
D	Y axis: LMC2	Y axis: LMC1	
			ne X axis command direc- in changes from – to +.

No.	Abbrev.	Parameter name	Explanation																
SV027		Special servo function selection 1	Tł	ne lo	ost mo	tion o	comp	_	tion	start	s with	the	follov	ving p	para	mete	er.		: .
				afl	t zrn2	afrg	afse	B ovs2	A ovs1	9 Imc	8 2 Imc1	/ I om	r r	5 vfct2	4 vfct	1	up	C vcn	t2vcnt1
					bit	Ν	lo LN	IC	L	MC t	ype	1	LMC	type	2	Sett	ing p	orohi	bited.
				8	lmc1		0			1				0				1	
				9	lmc2		0			0)			1				1	
			I																

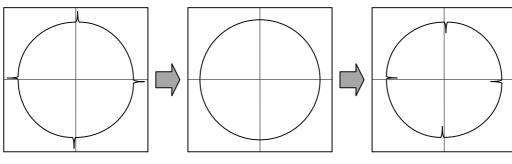
No.	Abbrev.	Parameter name	Unit	Explanation	Setting range
SV016	-	Lost motion compensation 1	current %)	While measuring the quadrant protrusion amount, adjust with a 5% unit. The \pm direction setting value will be applied when LMC2 is set to 0.	-1 to 200 (%)
SV041	LMC2	Lost motion compensation 2	current %)	Set 0 as a standard. Set this when the compensation amount is to be changed according to the direction.	-1 to 200 (%)

<Adjustment method>

First confirm whether the axis to be compensated is an unbalance axis (vertical axis, slant axis). If it is an unbalance axis, carry out the adjustment after performing step "(2) Unbalance torque compensation".

Next, measure the frictional torque. Carry out reciprocation operation (approx. F1000) with the axis to be compensated and measure the load current % when fed at a constant speed on the NC servo monitor screen. The frictional torque of the machine at this time is expressed with the following expression.

Frictional torque (%) = $\begin{vmatrix} (+ \text{ feed load current } \%) & - (- \text{ feed load current } \%) \\ 2 \end{vmatrix}$


The standard setting value for the lost motion compensation 1 (LMC1) is double the frictional torque above.

– (Example) –

Assume that the load current % was 25% in the + direction and -15% in the – direction when JOG feed was carried out at approx. F1000. The frictional torque is as shown below, so $20\% \times 2 = 40\%$ (LMC2 remains at zero, and compensation is carried out in both directions.) is set for LMC1. (LMC2 is left set at 0.) With this setting, 40% compensation will be carried out when the command reverses from the + direction to the – direction, and when the command reverses from the – direction.

$$\frac{25 - (-15)}{2} = 20\%$$

Perform the final adjustment, carrying out the CNC sampling measurement (DBB measurement) or actual cutting. If the compensation amount is insufficient, increase LMC1 or LMC2 by 5% at a time. Note that if the setting is too high, biting may occur.

Compensation 0

Optimum

 POINT 1. When either parameter SV016 (LMC1) or SV041 (LMC2) is set to 0, the same amount of compensation is carried out in both the positive and negative direction with the setting value of the other parameter (the parameter not set to 0). 2. To compensate in only one direction, set -1 in the parameter (LMC1 or LMC2) for the direction in which compensation is prohibited. 3. The value set based on the friction torque is the standard value for LMC compensation. The optimum compensation value changes with the cutting conditions (cutting speed, cutting radius, blade type, workpiece material, etc.). Be sure to ultimately make test cuts matching the target cutting and determine the compensation amount. 4. Once LMC compensation type 1 is started, the overshooting compensation and the adaptive filter cannot be simultaneously started.

(2) Unbalance torque compensation

If the load torque differs in the positive and negative directions such as with a vertical axis or slant axis, the torque offset (SV032 (TOF)) is set to carry out accurate lost motion compensation.

<Setting method>

Measure the unbalance torque. Carry out reciprocation operation (approx. F1000) with the axis to be compensated and measure the load current % when fed at a constant speed on the NC servo monitor screen. The unbalance torque at this time is expressed with the following expression.

Unbalance torque (%) = $\left| \frac{(+ \text{ feed load current } \%) + (- \text{ feed load current } \%)}{2} \right|$

The unbalance torque value above is set for the torque offset (TOF).

If there is a difference in the protrusion amount according to the direction, make an adjustment with LMC2. Do not adjust with TOF.

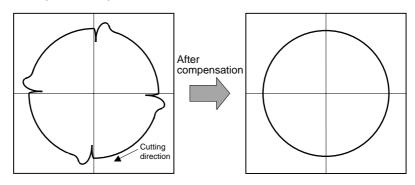
Example)

Assume that the load current % was -40% in the + direction and -20% in the – direction when JOG feed was carried out at approx. F1000. The unbalance torque is as shown below, so -30% is set for TOF.

$$\left| \frac{-40 + (-20)}{2} \right| = -30\%$$

No.	Abbrev.	Parameter name	Unit	Explanation	Setting range
SV032	TOF	•	current %)	Set this parameter when carrying out the lost motion compensation. Set the unbalance torque amount.	-100 to 100

Even when TOF is set, the torque output characteristics of the motor and load current display of the CNC servo monitor will not change. Only the characteristics of the LMC compensation function are affected.

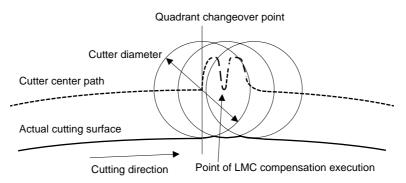

(3) Adjusting the lost motion compensation timing

If the speed loop gain has been lowered from the standard setting value because the machine rigidity is low or because machine resonance occurs easily, or when cutting at high speeds, the quadrant protrusion may appear later than the quadrant changeover point on the servo control. In this case, suppress the quadrant protrusion by setting the lost motion compensation timing (SV039 (LMCD)) to delay the LMC compensation.

<Adjustment method>

If a delay occurs in the quadrant protrusion in the circle or arc cutting as shown below in respect to the cutting direction when CNC sampling measurement (DBB measurement) or actual cutting is carried out, and the compensation appears before the protrusion position, set the lost motion compensation timing (SV039 (LMCD)).

While measuring the arc path, increase LMCD by 10 ms at a time, to find the timing that the protrusion and compensation position match.


Before timing delay compensation

After timing delay compensation

No.	Abbrev.	Parameter name	Unit	Explanation	Setting range
SV039	-	Lost motion compensation timing		Set this when the lost motion compensation timing does not match. Adjust while increasing the value by 10 at a time.	0 to 2000 (ms)

When the LMCD is gradually raised, a two-peaked contour may occur at the motor side FB position DBB measurement. However, due to the influence of the cutter diameter in cutting such as end milling, the actual cutting surface becomes smooth.

Because satisfactory cutting can be achieved even if this two-peaked contour occurs, consider the point where the protrusion becomes the smallest and finest possible without over compensating (bite-in) as the optimum setting.

(4) Adjusting for feed forward control

In LMC compensation, a model position considering the position loop gain is calculated based on the position command sent from the CNC, and compensation is carried out when the feed changes to that direction. When the CNC carries out feed forward (fwd) control, overshooting equivalent to the operation fraction unit occurs in the position commands, and the timing of the model position direction change may be mistaken. As a result, the LMC compensation timing may deviate, or compensation may be carried out twice or more.

If feed forward control is carried out and the compensation does not operate correctly, adjust with the dead band (SV040 (LMCT)) during feed forward control. In this dead band control, overshooting of the set width or less is ignored. The model position direction change point is correctly recognized, and the LMC compensation is correctly executed.

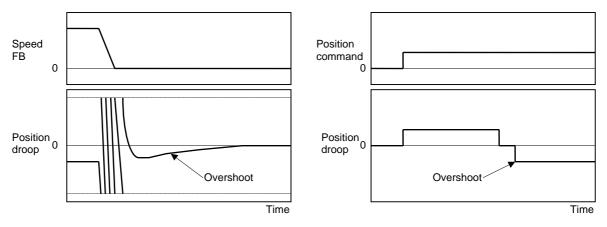
This parameter is meaningless when feed forward control is not being carried out.

<Adjustment method>

If the compensation timing deviates during feed forward control, increase the LMCT setting by $1\mu m$ at a time.

Note that $2\mu m$ are set even when the LMCT is set to 0.

No.	Abbrev.	Parameter name	Unit	Explanation	Setting range
SV040		Dead band during feed forward control		This setting is valid only during feed forward control. 2µm is set when this is set to 0. Adjust by increasing the value by 1µm at a time.	0 to 100 (µm)


Setting of the dead band (SV040 (LMCT)) during feed forward control is effective for improving overshooting compensation mis-operation during feed forward control.

5-3-5 Improvement of overshooting

The phenomenon when the machine position goes past or exceeds the command during feed stopping is called overshooting. Overshooting is compensated by overshooting compensation (OVS compensation).

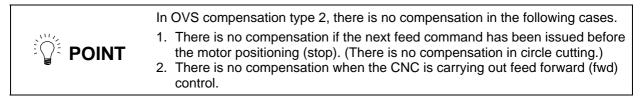
Overshooting occurs due to the following two causes.

<1> Machine system torsion: Overshooting will occur mainly during rapid traverse settling <2> Machine system friction: Overshooting will occur mainly during one pulse feed Either phenomenon can be confirmed by measuring the position droop.

<1> Overshooting during rapid traverse settling

<2> Overshooting during pulse feed

(1) Overshooting compensation (OVS compensation)


In OVS compensation, the overshooting is suppressed by subtracting the torque command set in the parameters when the motor stops. There are two types (type 1 and type 2) of OVS compensation. The standard method is type 2.

OVS compensation type 2 has a compensation effect for the overshooting during either rapid traverse settling or pulse feed. Note that there is no compensation if the next feed command has been issued before the motor positioning (stop). (Therefore, there is no compensation during circle cutting.) There is also no compensation for the dead band when the CNC is carrying out feed forward control. To compensate overshooting during feed forward control, refer to the following section "(2) Adjusting for feed forward control".

<Setting and adjustment methods>

<1> Set the special servo function selection 1 (SV027 (SSF1)) bit B. (OVS compensation type 2 will start.)

- <2> Observe the position droop waveform using the D/A output, and increase the overshoot compensation 1 (SV031 (OVS1)) value 1% at a time. Set the smallest value where the overshooting does not occur. If SV042 (OVS2) is 0, the overshooting will be compensated in both the forward/reverse directions with the OVS1 setting value.
- <3> If the compensation amount is to be changed in the direction to be compensated, set the + direction compensation value in OVS1 and the direction compensation value in OVS2. If only one direction is to be compensated, set the side not to be compensated as -1. The compensation direction setting will be as reversed with the NC parameter CW/CCW setting.

(2) Adjusting for feed forward control

Use OVS compensation type 3 if overshooting is a problem in contour cutting during feed forward control.

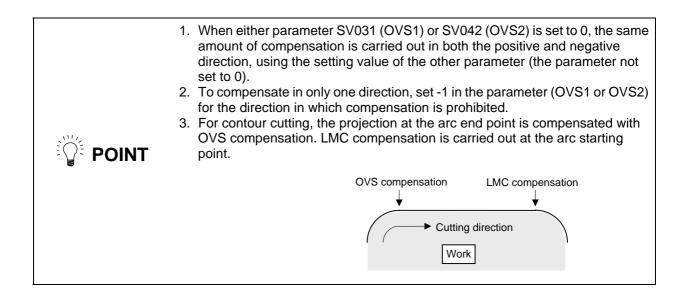
If OVS compensation type 3 is used to attempt to compensate overshooting, the overshooting may conversely become larger, or projections may appear during arc cutting. This is because overshooting equivalent to the operation fraction unit occurs in the position commands when the CNC is carrying out feed forward (fwd) control. Because of this, the OVS compensation recognizes a change in the command direction, and executes the compensation in the opposite direction.

If the compensation is in the opposite direction when carrying out feed forward control, adjust with the dead band (SV034 (SSF3) bit C to F: ovsn) during feed forward control. By ignoring overshooting of a set width in the ovsn or less, the command direction change point is correctly recognized, and the OVS compensation is correctly executed.

This parameter is insignificant when feed forward control is not used.

<Adjustment method>

If the OVS compensation is carried out in reverse during feed forward control, increase the LMCT setting by 1µm at a time.

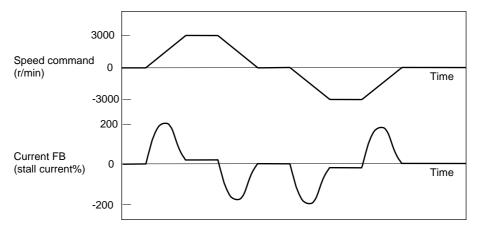

Note that 2µm are set even when the LMCT is set to 0.

POINT OVS compensation type 3 is used if overshooting is a problem during feed forward control.

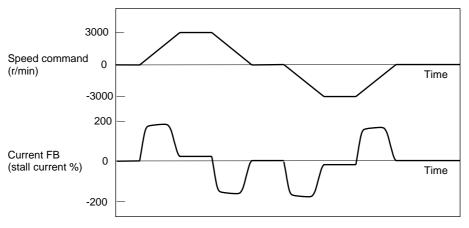
No.	Abbrev.	Parameter name						E	xplan	natio	n						
SV027	SSF1	Special servo function selection 1	The o	versho	poting co	mper	nsatio	on sta	rts wit	th th	e foll	owing	g para	ame	ter.		
			F aflt	E zrn2	D C afrg afse	B ovs2	A ovs1	9 Imc2	8 Imc1	7 omr	6	5 vfct2	4 vfct1	3	2 upc	1 vcnt2	0 vcnt1
				bit	Mear	ning	when	1 "O" i	is set		P	Meani	ing w	/hen	1"	is se	t.
			А	ovs1	Oversho 2 stop	ooting	com	pensa	ation t		Ove 2 sta		ting	com	oensa	ation	type
			В		Oversho 3 stop	ooting	com	pensa	ation t		Ove 3 sta		ting	com	oens	ation	type

No.	Abbrev.	Parameter name	Unit	Explanation	Setting range
SV031		0	current %)	Increase the value by 1% at a time, and find the value where overshooting does not occur. When OVS2 is set to 0, the setting value will be applied in both the \pm directions.	-1 to 100 (%)
SV042		0	current %)	Set 0 as a standard. Set this when the compensation amount is to be changed according to the direction.	-1 to 100 (%)

No.	Abbrev.	Parameter name								E	Expla	natio	on						
SV034	SSF3	Special servo function selection 3	Tł	ne ov	ersh	ooting	g cor	npei	nsatio	on sta	arts v	with th	ne fo	llowii	ng pa	arame	eter.		
				F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
					ov	rsn			lir	ηΝ		toff	os2		dcd	test	mohn	has2	has1
				bit	N	lame	,					E	xplai	natio	n				
				C D E F		ovsn	92	Set tl	he de	ad b	and f	for th	e ove	ersho	ot co	mpe	nsati	on ty	pe 3



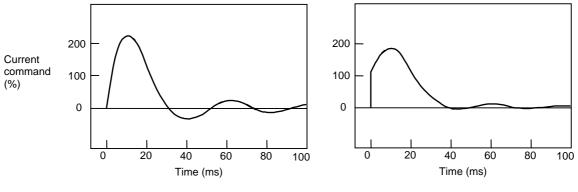
5-3-6 Improvement of characteristics during acceleration/deceleration


(1) SHG control (option function)

Because SHG control has a smoother response during acceleration/deceleration than conventional position controls, the acceleration/deceleration torque (current FB) has more ideal output characteristics (A constant torque is output during acceleration/deceleration.) The peak torque is kept low by the same acceleration/deceleration time constant, enabling the time constant to be shortened.

Refer to item "(3) SHG control" in section "5-2-3 Position loop gain" for details on setting SHG control.

Acceleration/deceleration characteristics during conventional control


Acceleration/deceleration characteristics during SHG control

No.	Abbrev.	Parameter name	Setting ratio				Se	tting	exar	nple				Explanation	Setting range
SV003 (SV049)	PGN1 (PGN1sp)	Position loop gain 1	1	23	26	33	38	47	60	70	80	90	100		1 to 400 (rad/s)
SV004 (SV050)	PGN2 (PGN2sp)	Position loop gain 2	<u>8</u> 3	62	70	86	102	125	160	186	213	240	266	Always set a combination of 3 parameters.	0 to 999
SV057 (SV058)	SHGC (SHGCsp)	SHG control gain	6	140	160	187	225	281	360	420	480	540	600		0 to 1200
SV008	VIA	Speed loop leading compensation		Set 1900 as a standard value during SHG control.							1 to 9999				
SV015	FFC	Acceleration feed forward gain		Set 100 as a standard value during SHG control.								0 to 999			

(2) Acceleration feed forward

Vibration may occur at 10 to 20 Hz during acceleration/deceleration when a short time constant of 30 ms or less is applied, and a position loop gain (PGN1) higher than the general standard value or SHG control is used. This is because the torque is insufficient when starting or when starting deceleration, and can be resolved by setting the acceleration feed forward gain (SV015 (FFC)). This is also effective in reducing the peak current (torque).

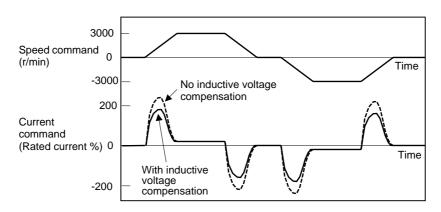
While measuring the current command waveform, increase FFC by 50 to 100 at a time and set the value where vibration does not occur.

No FFC setting

With FFC setting

Acceleration feed forward gain means that the speed loop gain during acceleration/deceleration is raised equivalently. Thus, the torque (current command) required during acceleration/deceleration starts sooner. The synchronization precision will improve if the FFC of the delayed side axis is raised between axes for which high-precision synchronous control (such as synchronous tapping control and superimposition control).

No.	Abbrev.	Parameter name	Unit	Explanation	Setting range
SV015		Acceleration feed forward gain		The standard setting value is 0. To improve the acceleration/ deceleration characteristics, increase the value by 50 to 100 at a time. During SHG control, the standard setting value is 100.	1 to 999


Overshooting occurs easily when a value above the standard value is set during SHG control.

(3) Inductive voltage compensation

The current loop response is improved by compensating the back electromotive force element induced by the motor rotation. This improved the current command efficiency, and allows the acceleration/deceleration time constant to the shortened.

<Adjustment method>

1. While accelerating/decelerating at rapid traverse, adjust the inductive voltage compensation gain (SV047 (EC)) so that the current FB peak is a few % smaller than the current command peak.

Inductive voltage compensation

No.	No. Abbrev. Parameter name		Unit	Explanation	Setting range
SV047		Inductive voltage compensation gain		Set 100 as a standard. Lower the gain if the current FB peak exceeds the current command peak.	0 to 200

POINT If the current FB peak becomes larger than the current command peak (over compensation), an overcurrent (alarm 3A) will occur easily. Note that over compensation will occur easily if the load inertia is large.

5-4 Settings for emergency stop

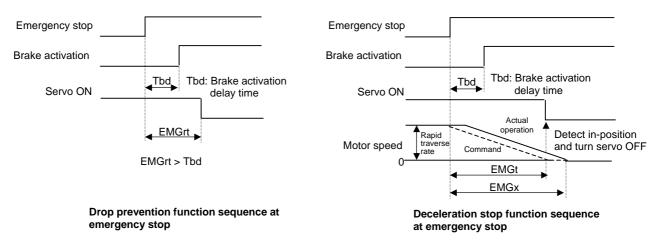
5-4-1 Vertical axis drop prevention control

The vertical axis drop prevention control is a function that prevents the vertical axis from dropping due to a delay in the brake operation when an emergency stop occurs. The no-control time until the brakes activate can be eliminated by delaying ready OFF from the servo drive unit by the time set in the parameters when an emergency stop occurs.

(1) Operating conditions

- <1> The emergency stop signal has been input.
- <2> The NC power has been turned OFF.
- <3> An alarm has occurred. (This differs according to the occurring alarm. Refer to "Chapter 8 Troubleshooting" for details.)

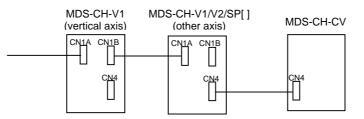
	 This function does not prevent dropping of the axis under all conditions. The drop prevention function may not activate if the power fails or if a spindle alarm (overheating, etc.) occurs. To always prevent the vertical axis from dropping, install a balance unit, etc., on the machine.
--	--


(2) Function outline and parameter settings

While stopped The drive unit enters the ready OFF state after the vertical axis drop prevention time (SV048) has elapsed.

While moving...... Deceleration stop is carried out, and the drive unit enters the ready OFF state after the larger value of the vertical axis drop prevention time (SV048) and emergency stop maximum delay time (SV055) has elapsed.

No.	Abbrev.	Parameter name	Explanation	Setting range
SV048	EMGrt	Vertical axis drop prevention time	Set the time to delay the ready OFF when an emergency stop occurs. Set a value larger than the brake activation time. The set time will not be assured if the power supply to the power supply unit is cut off.	0 to 2000 (ms)
SV055	EMGx	Gate cutoff maximum delay time during emergency stop	Set the maximum ready OFF delay time. This is normally set to the same value as SV048. To turn ready OFF after a deceleration stop, set the same value as SV056. Note that this value is valid if SV056 is larger than SV048. When a value smaller than SV048 is input, the same value as SV048 will be automatically set. The set time will not always be assured if the power supply to the power supply unit is cut off.	0 to 2000 (ms)
SV056	EMGt	Deceleration control time constant at emergency stop	Deceleration stop will be carried out if moving when SV048 is set, so set that deceleration stop time constant. Normally set the same value as the rapid traverse time constant. When this parameter is set, a constant inclination direct deceleration stop control will be carried out at emergency stop. A step stop (dynamic brake operation) will be carried out when this parameter is set to "0".	0 to 2000 (ms)


 CAUTION SV048 and SV055 are set for each axis. However, when using a 2-axis drive unit, the value for the axis with the larger setting will be valid. When only SV048 is set, step stop will be used for deceleration stop and the machine could vibrate. Thus, set the rapid traverse time constant in SV055. 		3. When only SV048 is set, step stop will be used for deceleration stop and the
--	--	---

(3) Adjustment procedures

- Set the drop prevention function parameters in the vertical axis servo parameters SV048, 055, and 056.
 - (a) Carry out emergency stops with SV048 (EMGrt) for the vertical axis set to 50, 100, etc., and use the smallest drop amount value on the NC screen for the setting value. (Several um will remain due to the brake play.)
 - (b) Set SV056 (EMGt). This is normally set to the same value as the rapid traverse time constant.
 - (c) Set SV055 (EMGx). This is normally set to the same value as SV048. To turn ready OFF after a deceleration stop, set the same value as SV056 (EMGt). Note that this value is valid if SV056 (EMGt) is larger than SV048 (EMGrt).
- If there is another axis (servo/spindle unit) between the vertical axis and power supply unit, set that axis to the same setting values (SV048, 055, 056) as the vertical axis. (Set the largest value if there are several vertical axes.)

If the other axis is a spindle, set the spindle parameter SP033 bit F to "1".

• If the 2-axis drive unit is an axis controlling a vertical axis or the power supply unit, set the servo parameters SV048, 055, and 056 for both the L and M axes.

The parameter setting section differs for each system, so change the standard parameter value.

5-4-2 Deceleration control

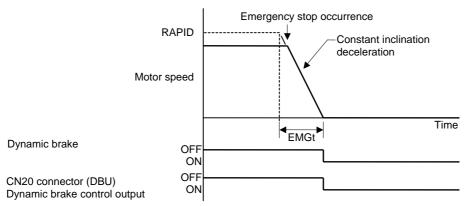
If the deceleration stop function is validated, the MDS-CH-V1/V2 servo drive unit will decelerate to stop the motor according to the set time constants. After stopping, zero-speed state is immediately notified and the dynamic brakes will be applied.

If an emergency stop factor (external emergency stop, malfunction in unit, etc.) occurs, operation will be stopped with the dynamic brakes.

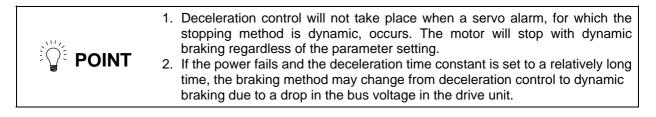
<Features>

1. When the load inertia is large, deceleration stop can be executed at a shorter time than the dynamic brakes.

(The stop time for the normal acceleration/deceleration time constants will be achieved.)

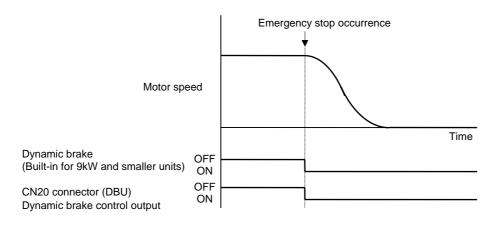

(1) Setting the deceleration control time constant

Set the time for stopping from the rapid traverse rate (rapid: axis specification parameter) in the deceleration time constant for emergency stop (SV056: EMGt).


If linear acceleration/deceleration is selected for rapid traverse, the same value as the acceleration/ deceleration time constant (G0tL) will be the standard value. If another acceleration/deceleration pattern is selected, set rapid traverse to linear acceleration/deceleration and adjust to a suitable acceleration/deceleration time constant. Use that value as the standard value.

<Operation>

When an emergency stop occurs, the motor will decelerate at the same inclination from each speed.


No.	Abbr.	Parameter name	Unit	Explanation	Setting range
SV055	EMGx	Gate cutoff maximum delay time during emergency stop	ms	This is normally set to the same value as SV056 ENGt. Set "0" when not using the deceleration stop function or drop prevention function.	0 to 20000 (ms)
SV056	EMGt	Deceleration control time constant	ms	Set the time to stop from the rapid traverse rate (rapid). As the standard, set the same value as the rapid traverse acceleration/deceleration time constant (G0tL). Set "0" when not using the deceleration stop function.	0 to 20000 (ms)

CAUTION If the deceleration control time constant (EMGt) is set to a value longer than the acceleration/deceleration time constant, the overtravel point (stroke end point) may be exceeded. Take care as the axis could collide with the machine end.

5-4-3 Dynamic braking stop

Dynamic braking stop takes place when the deceleration stop function is not used. With dynamic braking stop, the dynamic brakes activate simultaneously with the occurrence of an emergency stop. The motor brake control output also activates simultaneously. Zero-speed state is immediately notified to the NC when dynamic braking stop takes place.

The dynamic brakes cannot be used for normal braking. If the dynamic brakes activate continuously, the internal regenerative resistor could burn, so always eliminate the cause of the emergency stop before resuming operation.

5-5 Collision detection function

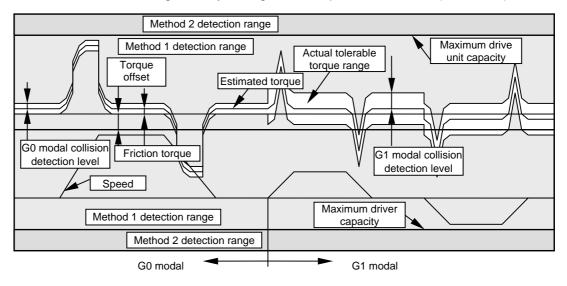
The purpose of the collision detection function is to quickly detect a collision and decelerate to a stop. This allows damage to the head to the machine to be reduced.

Impact during a collision cannot be prevented even when the collision detection function is used, so this function does not guarantee that the machine will not break and does not guarantee the machine fault or machine accuracy after a collision. Add a mechanism to prevent machine collision, etc., on the machine side if necessary.

Collisions are detected using the following two methods. In either method, a servo alarm will occur after deceleration stop.

(1) Collision detection method 1

The required torque is calculated from the position command issued from the NC. The disturbance torque is calculated from the difference with the actual torque. When this disturbance torque exceeds the collision detection level set with the parameters, the axis will decelerate to a stop at the driver unit's maximum torque. After decelerating to a stop, the alarm will occur, and the system will stop.


Method 1 only operates when SHG control is being used. (If acceleration/deceleration operation is carried out when not using SHG control, a load error alarm (58/59) will immediately occur.)

Method 1 enables independent setting of the collision detection levels for rapid traverse and cutting feed. The collision detection level during cutting feed is set at 0 to 7-fold (integer magnification) of the collision detection level during rapid traverse. When 0-fold is set, collision detection method 1 will not function during cutting feed.

(2) Collision detection method 2

When the current command reaches the drive unit's maximum current, the axis will decelerate to a stop at the drive unit's maximum torque. After decelerating to a stop, the alarm will occur, and the system will stop.

Note that this method can be ignored by setting the servo parameter SV035 (SSF4/cl2n) to "1".

<Setting and adjustment methods>

- 1. Confirm that SHG control is being used.
- 2. SV032 (TOF) Torque offset

Using jog, etc., move the axis to be adjusted at approx. F1000mm/min, and check the load current on the [I/F Diagnosis Screen/Servo Monitor]. If the current load is positive during movement, check the maximum value. If the current load is negative during movement, check the minimum value. Set the average value of the + and - directions.

- 3. SV045 (TRUB) Friction torque Using jog, etc., move the axis to be adjusted at approx. F1000mm/min in both directions, and check the load current on the [I/F Diagnosis Screen/Servo Monitor]. Subtract the current load value during movement in the - direction from the current load value during movement in the + direction, and set the absolute position of that value divided by 2.
- 4. SV059 (TCNV) Torque estimated gain Set SV035 (SSF4/clt) (bit F) of the axis to be adjusted to "1". Using jog, etc., move the axis to be adjusted at the maximum rapid traverse rate in both directions until the MPOF display on the [I/F Diagnosis Screen/Servo Monitor] stabilizes. Set the MPOF value displayed on the [I/F Diagnosis Screen/ Servo Monitor]. Return the SV035 (SSF4/clt) (bit F) setting to "0".
- 5. SV035 (SSF4/cl2n) (bit B) Set this bit to "1" when the acceleration/deceleration time constant is short and the current is limited.
- 6. SV060 (TLMT) Collision detection level (for method 1, G0 modal)

Initially set to "100". (When SV035 (SSF4/clet) is set to "1", the MPOF value shows the estimated disturbance torque peak value for the last two seconds, so this can be used as a reference when setting. However, this value is averaged, so initially set a value approx. double the display value.)

Carry out no-load operation at the maximum rapid traverse rate. If it appears an alarm will occur, raise the setting value in increments of 20.

If it appears an alarm will not occur, lower the setting value in increments of 10.

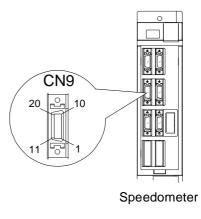
Set a value 1.5-fold of the limit where an alarm does not occur.

 SV035 (SSF4/cIG1) (bit C to E) Divide the maximum cutting load by the SV060 (TLMT) setting value. (Round up values below the decimal.) Set that value.

(Example) When the maximum cutting load is 200%, and the SV060 (TLMT) setting value is 80%. $200/80 = 2.5 \rightarrow$ The setting value is rounded up to "3", so 3xxx is set in SV035 (SSF4).

No.	Abbr.	Parameter name	Explanation				
SV035	SSF4	Special servo function selection 4	Set the co	llision	detection with the following parameter.		
			FE	D	C B A 9 8 7	6 5 4 3 2 1 0	
			clt	clG	1 cl2n clet cltq	iup tdt	
			bit		Meaning when set to 0	Meaning when set to 1	
			8,9	cltq	Set the deceleration torque for	when a collision is detected.	
			A	clet	Setting for normal use	The past two-second estimated disturbance torque peak value is displayed at MPOF on the Servo Monitor screen.	
			В	cl2n	Setting for normal use	Collision detection method 2 is invalidated.	
			C D E	clG1	Set the collision detection level for the collision detection method 1, G1 modal. When 0 is set : The method 1, G1 modal collision detection will not be carried out. When 1 to 7 is set: The method 1, G0 modal collision detection level (SV060 (TLMT)) will be multiplied by the set value, and the value is set as the level for the method 1, G1 modal.		
			F	clt	Setting for normal use	The guide value for the SV059 (TCNV) setting value is displayed at MPOF on the Servo Monitor screen.	

No.	Abbr.	Parameter name	Unit	Explanation	Setting range
SV032	TOF	Torque offset	Stall % (rated current %)	Set the unbalance torque amount of axes having an unbalance torque such as vertical axes as a percentage (%) of the stall rated current.	-100 to 100
SV045	TRUB	Current compensation/ Frictional torque	Stall % (rated current %)	When using the collision detection function, set the friction torque as a percentage of the stall rated current. Use the eight low-order bits. Set "0" when not using the collision detection function.	0 to 100
SV059	TCNV	Torque estimated gain		When using the collision detection function, set the estimated torque gain. A guideline setting value can be displayed in MPOF on the Servo Monitor screen by setting SV035 (SSF4/clt) to "1". Set "0" when not using the collision detection function.	0 to 32767
SV060	TLMT	G0 collision detection level	Stall % (rated current %)	When using the collision detection function, set the collision detection level during method G0 modal as a percentage of the stall rated current. Set "0" when not using the collision detection function.	0 to 100


 possible due to NC faults or the machine structure. 2. If the collision detection level is set very close to its limit, a collision may mistakenly detected in a normal status, so set a slightly larger collision detection level. 	t	
 detector, adjust the parameters related to collision detection again. In particular, the SV059 (TCNV) torque estimated gain must be changed when the detector resolution changes due to detector replacement, or whether the position control system is changed (when the closed loop and 		 If the collision detection level is set very close to its limit, a collision may be mistakenly detected in a normal status, so set a slightly larger collision detection level. After adjusting the machine for maintenance, etc., or replacing the motor or detector, adjust the parameters related to collision detection again. In particular, the SV059 (TCNV) torque estimated gain must be changed when the detector resolution changes due to detector replacement, or when the position control system is changed (when the closed loop and
semi-closed loop are changed, etc.).		semi-closed loop are changed, etc.).

5-6 Spindle adjustment data output function (D/A output)

The spindle drive unit has a function to D/A output various control data. The drive unit's status and each data can be confirmed using this D/A output function.

5-6-1 D/A output specifications

Item	Explanation
No. of channels	2ch
Output cycle	444µs
Output precision	8bit
Output voltage range	0 to +10V
Output magnification setting	±1/256 to ±128-fold
Output pin	CN9 connector Channel 1 = Pin 9 Channel 2 = Pin 19 GND = Pins 1, 11
Function	Phase current feedback output function U phase current FB: pin 7 V phase current FB: pin 17

5-6-2 Parameter settings

Each channel's data number and output magnification are set with the following parameters.

No.	Abbr.	Parameter name	Details
SP253	DA1N0	D/A output channel 1 data number	Set the output data number for channel 1 of the D/A output function. *When this parameter is set to "0", the speed meter will be output. Refer to section "5-6-3" for settings other than "0".
SP254	DA2N0	D/A output channel 2 data number	Set the output data number for channel 2 of the D/A output function. * When this parameter is set to "0", the load meter will be output. Refer to section "5-6-3" for settings other than "0".
SP255	DA1MPY	D/A output channel 1 magnification	Set the data magnification for channel 1 of the D/A output function. * The magnification is the setting value divided by 256-fold. Note that if "0" is set, the magnification will be 1-fold.
SP256	DA2MPY	D/A output channel 2 magnification	Set the data magnification for channel 2 of the D/A output function. * The magnification is the setting value divided by 256-fold. Note that if "0" is set, the magnification will be 1-fold.

5-6-3 Output data settings

Set the No. of the data to be output in SP253 and SP254.

A correlation of the output data and the data No. is shown below.

* The values in brackets indicate the conversion value for the output voltage 1V change. (Note that this is when the magnification is set to 1-fold.)

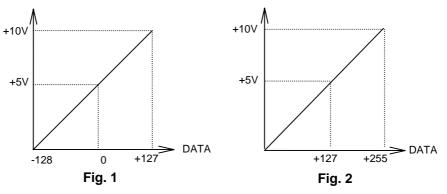
Data No.		CH1 CH2		
(setting value)	Output data	Units	Output data	Units
0 (Normal)	Speedometer output	Maximum speed at 10V (Note 2)	Load meter output	120% load at 10V
2	Current command	When the actual data is 4096, the as 100%. [0.625%/V]	current command data	is regarded (Note 1)
3	Current feedback	When the actual data is 4096, the current feedback data is regarded as 100%. $[0.625\%/V]$ (Note 1)		
4	Speed feedback	Actual data r/min [25.6r/min/V]		
6	Position droop low-order	Interpolation units (When the actu	al data is 23040000, th	e position droop data is
7	Position droop high-order	regarded as 360°.) [low-order: 0.0004°/V, high-order: 26.2°/V]		
8	Position F∆t low-order			
9	Position F∆t high-order			
10	Position command low-order	Interpolation units (When the actual data is 23040000, the position command data		
11	Position command high-order	is regarded as 360°.) [low-order: 0	.0004°/V, high-order: 2	6.2°/V]
12	Feedback position low-order	Interpolation units (When the actua	al data is 23040000, the	e feedback position data
13	Feedback position high-order	is regarded as 360°.) [low-order: 0	.0004°/V, high-order: 2	6.2°/V]
80	Control input 1			
81	Control input 2	Bit correspondence		
82	Control input 3			
83	Control input 4			
84	Control output 1			
85	Control output 2	Bit correspondence		
86	Control output 3			
87	Control output 4			

Note 1) The spindle motor's 30-minute rated output is 100%.

Note 2) The maximum speed (motor rotation speed) at the speedometer 10V output can be changed with parameter "SP249".

5-6-4 Setting the output magnification

Set the output magnification of the data to be output in SP255 and SP256.


DATA = actual data ×
$$\frac{SP255 \text{ or } SP256}{256}$$
 Expression <1>

The output data has the D/A output specifications shown in "Fig. 1" below.

* When the data is "0", the output will be 5V. (0 offset: 5V)

When the maximum data "127" is set, the output will be 10V. When the minimum data "-128" is set, the output will be 0V.

(Note) The speedometer output and load meter output data will have the D/A output specifications shown in "Fig. 2" below.

(Example 1) Current command, current feedback

The data is regarded as 100% when the actual data is 4096.

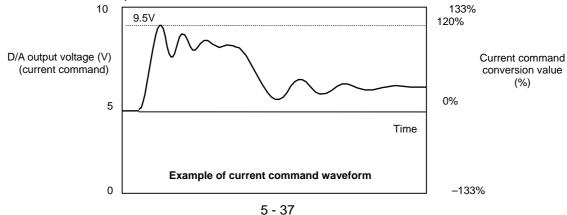
Therefore, for example, the actual data is output as shown below during +120% current feedback.

Actual data = 4096 × 1.2 = 4915

If parameter SP255 (SP256) is set to "256", or if the magnification is set to 1-fold, the D/A output voltage will be as follows according to Expression <1>.

DATA = 4915 > +128

The D/A output maximum voltage value will be exceeded. Thus, in this case, parameter SP255 (SP256) will be set in the following manner.


DATA = 4915 * {setting value} / 256 < 128

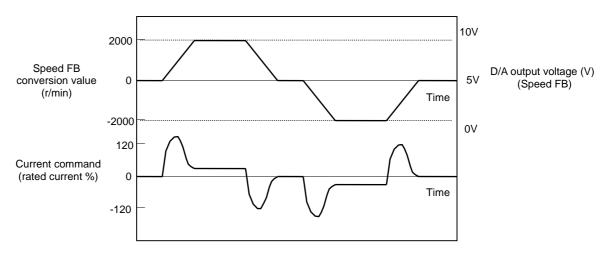
Thus, {setting value} < 6.666... (= 128 * 256/4915), and the data can be confirmed with the SP255 (SP254) setting value "6".

At this time, the D/A output voltage value will be:

D/A output voltage = $5V + \{4915 \times 6/256 \times (5V/128)\} = 9.5V$.

An example of the waveform is shown below.

(Example 2) Speed Feedback


The data unit is r/min.

Thus, if the motor is rotating at +2000r/min, the actual data "2000" will be output. If parameter SP255 (SP256) is set to "256", or if the magnification is set to 1-fold, the D/A output voltage will exceed the maximum value (DATA = 2000 > +128).

Thus, in this case, parameter SP255 (SP256) should be set as follows.

DATA = 2000 * {setting value} / 256 < 128 Thus, {setting value} < 16.384 (= 128 * 256/2000)

The data can be confirmed by setting SP255 (SP254) to "16". At this time, the D/A output voltage value (= $5V + \{2000 \times 16/256 \times (5V/128)\}$) will be 9.88V.

Example of speed/current command waveform during acceleration/deceleration

(Example 3) Position droop

The data unit is a value equivalent to 360° when the actual data is 23040000. Thus, when the position droop is +0.1 degrees, the actual data $0.1 \times 23040000/360 = 6400$ will be output.

If parameter SP255 (SP256) is set to "256", or if the magnification is set to 1-fold, the D/A output voltage will exceed the maximum value (DATA = 6400 > +128).

Thus, in this case, parameter SP255 (SP256) should be set as follows.

DATA = 6400 * {setting value} / 256 < 128 Thus, {setting value} < 5.12 (= 128 * 256/6400)

The data can be confirmed by setting SP255 (SP256) to "5". At this time, the D/A output voltage value (= $5V + \{6400 \times 5/256 \times (5V/128)\}$) will be 9.88V.

(Example 4) Confirm the orientation complete signal with the control output 4L.

The data unit is bit corresponding data.

Refer to the section "1.1" for the meanings of the control output 4L bit corresponding signals.

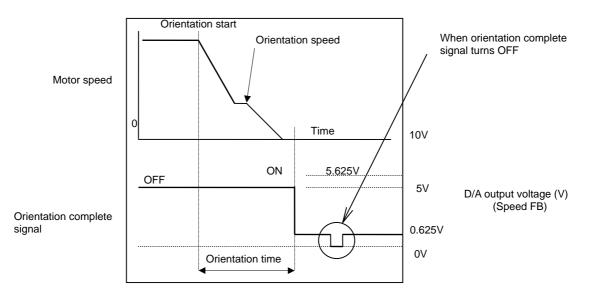
The orientation complete signal corresponds to the control output 4L/bit 4.

Thus, if the orientation complete signal is ON for example, bit 4 will be set to "1", and the actual data 16 ($=2^4$) will be output.

If parameter SP255 (SP256) is set to "256", or if the magnification is set to 1-fold, the D/A output voltage will be less than the maximum value (DATA = 16 < +128), so the data can be confirmed.

The D/A output voltage value (= $5V + \{16 \times 256/256 \times (5V/128)\}$) will be 5.625V.

Note that if bits other than bit 4 are ON, the voltage of that bits will be added to the value 6.25V above, when measuring the actual orientation complete signal, check with the (5.625V-5V) = 0.625V changed voltage.


(Note) When orientation is completed, indexing position complete (bit 7) will turn ON simultaneously, so the actual data = $128 (=2^7)$ will be added.

* D/A output voltage = 5V + {(16 + 128) × 256/256 × (5V/128)} = 10.625V

[Reference]

If 10V is exceeded, as explained above, the data will overflow, so the actual voltage will be (= calculated D/A voltage - 10*n: n is the maximum integer that establishes a positive value in the right side of the expression).

Example: When above indexing position complete signal is added

5-7 Spindle adjustment

The MDS-CH-SP[] spindle drive unit has a function to D/A output various control data. The drive unit's status and each data can be confirmed using this D/A output function.

5-7-1 Items to check during trial operation

Directly couple the motor and machine, and check the control status during machine run-in.

- (1) Check that the command speed and actual speed match.
 - (a) If the speeds do not match, check spindle parameters SP000 to SP384 again. (Especially check SP017, SP034, SP040 and SP257 to SP384.)
 - (b) Check the NC parameters Slimit1 to 4, Smax 1 to 4, and Smini.
- (2) Is the rotation smooth?
- (3) Is there any abnormal noise?
- (4) Are there any abnormal odors?
- (5) Has the bearing temperature risen abnormally?

5-7-2 Adjusting the spindle rotation speed

The rotation speed is received as digital signals from the NC, and thus does not need to be adjusted. If the spindle rotation speed does not match the commanded value due to a dimensional error, such as the pulley diameter, adjust the parameters with the following method.

1. Setting Slimit

Slimit = (SP017 value) × (deceleration rate between motor and spindle)

2. Set the S command to half of the maximum spindle rotation speed, and then measure the spindle rotation speed.

If the speeds do not match, change the Slimit value in small increments until the speed matches.

- 3. Set the S command to the maximum spindle rotation speed, and check whether the spindle rotation speed matches.
- 4. In machines involving gear changeover, etc., change the gears, and then adjust with steps 1. to 3. above.

5-7-3 Adjusting the acceleration/deceleration

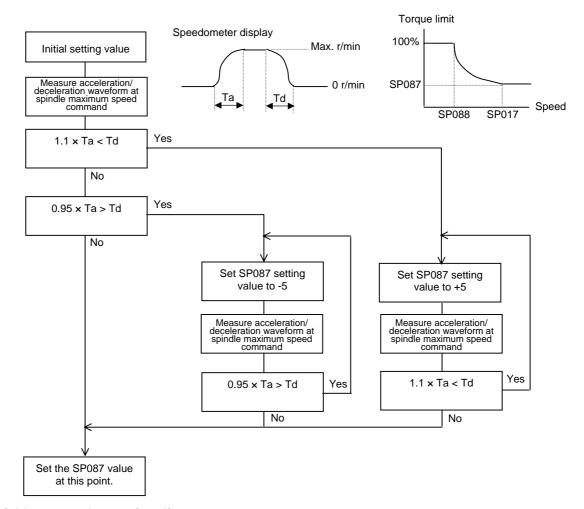
Measure the acceleration/deceleration waveform using the "5-6. Spindle adjustment data output function (D/A output function)", and confirm that it is within $\pm 15\%$ of the theoretical acceleration/deceleration time. (**Note:** Refer to "5-7-8" for details on calculating the theoretical acceleration/deceleration time.) Adjust SP087 and SP088.

(1) When acceleration/deceleration time do not match theoretical values

• If there is an error in the motor shaft conversion load inertia calculation, these may not necessary match.

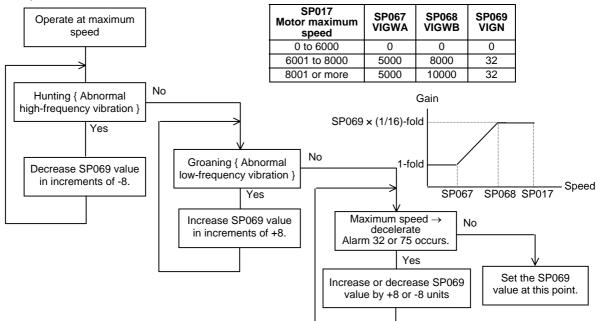
Check load inertia again.

• If the acceleration time is long and the deceleration time is short, the friction torque may be large. Check the load meter value (Spindle Monitor screen) at the maximum speed. If 10% or more, the friction torque may be relatively high. There may be mechanical friction such as bearing friction or timing belt friction. After running in the machine, measure the acceleration/deceleration time again.


* If the acceleration/deceleration times do not match even when the above problems are not present, the spindle motor and spindle drive unit may not be the designated products, or one of the parameter settings may be incorrect. Check the spindle motor and drive unit models, and check the parameters again.

(2) When the acceleration time is no problem but the deceleration time differs greatly from the acceleration time.

Adjust the deceleration time as indicated on the next page.


Deceleration adjustment procedures

Adjust SP087 as shown below so that the deceleration time is the same as the acceleration time.

Variable current loop gain adjustment

Adjust so that the current output to the spindle motor is stable. In most cases, the default value can be used. However, if fine vibration (hunting), etc., occurs at high speed regions, this must be adjusted.

5-7-4 Adjusting the orientation

Orientation is not possible if the gear ratio between the spindle motor and spindle exceeds 1:31.

(1) Preparing to adjust the orientation

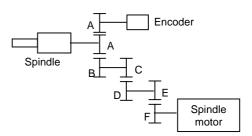
1) Motor built-in encoder parameters

No.	Abbr.	Parameter name	Initial value
SP001	PGM	Motor built-in encoder orientation position loop gain	100
SP004	OINP	Orientation in-position width	16
SP005	OSP	Orientation mode changing speed limit value	0
SP006	CSP	Orientation mode deceleration rate	20
SP007	OPST	Position shift amount for orientation	0
SP025	GRA1	Spindle gear teeth count 1	1
SP026	GRA2	Spindle gear teeth count 2	1
SP027	GRA3	Spindle gear teeth count 3	1
SP028	GRA4	Spindle gear teeth count 4	1
SP029	GRB1	Motor shaft gear teeth count 1	1
SP030	GRB2	Motor shaft gear teeth count 2	1
SP031	GRB3	Motor shaft gear teeth count 3	1
SP032	GRB4	Motor shaft gear teeth count 4	1
SP097	SPECO	Orientation specification	0000
SP098	VGOP	Speed loop gain proportional term in orientation mode	63
SP099	VGOI	Speed loop gain integral term in orientation mode	60
SP100	VGOD	Speed loop gain delay advance term in orientation mode	15
SP105	IQGO	Current loop gain magnification 1 in orientation mode	100
SP106	IDGO	Current loop gain magnification 2 in orientation mode	100
SP107	CSP2	Deceleration rate 2 in orientation mode	0
SP108	CSP3	Deceleration rate 3 in orientation mode	0
SP109	CSP4	Deceleration rate 4 in orientation mode	0
SP119	MPGH	Orientation position loop gain H coil magnification	0
SP120	MPGL	Orientation position loop gain L coil magnification	0
SP121	MPCSH	Orientation deceleration rate H coil magnification	0
SP122	MPCSL	Orientation deceleration rate L coil magnification	0

[**Preparation**] 1) Confirm that the parameters are set as shown above.

Note: 1) Motor built-in encoder orientation is only possible when the spindle and motor are directly connected or are connected with gears (timing belt) at 1:1. The built-in encoder with Z-phase must be mounted in the motor being used.

No.	Abbr.	Parameter name	Initial value
SP002	PGE	Encoder orientation position loop gain	100
SP004	OINP	Orientation in-position width	16
SP005	OSP	Orientation mode changing speed limit value	0
SP006	CSP	Orientation mode deceleration rate	20
SP007	OPST	Position shift amount for orientation	0
SP025	GRA1	Spindle gear teeth count 1	1 to 32767
SP026	GRA2	Spindle gear teeth count 2	1 to 32767
SP027	GRA3	Spindle gear teeth count 3	1 to 32767
SP028	GRA4	Spindle gear teeth count 4	1 to 32767
SP029	GRB1	Motor shaft gear teeth count 1	1 to 32767
SP030	GRB2	Motor shaft gear teeth count 2	1 to 32767
SP031	GRB3	Motor shaft gear teeth count 3	1 to 32767
SP032	GRB4	Motor shaft gear teeth count 4	1 to 32767
SP096	EGRA	Encoder gear ratio	0
SP097	SPECO	Orientation specification	0000
SP098	VGOP	Speed loop gain proportional term in orientation mode	63
SP099	VGOI	Speed loop gain integral term in orientation mode	60
SP100	VGOD	Speed loop gain delay advance term in orientation mode	15
SP105	IQGO	Current loop gain magnification 1 in orientation mode	100
SP106	IDGO	Current loop gain magnification 2 in orientation mode	100
SP107	CSP2	Deceleration rate 2 in orientation mode	0
SP108	CSP3	Deceleration rate 3 in orientation mode	0
SP109	CSP4	Deceleration rate 4 in orientation mode	0
SP119	MPGH	Orientation position loop gain H coil magnification	0
SP120	MPGL	Orientation position loop gain L coil magnification	0
SP121	MPCSH	Orientation deceleration rate H coil magnification	0
SP122	MPCSL	Orientation deceleration rate L coil magnification	0

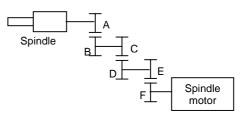

2) Encoder orientation parameters

[Preparation]

 The correct gear ratio (or pulley ratio) must be set from the motor shaft to the encoder rotation shaft. Confirm that the correct number of gear teeth is set in SP025 (GRA1) to SP032 (GRB4).

SP025 (GRA1) to SP028 (GRA4) = $A \times C \times E$ SP029 (GRB1) to SP032 (GRB4) = $B \times D \times F$

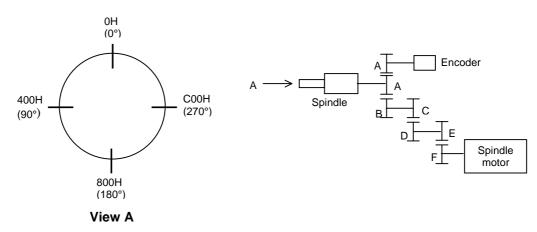
- **Note:** SP025 (GRA1) to SP032 (GRB4) may be set to the user settings, so correctly set according to the machine.
- 2) Confirm that the parameters are set as shown above.



No.	Abbr.	Parameter name	Initial value
SP001	PGM	Magnetic sensor orientation position loop gain	100
SP004	OINP	Orientation in-position width	16
SP005	OSP	Orientation mode changing speed limit value	0
SP006	CSP	Orientation mode deceleration rate	20
SP007	OPST	Position shift amount for orientation	0
SP025	GRA1	Spindle gear teeth count 1	1 to 32767
SP026	GRA2	Spindle gear teeth count 2	1 to 32767
SP027	GRA3	Spindle gear teeth count 3	1 to 32767
SP028	GRA4	Spindle gear teeth count 4	1 to 32767
SP029	GRB1	Motor shaft gear teeth count 1	1 to 32767
SP030	GRB2	Motor shaft gear teeth count 2	1 to 32767
SP031	GRB3	Motor shaft gear teeth count 3	1 to 32767
SP032	GRB4	Motor shaft gear teeth count 4	1 to 32767
SP097	SPECO	Orientation specification	0000
SP098	VGOP	Speed loop gain proportional term in orientation mode	63
SP099	VGOI	Speed loop gain integral term in orientation mode	60
SP100	VGOD	Speed loop gain delay advance term in orientation mode	15
SP105	IQGO	Current loop gain magnification 1 in orientation mode	100
SP106	IDGO	Current loop gain magnification 2 in orientation mode	100
SP107	CSP2	Deceleration rate 2 in orientation mode	0
SP108	CSP3	Deceleration rate 3 in orientation mode	0
SP109	CSP4	Deceleration rate 4 in orientation mode	0
SP119	MPGH	Orientation position loop gain H coil magnification	0
SP120	MPGL	Orientation position loop gain L coil magnification	0
SP121	MPCSH	Orientation deceleration rate H coil magnification	0
SP122	MPCSL	Orientation deceleration rate L coil magnification	0
SP123	MGD0	Magnetic sensor output peak value	Standard magnet = 542 Compact magnet = 500
SP124	MGD1	Magnetic sensor linear zone width	Standard magnet = 768 Compact magnet = 440
SP125	MGD2	Magnetic sensor changeover point	Standard magnet = 384 Compact magnet = 220

3) Magnesensor orientation parameters

[Preparation]


- 1) The correct gear ratio (or pulley ratio) must be set from the motor shaft to the magnetic sensor rotation shaft. Confirm that the correct number of gear teeth is set in SP025 (GRA1) to SP032 (GRB4).
 - SP025 (GRA1) to SP028 (GRA4) = $A \times C \times E$ SP029 (GRB1) to SP032 (GRB4) = $B \times D \times F$

- Note: 1) SP025 (GRA1) to SP032 (GRB4) may be set to the user settings, so correctly set according to the machine.
 - 2) Confirm that the parameters are set as shown above.

(2) General adjustment of orientation

- 1) First confirm that the orientation command (ORC) is input while the machine is in the correct state, and that the orientation complete signal (ORCF) turns ON when there is even one unstable operation point. If the excessive error alarm (AL52) occurs, or if the operation does not stop and forward/reverse run is repeated at a low speed during magnetic sensor orientation, change the value set in SP097 (SPECO) bit-5 or -6. Refer to section 3) if the excessive error alarm is not eliminated even after changing this value.
- 2) Adjust the position shift SP007 (OPST) value so that the machine stops at the target stop position. If the stop position command data is input from an external source during encoder or motor PLG orientation, the machine will stop as shown below according to the issued data regardless of the detector's installation direction. The 0° position shown below will be shifted by SP007 (OPST).

- **Note 1)** The external stop position command data is read in at the rising edge of orientation start, so always change it before inputting the orientation start command. It will not be valid if changed after orientation starts.
- 3) Adjusting the orientation time and vibration

		Phenomenon	Adjustment knack	
Normal rotation	Orientation	Frienomenon	SP001/SP002	SP006
speed	changeover speed		Decrease the setting value	Decrease the setting value
		Orientation time is long	Increase the setting value	Increase the setting value
		Hunting occurs when stopping	Decrease the setting value	Do not change
		Excessive error alarm occurs	Decrease the setting value	Decrease the setting value

Whether to adjust SP001 (PGM) or SP002 (PGE) depends on the orientation method.

SP006 (CSP) is adjusted after adjusting SP001 (PGM)/SP002 (PGE).

To adjust the orientation time quickly for each gear, adjust SP107(CSP2) to SP109(CSP4) in the same manner.

Similarly, when using the coil changeover motor, adjust SP119 (MPGH) to SP122 (MPCSL) to adjust the orientation time quickly for each coil.

If the excessive error alarm (52) occurs at a gear ratio of 1:10 or more, and the state cannot be improved with the adjustments above, adjust SP005 (OSP).

If the motor hunts during orientation stop, review the values set in SP001 (PGM) or SP002 (PGE).

(3) Adjusting the servo rigidity

The cutting precision can be increased by raising the servo rigidity during orientation stop.

- 1. Increase the SP001 (PGM) or SP002 (PGE) value to the degree that overtravel does not occur during orientation stop.
- 2. Increase SP0098 (VGOP) and SP099 (VGOI) by the same amount to the degree that vibration does not occur.
- 3. The servo rigidity can be increased momentarily by increasing the SP100 (VGOD) value. Increasing the SP100 (VGOD) value: Adverse effects may occur such as a drop in the torque in respect to the position deflection, or an inconsistency in the stopping position. Setting the SP100 (VGOD) value to 0: PI control will be applied. The servo rigidity will drop momentarily, but the stopping position precision will increase.

Note 1) Delay/advance control and PI control

When stopping orientation for a normal tool change, etc., select delay/advance control. (SP100=0)

However, if the spindle's frictional torque is large, and a precise stopping position is required, select PI control. (SP100=0).

Examples of using PI control

- 1. Positioning a workpiece with a lathe.
- 2. Orientation of a machine which indexes a 5-plane machining attachment.
- **Note 2)** If the gear ratio between the spindle and motor is large, it may not be possible to set the SP001 (PGM), SP002 (PGE) and SP006 (CSP) values as required, and the values may be limited.

In this case, the setting value will change, but the value will be clamped internally, so the changes will not be visible.

- **Note 3)** If the forward run and reverse run stop positions differ even when using PI control, the machine's backlash may be large. In this case, the stopping precision may be improved by fixing the orientation rotation direction to one direction. (Set with SP097 (SPECO) bit-0, 1.)
- **Note 4)** If the spindle is mechanically locked during orientation stop, always input a torque limit so that the motor's output torque is restricted. (Recommended torque limit: 10% or less)

(4) Troubleshooting

1) Orientation does not take place (motor keeps rotating)

Cause	Investigation item	Remedy	Remarks
Parameter setting values are incorrect	The orientation detector and parameter do not match. SP037 (SFNC5) Motor built-in encoder orientation	Correctly set SP037 (SFNC5).	
The specification are not correct	Motor built-in encoder orientation is attempted with standard motor instead of motor with Z phase.	Change to a motor having a motor-built-in encoder with Z phase.	For motor built-in encoder orientation
Incorrect wiring	The connector pin numbers are incorrect, The inserted connector number is incorrect, or The cable is disconnected.	Correct the wiring. Replace the cable.	

Cause	Investigation item	Remedy	Remarks
Parameter setting values are incorrect	The gear ratio parameters SP025 (GRA1) to SP032 (GRB4) are incorrect.	Correctly set SP025 (GRA1) to SP032 (GRB4).	
	The phenomenon is improved when the deceleration rate for orientation parameter SP006 (CSP) is halved.	Readjust SP006 (CSP)	This also applies to: SP107 (CSP2) SP108 (CSP3) SP109 (CSP4) SP121 (MPCSH) SP122 (MPCSL)
	The phenomenon is improved when the position loop gain parameters SP001 (PGM) and SP002 (PGE) are halved.	Readjust SP001 (PGM), SP002 (PGE).	This also applies to: SP119 (MPGH) SP120 (MPGL)
	The orientation stop direction is set to one direction (CCW or CW).	Set the SP097 (SPECO) bit 0, 1 to "0" (pre).	

2) The motor overtravels and stops. (The motor sways when stopping.)

3) The stopping position deviates.

Cause	Investigation item	Remedy	Remarks
Mechanical cause	The stopping position is not deviated with the encoder axis.	There is backlash or slipping, etc., between the spindle and encoder. The gear ratio between the spindle and encoder is not 1:1 or 1:2.	For encoder orientation
		There is backlash or slipping between the spindle and motor. The gear ratio between the spindle and motor is not 1:1.	For motor built-in encoder orientation
Noise	The position detector's cable is relayed with a terminal block (connector), etc.	Do not relay the cable.	
	The position detector cable's shield is not treated properly.	Properly treat the shield.	
	The peeled section of signal wire at the position detector cable's connector section is large. (A large section is not covered by the shield.)	Keep the peeled section to 3cm or less when possible. Keep the peeled section as far away from the power cable as possible.	
The magnetic sensor installation direction is incorrect	Check the relation of the magnet and sensor installation following section 6-37.	Correct the relation of the magnet and sensor installation.	For magnetic sensor orientation.

4) The stopping position does not change even when the position shift parameter is changed.

Cause	Investigation item	Remedy	Remarks
Parameter setting values are incorrect	The position shift was changed to 2048 when the gear ratio between the spindle and encoder was 1:2 (one encoder rotation at two spindle rotations).		

- Cause Investigation item Remedy Remarks The gear ratio parameters SP025 Correctly set SP025 (GRA1) to Parameter setting values are (GRA1) to SP032 (GRB4) are SP032 (GRB4). incorrect incorrect. The orientation The vibration frequency is several Decrease the position loop gain parameters SP001 (PGM) adjustment is faulty Hz. and SP002 (PGE). Increase the current loop gain for orientation parameters SP105 (IQGO) and SP106 (IDGO). The vibration frequency is 10Hz or Decrease the speed loop gain more. for orientation parameters SP098 (VGOP) and SP099 (VGOI). Decrease the current loop gain for orientation parameters SP105 (IQGO) and SP106 (IDGO).
- 5) The machine vibrates when stopping.

6) The orientation complete signal is not output

Cause	Investigation item	Remedy	Remarks
Refer to section (1)	Orientation does not take place.		
The machine's load is heavy	The in-position parameter SP004 (OINP) is too small.	Review the in-position range, and increase SP004 (OINP).	
	Phenomenon is improved if the control for orientation stopping is changed from delay/advance to PI control.	Review the values set for the speed loop gain for orientation parameters SP098 (VGOP), SP099 (VGOI) and SP100 (VGOD).	

5-7-5 Synchronous tap adjustment

Always adjust the synchronous tap after adjusting the operation following the speed command and the acceleration/deceleration time, and after adjusting the servo axis synchronized with the spindle during synchronous tap.

(1) Preparation for adjustment

Check the input spindle parameters again.

1) Base specification parameters (NC parameter)

The numbers may differ or the meaning may differ according to the NC, so refer to the NC Maintenance Manual for details.

No.	Abbr.	bit	Details
1229	set01	4	Always set this bit to "1" when carrying out synchronous tap in the G74, G84 tap cycle.
	mpar1	3	Determine the inclination of the command time constant for synchronous tap. When "0" is set, constant time constants will be applied and when "1" is set, inclined constants will be applied. When "1" is set, set the time constants in the spindle specification parameters stapt1 to 4.
	tap-t1	-	Set the time constants for when "0" is set in mpar1 bit-3.

2) Spindle specification parameters (NC parameters) Refer to section 4-3-4(1) for details.

No.	Abbr.	Details
13	stap1	Set the maximum spindle speed for synchronous tap at gear 00.
14	stap2	Set the maximum spindle speed for synchronous tap at gear 01.
15	stap3	Set the maximum spindle speed for synchronous tap at gear 10.
16	stap4	Set the maximum spindle speed for synchronous tap at gear 11.
17	stapt1	Set the time constant up to the maximum speed for synchronous tap at gear 00.
18	stapt2	Set the time constant up to the maximum speed for synchronous tap at gear 01.
19	stapt3	Set the time constant up to the maximum speed for synchronous tap at gear 10.
20	stapt4	Set the time constant up to the maximum speed for synchronous tap at gear 11.

3) Servo and spindle parameters.

Refer to section 4-2 and 4-3 for details.

No.	Abbr.	Details
SV049	PGN1sp	Set the position loop gain of the axis that moves in synchronization with the spindle during synchronous tap. Always set the same value as the spindle parameter SP009 (PGT).
SP009	PGT	Set the position loop gain for the spindle during synchronous tap. Always set the same value as the servo parameter SP049 (PGN1sp) of the axis that moves in synchronization with the spindle.
SP060	MKT2	Set the time to limit the current after coil changeover when using the coil changeover motor.
SP193	SPECT	Set the synchronous tap specifications. Refer to the explanation of parameters in the previous section for details.
SP194	VGTP	Set the speed loop gain proportional item for synchronous tap.
SP195	VGTI	Set the speed loop gain integral item for synchronous tap.
SP196	VGTD	Set the speed loop gain delay/advance item for synchronous tap.

Caution 1) When using a belt drive, highly accurate synchronous tap may not be possible due to slipping or elongation. In this case, use a spindle encoder and carry out encoder method orientation with the closed method. If the belt rigidity is weak, the gain may not rise and the synchronous tap accuracy may not be attained.

Caution 2) Set the spindle parameter SP096 (EGEAR) and spindle specification parameter #22 (sgear) to "1" when using the spindle encoder and closed method with a deceleration ratio of 1:2.

	Normal operation	Confirmation items
1	Accelerate and decelerate to each gear's maximum tap speed.	 When base specification parameter mpar1-bit3=1: Set a value obtained by multiplying Ta or Td, whichever is longer, by 1.2-fold for each gear into the corresponding #17 (stapt1) to #20 (stapt4). When base specification parameter mpar1-bit3=0: Set a value obtained by multiplying Ta or Td, whichever is longer, by 1.2-fold for each gear into the corresponding tap-t1.
2	Without workpiece installed G84 Z-10 F1.0 P1000 S50	 If the rotation direction is the reverse tap direction, reverse the SP193 (SPECT) bit 4 settings. If the motor does not rotate ten rotations past the spindle speed, review the gear ratio setting SP025 (GRA1) to SP032 (GRB4). In all other cases, refer to the Troubleshooting section.
3	Carry out test cutting with a floating tap chuck installed.	 The tapper must not elongate or contract. Highly accurate tapping must be possible. In all other cases, refer to the Troubleshooting section.
4	Carry out test cutting without a floating tap chuck.	 Highly accurate tapping must be possible. In all other cases, refer to the Troubleshooting section.

(2) Confirmation and adjustment of operation

(3) Troubleshooting

Phenomenon	Cause of occurrence	Investigation method	Remedy
Excessive error alarm (52)	Incorrect parameter setting	Check the SP193 (SPECT) detector polarity	Set correctly
	Incorrect parameter setting	The tap time constant is too short. Set the S command startup time x 1.2 or more.	Set correctly
Overcurrent alarm (32)	Incorrect parameter setting	The tap time constant is too short. Set the S command startup time x 1.2 or more.	Set correctly
The spindle rotation movement amount	Incorrect parameter setting	Check the SP193 (STPECT) bit0 setting value.	Set correctly
does not match the command value		The SP025 (GRA1) to SP032 (GRB4) settings do not match the machine's gear ratio.	Set correctly
The tap breaks	Incorrect parameter setting	PGNISP and SP001 are not the same	Set correctly
The tap cutting accuracy is poor		The tap time constant is short	Increase the time constant
	Correct the program	The tap hole is shallow and the cutting chips cannot be discharged.	Deepen the tap hole
	Check the machine	The tap slips at the chuck	Adjust to the correct
		Check the tap depth and tap diameter	state
		Check the tap cutting edge	Replace with a new part
The spindle stops	Machine load is heavy	Set SP193 (SPECT) bit 3 to "1".	Set
during tap cutting.		Increase the speed loop gain SP194 (VGTP) and SP195 (VGTI) setting values.	Readjust
		The tap time constant value is short, and there is no allowance to the output.	Increase the time constant
The tap accuracy drops when the speed increases	The position loop gain is incorrect	Try adjusting again	Readjust
The accuracy drops if synchronous tapping is carried out immediately after changing the coil.	The current is limited for a set time immediately after the coil is changed, so the acceleration/deceleration time increases and tracking as set in the constants is not possible.	Change the SP060 (MKT2) value.	Decrease the setting value, but note that caution is required. Refer to the Coil Changeover Specifications for details.

5-7-6 Z-phase (magnetic) automatic adjustment (Only when using IPM spindle motor)

Z-phase automatic adjustment is a function that automatically adjusts the relative position of the motor magnetic pole and the PLG Z-phase pulse signal input into the spindle drive unit, and then saves and validates the adjustment data.

This function is used to increase the output torque accuracy, and must always be carried out when the machine is started. Execute this function with the following procedures.

 CAUTION The motor inertia) and the frictional load as low as possible. The motor will automatically rotate at the adjustment speed during the Z-phase automatic adjustment. Do not touch the rotating sections, as these are hazardous. If START (ON) is executed before the adjustment is completed, alarm 16 will 	1. The mechanical adjustments (gear - sensor gap, etc.) must already be completed.
	 The motor will automatically rotate at the adjustment speed during the Z-phase automatic adjustment. Do not touch the rotating sections, as these

(1) Change SP205 from 0 to 1, and start forward run operation. (The power does not need to be turned OFF and ON.)

The control output 4H bit "D" will be set to 1 until the unit power is turned ON again.

- 1) The spindle motor will automatically rotate at the adjustment speed (two steps for Z-phase pulse detection and magnetic pole position detection).
- The adjustment results will be calculated approximately 90 seconds after forward run is started (this time will differ slightly according to the magnetic pole position). Then operation will stop automatically.
- (2) Confirm that the motor has automatically stopped. Leave parameter SP205 set to 1, turn START OFF, and turn the power OFF and ON. (When SP205 is set to 1, the adjustment data saved in SPm will be used.)
 - 1) If START is turned OFF during automatic rotation, reset SP205 to 0, and turn the power OFF and ON. Then, repeat the procedure from step (1).
 - If the drive unit or motor is replaced, if the PLG is reinstalled, or if the signals are readjusted, etc., always reset SP205 to 0, and turn the power OFF and ON. Then, repeat the procedure from step (1). Failure to observe this will prevent correct operation due to invalid adjustment data.

5-7-7 PLG automatic adjustment

PLG automatic adjustment is a function that automatically adjusts the PLG A and B-phase sine wave signals input into the SPM unit. (Adjusts the offset and gain, etc.) The adjustment data is then saved and validated.

This function is used to improve the position data accuracy, and must always be carried out when the machine is started up.

	As a condition, the Z-phase automatic adjustment described in (1) above must be completed. The motor will automatically rotate at the adjustment speed during the PLG automatic adjustment. Do not touch the rotating sections of the spindle motor or spindle shaft, as these are hazardous.

- (1) Change parameter (SP245) from 0 to 1, and start forward run operation. The control output 4H bit "D" will be set to 1 from when the power is changed to when the power is turned ON again.
 - 1) The spindle motor will automatically rotate at the adjustment speed (two steps for offset adjustment and gain adjustment).
 - 2) The adjustment results will be calculated within several seconds after forward run is started. Then operation will stop automatically.
- (2) Leave parameter (SP245) set to 1, turn START OFF, and turn the drive unit OFF and ON.
 - 1) When SP245 is set to 1, the adjustment data saved in SP will be used.
 - 2) If SP245 is set to 0, the adjustment data will be invalidated.

When the unit h or the PLG has replaced, reset parameter (SP245) to 0, and then repeat the procedure from (1) above to readjust the signals.

5-7-8 Calculating the theoretical acceleration/deceleration

(1) Calculating the theoretical acceleration/deceleration time

Each theoretical acceleration/deceleration time is calculated for each output range based on the spindle motor output characteristics as shown on the right. Note that the load torque (friction torque, etc.) is 0 in this calculation expression, so the acceleration/deceleration time can be known as a rough guide, but this calculation result differs from the acceleration/deceleration time of the actual machine.

(a) Maximum motor output during acceleration/deceleration: Po

During acceleration/deceleration operation, the motor can output at 120% of the short-time rating. Thus, the motor output Po in the constant output range during acceleration/deceleration follows the expression below.

Po = (Short-time rated output) \times 1.2 [W]

(b) Total load inertia: Jall

The inertia of the total load which is accelerated and decelerated follows the expression below.

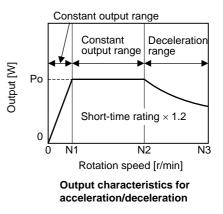
 $J_{all} = (Motor inertia) + (motor shaft conversion load inertia) [kg•m²] (Caution 1)$

The acceleration/deceleration time until the rotation speed "N" to be required is calculated for each motor output range as shown below, using the values obtained in (a) and (b).

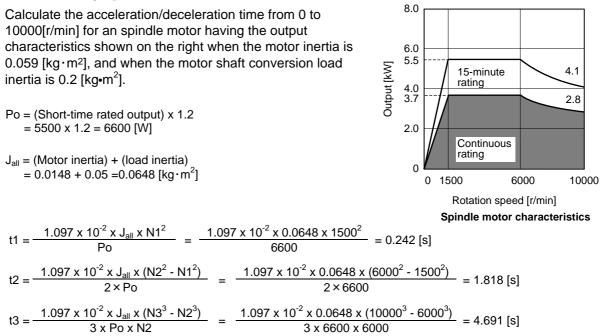
(c) Acceleration/deceleration time for constant torque range: t1…0 to N [r/min] (0≤N≤N1) (For N>N1, apply N=N1 and also calculate t2 or t3.)

t1 =
$$\frac{1.097 \times 10^{-2} \times J_{all} \times N1 \times N}{Po}$$
 [s] (Caution 1)

(d) Acceleration/deceleration time for constant output range: t2...N1 to N [r/min] (N1<N≤N2) (For N>N2, apply N=N2 and also calculate t3.)


t2 =
$$\frac{1.097 \times 10^{-2} \times J_{all} \times (N^2 - N1^2)}{2 \times Po}$$
 [s] (Caution 1)

(e) Acceleration/deceleration time in deceleration output range: t3…N2 to N [r/min] (N2<N≤N3)


t3 =
$$\frac{1.097 \times 10^{-2} \times J_{all} \times (N^3 - N2^3)}{3 \times Po \times N2}$$
 [s] (Caution 1)

Based on the above expressions, the acceleration/deceleration time: t from 0 to N3 [r/min] is: t = t1 + t2 + t3 [s] (Caution 2)

	 Note that the inertia (J) is a quarter of "GD²". Ex.) When "GD²" is 0.2 [kg·m²], the inertia is "0.2 ÷ 4 = 0.05 [kg·m²]". If the AC input power voltage to the power supply is low, or if the input power impedance is high, the acceleration/deceleration time may be long. (Especially, the acceleration/deceleration time of the deceleration output range may be long.)
--	--

[Calculation example]

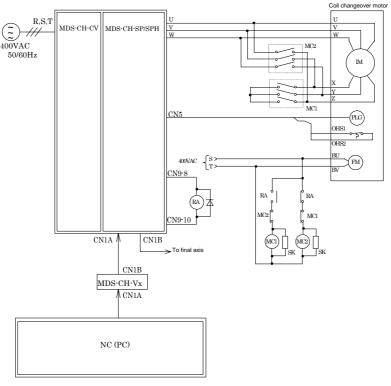
Thus,

t = t1 + t2 + t3 = 0.242 + 1.818 + 4.691 = 6.751 [s]

5-8 Spindle specifications

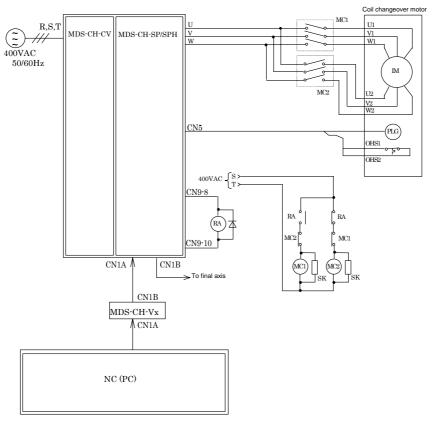
5-8-1 Spindle coil changeover

The coil changeover control enables constant output characteristics over a wide range from low speed to high speed regions by changing the spindle motor coil in the following manner:


- 1) \perp connection (low-speed coil) \iff \triangle connection (high-speed coil)
- 2) 1st ⊥ connection (low-speed coil) ↔ 2nd ⊥ connection (high-speed coil). By electrically carrying out the changeover of the speed ranges, conventionally charred out with mechanical means such as gear, pulleys or belts, etc., the machine structure can be simplified, and the spindle rigidity can be improved. When varying the speed between the low-speed regions and high-speed regions using the conventional mechanical methods, the spindle motor had to be stopped, the gears changed and then the motor accelerated again. By using this coil changeover, the motor does not need to be stopped, and the speed can be varied directly. This is effective in shortening the work time.

The following types of spindle motors can be used.

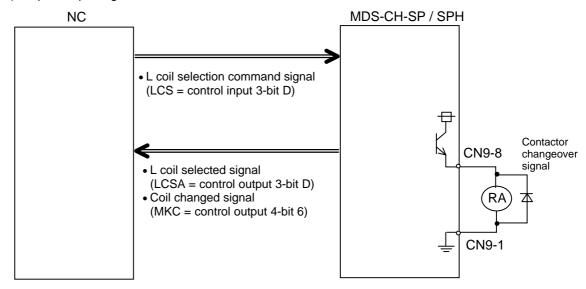
- ⊥ connection (low-speed coil) < > △ connection (high-speed coil) changeover method The coil changeover specification motor (type: SJ-KOOO, SJ-OBOOOOKO) is used with the built-in type as the target.
- 1st ⊥ connection (low-speed coil) ←> 2nd ⊥ connection (high-speed coil) The coil changeover specifications motor (type: SJ-OBOOOOWO) is used with the built-in type as the target.


(1) Coil changeover wiring diagram

1) \perp connection $\iff \triangle$ connection method

MC1: 3-phase contactor for establishing low-speed coil (\downarrow connection). MC2: 3-phase contactor for establishing high-speed coil (\triangle connection).

- (Note 1) The contactors and relays, etc., shown above must be prepared by the machine maker.
- (Note 2) A flywheel diode is connected to relay (RA), and a CR surge absorber (SK) is connected in parallel with the contactors (MC1, CM2).
- (Note 3) When using the built-in motor, the fan's BU and BV wirings are not required. When using the complete type motor, BU, BV and BW must be connected when using the 3-phase wire. Connect BU, BV and BW to the R, S and T phases.


2) 1st \perp connection \iff 2nd \perp connection method

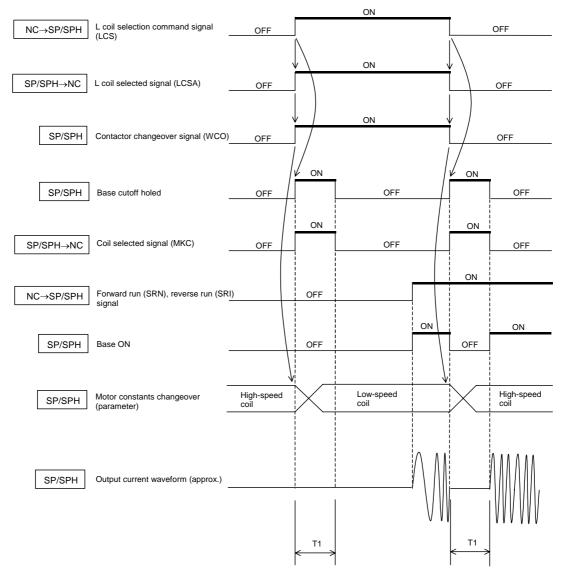
MC1: 3-phase contactor for establishing low-speed coil (1st \downarrow connection). MC2: 3-phase contactor for establishing high-speed coil (2nd \downarrow connection).

- (Note 1) The contactors and relays, etc., shown above must be prepared by the machine maker.
- (Note 2) A flywheel diode is connected to relay (RA), and a CR surge absorber (SK) is connected in parallel with the contactors (MC1, CM2).
- (Note 3) When using the built-in motor, the fan's BU and BV wirings are not required. When using the complete type motor, BU, BV and BW must be connected when using the 3-phase wire. Connect BU, BV and BW to the R, S and T phases.

(2) Control signals

1) Input/output signals

Input signal	Output signal	Selected coil		
L coil selected signal	Contactor changeover signal	Selected coll		
0 (OFF)	0 (OFF = relay open)	High-speed coil		
1 (ON)	1 (ON = relay closed)	Low-speed coil		

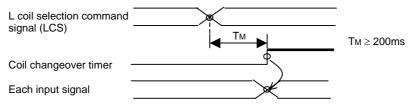

<Signal correspondence table>

Note 1) The default coil when the spindle amplifier power is turned ON is the high-speed coil.

<Signal functions>

	Signal name	Signal address	Explanation of function
Control input signal	L coil selection command signal (LCS)	Control input 3 -bitD (LCS) PLC device YOOO	 This changeover command signal selects the high-speed coil or low-speed coil. ON: Select low-speed coil OFF: Select high-speed coil The coil can be changed while the motor is rotating, but if position control such as orientation, spindle/C-axis control, synchronous tap or spindle synchronization is being carried out, the coil will not change even if this L coil selection signal is input. Position control will be executed with the coil selected when position control was started. (Refer to section 6-1-4.) Once the L coil selection signal is input, the base will remain cut off until the coil changeover operation is completed.
out signal	L coil selected signal (LCSA)	Control output 3 -bitD (LCSA) PLC device XOOO	• This is the answer signal in respect to the input signal LCS above. It can be confirmed whether the spindle amplifier has received the LCS signal.
Control output signal	Coil selected signal (MKC)	Control output 4 -bit6 (MKC) PLC device XOOO	 This signal turns ON while the base is cut off for changeover when changing from the high-speed coil to the low-speed coil and vice versa. This signal is OFF in all other cases. No other input commands are accepted while this signal is OFF.
Open emitter output	Contactor changeover signal (WCO)	_	 This is the relay drive's open emitter output for changing the high-speed coil and low-speed coil. ON 24V output : Low-speed coil is selected OFF 0V output : High-speed coil is selected Refer to section 3-1, and wire the relay and contactor so that the low-speed coil is selected at the 24V output and the high-speed coil is selected at the 0V output. The contactor's ON/OFF state is changed when the L coil selection command is input and the base is cut off.

Note) Refer to the PLC Interface Manual for the NC in use for details on the numbers of the above PLC devices. Note that the coil changed signal cannot be viewed with some NC units.

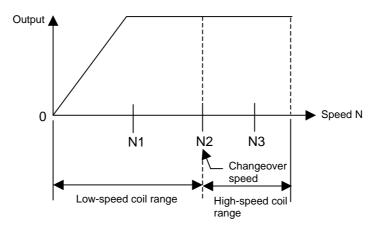

2) Coil changeover operation

T1: Base cutoff hold time (SP059: MKT setting value Unit: ms)

Precautions

- The spindle will accept none of the input signals (forward run command, reverse run command, orientation command, servo ON signal with position loop) during T1 (base cutoff interval) shown above. Input the signals to the spindle controller after changing the L coil selected signal (LCS) and establishing a timer of T_M (= T1 + 50ms) or more as shown below. Instead of using a timer, the signal can be input after the coil changed signal (MKC) changes from the ON to OFF state. Note that the coil changed signal cannot be viewed with some NC units.
- 2) The base cutoff time T1 is determined with the parameter SP059 (MKT) setting value. However, due to the relation with the contactor operation, the standard value is 150ms. Normally set T_M to 200ms or more.

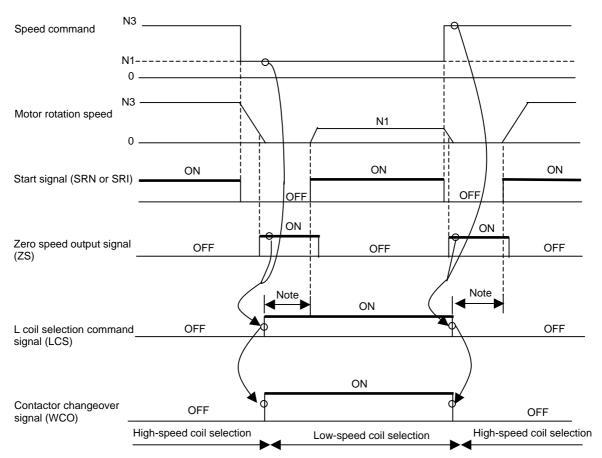
Using a timer


3) Changing the coil in the spindle mode

When the motor's output characteristics listed on the Mitsubishi motor rating table are as follows, N2 is the coil changeover speed, and the following expression is established.

 $\int 0 \le N \le N2$ is the low-speed coil usage range

↓ N2 < N is the high-speed coil usage range</p>


The method for inputting the L coil selection signal (LCS) to change from the low-speed coil range N1 to the high-speed coil range speed N3 is explained in this section.

Stopping the spindle motor and changing the coil

With this method, the high-speed coil and low-speed coils are viewed as electronic gears that are handled in the same manner as the mechanical gears.

<Example of N3 \rightarrow N1 \rightarrow N3 changeover sequence>

If the speed command changes to N1 while the motor is rotating at N3 (high-speed coil range), the motor is stopped once by the user's sequence. After confirming that the zero speed output signal (ZS) has turned ON, the L coil selection command signal (LCS) is turned ON. After changing from the low-speed coil to the high-speed coil, the start signal (SRN or SRI) is turned ON again, and the motor is accelerated to N1.

In the same manner, when changing the speed command from N1 to N3, the motor is stopped once. After confirming that the zero speed output signal (ZS) has turned ON, the L coil selection command signal is turned OFF. After changing from the high-speed coil to the low-speed coil, the start signal is turned ON, and the motor is rotated at the N3 speed.

Note 1) Provide a time longer than T_M after the L coil selection command signal (LCS) is input to when the start signal turns ON. Instead of using a timer, set the sequence so that the start signal turns ON after the coil changed signal (MKC) changes from ON to OF. Note that the coil changed signal cannot be viewed with some NC units.

Changing the coil during spindle motor rotation

This method uses the characteristics of coil changeover to change the coil during motor rotation, and changing directly from the low-speed coil to the high-speed coil. The transition time is shorter compared to the method explained in 6-1-3(1). The speed detection signal (SD) is used with this method, and the L coil selection command signal (LCS) is input in the following manner.

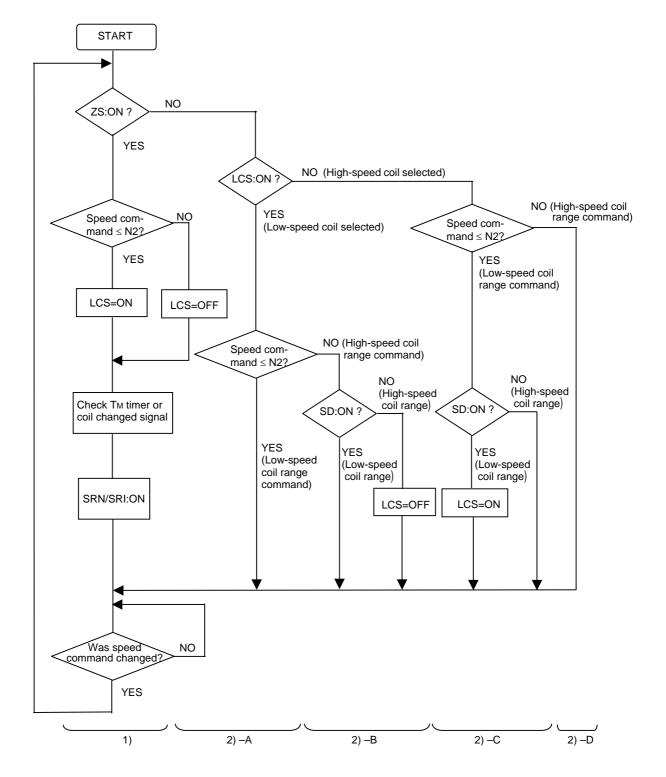
To accelerate from a stopped state (To accelerate after zero speed output signal turns ON)

- (i) First, judge the high-speed/low-speed coil range with the speed command, and select the coil. (Input the L coil selection command signal (LCS.)
- (ii) Next, turn the start signal ON and accelerate the motor.
- (iii) Hold the L coil selection command signal (LCS) in the state of (i).

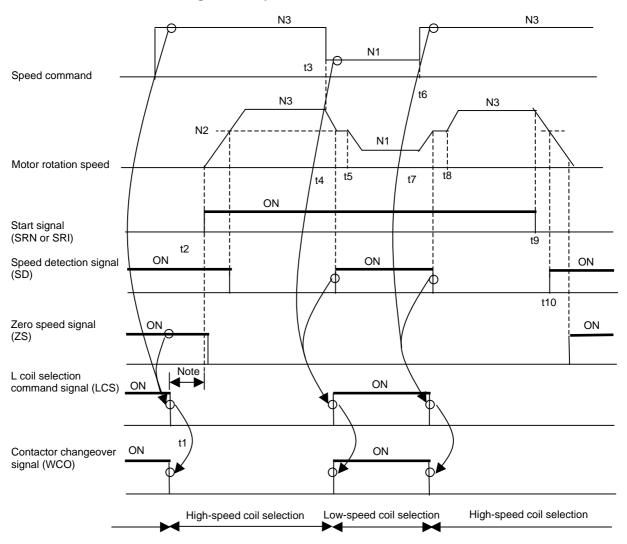
 following table.

 Current coil state

 When low-speed coil is selected


 When high-speed coil is selected

When varying the speed, turn the L coil selection command signal (LCS) ON and OFF as shown in the


state	when low-speed	when high-speed	a coll is selected	
Next speed command	Low-speed coil range	High-speed coil range	Low-speed coil range	High-speed coil range
	Does not change (LCS: ON)	Judge state of SD signal 1) SD: ON →LCS: ON 2) SD: OFF →LCS: OFF	Judge state of SD signal 1) SD: ON →LCS: ON 2) SD: OFF →LCS: OFF	Does not change (LCS: OFF)
Operation mode	2) - A	2) - B	2) - C	2) - D

Note 1) The conditions in item 1) are applied to prevent the contactor from turning ON/OFF needlessly during acceleration/deceleration.

Since the speed detection signal (SD) has a hysteresis, the conditions in item 2) apply to prevent the contactor from turning ON/OFF needlessly (inconsistently) when operating near the coil change speed and continuously varying the speed.

(Reference) The generation of the signals in item 1) and 2) are shown in the following flow chart.

$<0 \rightarrow N3 \rightarrow N1 \rightarrow N3 \rightarrow 0$ changeover sequence>

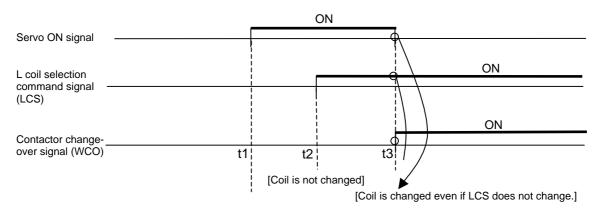
- 1. When the speed command reaches N3 (high-speed coil range) at t1, the system confirms that the zero speed signal (ZS) is ON, and then turns the L coil selection command signal (LCS) OFF (high-speed coil selection). The start signal (SRN or SRI) is turned ON at t2, and the motor accelerates.
- 2. Next when the speed command is changed to N1 (low-speed coil range) at t3, the motor starts decelerating toward N1. However, when it reaches the coil changeover speed N2 at t4, the speed detection signal (SD) changes from OFF to ON. The system confirms that this speed detection signal (SD) has turned ON, and then changes the L coil selection command signal (LCS) from OFF (High-speed coil selection) to ON (low-speed coil selection). This changes the coil, and when completed (t5), the motor continues to decelerate to N1.
- When the speed command is changed to N3 (high-speed coil range) at t6, the motor starts to decelerate toward N3. However, when changeover speed N2 is reached at t4, the speed detection signal (SD) changes from ON to OFF.
 The system confirms that this speed detection signal (SD) is OFF, and then changes the L coil selection

command signal (LCS) from ON (low-speed coil selection) to OFF (high-speed coil selection). The coil changeover is executed with this, and when completed (t6), the motor continues to accelerate to N3.

- 4. When the start signal (SRN or SRI) turns OFF at t9, the motor decelerates to a stop. The speed detection signal will change from OFF to ON at t10, but this applies when stopping. Since the speed command does not change, there is no need to change the L coil selection command signal (LCS), and the motor will continue to decelerate to a stop with the high-speed coil.
- Note 1) The speed detection signal (SD) detection level is set with the parameters.
- **Note 2)** Turn the start signal ON after T_M or longer has elapsed from the input of the L coil selection command signal (LCS) or after the coil changed signal has changed from ON to OFF. Note that viewing of the coil changed signal depends on the NC Series specifications.

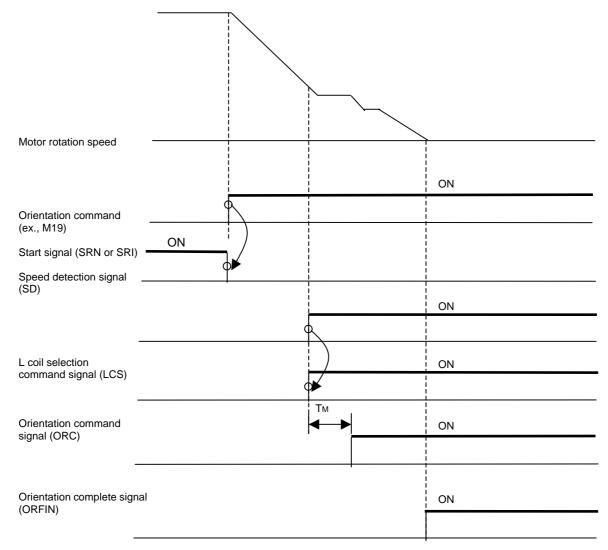
Changing the coil in the spindle mode ⇔ position control mode

The position control mode refers to controlling the position loop for orientation control, spindle/C-axis control, synchronous tap control or spindle synchronous control. (Note that when using SPA, only orientation control is the position control mode.)


The following caution is required when inputting the L coil selection command signal (LCS) in the position control mode.

Precaution

The L coil selection command signal (LCS) will not be accepted if input after the position loop control has started.


- ∫ State with orientation command (ORC) ON.... For orientation control
- l. State with servo ON signal ON Spindle/C-axis control, synchronous tap
 - control, spindle synchronous control, etc.

In other words, position control will be executed with the coil state active when the position loop control was started. Conversely, when the position loop control is canceled, the L coil selection signal (LCS) input will be valid. If the coil state during position loop control execution and the L coil selection signal (LCS) input after the position loop is canceled differ, the coil may be changed unintentionally when the position loop control is canceled. Thus, before starting position loop control, select the required coil beforehand (input the LCS signal). Then, start position loop control, and hold the L coil selection signal (LCS).

Each input signal must be input after the T_M or longer time has elapsed from the input of the L coil selection signal (LCS) and the coil selected signal (MKC) has changed from ON to OFF. Note that the coil changed signal cannot be viewed with some NC units.

- (1) Orientation control
 - 1) If the orientation command (ORC) is turned ON during spindle operation, orientation will be completed with the currently selected coil. (Same as conventional mechanical gears.)
 - 2) If orientation is to be carried out with the low-speed coil even when operating with the high-speed coil as a means to increase the servo rigidity during orientation, use the following procedure to orient with the low-speed coil without stopping the motor once from the high-speed coil state.
 - (i) First turn the start signal (SRN or SRI) OFF and decelerate the motor.
 - (ii) Using the speed detection signal (SD), change the L coil selection command signal (LCS) from the high-speed coil to the low-speed coil.
 - (iii) After the T_M or longer timing, or after the coil selected signal turns ON and OFF using SPA, the orientation command (ORC) turns ON.

Changing to the low-speed coil and orienting during operation with high-speed coil

2) Spindle/C-axis control

When changing from the spindle mode to the C-axis mode, following the procedures in section 3-2, and change to the low-speed coil. Then, input the servo ON signal. If the servo ON signal is input in the high-speed coil state, C-axis control will be executed with the high-speed coil. The C-axis servo torque will be small, and the required C-axis servo torque will not be attained. If the L coil selection command signal (LCS) is not held when the C-axis mode is canceled, the coil may be changed needlessly.

3) Synchronous tap control

The coil used must be fixed according to the target speed for synchronous tapping. If the state of the coil before synchronous tapping is started and the coil to be used for synchronous tapping differ, stop the spindle once, and change to the coil to be used for synchronous tapping before turning the synchronous tap servo ON signal.

- Spindle synchronous control Use the same procedures as for synchronous tap control.
- **Note)** After coil changeover is completed, the current will be limited for the amount of time (Standard setting value 500ms) set in SP060. Thus, the output normally required will not be attained. This may result in faults such as a faulty accuracy or spindle overshooting in the position loop. Therefore, to carry out position loop operation after changing the coil, input the position command after the time set in SP060 has passed.

Name	Abbr.										De	tails								TYP
SP034	SFNC2	Sp	indle	e fu	nction	2														HEX
			F		E	D	С	В	А	9	8	7	6	5	4	3	2	1	0	
																	mkch		mtsl	
			Ł	oit	Abbr.				Detai	ls			Set	0	Set	: 1	Supp	lemen	ıt	
				0	mtsl	Μ	otor co	onstan	t				Stand	ard	Specia	al				
				1	mkch	С	oil cha	ngeov	er mot	or			Not us	sed	Used					
			S	Set	both B	it0 a	and 1 to	o "1".												
SP035	SFNC3	Sp			nction		_	_												HEX
		$ _{r}$	F	1	E	D	С	В	A	9	8	7	6	5	4	3	2	1	0	
																lbsd	hbsd	lwid	hwid	
			Γ.	••					D / ·					_						
			t	oit	Abbr.				Detai	-			Set		Set		Supp	lemen	it	
				0	hwid		High-speed coil wide range constant Invalid Valid output													
				1	lwid	Lo	ow-coil	wide	range	consta	nt out	out	Inva	lid	Val	id				
			:	2	hbsd	sd High-speed coil base sliding Invalid Valid														
			:	3	lbsd	Lo	ow-spe	ed coi	l base	slidinę)		Inva	lid	Vali	id				
SP020	SDTS		Speed detection set value This parameter determines the changeover speed for inputting the L coil selection command input (LCS) using the speed detection signal (SD). The relation of the setting value and speed detection output is as shown in SP047 on the next page.								DEC									
					d settir range				ows mo 32767			ole								

(3) Explanation of parameters for coil changeover function

Only the parameters related to the coil changeover specifications are explained in this section.

Note) If the coil is changed without turning the NC power OFF after the parameters are changed, the changed parameters will not be validated. Validate the parameters by turning the NC power OFF once after changing the settings, and then change the coil.

Name	Abbr.	Details T								
SP047	SDTR	Speed detection reset value Determine the hysteresis value for the speed detection signal (SD). The relation of the setting value and speed detection output is as shown below.	DEC							
		Motor rotation speed SP020(SDTS)								
		Speed detection signal (SD) ON ON								
		Standard setting value : 300 (Lathe application) 150 (Machining application)								
		Setting range : 0 to 1000 (r/min)								
SP059	МКТ	Coil changeover base cutoff time timer Set the base cutoff time for changing the contactor during coil changeover. If the setting value is small, the power will be turned ON before the contactor is changed, and may result in contactor burning. Do not change this setting unless there is a particular problem.								
		Standard setting value : 150 Setting range : 0 to 1000 (ms)								
SP060	MKT2	Coil changeover current limit timer Set the time to limit the current value after the base is cut off and then turned ON during coil changeov When the position command is input immediately after the coil is changed during synchronous tappi the cutting accuracy may deteriorate if this value is not small enough. When decreasing the value, ma sure that the coil is changed after the motor stops even in the modes other than synchronous tap.	ng,							
		Standard setting value : 500 Setting range : 0 to 1000 (ms)								
SP061	MKIL	Coil changeover current limit value Set the current limit value for limiting the current value for the time set in SP060 when the base is cut and then turned ON during coil changeover.	off DEC							
		Standard setting value :75Setting range:0 to 120 (%)								
SP0257 to SP320	RPM to BDS	H coil motor constants Set the motor constants for the high-speed coil selection.	HEX							
SP0321 to SP384	RPML to BDSL	L coil motor constants Set the motor constants for the low-speed coil selection.	HEX							

(4) Coil changeover contactor (magnetic contact)

1) Selection

The coil changeover contactor is selected according to the applicable spindle drive unit's capacity as shown below.

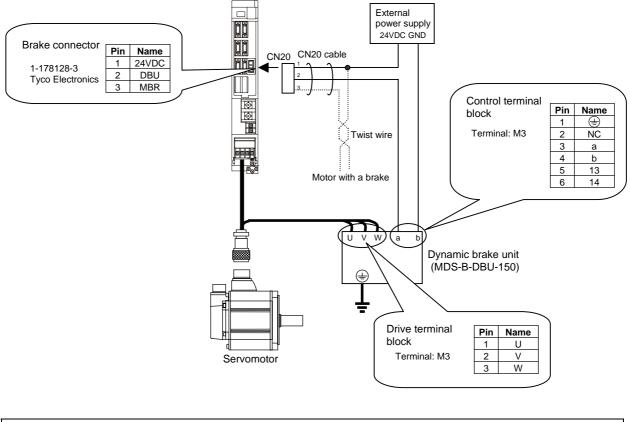
Use a contactor with an operation coil voltage that matches the power specifications in use. Refer to section "7-2-3 Selecting the contactor" for details on the contactor specifications.

Spindle drive unit type	Applicable contactor type
MDS-CH-SP/SPH-55	S-N10
MDS-CH-SP/SPH-75	S-N10
MDS-CH-SP/SPH-110	S-N20
MDS-CH-SP/SPH-150	S-N25
MDS-CH-SP/SPH-185	S-N25
MDS-CH-SP/SPH-220	S-N25
MDS-CH-SP/SPH-260	S-N35
MDS-CH-SP/SPH-300	S-N50
MDS-CH-SP/SPH-370	S-N65
MDS-CH-SP/SPH-450	S-N80
MDS-CH-SP/SPH-550	S-N80
MDS-CH-SP/SPH-750	S-N150

6. Dedicated Options

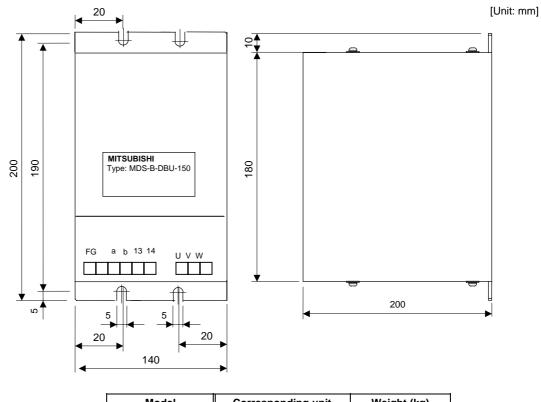
6-1 Dynamic brake unit	6-2
6-1-1 Combination with servo drive unit	6-2
6-1-2 Outline dimension drawings of dynamic brake unit	6-3
6-2 Battery option	
6-2-1 Battery unit	6-4
6-2-2 Connection	6-8
6-2-3 Dedicated battery cable drawing	6-8
6-3 Cables and connectors	6-9
6-3-1 Cable option list	
6-3-2 Connector outline dimension drawings	6-14
6-3-3 Flexible conduits	6-21
6-3-4 Cable wire and assembly	6-23
6-3-5 Option cable connection diagram	6-25
6-3-6 Main circuit cable connection drawing	6-28
6-4 Scale I/F unit	6-29
6-4-1 Outline	6-29
6-4-2 Model configuration	6-29
6-4-3 List of specifications	6-29
6-4-4 Unit outline dimension drawing	6-30
6-4-5 Description of connector	6-30
6-4-6 Example of detector conversion unit connection	6-31
6-4-7 Cables	6-32
6-5 Magnetic pole detection unit	
6-5-1 Outline	6-36
6-5-2 Model configuration	
6-5-3 List of specifications	6-36
6-5-4 Outline dimensions	
6-5-5 Assignment of connector pins	6-37
6-5-6 Installing onto the linear servomotor	6-37
6-6 Detectors	6-38
6-6-1 List of detector specifications	6-38
6-6-2 Outline dimension drawings	6-39
6-6-3 Cable connection diagram	6-41
6-6-4 Maintenance	6-42
6-7 Spindle option specification parts	6-43
6-7-1 Magnetic sensor orientation (one-point orientation)	
6-7-2 Multi-point orientation using encoder (4096-point orientation)	
6-7-3 Multi-point orientation using motor built-in encoder (4096-point orientation)	6-51
6-7-4 Contour control (C axis control) encoder	
6-7-5 Integrated rotary encoder (Special order part)	6-56
6-8 AC reactor	6-57
6-8-1 Combination with power supply unit	
6-8-2 Outline dimension drawings	6-57

	Always wait at least 15 minutes after turning the power OFF, confirm that the CHARGE lamp has turned OFF, and check the voltage with a tester, etc., before connecting the option or peripheral device. Failure to observe this could lead to electric shocks.
t	
	 Use the designated peripheral device and options. Failure to observe this could lead to faults or fires. Pay attention to the installation environment so that cutting chips or oil, etc., do not come in contact with the dynamic brake unit. There is a risk of short-circuit accidents at the resistor terminal block, or the burning of oil adhered on the resistor. These can lead to fires.


The ordered dedicated options are explained in this section. (Note that parts indicated as non-ordered parts are excluded.)

6-1 Dynamic brake unit

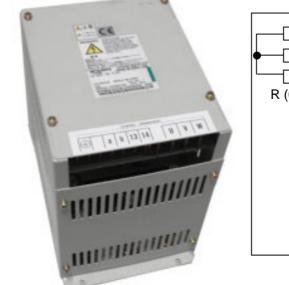
6-1-1 Combination with servo drive unit

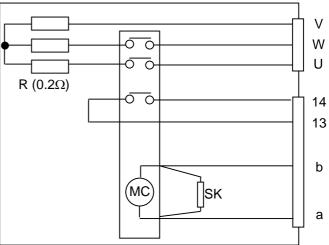

The 11kW and larger servo drive unit does not have built-in dynamic brakes. Always install a dynamic brake unit.

The 9kW and smaller servo drive unit has built-in dynamic brakes.

Correct wire the dynamic brake unit to the servo drive unit. Do not use for applications other than emergencies (normal braking, etc.). The internal resistor could heat up, and lead to fires or faults.

When you use a servomotor with a brake, please wire (between 1 and 3) of CN20 connector.




6-1-2 Outline dimension drawings of dynamic brake unit

<MDS-B-DBU-150>

Model	Corresponding unit	Weight (kg)
	MDS-CH-V1-110	
MDS-B-DBU-150	MDS-CH-V1-150	2
	MDS-CH-V1-185	

Inside wiring

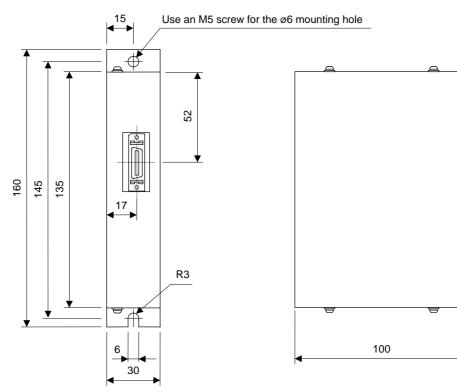
6-2 Battery option

6-2-1 Battery unit

This battery option may be required to establish absolute position system. Select a battery option from the table below depending on the servo system.

Туре	MDS-A-BT-	FCU6-BTBOX-36
Installation type	Unit and battery integration type	Unit and battery integration type
Hazard class	Class9 (excluding MDS-A-BT-2)	Not applicable
Number of connectable axes	2 to 8 axes	Up to 6 axes
Battery change	Not possible	Possible
Appearance		

(1) Battery unit (MDS-A-BT-D)


< Specifications >

Battery option type		Battery unit						
		MDS-A-BT-2	MDS-A-BT-4	MDS-A-BT-6	MDS-A-BT-8			
		ER6V						
Nominal voltage		3.6V						
Nominal	capacity	4000mAh	8000mAh	12000mAh	16000mAh			
Battery	Hazard class	Class 9						
safety	Battery shape	Set battery						
·	Number of batteries used	ER6V x 2	ER6V x 4	ER6V x 6	ER6V x 8			
	Lithium alloy content	1.3g	2.6g	3.9g	5.2g			
	Mercury content	1g or less						
Number of connectable axes		Up to 2 axes	Up to 4 axes	Up to 6 axes	Up to 8 axes			
Battery of	continuous backup time	Approx. 30000 hours						
Battery useful life (From date of unit manufacture)		7 years						
Data save time in battery replacement		HC-H series: approx. 20 hours at time of delivery, approx. 10 hours after 5 years						
Back up time from battery warning to alarm occurrence (Note)		Approx. 100 hours						
Weight		600g						

(Note) This time is a guideline, so does not guarantee the back up time. Replace the battery with a new battery as soon as a battery warning occurs.

< Outline dimension drawings >

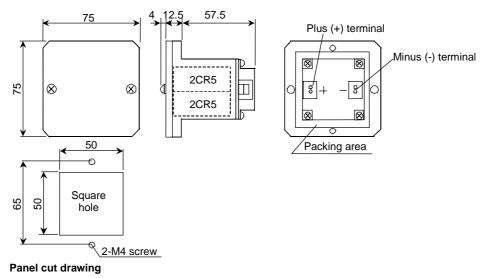
• MDS-A-BT-2/-4/-6/-8

[Unit: mm]

(2) Battery unit (FCU6-BTBOX-36)

< Specifications >

Battery option type		Battery unit		
		FCU6-BTBOX-36 (Note1)		
Lithium battery series		2CR5		
Nominal voltage		6.0V (Lithium battery), 3.6V (Output)		
Nominal ca	apacity	2600mAh		
Battery	Hazard class	-		
safety	Battery shape	Single battery		
	Number of batteries used	2CR5×2		
	Lithium alloy content	1.96g		
Mercury content		1g or less		
Number of	connectable axes	Up to 6 axes		
Battery cor	ntinuous backup time	Approx. 5000 hours (when 6 axes are connected)		
Battery useful life (From date of unit manufacture)		5 years Note2		
Data save time in battery replacement		HC-H series: approx. 20 hours at time of delivery, approx. 10 hours after 5 years		
Back up time from battery warning to alarm occurrence (Note3)		Approx. 30 hours (when 6 axes are connected)		
Weight		200g		

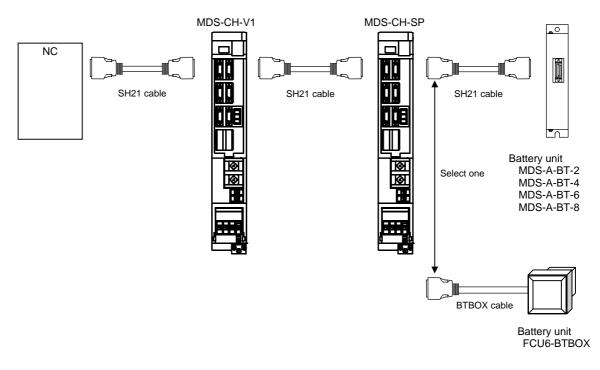

(Note1) A lithium battery in FCU6-BTBOX-36 is commercially available. The battery for replacement has to be prepared by the user.

(Note2) Use new batteries (nominal capacity 1300mAh or more) within five years from the date of manufacture. The batteries should be replaced once a year.

(Note3) This time is a guideline, so does not guarantee the back up time. Replace the battery with a new battery as soon as a battery warning occurs.

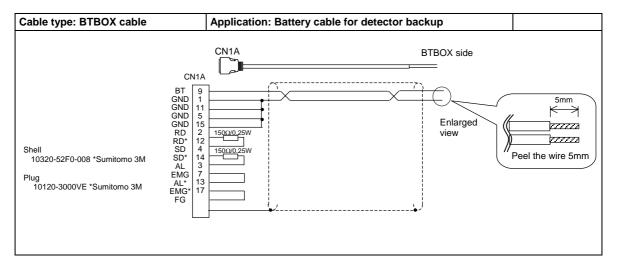
< Outline dimension drawings >

• FCU6-BTBOX-36

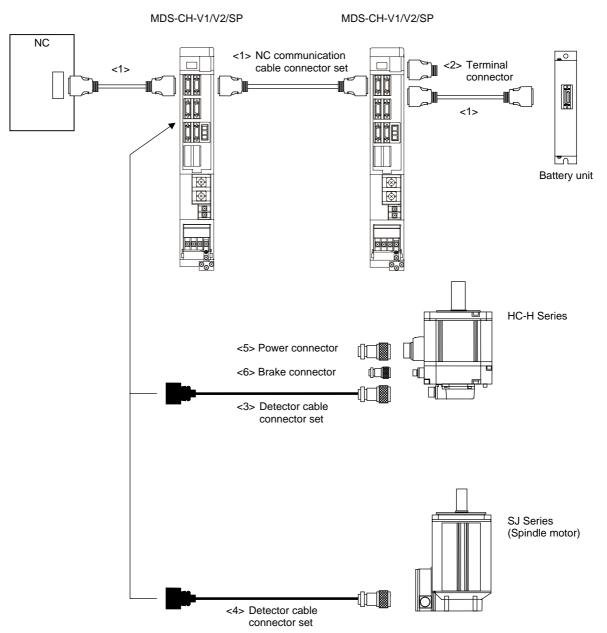


[Unit: mm]

r	
	. On January 1, 2003, new United Nations requirements, "United Nations Dangerous Goods Regulations Article 12", became effective regarding the transportation of lithium batteries. The lithium batteries are classified as hazardous materials (Class 9) depending on the unit. (Refer to Appendix 4.
Α	The lithium battery must be transported according to the rules set forth by th International Civil Aviation Organization (ICAO), International Air Transportation Association (IATA), International Maritime Organization (IMO), and United States Department of Transportation (DOT), etc. The packaging methods, correct transportation methods, and special regulation are specified according to the quantity of lithium alloys. The battery unit exported from Mitsubishi is packaged in a container (UN approved part) satisfying the standards set forth in this UN Advisory.
	To protect the absolute value, do not shut off the servo drive unit control power supply if the battery voltage becomes low (warning 9F).
	. Contact the Service Center when replacing the MDS-A-BT Series and cell battery.
	 Replace the FCU6-BTBOX-36 battery with a new battery (2CR5) within the recommended service period. This battery is commercially available for use in cameras, etc.
	5. The battery life (backup time) is greatly affected by the working ambient temperature. The above data is the theoretical value for when the battery is used 8 hours a day/240 days a year at an ambient temperature of 25°C. Generally, if the ambient temperature increases, the backup time and useful life will both decrease.


6-2-2 Connection

A terminal connector is built-in, so set as the final connection of the NC and communication cable.


6-2-3 Dedicated battery cable drawing

Refer to the following cable drawing, and manufacture the cable connected to the FCU6-BTBAT.

6-3 Cables and connectors

The cables and connectors that can be ordered from Mitsubishi Electric Corp. as option parts are shown below. Cables can only be ordered in the designated lengths shown on the following pages. Purchase a connector set, etc., to create special length cables.

6-3-1 Cable option list

(1) Cables

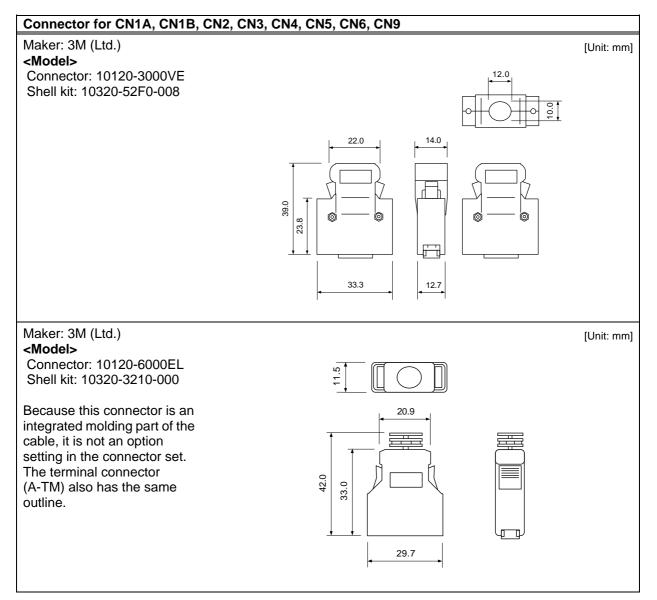
	ltem	Model	Con	tents
For CN1A, CN1B	<1> Communication cable for CNC - Drive unit Drive unit - Drive unit	SH21 Length: 0.35, 0.5, 0.7, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 9, 10, 15, 20, 30m FCUA-R000 and MR-J2HBUS[]M can also be used.	Servo drive unit side connector (3M) Connector : 10120-6000EL Shell kit : 10320-3210-000	Servo drive unit side connector (3M) Connector : 10120-6000EL Shell kit : 10320-3210-000
		[FCUA-A-TM can also be used.]		
For CN2	<3> Detector cable for HC-H []-A51/E51, HC-H []-A42/E42	CNV12-0- Drive unit side connector Blank: One-touch lock S: Screw lock Environment Blank: For general environment P: IP65 compatible Detector side connector 2: Straight cannon 3: Angle cannon Length: 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 30m FCUA-R080 (straight cannon) and FCUA-R084 (angle cannon) can also be used.	Servo drive unit side connector (3M) • Detector connector straight specification Connector : 10120-3000VE Shell kit : 10320-52F0-008 (One-touch type lock) Shell kit : 10320-52A0-008 (Screw-type lock) • Detector connector angle specification Connector : 10120-3000VE Shell kit : 10320-52F0-008 (One-touch type lock) Shell kit : 10320-52A0-008 (Screw-type lock)	Servomotor detector side connector (DDK) For general environment Straight connector : MS3106B22-14S Clamp: MS3057-12A IP65 compatible Connector : MS3106A22-14S (D190) Straight back shell: CE02-22BS-S Clamp: CE3057-12A-3 For general environment Angle connector : MS3108B22-14S Clamp: MS3057-12A IP65 compatible Connector : MS3106A22-14S (D190) Angle back shell: CE-22BA-S Clamp: CE3057-12A-3

(Note) The connector maker may change without notice.

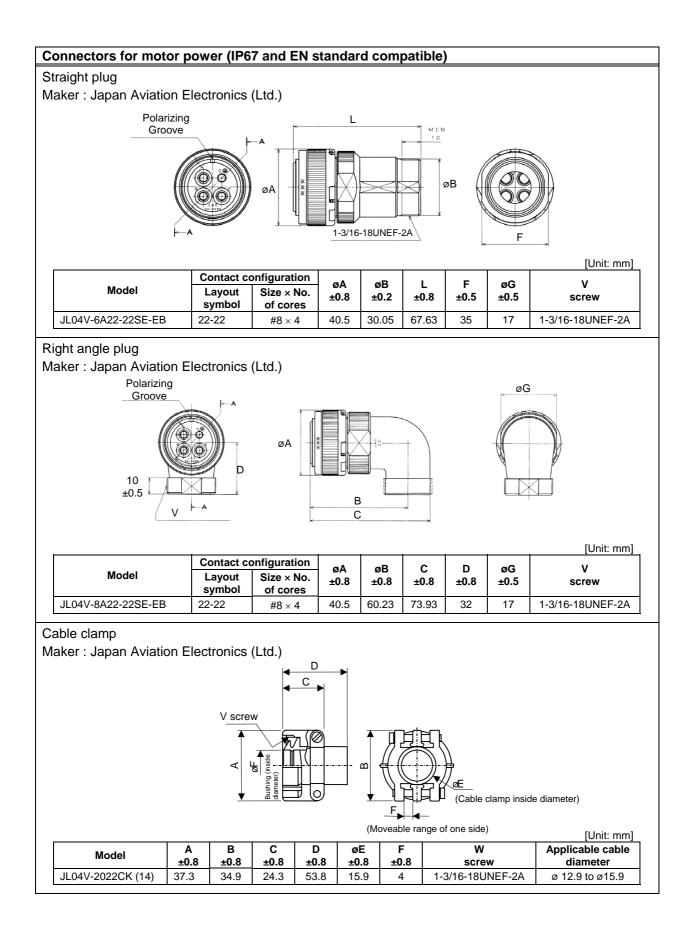
	Item	Model	Contents		
For CN5	<4> PLG detector cable for SJ spindle	CNP5S - □ -Connector type 2: Connector E: Crimped terminal Length: 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 30m	Spindle drive unit side connector (3M) Connector: 10120-3000VE Shell kit: 10320-52F0-008	Spindle motor side connector For 2-type (Tyco Electronics) Housing: 178289-6 Pin: 1-175217-2 For E-type (J.S.T.) Crimped terminal: V1.25-4 2-type E-type	
For CN6	<4> For SJ spindle Magnetic sensor orientation cable Encoder orientation cable	CNP6 □ - □ - Connector type 2: Connector E: Crimped terminal - Type A: Encoder M: Magnetic sensor Length: 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 30m	Spindle drive unit side connector (3M) Connector: 10120-3000VE Shell kit: 10320-52F0-008	Spindle motor side connector For M-2- type (Tajimi Musen) Connector: TRC116-12A10-7F10.5 For A-2-type (DDK) Connector: MS3106B20-29S For E-type (J.S.T.) Crimped terminal: V1.25-4 2-type E-type	
For CN7	<4> C-axis control cable for SJ spindle	CNP7 A - C Connector type 2: Connector (Straight) 3: Connector (Right angle) E: Crimped terminal Type A: OSE90K + 1024 Other connections Black: None 1: Connect with NC 6: Connect with NC 6: Connect with CN6 Length: 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 30m	Spindle drive unit side connector (3M) Connector: 10120-3000VE Shell kit: 10320-52F0-008	Spindle motor side connector For A-2-type (DDK) Connector: MS3106B20-29S Clamp: MS3057-12A For E-type (J.S.T) Crimped terminal: V1.25-4 2-type 3-type E-type	

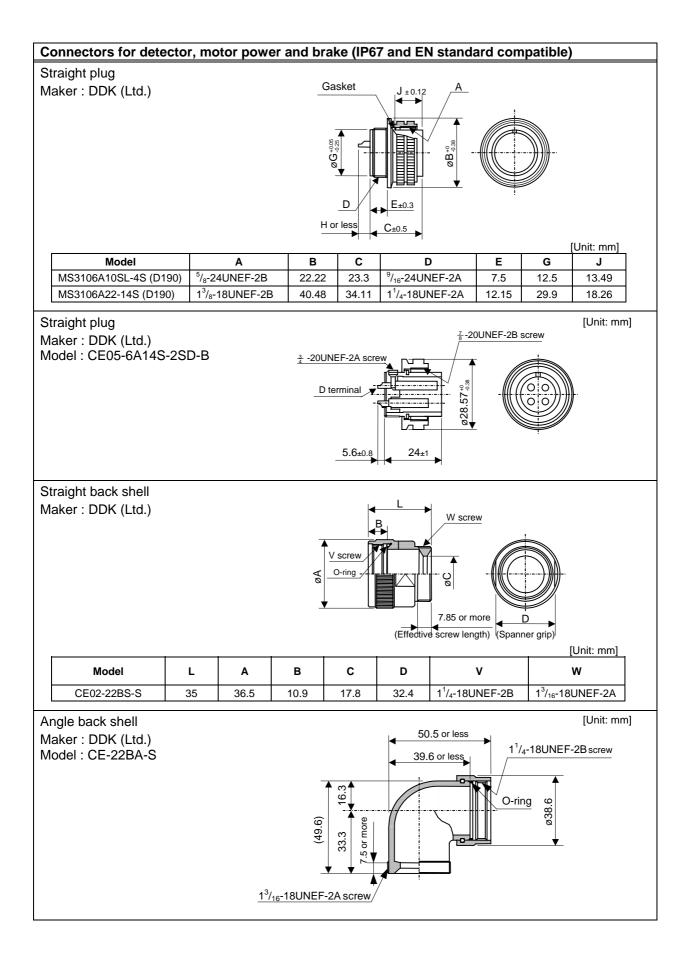
(Note) The connector maker may change without notice.

(2) Connector sets

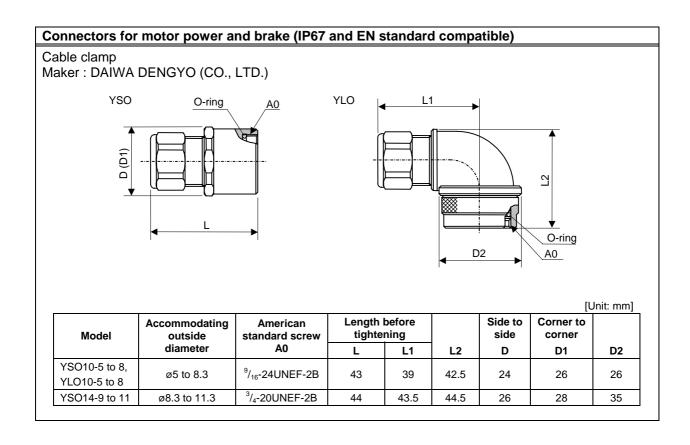

	Item			Model	Contents		
For CN1A, CN1B	<1> Communication coni CNC - Drive unit Drive unit - Drive uni		for	FCUA-CS000	Servo drive unit side connector (3M) Connector : 10120-3000VE Shell kit : 10320-52F0-008	Servo drive unit side connector (3M) Connector : 10120-3000VE Shell kit : 10320-52F0-008	
For CN2	<3> Detector cable connector set for HC-H[_]-A51/A42 HC-H[_]-E51/E42	IP65 and EN standard compati- ble	Straight	ENCP22-14S3 Compliant cable range ø6.8 to ø10 (when using A14B2343) Refer to section "6-4-4".	Servo drive unit side connector (3M) Connector : 10120-3000VE Shell kit : 10320-52F0-008	Servomotor detector side connector (DDK) Connector : MS3106A22-14S (D190) Straight back shell: CE02-22BS-S Clamp: CE3057-12A-3	
				ENCP22-14S2 Compliant cable range Ø9.5 to Ø13	Servo drive unit side connector (3M) Connector : 10120-3000VE Shell kit : 10320-52F0-008	Servomotor detector side connector (DDK) Connector : MS3106A22-14S (D190) Straight back shell: CE02-22BS-S Clamp: CE3057-12A-2	
			Angle	ENCP22-14L3 Compliant cable range ø6.8 to ø10 (when using A14B2343) Refer to section "6-4-4".	Servo drive unit side connector (3M) Connector : 10120-3000VE Shell kit : 10320-52F0-008	Servomotor detector side connector (DDK) Connector : MS3106A22-14S (D190) Angle back shell: CE-22BA-S Clamp: CE3057-12A-3	
				ENCP22-14L2 Compliant cable range Ø9.5 to Ø13	Servo drive unit side connector (3M) Connector : 10120-3000VE Shell kit : 10320-52F0-008	Servomotor detector side connector (DDK) Connector : MS3106A22-14S (D190) Angle back shell: CE-22BA-S Clamp: CE3057-12A-2	
		For general environ- ment	Straight	FCUA-CS080	Servo drive unit side connector (3M) Connector : 10120-3000VE Shell kit : 10320-52F0-008	Servomotor detector side connector (DDK) Connector : MS3106B22-14S Clamp: MS3057-12A	
			Angle	FCUA-CS084	Servo drive unit side connector (3M) Connector : 10120-3000VE Shell kit : 10320-52F0-008	Servomotor detector side connector (DDK) Connector : MS3108B22-14S Clamp: MS3057-12A	
For CN5, CN6, CN7	 <4> SJ spindle detector cable connector set 				A dedicated connector set is The FCUA-CS000 set can be	not prepared. e used on the drive unit side.	

(Note) The connector maker may change without notice.

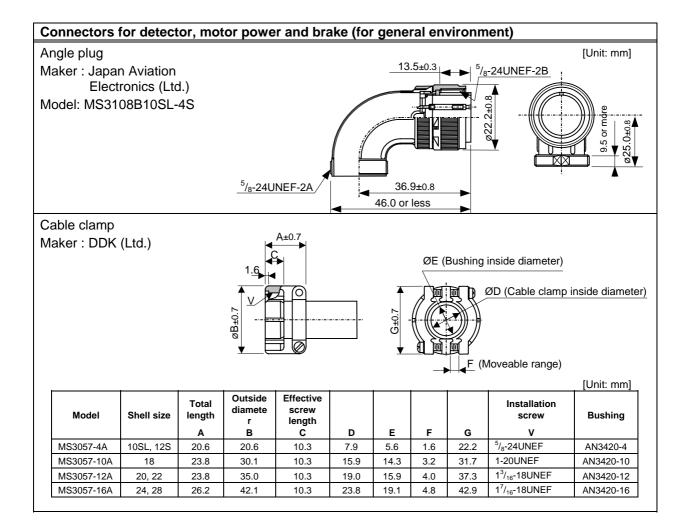

	Item			Model	Contents
For motor power	<5> Power connector for HC-H52 to 352, HC-H53 to 353	IP67 and EN standard compati- ble	Straight	Special order part	Servomotor side power connector (JAE) Plug: JL04V-6A22-22SE-EB Clamp: JL04-2022CK (14)
			Angle	Special order part	Servomotor side power connector (JAE) Plug: JL04V-8A22-22SE-EB Clamp: JL04-2022CK (14)
	Power connector for HC-H452 to 1102, HC-H453 to 1103	IP67 and EN standard compati- ble	Straight	PWCE32-17S Compliant cable range ø22 to ø23.8	Servomotor side power connector (DDK) Connector: CE05-6A32-17SD-B-BSS Clamp: CE3057-20A-1 (D265)
			Angle	PWCE24-10L Compliant cable range Ø13 to ø15.5	Servomotor side power connector (DDK) Connector: CE05-8A32-17SD-B-BAS Clamp: CE3057-20A-1 (D265)
		For general environ- ment	Straight	FCUA-CN811	Servomotor side power connector (DDK) Connector: MS3106B32-17S Clamp: MS3057-20A
			Angle	FCUA-CN815	Servomotor side power connector (DDK) Connector: MS3108B32-17S Clamp: MS3057-20A
For motor brake	<6> Brake connector for HC-H52B to 1102B, HC-H53B to 1103B	IP67 and EN standard compati- ble	Straight	BPKP10SL-4S Compliant cable range ø5 to ø8.3 (MR-BKCN can also be used.	Servomotor side brake connector Connector: MS3106A10SL-4S (D190) (DDK) Clamp: YSO10-5-8 (DAIWA DENGYO)
			Angle	BRKP10SL-4L Compliant cable range ø5 to ø8.3	Servomotor side brake connector Connector: MS3106A10SL-4S (D190) (DDK) Clamp: YLO10-5-8 (DAIWA DENGYO)
		For general environ- ment	Straight	FCUA-CN804	Servomotor side brake connector (Japan Aviation Electronics) Connector: MS3106B10SL-4S Clamp: MS3057-4A
			Angle	FCUA-CN808	Servomotor side brake connector (Japan Aviation Electronics) Connector: MS3108B10SL-4S Clamp: MS3057-4A


(Note) The connector maker may change without notice.

6-3-2 Connector outline dimension drawings

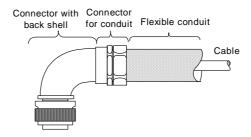


Connectors for de	tector a	and motor	power (IP6	67 and	EN sta	ndaro	d compatible	e)	
Straight plug				1	D or less	1			
Maker : DDK (Ltd.)					<u>5 or</u> more		<u>A</u>		
								-	
			α						
			ØC±0.8				B B B B B B B C C C C C C C C		
			Ø		╴╙╽		° 🦷		
								ļ	
							[Unit: mm	<u>]</u>	
Model		A	B	C	D	4.00	W		
CE05-6A18-12SD-B CE05-6A22-23SD-B		1 ¹ / ₈ -18UNEF- 1 ³ / ₈ -18UNEF-		32.1 38.3			JNEF-2A 18UNEF-2A	_	
CE05-6A32-17SD-B		2-18UNS-2B	56.33	54.2			8UNS-2A	_	
				•	•				
Angle plug					D	or less	S		
Maker : DDK (Ltd.)				-		01 1000	<u> </u>		
						_		4	
				+					
				¥	ļ				₩ ₩
			(S)±1 U±0.7						
			⊳_▲			J	▋▋		1
								L.	
			<u>_W</u> /	/					
								[Unit	: mm]
Model		Α	В	D	v		R U	S	Y
CE05-8A18-12SD-B		¹ / ₈ -18UNEF-2		69.5	1-20UN		13.2 30.		7.5
CE05-8A22-23SD-B CE05-8A32-17SD-B		³ / ₈ -18UNEF-2 -18UNS-2B	2B 40.48 56.33	75.5 93.5	1 ³ / ₁₆ -18L 1 ³ / ₄ -18U				7.5 8.5
CE05-6A32-173D-D	-BA3 2	-100103-20	50.55	95.5	1 /4-100	NG-2A	24.0 44.	5 01.9	0.0
Cable clamp									
Maker : DDK (Ltd.)				(⊑	⁾ ►				
				A A	▶				
			V corow 1.6						
			V screw 1.6			_			
					0				
				Í	ð	±0.7			
				Í		G±0.7			
			± 0.7 aF inside			€±0.7		able clamp insi	de
				Í		▼		able clamp insi meter)	de
				Í		▼		able clamp insi meter)	de
	r			Í		▼		able clamp insi meter)	de [Unit: mm]
Model	Snell	otal Outside igth dia.	Effective screw	Í		▼	able range of one	able clamp insi meter)	[Unit: mm] Compliant
	size ler		L O ₽ O ₽ O Poisur Dought of the second sec	Í		▼	Installation screw (V)	able clamp insi meter) side)	[Unit: mm] Compliant cable
CE3057-10A-2 (D265)	size 18 2	ngth dia.	Effective screw length		F G 11 31.7	(Move	Installation screw (V)	able clamp insi meter) side) Bushing CE3420-10-2	[Unit: mm] Compliant cable ø8.5 to ø11
	Snell ler size 18 20	ngth dia. A B	Effective screw length C D	E 15.9	F G	(Move	Installation screw (V)	able clamp insi meter) side) Bushing	[Unit: mm] Compliant cable Ø8.5 to Ø11 Ø9.5 to Ø13



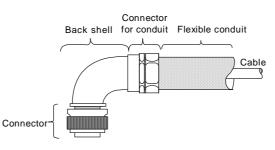
6. Dedicated Options

C	onnectors for de	etector, mot	or power	and br	ake (fo	or ger	neral env	rironme	nt)		
St	raight plug					L or le	ess				
Μ	aker : DDK (Ltd.))		W				J ±0.12			
						 			, i i i i i i i i i i i i i	_	
				v.				A _ #			
				Y or less					##))))))	
				>		Ĺ]]]	
				-	↓ 		. Neres			/	
						<u>V</u>				1 1 - 1	
		Coupling	Length	of	Total	Con	nection nut	Çable	clamp	[Unit: Effective	mmj Max.
	Model	Coupling screw	coupling s	ection	length	outsi	nection nut de diameter	instal	clamp lation rew	screw length	width
	MS3106B18-12S	A 1 ¹ / ₈ -18UNEF	J 18.26	3	L 52.37		Q 34.13	1-20UN		W 9.53	Y 42
	MS3106B20-29S	1 ¹ / ₄ -18UNEF	18.26		55.57		37.28	1 ³ / ₁₆ -18		9.53	47
	MS3106B22-14S	1 ³ / ₈ -18UNEF	18.26	6	55.57		40.48	1 ³ / ₁₆ -18		9.53	50
	MS3106B22-23S MS3106B32-17S	2-18UNEF	18.26	6	61.92		56.33	1 ³ / ₄ -18L		11.13	66
											<u> </u>
	ngle plug					Lor	less	J±0.12			
IVI	aker : DDK (Ltd.)			-				< <u>010.12</u>		÷	
				R±0.5	/			া ▲ য _			
				œّـ				A Q			
				ر ت				N N N N N N N N N N N N N N N N N N N			
				U±0.5	<u> </u>		AUHER	- V			
				*			V				
				W or more							
										[Unit:	mml
		Coupling	Length of coupling	Total	Conne nut ou				Cable instal	clamp E	ffective screw
	Model	screw	section	length	diam	eter	_		scr	ew	length
	MS3108B18-12S	A 1 ¹ / ₈ -18UNEF	J 18.26	L 68.27	34.		R 20.5	U 30.2	1-20UN		W 9.53
	MS3108B22-14S	1 ³ / ₈ -18UNEF	18.26	76.98	40.		24.1	33.3	1 ³ / ₁₆ -18		9.53
	MS3108B22-23S MS3108B32-17S	2-18UNEF	18.26	95.25	56.		32.8	44.4	1 ³ / ₄ -18		11.13
	W35106B32-175	2-TOUNLF	10.20	95.25	50.	55	32.0	44.4	1/4-100	5113	11.13
	raight plug						12 5.00			[U	nit: mm]
M	aker : Japan Avia				⁵ / ₈ -24UN		13.5±0.3	► ⁵ / ₈ -24U	JNEF-2B	· •	
м	Electronics odel: MS3106B1			-			▙ੑੑੑੑੑੑੑੑੑੑੑਫ਼	₹/		-	
1,41							╶╣┇┈╸				
								ø22.2	J		
				Effective length		.5 r more	╙┹└┻╝║┣				
1				iongui	0						
				(Includin of 2.77 o			- 4-38.9 or less			i	

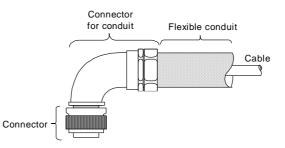


6-3-3 Flexible conduits

Basically, splash proofing can be ensured if cab-tire cable and connectors with IP65 or higher specifications are used. However, to further improve the oil resistance (chemical resistance to oil), weather resistance (resistance to the environment when used outdoors, etc.), durability, tensile strength, flattening strength, etc., run the cable through a flexible conduit when wiring.


The following shows an example of a flexible conduit. Contact the connector maker for more information.

(1) Method for connecting to a connector with back shell


			Model						
Appli-	Applicable	DI	ок	Nippon Flex					
cation	motors	Connector (straight)	Connector (angle)	Connector for conduit	Flexible conduit				
For power	HC-H52 to 102 HC-H53 to 103	CE05-6A22-23SD-B-	CE05-8A22-23SD-B-	RCC-104CA2022	VF-04 (Min. inside diameter: 14)				
		BSS	BAS	RCC-106CA2022	VF-06 (Min. inside diameter: 19)				
	HC-H152 to 452 HC-H203 to 353	CE05-6A24-10SD-B-	CE05-8A24-10SD-B-	RCC-106CA2428	VF-06 (Min. inside diameter: 19)				
		BSS	BAS	RCC-108CA2428	VF-08 (Min. inside diameter: 24.4)				
	HC-H702 to 1102 HC-H453 to 1103	CE05-6A32-17SD-B-	CE05-8A32-17SD-B-	RCC108CA32	VF-08 (Min. inside diameter: 24.4)				
		BSS	BAS	RCC110CA32	VF-10 (Min. inside diameter: 33.0)				

(Note) None of the parts in this table can be ordered from Mitsubishi Electric Corp.

		Model					
Appli-	Applicable	DI	DK	Nippon Flex			
cation	motors	Connector/back shell (straight)	Connector/back shell (angle)	Connector for conduit	Flexible conduit		
For brake	HC-H202B to H1102B HC-H203B to H1103B	Select according to sect	tion "(2) Method for conne	ecting to the connecto	or main body".		
For detector	HC-H52 to H1102	Connector MS3106A22-14S	Connector MS3106A22-14S	RCC-104CA2022	VF-04 (Min. Inside diameter: 14)		
	HC-H53 to H1103	(D190) Back shell CE02-22BS-S	(D190) Back shell CE-22BA-S	RCC-106CA2022	VF-06 (Min. Inside diameter: 19)		

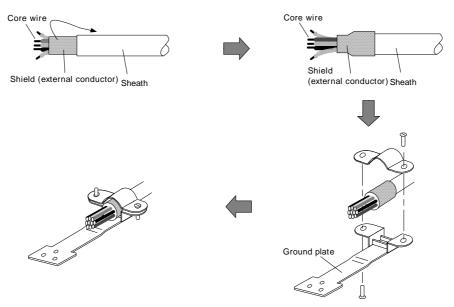
(Note) None of the parts in this table can be ordered from Mitsubishi Electric Corp.(2) Method for connecting to the connector main body

			Model			
Applica- tion	Applicable motors	DDK	DAIWA DENGYO			
lien		Connector (straight)	Connector for condu	t Flexible conduit		
For power	HC-H52 to 352 HC-H53 to 353	CE05-6A22-23SD-B	MSA-16-22 (Straigh MAA-16-22 (Angle)	t) FCV16 (Min. inside diameter: 15.8)		
		GE03-0A22-235D-D	MSA-22-22 (Straigh MAA-22-22 (Angle)	t) FCV22 (Min. inside diameter: 20.8)		
	HC-H452 to H1102 HC-H453 to H1103	CE05-6A32-17SD-B	Please contact to a maker.	FCV36 (Min. inside diameter: 35.0)		
For brake	HC-H202B to H1102B HC-H203B to H1103B	MS3106A10SL-4S (D190)	MSA-10-10 (Straigh MAA-10-10 (Angle)	t) FCV10 (Min. inside diameter: 10.0)		
For detector	OSA104, 105 OSE104, 105	MS3106A22-14S (D190)	MSA-16-22 (Straigh MAA-16-22 (Angle)	t) FCV16 (Min. inside diameter: 15.8)		
		NIGS TOURZ2-143 (D130)	MSA-22-22 (Straigh MAA-22-22 (Angle)	t) FCV22 (Min. inside diameter: 20.8)		

(Note) None of the parts in this table can be ordered from Mitsubishi Electric Corp.

6-3-4 Cable wire and assembly

(1) Cable wire


The following shows the specifications and processing of the wire used in each cable. Manufacture the cable using the following recommended wire or equivalent parts.

Recommended					Wi	re characteri	stics		
wire model (Cannot be directly ordered from Mitsubishi Electric Corp.)	Finished outside diameter	Sheath material	No. of pairs	Config- uration	Conductor resistance	Withstand voltage	Insulation resistance	Heat resistant temperature	Applica- tion
UL20276 AWG28 10pair	6.1mm	PVC	10	7 strands/ 0.13mm	222Ω/km or less	AC350/ 1min	1MΩ/km or more	80°C	NC unit communi- cation cable
A14B2343 (Note 1)	7.2mm	PVC	6	40 strands/ 0.08mm	105Ω/km or less	AC500/ 1min	1500MΩ/k m or more	105°C	Detector cable
TS 01026 (Note 2)	11.6mm	DVC	2 (0.3 mm²)	60 strands/ 0.08mm	63Ω/km or less	AC750V/	60MΩ/km	60°C	Detector cable
TS-91026 (Note 2)	11.6mm	PVC	10 (0.2 mm ²)	40 strands/ 0.08mm	95Ω/km or less	1min	or more	60°C	(Cable length: 20m or more)

(Note 1) Junko Co. (Dealer: Toa Denki) (Note 2) BANDO ELECTRIC WIRE (http://www.bew.co.jp)

(2) Cable assembly

Assemble the cable as shown in the following drawing, with the cable shield wire securely connected to the ground plate of the connector.

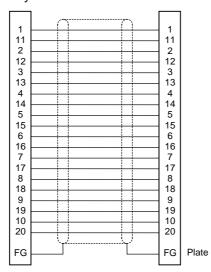
(3) Cable protection tube (noise countermeasure)

If influence from noise is unavoidable, or further noise resistance is required, selecting a flexible tube and running the signal cable through this tube is effective. This is also an effective countermeasure for preventing the cable sheath from being cut or becoming worn.

A cable clamp (MS3057) is not installed on the detector side, so be particularly careful of broken wires in applications involving bending and vibration.

Supplier	Tube	Connector						
Supplier	Tube	Drive unit side	Installation screws	Motor detector side				
	FBA-4	RBC-104 (straight)	G16					
Nippon Flex Control Corp.		RBC-204 (45°)	G16	RCC-104-CA2022				
Control Colp.	(FePb wire braid sheath)	RBC-304 (90°)	G16					
	1 li flau	PSG-104 (straight)	Screw diameter ø26.4					
DAIWA DENGYO CO., LTD	Hi-flex	PLG-17 (90°)	Screw diameter ø26.4	PDC20-17				
CO., LTD	PT #17 (FePb sheath)	PS-17 (straight)	PF1/2					
Sankei Works	Purika Tube PA-2 #17 (FePb sheath)	BC-17 (straight)	Wire tube screws : 15	PDC20-17				

(Note) None of the parts in this table can be ordered from Mitsubishi Electric Corp.


6-3-5 Option cable connection diagram

CAUTION Do not mistake the connection when manufacturing the detector cable. Failure to observe this could lead to faults, runaway or fires.

(1) NC unit communication cable

< SH21 cable connection diagram >

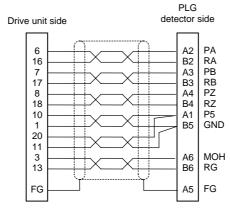
This is an actual connection diagram for the SH21 cable supplied by Mitsubishi. Manufacture the cable as shown below. The cable can be up to 30m long. Refer to section "6-4-4 Cable wire and assembly" for details on wire.

(2) Detector cable for HC-H [_]-A51/42, -E51/42

<CNV12 cable connection diagram>

This is an actual connection diagram for the CNV12 cable supplied by Mitsubishi. The connection differs according to the cable length.

CAUTION Do not connect anything to pins unless particularly specified when manufacturing a cable.


(3) PLG detector cable for SJ spindle

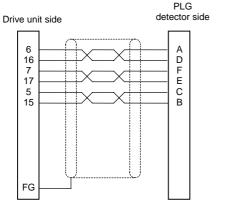
<CNP5S cable connection diagram>

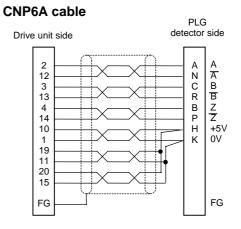
This is an actual connection diagram for the CNP5S cable supplied by Mitsubishi.

<Connection diagram for cable manufacturing>

Manufacture the cable as shown below. The cable can be manufactured to 30m. Refer to section "6-3-4 Cable wire and assembly" for details on wire.

CAUTION The CNP5S cable is dedicated for the 400V compatible spindle PLG detector.


<CNP6M/CNP6A cable connection diagram>

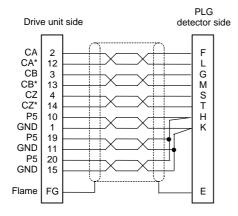

This is an actual connection diagram for the CNP6M or CNP6A cable supplied by Mitsubishi.

<Connection diagram for cable manufacturing>

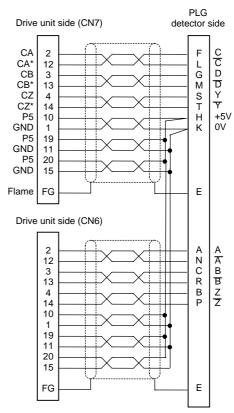
Manufacture the cable as shown below. The cable can be manufactured to 30m. Refer to section "6-3-4 Cable wire and assembly" for details on wire.

CNP6M cable

CAUTION When manufacturing the cable, do not connect anything to the pins having no description.


<CNP7A/CNP76A cable connection diagram>

This is an actual connection diagram for the cable supplied by Mitsubishi.


<Connection diagram for cable manufacturing>

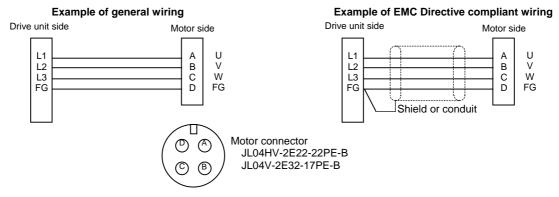
Manufacture the cable as shown below. The cable can be manufactured to 30m. Refer to section "6-3-4 Cable wire and assembly" for details on wire.

CNP7A cable

CNP76A cable

6-3-6 Main circuit cable connection drawing

The methods for wiring to the main spindle are explained in this section.


	 The main circuit cable must be manufactured by the user. Refer to Chapter 7 "Selection of peripheral devices" or Appendix 4 "UL/c-UL Standard Compatible Unit Instruction Manual" for details on selecting the wire material. Lay out the terminal block on the drive unit as explained in section "2-2 Main circuit terminal block and control circuit connector". Refer to section "10-2-4 Outline dimension drawings" for details on the servomotor connectors and terminal block. Refer to the Spindle Motor Specifications for details on the spindle motor terminal block.
--	---

(1) DRSV1 cable and DRSV2 cable

These cables connect the TE1 terminal on the servo drive unit with the HC-H motor.

- DRSV1 cable : Power cable for L axis in 1-axis unit (MDS-CH-V1-) and 2-axis integrated unit (MDS-CH-V2).
- DRSV2 cable : Power cable for M axis in 2-axis integrated unit (MDS-CH-V2-).

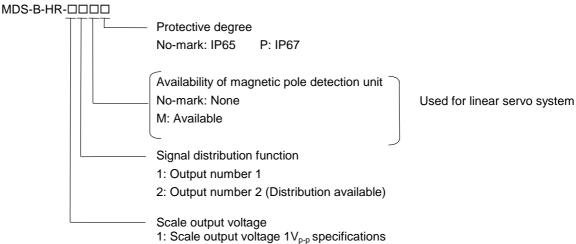

<DRSV1/DRSV2 cable connection diagram>

(2) DRSP cable

This cable connects the TE1 terminal on the spindle drive unit with the SJ-4 spindle motor.

<DRSP cable connection diagram>

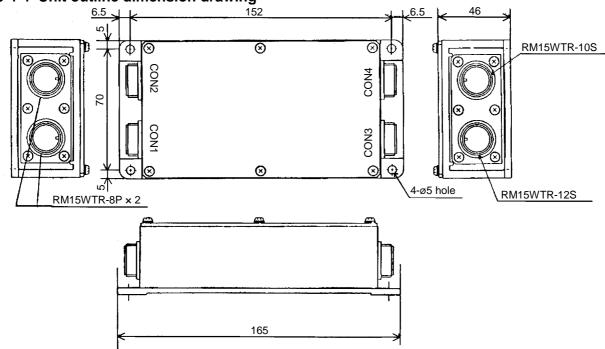
6-4 Scale I/F unit


6-4-1 Outline

MDS-B-HR outline

- (1) The unit interpolates the original wave of scale analog output to create high-resolution position data. Increasing the detector resolution is effective for obtaining high gain of the servo.
- (2) 1-scale, 2-drive operation will be possible with the signal distribution function (model division available).

6-4-2 Model configuration


Scale I/F unit model configuration

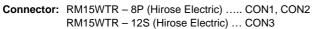
2: Scale output voltage $2V_{p-p}$ specifications

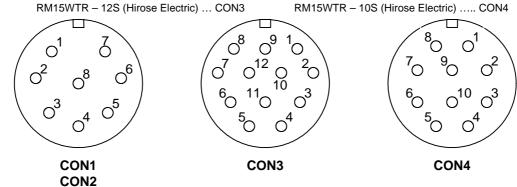
6-4-3 List of specifications

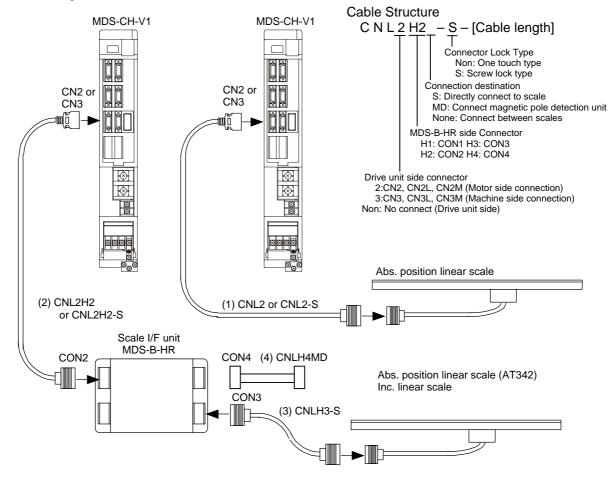
		Scale I/F unit model								
	Unit	MDS-	-B-HR-	MDS	-B-HR-	MDS-	B-HR-	MDS-	B-HR-	
		11	12	11P	12P	21	22	21P	22P	
Corresponding scale (Example)			_S186/LID (HEIDENH					2 special yo product)		
Signal 2-distribution function		×	0	×	0	×	0	×	0	
Analog signal input specification		A-pł		ase and Z eference de 1Vp-p	-phase	A-ph	2.5V r	ase and Z- eference ide 2Vp-p	phase	
Applicable frequency				Analog o	original wav	eform 200	kHz max	•		
Scale resolution				Analo	og original w	/aveform/5	512 div.			
Input/output communication form			High-sp	eed serial	communica	ation I/F, e	equivalent	to RS485		
Availability of magnetic pole detector			Comp	atible part	s are indica	ted with a	n M after	the type		
Tolerable ambient temperature	°C				0 to	55°C				
Tolerable ambient relative humidity	%			90	% or less (r	o condens	sing)			
Atmosphere					With no poi	sonous ga	as			
Tolerable vibration	m/s2 (G)				98.0m/s	s2 (10G)				
Tolerable impact (shock)	m/s2 (G)	294.0m/s2 (30G)								
Tolerable power voltage	V				5VD0	C±5%				
Maximum heat generation	W	2W								
Weight	kg				0.5kg	or less				
Protective degree	-	IP6	5	IP67	' Ť	IP6	5	IP	67	

6-4-4 Unit outline dimension drawing

6-4-5 Description of connector


Connector name	Application	Remarks
CON1	For connection with servo drive unit (2nd part system)	None for 1st part system specifications
CON2	For connection with servo drive unit	
CON3	For connection with scale	
CON4	For connection with magnetic pole detection unit (MDS-B-MD)	Only for linear servo motor specifications

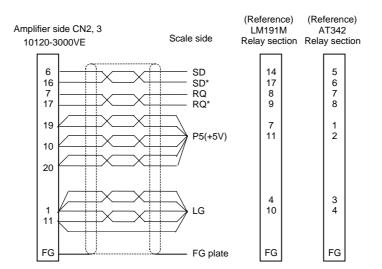

Assignment of connector pins


CON1				CON2
Pin No.	Function		Pin No.	Function
1	RQ+ signal		1	RQ+ signal
2	RQ– signal		2	RQ– signal
3	SD+ signal		3	SD+ signal
4	SD– signal		4	SD– signal
5	P5		5	P5
6	P5		6	P5
7	GND		7	GND
8	GND		8	GND

CON3			
Pin No.	Function		
1	A+ phase signal		
2	A- phase signal		
3	B+ phase signal		
4	B– phase signal		
5	Z+ phase signal		
6	Z- phase signal		
7	RQ+ signal		
8	RQ– signal		
9	SD+ signal		
10	SD– signal		
11	P5		
12	GND		

CON4				
Pin No.	Function			
1	A-phase signal			
2	REF signal			
3	B-phase signal			
4	REF signal			
5	P24			
6	MOH signal			
7	P5			
8	P5			
9	TH signal			
10	GND			

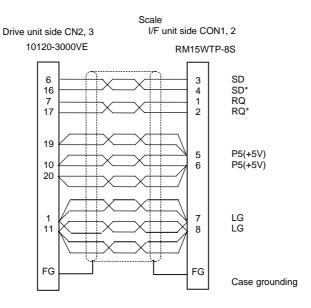
6-4-6 Example of detector conversion unit connection

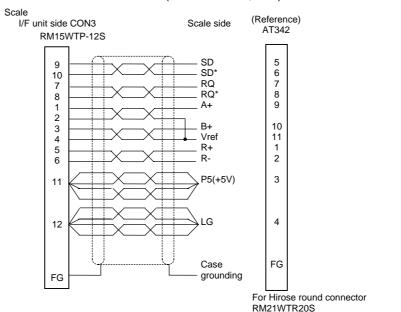

The Mitsubishi NC compatible linear scale (serial part) can be directly connected to the drive unit. Refer to section "6-6-1 List of detector specifications".

6-4-7 Cables

(1) Cable list

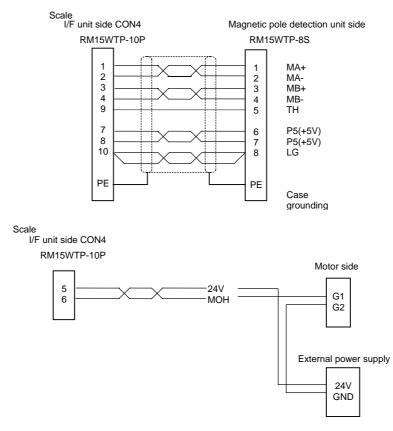
	Item Model name		Model name	Content			
For CN2 CN3	<1>	Cable for direct connection of scale	CNL	Servo drive unit side connector (3M or the equivalent) Connector : 10120-3000VE Shell kit : 10320-52F0-008 (One-touch type) : 10320-52A0-008 (Screw type) This cable must be manufactured by the user according to the scale being used.			
	<2>	Cable between drive unit and HR unit	CNL - Unit side connector shape Blank: One-touch type S: Screw type lock - Connection destination 2: CN2 3: CN3 Length: 2, 5, 10, 20, 30m	Servo drive unit side connector (3M or the equivalent) MDS-B-HR unit side connector (Hirose Electric) Connector :10120-3000VE Shell kit:10320-52F0-008 (One-touch type) :10320-52A0-008 (Screw type) Connector : RM15WTP-8S Clamp : RM15WTP-CP (10)			
For MDS-B- HR unit	<3>	Cable between HR unit and scale	CNLH3S Length Max. 30m	MDS-B-HR unit side connector (Hirose Electric) Connector : RM15WTP-12P Clamp : RM15WTP-CP (10)			
For CN4	<4>	Magnetic pole detection unit connection cable	CNLH4MD Length 2, 5, 10, 20, 30m	MDS-B-HR unit side connector (Hirose Electric) MDS-B-MD unit side connector (Hirose Electric) Connector: RM15WTP-10P Clamp: RM15WTP-CP (10) Connector: RM15WTP-8S Clamp: RM15WTP-CP (10)			


(2) Manufacturing drawings for each cable


1) Cable for direct connection of scale (CNL2S cable, etc.)

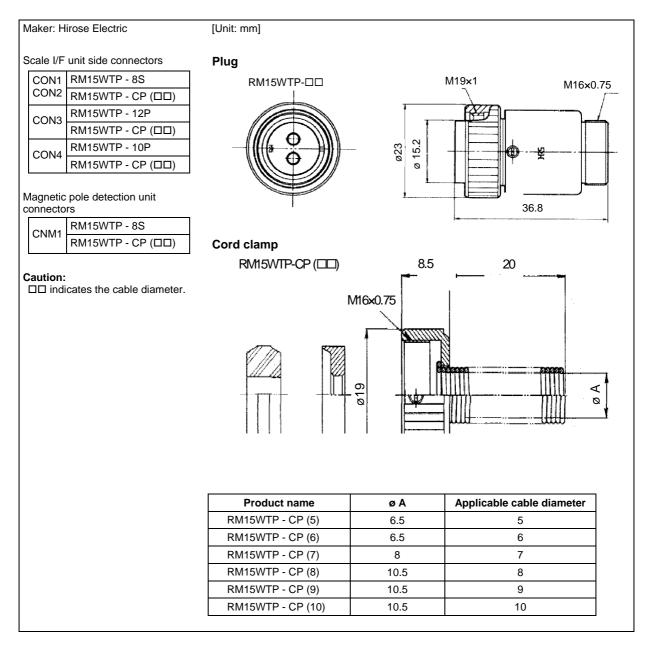
Note) Only the absolute position scale can be connected directly to the drive unit.

2) Cable between drive unit and scale I/F unit (CNL2H2 cable, etc.)



CAUTION When manufacturing the cable, do not connect anything to the pins having no description.

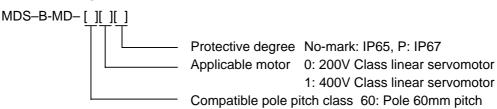
3) Cable between scale I/F unit and scale (CNLH3 cable, etc.)



Refer to section "6-3-4 Cable wire and assembly" for details on the wire materials. Recommended wire type: A14B2343 (Junkosha, Inc.)

CAUTION When manufacturing the cable, do not connect anything to the pins having no description.

(3) Cable connectors

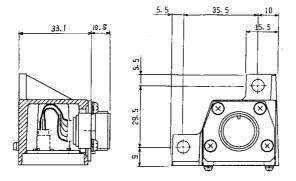

6-5 Magnetic pole detection unit

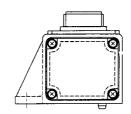
6-5-1 Outline

This unit detects the magnetic pole of the linear servomotor's secondary magnet, and outputs the results as an analog voltage. (Only linear servomotor)

When using the relative value specifications, always install this unit as the magnetic poles do not need to be positioned when the power is turned ON.

6-5-2 Model configuration

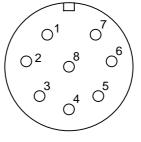



6-5-3 List of specifications

Specification	Unit	Magnetic pole detection unit model			
Specification	Unit	MDS-B-MD60[_]	MDS-B-MD60[_]P		
Tolerable ambient temperature	°C	0 to :	55°C		
Tolerable ambient relative humidity	%	90% (RH) or less (no condensing)			
Atmosphere		With no poisonous gas			
Tolerable vibration	m/s ²	98 m/s ²			
Tolerable impact (shock)	m/s ²	294 m/s ²			
Tolerable power voltage	V	5VDC ± 5%			
Maximum heat generation	W	1W or less			
Weight	Kg	0.1kg or less			
Protective degree		IP65 IP67			

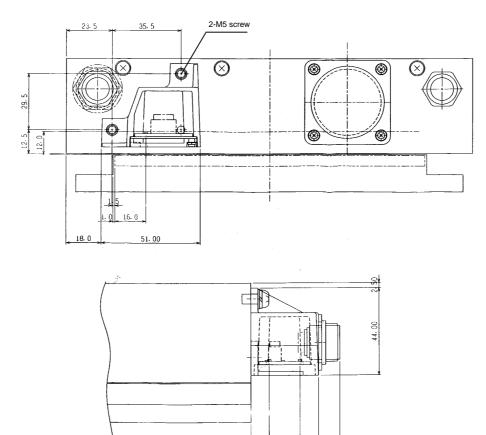
Either "1" or "0" is indicated in [_].

6-5-4 Outline dimensions



6-5-5 Assignment of connector pins

Connector name	Application	Remarks	
CON1	Detects magnetic pole of linear servomotor's secondary magnet, and outputs an analog voltage	Connect with scale I/F unit (MDS-B-HR)	
CON1			


CONT				
Pin No.	Function			
1	A-phase signal			
2	REF signal			
3	B-phase signal			
4	REF signal			
5	TH signal			
6	P5 (5VDC)			
7	P5 (5VDC)			
8	GND			

Applicable connector RM15WTR-8P (Hirose Electric)

6-5-6 Installing onto the linear servomotor

(1) For LM-NP4

(2) For other motors

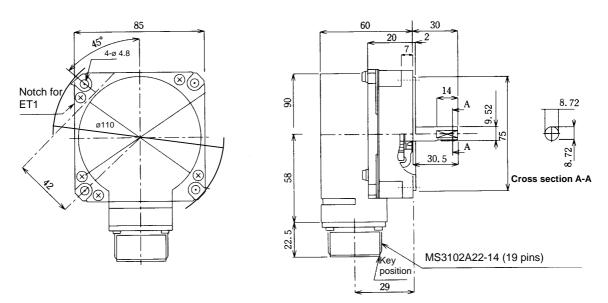
Refer to each Linear Servomotor Specifications for details on installing onto other linear servomotors.

9.0 15.0

33.10

10.50

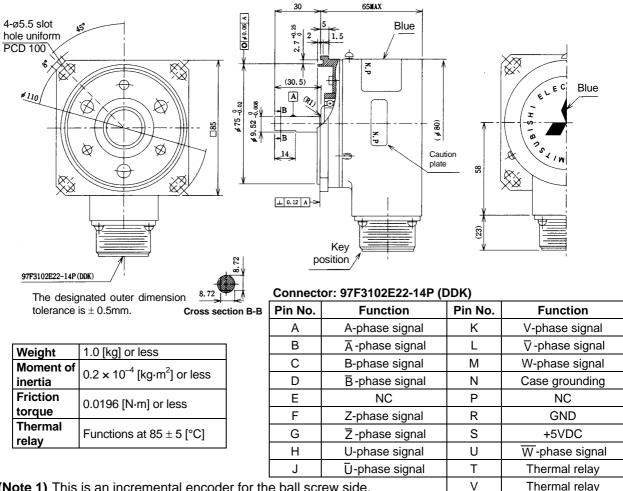
6-6 Detectors


/ŗ

CAUTION The MDS-CH Series servo drive units use the serial encoders only as the motor side detectors.

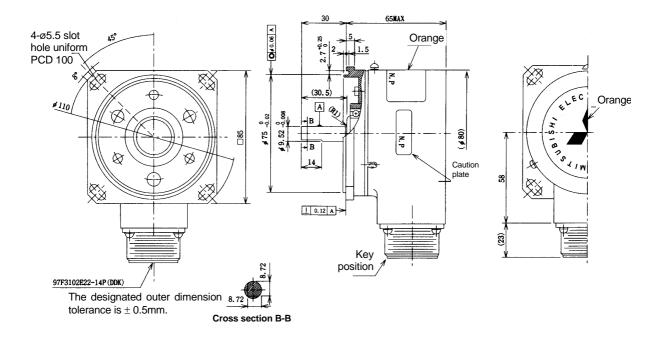
6-6-1 List of detector specifications

Class	Туре	Model	Max. rotation speed	Dete	ctor output	Output signal usage class	
Motor side	Relative position detector	OSE104, OSE104S, OSE104S1, OSE104S2	3000r/min Serial data		lata	Motor position detection 100000p/rev	
detector	Absolute position detector	OSE105, OSE105S, OSE105S1, OSE105S2	3000r/min Serial c		lata	Motor position detection 1000000p/rev	
	Relative	OHE25K-ET	3000r/min 25000p/rev 1 Z-phase 1p/rev Z 3000r/min Serial data B		/rev	Ball screw side position detection 100000p/rev after multiplying by four Zero point indexing	
	position detector	OSE104-ET				Ball screw side position detection 100000p/rev	
Ball screw side		OSE105-ET	3000r/min	Serial d	lata	Ball screw side position detection 1000000p/rev	
detector	Absolute	OHA25K-ET	A, B- 3000r/min 2500 Z-ph			Ball screw side position detection 100000p/rev after multiplying by four Zero point indexing	
	position detector	OSA104-ET		Serial d	- 1	Ball screw side position detection 100000p/rev	
		OSA105-ET	3000r/min	Serial d	lata	Ball screw side position detection 1000000p/rev	
Machine side detector	Relative position detector	Use an incremental scale for the machine side that satisfies the conditions on the right.	 (1) When linear scale I/F unit (MDS-B-HI Use a scale with an A/B phase difference Use an A, B, Z-phase signal with di product) for the output signal. Phase difference Output circuit A-phase B-phase 0.1µS or more (2) * When linear scale I/F unit (MDS-B-(Output signal)) (a) 2.5V reference 1V_{p-p} analog differential output (b) 2.5V reference 2V_{p-p} analog differential output (c) 4.5V reference 2V_{p-p} analog differential output 			fferential output (RS-422 standard Z-phase Z-phase Z-phase To a scale a bwing multiple Z phases, select the one for which the distance between neighboring Z phases is an integral mm. HR) is used g A-phase, B-phase, Z-phase g A-phase, B-phase, Z-phase	
		AT41	50m/min		A, B-phase	Machine side position detection 1μ m/p after multiplying by four	
		(Mitsutoyo product)	5.1 to 120m/min Differs according to the resolution.		Z-phase Serial data	Zero point indexing 10mm spacing	
(Note) Purchase from a manufacturer.		FME, FML (FUTABA product)			A, B-phase	Absolute position 1μm/p Machine side position detection 0.1 to 10μm/p after multiplying by four	
			Tesolution.		Serial data		
	Absolute position detector	MP scale (Mitsubishi Heavy Industries product) * Motor side detector also	30m/min		A, B-phase Z-phase	Machine side position detection 1µm/p after multiplying by four Zero point indexing	
		needs an absolute position encoder. AT342	110m/min		Serial data	2mm spacing Machine side position detection	
		(Mitsutoyo product) AT343 (Mitsutoyo product)	120m/min		Serial data	0.5μm/p Machine side position detection 0.05μm/p	
		LC191M (HEIDENHAIN product)	120m/min		Serial data	Machine side position detection 0.1μm/p, 0.05μm/p	
		LC491M (HEIDENHAIN product)	120m/min		Serial data	Machine side position detection 0.05µm/p	


CAUTION Confirm each maker specifications before using the machine side detector.

6-6-2 Outline dimension drawings

(1) Standalone encoder (OSA ET/OSE ET Series) outline drawing


(2) Outline drawings of OHE/OHA type ball screw side detector

• OHE 25K-ET

(Note 1) This is an incremental encoder for the ball screw side.
 V Thermal relay
 (Note 2) The outline dimensions are the same as for the absolute encoder, and only the nameplate color differs.

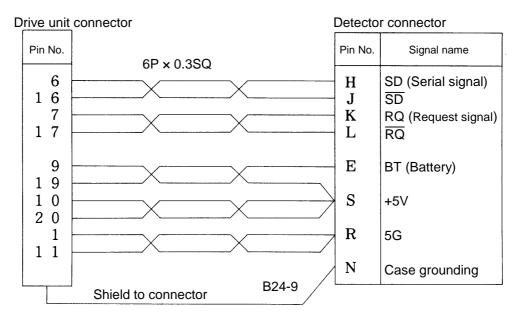
• OHA 25K-ET

L					
Weight	1.0 [kg] or less				
Moment	$0.2 \times 10^{-4} [\text{kg} \cdot \text{m}^2]$ or less				
of inertia					
Friction	0.0196 [N · m] or less				
torque					
Thermal	Functions at 95 5 [90]				
relay	Functions at 85 \pm 5 [°C]				

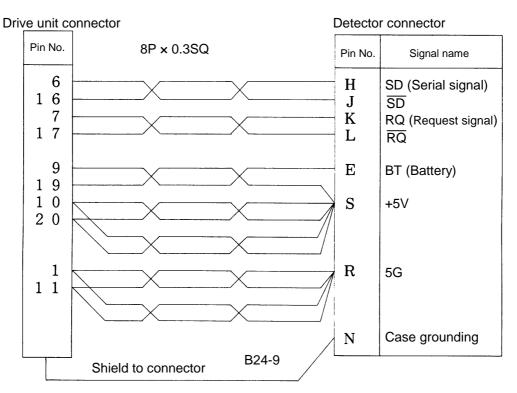
Connector: 97F3102E22-14P (DDK)

Pin No.	Function	Pin No.	Function
А	A-phase signal	к	PO signal
В	Ā -phase signal	n.	RQ signal
С	B-phase signal		
D	B-phase signal	L	RQ signal
E	VB (Battery)	М	NC
F	Z-phase signal	Ν	Case grounding
G	Z -phase signal	Р	NC
Ц	H RX signal		GND
П	RX signal	S	+5VDC
J	RX signal	Т	Thermal relay
5	RX signal	U	NC
		V	Thermal relay

(Note 1) This is an incremental encoder for the ball screw side.


(Note 2) The outline dimensions are the same as for the absolute encoder, and only the nameplate color differs.

6-6-3 Cable connection diagram


CAUTION Do not mistake the connection when manufacturing the detector cable. Failure to observe this could lead to runaway.

CNV2 and CNV3 cables for MDS-B/C1 Series can be used.

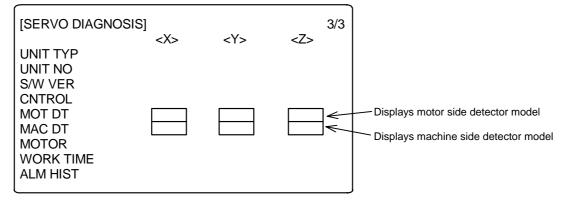
(1) CNV12, CNV13 cable (L \leq 20m)

(2) CNV12, CNV13 cable ($20 < L \le 30m$)

The drive unit side connector or the detector connector is same connector as the conventional CNV2 or CNV3.

6-6-4 Maintenance

		Wait at least 15 minutes after turning the power OFF before starting maintenance or inspections. Failure to observe this could lead to electric shocks. Only qualified persons must carry out the maintenance or inspections. Failure to observe this could lead to electric shocks. Contact Service Center or Service Station for repairs or part replacements.
--	--	---


If any fault occurs in the configuration components, carry out service with the following procedures.

(1) Encoder

As a rule, replace the detector with the same type as the detector before exchanging it. If changes are to be made, always confirm the compatibility and usable combination.

 Confirmation of encoder model Confirm the encoder model on the nameplate attached to the motor cover, or displayed on the Servo Monitor screen.

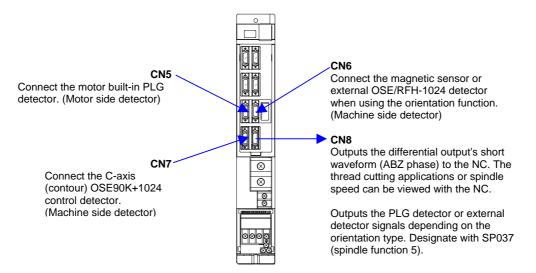
Servo Monitor (SERVO DIAGNOSIS) Screen

If a fault occurs in the motor unit, replace the motor and encoder as a set.

6-7 Spindle option specification parts

When the orientation specifications or C-axis specifications, etc., are selected as spindle options, the magnetic sensor (one-point orientation), external encoder (multi-point orientation, C-axis control), and motor built-in PLG detector can be designated with the spindle delivery specifications.

The Heidenhain detector (special order part) can be used for C-axis control in the same manner as the motor built-in PLG detector.


The C-axis detector (MBE90K, MHE90K) used with the 200V Class drive unit (MDS-B/C1 Series) cannot be used.

Correspondence of spindle functions and applicable detectors
--

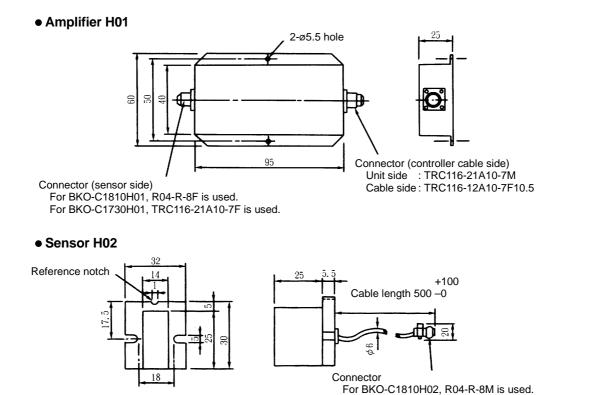
Spindle	Orientation		C-axis				
specifications Detector	One-point	4096 points	control (contour control)	Synchronous tap control	Thread cutting control	Spindle synchronous control	
Magnetic sensor	Х	_	_	-	_	-	
External detector (OSE/RFH-1024)	_	х	_	x	Х	х	
External detector (OSE90K+1024)	_	х	Х	x	Х	х	
Heidenhain detector	_	Х	X Note 2	X Note 2	Х	Х	
Motor built-in PLG detector	-	х	X Note 1, 2	X Note 2	Х	х	

Note 1) Simple C-axis.

Note 2) Zero point return valid only for 1:1 gear ratio.

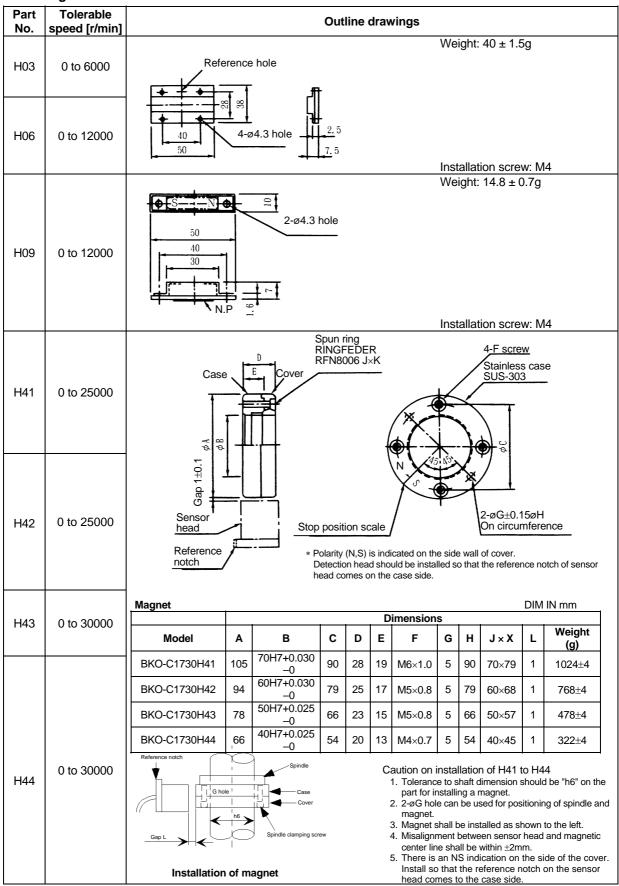
6-7-1 Magnetic sensor orientation (one-point orientation)

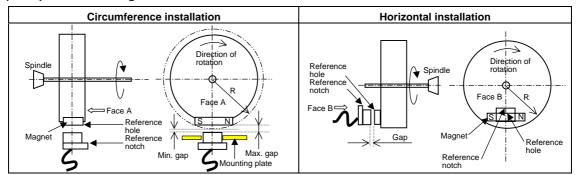
Prepare the magnetic sensor orientation parts with the following types. When purchasing independently, always prepare with the required configuration part types.


(1) Preparation type

Turno	Model	Tolerable	Combination			
Туре	Woder	speed [r/min]	Amplifier	Sensor	Magnet	
Standard	MAGSENSOR BKO-C1810H01-3	0 to 6000	H01	H02	H03	
High-speed standard	MAGSENSOR BKO-C1730H01.2.6	0 to 12000	H01	H02	H06	
High-speed small	MAGSENSOR BKO-C1730H01.2.9	0 to 12000	H01	H02	H09	
	MAGSENSOR BKO-C1730H01.2.41	0 to 25000	H01	H02	H41	
High-speed ring	MAGSENSOR BKO-C1730H01.2.42	0 to 25000	H01	H02	H42	
	MAGSENSOR BKO-C1730H01.2.43	0 to 30000	H01	H02	H43	
	MAGSENSOR BKO-C1730H01.2.44	0 to 30000	H01	H02	H44	

Caution) When preparing with independent types, replace the section following the H in the prepared type with the independent type.

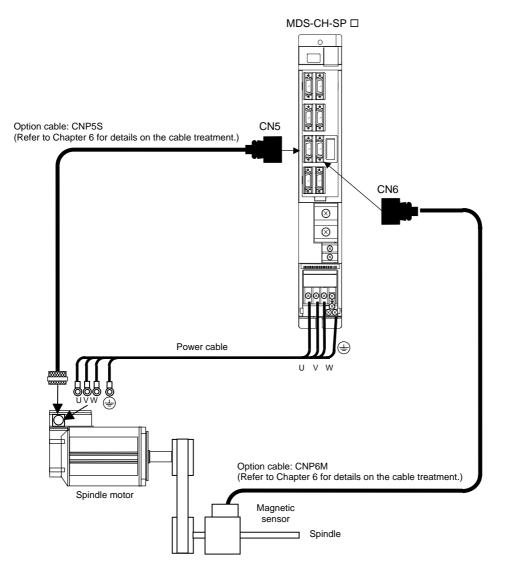

Example: When preparing only the standard magnetic sensor's sensor section, the type will be MAGSENSOR BKO-C1810H02.


Outline dimensions:

For BKO-C1730H02, TRC116-12A10-7M is used.

(2) Gap between magnet and sensor

Magnet model	В	KO-C1810H)3	BKO-C1730H06			BKO-C1730H09	
Installation direction		ference llation	Horizontal installation			Horizontal installation	Circumference installation	
R (Radius)	Gap mm		Gap mm			Gap mm		
mm	Max. value	Min. value		Max. value	Min. value		Max. value	Min. value
40	11.5±0.5	2.7±0.5	6.0±0.5	10.0±0.5	1.22±0.5	5.0±0.5	6.25±0.5	3.30±0.5
50	9.5±0.5	2.8±0.5	6.0±0.5	8.0±0.5	1.31±0.5	5.0±0.5	6.00±0.5	3.70±0.5
60	8.5±0.5	3.0±0.5	6.0±0.5	7.0±0.5	1.50±0.5	5.0±0.5	5.75±0.5	3.85±0.5
00	0.020.0							


(3) Magnet and sensor installation directions

- Install so that the magnet's reference hole and sensor's reference notch are aligned. (Standard/high-speed standards)
- Install so that the magnet's N pole comes to the left side when the sensor's reference notch is faced downward. (High-speed compact/high-speed ring)

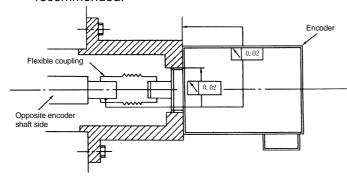
(4) Cautions

- (a) Do not apply impacts on the magnet. Do not install strong magnets near the magnet.
- (b) Sufficiently clean the surrounding area so that iron chips and cutting chips do not adhere to the magnet. Demagnetize the round disk before installing.
- (c) Securely install the magnet onto the spindle with an M4 screw. Take measures to prevent screw loosening as required.
- (d) Balance the entire spindle rotation with the magnet installed.
- (e) Install a magnet that matches the spindle's rotation speed.
- (f) When installing the magnet onto a rotating body's plane, set the speed to 6,000r/min or less.
- (g) Install so that the center line at the end of the head matches the center of the magnet.
- (h) The BKO-C1730 is not an oil-proof product. Make sure that oil does not come in contact with BNO-C1730 or BKO-C1810.
- (i) When connecting to the spindle drive unit, wire so that the effect of noise is suppressed.

(5) Connecting a magnetic sensor and a drive unit

6-7-2 Multi-point orientation using encoder (4096-point orientation)

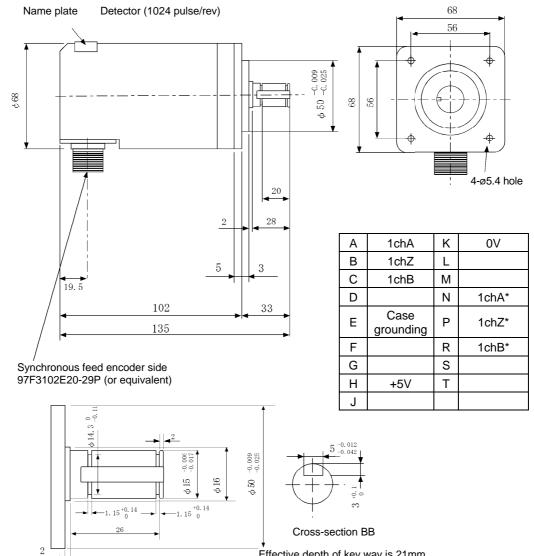
Prepare the encoder orientation parts with the following types. When purchasing independently, always prepare with the required configuration part types. The encoder is capable of 4096-point multi-point orientation by multiplying 1024p/rev by four.


(1) Preparation type

Preparation type	Tolerable rotation	Preparation type	Tolerable rotation	
OSE1024-3-15-68	6000r/min	OSE1024-3-15-68-8	8000 r/min	
RFH-1024-22-1M-68	6000r/min	RFH-1024-22-1M-68-8	8000 r/min	

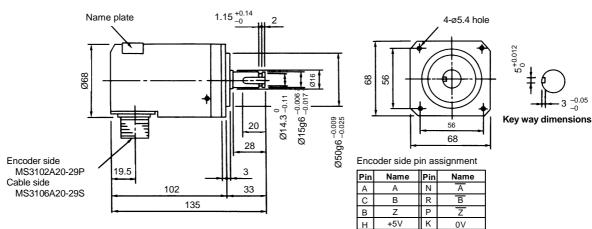
(2) Encoder specifications

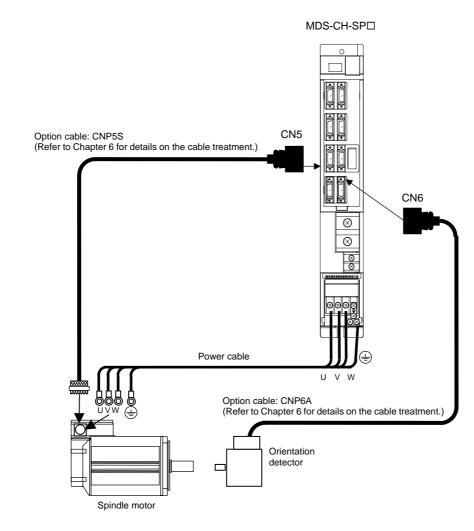
ltem	Feature	OSE1024-3- 15-68	RFH-1024-22- 1M-68	OSE1024-3- 15-68-8	RFH-1024-22- 1M-68-8	
Mechanical	Inertia	0.1 × 10 ⁻⁴ kgm ² or less		0.1 × 10 ⁻⁴ kgm ² or less		
characteristics for rotation	Shaft friction torque	0.98Nm or less		0.98Nm or less		
	Shaft angle acceleration	10 ⁴ rad/s ² or less		10 ⁴ rad/s ² or less		
	Tolerable continuous rotation speed	6000r/min		8000r/min		
Mechanical configuration	Bearing maximum non-lubrication time	20000Hr /	20000Hr / 6000r/min		20000Hr / 8000r/min	
	Shaft amplitude (position 15mm from end)	0.02mm or less		0.02mm or less		
	Tolerable load (thrust direction/radial direction)	10kg/20kg; Half of value during operation		10kg/20kg; Half of value during operation		
	Weight	1.5kg		1.5kg		
	Squareness of flange to shaft	0.05mm or less		n or less		
	Flange matching eccentricity		0.05mm	or less		
Working conditions	Working temperature range	-5°C to +55°C				
	Storage temperature range	–20°C to +85°C				
	Humidity range	95%		6PH		
	Vibration resistance	5 to 50Hz, total vibration widt		h 1.5mm, each shaft for 30 min.		
	Impact resistance	294.20m/s ² (30G)				


Use of a flexible coupling is recommended for the coupling of the encoder and spindle shaft. The following maker's flexible coupling is recommended.

Manufacture	Manufacturer Model Resonance frequency		Eagle	
Model			FCS38A	
Resonance f			3515Hz	
Position dete	sition detection error		1.2×10-3°	
Tolerable spe	eed	20000r/min	10000r/min	
Mis-	Core deviation	0.7mm	0.16mm	
alignment	Angle displacement	1.5°	1.5°	
Outline	Max. length	74.5mm	33mm	
dimensions	Max. diameter	ø57mm	ø38mm	

(3) Outline dimensions


OSE-1024-3-15-68



Effective depth of key way is 21mm

RFH-1024-22-1M-68

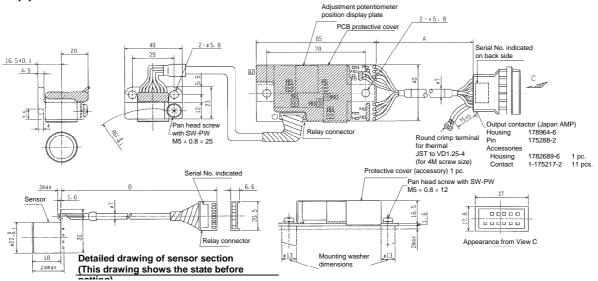
Enlarged view of key

(4) Connecting an encoder and a spindle drive unit

6-7-3 Multi-point orientation using motor built-in encoder (4096-point orientation)

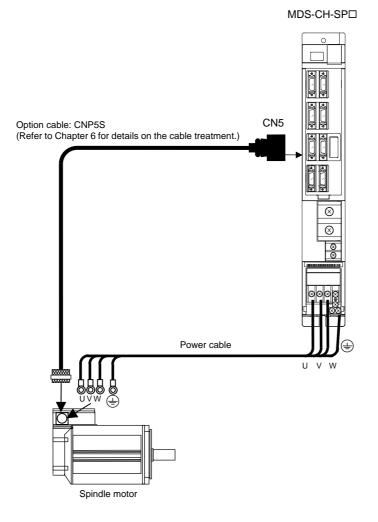
A spindle motor with motor built-in encoder with Z phase and PLG detector is required for these specifications. Zero point return is possible only when the motor and spindle are connected with a reduction gear ratio of 1:1.

(1) Preparation type


Preparation type	Cable length (Refer to outline drawing)					
Freparation type	А	В				
TS5276N1170H01	$200\pm10 \text{mm}$	270 ± 10 mm				
TS5276N1171H02	200 ± 10 mm	400 ± 10 mm				
TS5276N1173H03	$200\pm10 \text{mm}$	600 ± 10 mm				
TS5276N1174H06	$200\pm10 \text{mm}$	$800\pm20 \text{mm}$				
TS5276N1175H05	200 ± 10mm	1500 ± 30 mm				
TS5276N1179H04	200 ± 10 mm	$1100\pm20 mm$				

(2) Encoder specifications

Item	Specification	Supplement
Power voltage	$5VDC \pm 5\%$	
Power current	Max. 100mA	At 25°C
Operation temperature	-10 to 80°C	
Storage temperature	-20 to 110°C	Both sensor section and PCB
Humidity (operation/storage)	5 to 95% RH	With no dew condensation
Vibration resistance	9.8m/s ² or less	


Item	Item A, B phase specifications		Supplement		
Output wave number	Output wave number	0 to 200 Hz (0 to 12000 r/min)			
Output voltage pulse height value Vp-p	$0.54V\pm0.1V^{Note~1}$	$0.5V\pm0.1V^{Note~2}$	Note 1 25°C, 7.68kHz with 120Ω load resistor Note 2 25°C, 30kHz with 120Ω load resistor		

(3) Outline dimensions

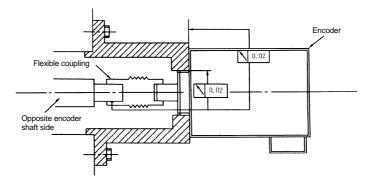
The combined gears differ according to the spindle motor specifications.

The details must be discussed separately and determined to attain the optimum product specifications.

(4) Connection of motor built-in PLG detector and spindle drive unit

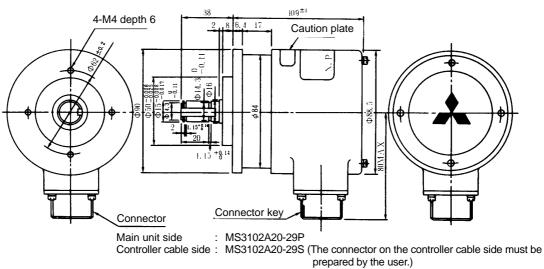
6-7-4 Contour control (C axis control) encoder

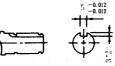
Prepare the following type of shaft type encoder part for contour control (C axis control). A 1/1000 degree resolution (multiplied by four inside the unit) can be attained by connecting the 90,000p/rev signal for the C-axis control to the CN7 connector. A 1024p/rev function is also available for encoder multi-point orientation.


(1) Preparation type

Preparation type	Tolerable rotation
OSE90K+1024 BKO-NC6336H01	6000r/min

(2) Encoder specifications

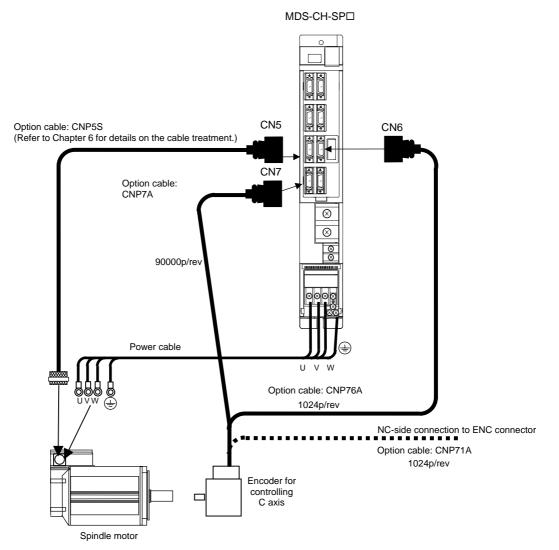

ltem	Features	OSE90K+1024 BKO-NC6336H01
Mechanical	Inertia	0.1 × 10 ⁻⁴ kgm ² or less
characteristics	Shaft friction torque	0.98Nm or less
for rotation	Shaft angle acceleration	10 ⁵ rad/s ² or less
	Tolerable speed	7.030r/min
Mechanical configuration	Bearing maximum non-lubrication time	20000Hr / 6000r/min
	Shaft amplitude (position 15mm from end)	0.02mm or less
	Tolerable load (thrust direction/radial direction)	10kg/20kg Half of value during operation
	Weight	2.0kg
	Squareness of flange to shaft	0.05mm or less
	Flange matching eccentricity	0.05mm or less
Working	Working temperature range	–5°C to +55°C
conditions	Storage temperature range	–20°C to +85°C
	Humidity range	95%PH
	Vibration resistance	5 to 50Hz, total vibration width 1.5mm, each shaft for 30 min.
	Impact resistance	294.20m/s ² (30G)


Use of a flexible coupling is recommended for the coupling of the encoder and spindle shaft. The following maker's flexible coupling is recommended.

Manufacture	r	Tokushu Seiko	Eagle	
Model		Model M1	FCS38A	
Resonance f	requency	1374Hz	3515Hz	
Position dete	ection error	0.8×10-3°	1.2×10-3°	
Tolerable sp	eed	20000r/min	10000r/min	
Mis-	Core deviation	0.7mm	0.16mm	
alignment	Angle displacement	1.5°	1.5°	
Outline	Max. length	74.5mm	33mm	
dimensions	Max. diameter	ø57mm	ø38mm	

- (3) Outline drawings
 - Encoder OSE90K+1024 BKO-NC6336H01

Note 1. The max. encoder speed must be 6000r/min or less. Note 2. The dimensional tolerance that is not specified is ± 0.5 mm.

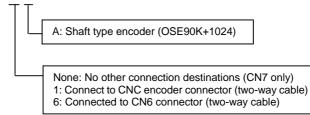

Signal

	Generated signals	Remarks				
1ch	1024 C/T	A • B-phase, A •B -phase	Connect to NC or CN6.			
2ch	1 C/T	Z-phase • Z -phase				
3ch	90000 C/T	$C \bullet D$ -phase, $\overline{C} \bullet \overline{D}$ -phase	Connect to CN7.			
4ch	1 C/T	Y-phase • Y •B-phase	Connect to CN7.			

Connector pin assignment

Pin	Function
А	1ch A-phase
В	2ch Z-phase
С	1ch B-phase
D	
Е	Case grounding
F	3ch C-phase
G	3ch D-phase
н	+5V DC +5% -10%
J	0V

Pin	Function
K	0V
L	3ch C-phase
М	3ch D-phase
Ν	1ch Ā-phase
Р	2ch Z-phase
R	1ch B-phase
S	4ch Y-phase
Т	4ch Y-phase


(4) Connecting an encoder and a spindle drive unit

Supplement

- 1. The C-axis control function is connected to the CN7 connector.
- 2. When using both the C-axis control function and orientation function, connect two cables (two-way cable) from the detector.
- 3. The orientation signal connected to CN5 or CN6 can be connected to the NC as a differential output from CN8.

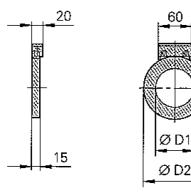
(5) Cable name

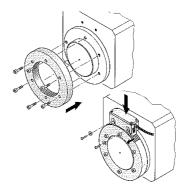
CN7□ □ cable

6-7-5 Integrated rotary encoder (Special order part)

Contour (C-axis) control can be carried out using the Heidenhain integrated rotary encoder ERM280 Series. The magnetic memory drum and nonmagnetic sensor are combined in this encoder. This type can be installed only on the built-in type spindle motor, so the motor specifications must also be considered. Prepare this rotary encoder after setting the spindle motor specifications.

(1) Preparation type


This rotary encoder is not available from Mitsubishi, and must be directly purchased from Heidenhain.


(2) Encoder specifications

Туре	ERM280				
Output signal	1Vр-р				
Number of scale lines	1024 1200 2048				
Mechanical tolerable speed	18000 r/min	8000 r/min			
Drum Inner diameter D1	ø80mm	ø120mm	ø180mm		
Outer diameter D2	ø128.75mm	ø150.88mm	ø257.5mm		

Contact the encoder maker for details as the specifications are subject to change.

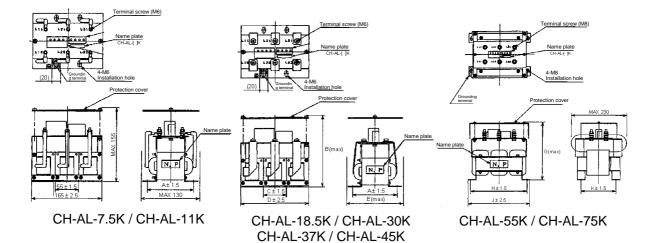
(3) Outline dimensions

Contact: Heidenhain Corporation

6-8 AC reactor

An AC reactor must be installed for each power supply unit. Refer to section "2-6 Connection of AC reactor" for details on the wiring methods.

6-8-1 Combination with power supply unit


Use the AC reactor and power supply unit with the following combination.

Power supply unit model		AC react	tor model		CH- AL-⊡K			
MDS-CH-□	7.5k	11k	18.5k	30k	37k	45k	55k	75k
~ CV-75	Х							
CV-110		Х						
CV-150			Х					
CV-185			Х					
CV-220				Х				
CV-260				Х				
CV-300				Х				
CV-370					Х			
CV-450						Х		
CV-550							Х	
CV-750								Х

Caution) The X mark indicates the compatible combinations.

6-8-2 Outline dimension drawings

AC reactor model	Α	В	С	D	Е	G	н	J	к	Weight [kg]
CH-AL-7.5K	82									3.8
CH-AL-11K	75									3.3
CH-AL-18.5K	105	155	55	165	130					5.2
CH-AL-30K	110	155	55	165	140					6.0
CH-AL-37K	110	175	70	215	150					9.5
CH-AL-45K	120	175	70	215	160					10.5
CH-AL-55K						210	200	220	120	11.5
CH-AL-75K						215	230	250	143	14.0

7. Peripheral Devices

7-1 Selection of wire	7-2
7-1-1 Example of wires by unit	7-2
7-2 Selection of main circuit breaker and contactor	7-5
7-2-1 Selection of earth leakage breaker	7-5
7-2-2 Selection of no-fuse breaker	7-6
7-2-3 Selection of contactor	7-7
7-3 Control circuit related	7-8
7-3-1 Circuit protector	7-8
7-3-2 Fuse protection	7-9
7-3-3 Relays	7-10
7-3-4 Surge absorber	7-11

7-1 Selection of wire

7-1-1 Example of wires by unit

Selected wires must be able to tolerate rated current of the unit's terminal to which the wire is connected. How to calculate tolerable current of an insulated wire or cable is shown in "Tolerable current of electric cable" (1) of Japanese Cable Makers' Association Standard (JCS)-168-E (1995), its electric equipment technical standards or JEAC regulates tolerable current, etc. wire.

When exporting wires, select them according to the related standards of the country or area to export. In the UL standards, certification conditions are to use wires of 60°C and 75°C product. (UL508C)

Wire's tolerable current is different depending on conditions such as its material, structure, ambient temperature, etc. Check the tolerable current described in the specification of the wire to use. Example of wire selections according to each standard is as follows.

	Terminal		E1	TE2	TE3		
	name	(L1, L2,	L3, 🕀)	(L+, L-)	(L11, L21, L12, L22, MC1)		
Unit type		mm²	AWG	mm ² AWG	mm ²	AWG	
Power	MDS-CH-CV-37	2	14				
supply	MDS-CH-CV-55	2	14				
unit	MDS-CH-CV-75	2	14				
	MDS-CH-CV-110	3.5	12				
	MDS-CH-CV-150	5.5	10	Same as TE1			
	MDS-CH-CV-185	8	8	Same as TET			
	MDS-CH-CV-220	14	6		2	14	
	MDS-CH-CV-260	14	6				
	MDS-CH-CV-300	22	4				
	MDS-CH-CV-370	38	2				
	MDS-CH-CV-450	38	2	TE2-1: Bar enclosed			
	MDS-CH-CV-550	60	_	TE2-2: Same as TE1			
	MDS-CH-CV-750			Bar enclosed			
Spindle	MDS-CH-SP-15	2	14				
drive unit	MDS-CH-SP-37	2	14				
	MDS-CH-SP-55	2	14				
	MDS-CH-SP-75	2	14				
	MDS-CH-SP-110	5.5	10				
	MDS-CH-SP-150	5.5	10	Match with TE2 of			
	MDS-CH-SP-185	8	8	selected power supply unit			
	MDS-CH-SP-220	8	8		2	14	
	MDS-CH-SP-260	14	6				
	MDS-CH-SP-300	22	4	7			
	MDS-CH-SP-370	38	2		-		
	MDS-CH-SP-450	38	2	TE2-1: Bar enclosed			
	MDS-CH-SP-550	38		TE2-2: Same as TE1			
	MDS-CH-SP-750			Bar enclosed			
Servo	MDS-CH-V1-05	2	14				
drive	MDS-CH-V1-10	2	14	7		l	
unit	MDS-CH-V1-20	2	14	7			
	MDS-CH-V1-35	2	14	7		4.4	
	MDS-CH-V1-45	2	14	Match with TE2 of	2		
	MDS-CH-V1-70	5.5	10	selected power supply unit	2	14	
	MDS-CH-V1-90	5.5	10	7			
	MDS-CH-V1-110	5.5	10				
	MDS-CH-V1-150	5.5	10				
	MDS-CH-V1-185	8	8				
Servo	MDS-CH-V2-0505	2	14				
drive	MDS-CH-V2-1005	2	14				
unit	MDS-CH-V2-1010	2	14				
(2-axis)	MDS-CH-V2-2010	2	14				
	MDS-CH-V2-2020	2	14	Match with TE2 of	2	14	
	MDS-CH-V2-3510	2	14	selected power supply unit	<u> </u>	14	
	MDS-CH-V2-3520	2	14]			
	MDS-CH-V2-3535	2	14]		1	
	MDS-CH-V2-4520	2	14	7			
	MDS-CH-V2-4535	2	14	7		1	

(1) 600V vinyl insulated wire (IV wire) 60°C product (Example according to IEC/EN60204-1, UL508C)

	Terminal		E1	TE2		Ξ3
	name		L3, 🕀)	(L+, L-)		2, L22, MC1)
Unit type		mmź	AWG	mm ² AWG	mm²	AWG
Power	MDS-CH-CV-37	2	14			
supply	MDS-CH-CV-55	2	14	_		
unit	MDS-CH-CV-75	2	14			
	MDS-CH-CV-110	3.5	12			
	MDS-CH-CV-150	5.5	10	Same as TE1		
	MDS-CH-CV-185	8	8			
	MDS-CH-CV-220	8	8	_	2	14
	MDS-CH-CV-260	14	6	_		
	MDS-CH-CV-300	14	6	_		
	MDS-CH-CV-370	22	4			
	MDS-CH-CV-450	22	4	TE2-1: Bar enclosed		
	MDS-CH-CV-550	38	2	TE2-2: Same as TE1		
	MDS-CH-CV-750	60	—	Bar enclosed		
Spindle	MDS-CH-SP-15	2	14			
drive unit	MDS-CH-SP-37	2	14			
	MDS-CH-SP-55	2	14			
	MDS-CH-SP-75	2	14			14
	MDS-CH-SP-110	5.5	10	Match with TE2 of		
	MDS-CH-SP-150	5.5	10	- selected power supply unit		
	MDS-CH-SP-185	8	8		2	
	MDS-CH-SP-220	8	8		-	
	MDS-CH-SP-260	14	6			
	MDS-CH-SP-300	22	4			
	MDS-CH-SP-370	22	4			
	MDS-CH-SP-450	38	2	TE2-1: Bar enclosed		
	MDS-CH-SP-550	38	2	TE2-2: Same as TE1		
	MDS-CH-SP-750	60	—	Bar enclosed		
Servo	MDS-CH-V1-05	2	14			
drive	MDS-CH-V1-10	2	14			
unit	MDS-CH-V1-20	2	14			
	MDS-CH-V1-35	2	14			
	MDS-CH-V1-45	2	14	Match with TE2 of	2	14
	MDS-CH-V1-70	5.5	10	selected power supply unit	-	14
	MDS-CH-V1-90	5.5	10			
	MDS-CH-V1-110	5.5	10			
	MDS-CH-V1-150	5.5	10			
	MDS-CH-V1-185	8	8			
Servo	MDS-CH-V2-0505	2	14			
drive	MDS-CH-V2-1005	2	14			
unit	MDS-CH-V2-1010	2	14	_		
(2-axis)	MDS-CH-V2-2010	2	14			
	MDS-CH-V2-2020	2	14	Match with TE2 of	2	14
	MDS-CH-V2-3510	2	14	selected power supply unit	_	
	MDS-CH-V2-3520	2	14	_		
	MDS-CH-V2-3535	2	14	_		
	MDS-CH-V2-4520	2	14	_		
	MDS-CH-V2-4535	2	14	1		

(2) 600V double (heat proof) vinyl insulated wire (HIV wire) 75 °C product (Example according to IEC/EN60204-1, UL508C)

	Terminal		E1	TE2	TE3		
		name $(L1, L2, L3, \bigoplus)$		(L+, L-)	<u> </u>	12, L22, MC1)	
Unit type		mm²	AWG	mm ² AWG	mm²	AWG	
Power	MDS-CH-CV-37	2	14	_			
supply	MDS-CH-CV-55	2	14	_			
unit	MDS-CH-CV-75	2	14	_			
	MDS-CH-CV-110	2	14	_			
	MDS-CH-CV-150	3.5	12	Same as TE1			
	MDS-CH-CV-185	5.5	10	_	4.05.0	40 44	
	MDS-CH-CV-220	8	8		1.25~2	16 ~14	
	MDS-CH-CV-260	14	6	_			
	MDS-CH-CV-300	14	6	_			
	MDS-CH-CV-370	22	4		-		
	MDS-CH-CV-450	22	4	TE2-1: Bar enclosed			
	MDS-CH-CV-550	38	2	TE2-2: Same as TE1	-		
Crain all a	MDS-CH-CV-750	38		Bar enclosed			
Spindle	MDS-CH-SP-15	2	14	_			
drive unit	MDS-CH-SP-37	2	14	_			
	MDS-CH-SP-55	2	14	_			
	MDS-CH-SP-75	2	14	_			
	MDS-CH-SP-110	2	14	Match with TE2 of			
	MDS-CH-SP-150	3.5	12	selected power supply unit			
	MDS-CH-SP-185	5.5	10	_	1.25~2	16 ~14	
	MDS-CH-SP-220	<u> </u>	8	_			
	MDS-CH-SP-260	14	6	_			
	MDS-CH-SP-300	22	6 4	_			
	MDS-CH-SP-370		4				
	MDS-CH-SP-450	22		TE2-1: Bar enclosed			
	MDS-CH-SP-550	38	2	TE2-2: Same as TE1	-		
	MDS-CH-SP-750	50	-	Bar enclosed			
Servo	MDS-CH-V1-05	2	14				
drive	MDS-CH-V1-10	2	14				
unit	MDS-CH-V1-20	2	14	_			
	MDS-CH-V1-35	2	14				
	MDS-CH-V1-45	2	14	Match with TE2 of	1.25~2	16 ~14	
	MDS-CH-V1-70	2	14	selected power supply unit			
	MDS-CH-V1-90	3.5	12				
	MDS-CH-V1-110	5.5	10				
	MDS-CH-V1-150	5.5	10			I	
	MDS-CH-V1-185	8	8				
Servo	MDS-CH-V2-0505	2	14				
drive	MDS-CH-V2-1005	2	14				
unit	MDS-CH-V2-1010	2	14	-1			
(2-axis)	MDS-CH-V2-2010	2	14				
	MDS-CH-V2-2020	2	14	Match with TE2 of	1.25~2	16 ~14	
	MDS-CH-V2-3510	2	14	selected power supply unit			
	MDS-CH-V2-3520	2	14	_			
	MDS-CH-V2-3535	2	14	_			
	MDS-CH-V2-4520	2	14	4			
	MDS-CH-V2-4535	2	14				

(3) 600V bridge polyethylene insulated wire (IC) 105 °C product (Example according to JEAC8001)

 Selection conditions follow IEC/EN60204-1, UL508C, JEAC8001. Ambient temperature is maximum 40°C. Cable installed on walls without ducts or conduits. To use the wire under conditions other than above, check the standards you are supposed to follow. The maximum wiring length to the motor is 30m. If the wiring distance between the drive unit and motor is 20m or longer, use a thick wire so that the cable voltage drop is 2% or less. Always wire the grounding wire.
--

7-2 Selection of main circuit breaker and contactor

The methods for selecting the breaker and contactor connected to the power supply unit are explained in this section. Note that the breaker (wiring breaker) must be installed for each power supply unit.

Circuit protection breaker	If an error occurs in the circuit, the power circuit is cut (shut off) immediately to prevent abnormal overheating or burning of the wiring. This is also called a no-fuse breaker.
Earth leakage breaker	Shuts off the breaker before an earth leakage accident (protects human life) or fire occurs due to an earth leakage.

7-2-1 Selection of earth leakage breaker

When installing an earth leakage breaker, select the breaker on the following basis to prevent the breaker from malfunctioning by the higher frequency earth leakage current generated in the servo or spindle drive unit.

(1) Selection

Obtaining the earth leakage current for all drive units referring to the following table, select an earth leakage breaker within the "rated non-operation sensitivity current".

Usually use an earth leakage breaker for inverter products that function at a leakage current within the commercial frequency range (50 to 60Hz).

If a product sensitive to higher frequencies is used, the breaker could malfunction at a level less than the maximum earth leakage current value.

Unit	Earth leakage current	Maximum earth leakage current
MDS- CH -SP-15 to 750	6mA	15mA
MDS- CH -V1-05 to 185	1mA	2mA
MDS- CH -V2-0505 to 4535	1mA	4mA (for two axes)

Earth leakage current for each unit

(Note1) Maximum earth leakage current: Value that considers wiring length and grounding, etc. (Commercial frequency 50/60Hz)

(Note2) The earth leakage current in the power supply unit side is included in the drive unit side.

(2) Measurement of earth leakage current

When actually measuring the earth leakage current, use a product that is not easily affected by the higher frequency earth leakage current. The measurement range should be 50 to 60Hz.

POINT	 The earth leakage current tends to increase as the motor capacity increases. A higher frequency earth leakage current will always be generated because the inverter circuit in the drive unit switches the transistor at high speed. Always ground to reduce the higher frequency earth leakage current as much as possible. An earth leakage current containing higher frequency may reach approx. several hundreds of mA. According to IEC479-2, this level is not hazardous to the
	hundreds of mA. According to IEC479-2, this level is not hazardous to the human body.

7-2-2 Selection of no-fuse breaker

Select the breaker selection current that is calculated from the rated output and the nominal input voltage as in the expression below. And then select the minimum capacity no-fuse breaker whose rated current meets the breaker selection current.

Breaker selection current [A] = $\frac{\text{No-fuse breaker selection current for 380V input [A]}}{\text{Nominal input voltage [V]}} \times 380 [V]$

Unit type MDS-DH-CV-	37	55	75	110	150	185	220	260	300	370	450	550	750
Rated output	3.7kW	5.5kW	7.5kW	11kW	15kW	18.5kW	22kW	26kW	30kW	37kW	45kW	55kW	75kW
Breaker selection current	8A	12A	16A	24A	33A	40A	48A	56A	65A	80A	98A	119A	163A
Recommended breaker (Mitsubishi Electric Corp.: option part)	NF50- CW3P- 10A	NF50- CW3P- 15A	NF50- CW3P- 20A	NF50- CW3P- 30A	NF50- CW3P- 40A	NF50- CW3P- 40A			NF100- CW3P- 75A			-	-
Rated current of the recommended breaker	10A	15A	20A	30A	40A	40A	50A	60A	75A	100A	100A	125A	200A

Selection of no-fuse breaker for 380V input [A]

Option part: A breaker is not prepared as an NC unit accessory, so purchase the part from your dealer, etc.

-(Example)-

Select a no-fuse breaker for using the MDS-DH-CV-450 with a 480V nominal input voltage. Breaker selection current =98/480 x 380 = 77.6 [A] According to the table above, select "NF100-CW3P-100".

- It is dangerous to share a no-fuse breaker for multiple power supply units, so do not share it. Always install the breakers for each power supply unit.
 If the control power (L11, L21) must be protected, select according to the
 - section "7-3-1 Circuit protection".

7-2-3 Selection of contactor

Select the contactor selection current that is calculated from the rated output and the nominal input voltage as in the expression below. And then select the contactor whose conventional free-air thermal current meets the contactor selection current.

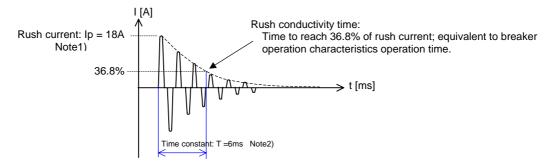
Contactor selection current [A] = Contactor selection current for 380V input [A] Nominal input voltage [V] × 380 [V]

Unit type MDS-CH-CV-	37	55	75	110	150	185	220	260	300	370	450	550	750
Rated output	3.7kW	5.5kW	7.5kW	11kW	15kW	18.5kW	22kW	26kW	30kW	37kW	45kW	55kW	75kW
Contactor selection current	8A	12A	16A	24A	33A	40A	48A	56A	65A	80A	98A	119A	163A
Recommended contactor (Mitsubishi Electric Corp.: option part)	S-N12- AC400V	S-N12- AC400V	S-N12- AC400V	S-N21- AC400V	S-N25- AC400V	S-N25- AC400V	S-N25- AC400V	S-N35- AC400V	S-N50- AC400V	S-N50- AC400V			S-N150- AC400V
Conventional free-air thermal current of the recommended contactor	20A	20A	20A	32A	50A	50A	50A	60A	80A	80A	100A	135A	200A

Option part: A breaker is not prepared as an NC unit accessory, so purchase the part from your dealer, etc.

-(Example)-

Select a contactor for using the MDS-CH-CV-450 with a 480V nominal input voltage. Contactor selection current = $98/480 \times 380 = 77.6$ [A] According to the table above, select "S-N50-AC400V".

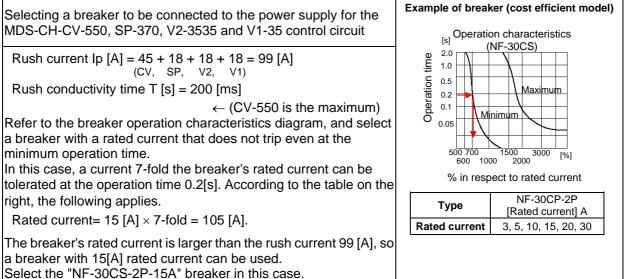

- 1. If the contactor selection current is 20A or less, select the S-N12 product for the contactor.
- 2. Select a contactor whose excitation coil does not operate at 15mA or less.

7-3 Control circuit related

7-3-1 Circuit protector

This breaker is used to switch the power and to provide overload and short-circuit protection at the control circuit.

When connecting a circuit protector or breaker to the power input (TE3 terminals L11 and L21) for the control circuit, use a product that does not trip (incorrectly activate) by a rush current when the power is turned ON. A circuit protector with inertial delay and an operation delayed type breaker are available to prevent unnecessary tripping. Select the product to be used according to the machine specifications. The rush current and rush conductivity time differ according to the power impedance and power ON timing, so select a product that does not trip even under the conditions listed in the following table.



Note1) When using MDS-CH-CV-450 to 750, the rush current is selected with rush current in contactor ON (45A). Note2) When using MDS-CH-CV-450 to 750, the time constant is selected with rush current conductivity time in contactor ON (450/550: 200ms, 750: 260ms).

When collectively protecting the control circuit power for multiple units, select a circuit protector or breaker that satisfies the total sum of the rush current IP. The largest value is used for the rush conductivity time T.

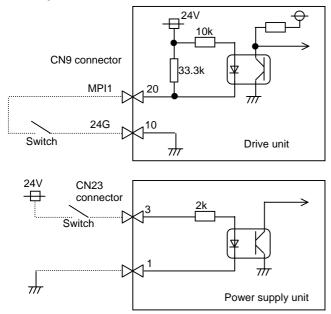
- (Example 1)

7-3-2 Fuse protection

The fuse of branch-circuit protection must use UL class CC, J or T. In the selection, please consider rush current and rush conductive time.

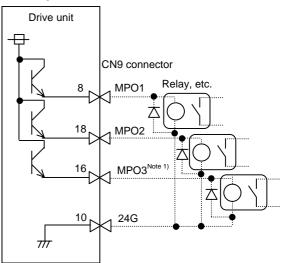
Selection of branch-circuit protection fuse

Connected total of unit	Fuse (C	Wire Size	
	Rated [V]	Current [A]	AWG
1 – 4	600	20	16 to 14
5 – 8	000	35	


For continued protection against risk of fire, replace only with same type 600 V, 20 or 35 A (UL CLASS CC) fuse.

7-3-3 Relays

Use the following relays for the input/output interface (power supply, external emergency stop function: CN23 or CN9.)

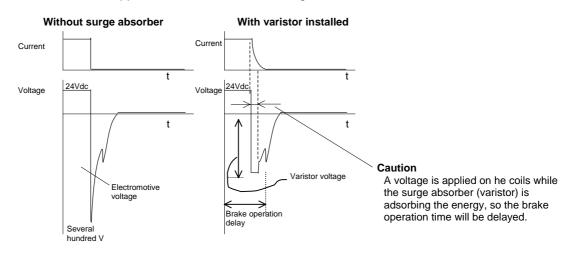

Interface name	Selection example
For digital input signal (CN23, etc.)	Use a minute signal relay (Example: twin contact) to prevent a contact defect. <example></example> OMRON: G2A, G6B type, MY type, LY type
For digital output signal (CN9)	Use a compact relay with rating of 24VDC, 50mA or less. <example></example> OMROM: G6B type, MY type

Input circuit

External contact
ON conditions18VDC to 25.2VDC
9mA or moreExternal contact
OFF conditions4VDC or less
2mA or less

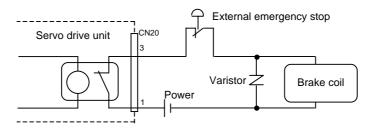
Output circuit

Note 1) MPO3 is not provided with the MDS-CH-V1/V2.


Output voltage	24VDC ±5%
Tolerable output current lo	50mA or less

7-3-4 Surge absorber

When using magnetic brakes, a surge absorber must be installed to protect the relay contact and brakes. Commonly a varistor is used.


(1) Necessity of surge absorber

When the state of the motor's magnetic brakes changes from energized (brakes open) to nonenergized (brakes applied), a large voltage (electromotive voltage) is generated in the coil. This can cause the power unit to fail, and can shorten the life of the relay contacts, etc. A surge absorber must be installed to suppress this electromotive voltage.

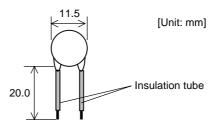
(2) Selection of varistor

When a varistor is installed in parallel with the coil, the surge voltage can be adsorbed as heat and the electromotive voltage can be suppressed to approximately the same level as the varistor voltage. If the varistor voltage is low, the energy consumed as heat increases, so allow for the current passed to the coil during braking and the contact open/close frequency when selecting the varistor. When using a relay for motor breaking, the brake operation time will be delayed if the varistor voltage is extremely low. Always confirm the operation with an actual machine.

Select a varistor with the following or equivalent specifications. To prevent short-circuiting, attach a flame resistant insulation tube, etc., onto the leads as shown in the following outline dimension drawing.

			Rating					Electrostatic	Varistor
Tolerable circuit voltage V 1mA		Surge current withstand level @8/20us (A)		Energy withstand		Maximum average pulse power	Max. limit voltage V 20A	capacity (reference value)	voltage rating (range)
AC (V)	DC (V)	1 time	2 times	10/1000us	2ms	(W)	(V)	(pF)	(V)
75	100	3500	2500	20	14.5	0.4	200	1400	120 (108 to 132)
140	180	3500	2500	39	27.5	0.4	360	410	220 (198 to 242)

Applying a 24VDC voltage onto the coil with CN20 connector


Supplement

If the varistor voltage exceeds 200V, the specifications of the relay in the unit will be exceeded, and the contact life will be shortened.

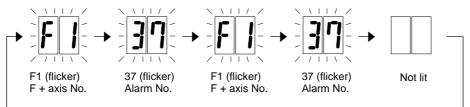
<Example> (These parts cannot be directly ordered from Mitsubishi Electric Corp.)

- ERZV10D121, ERZV10D221 (Matsushita Electric Industrial Co., Ltd.)
 - TNR10V121K, TNR-12G221K (MARCON Electronics Co., Ltd.)

<Outline dimension drawing> ERZV10D121, ERZV10D221

Selection condition : When ON/OFF frequency is 10 times/min or less, and exciting current is 2A or less Normally use a product with 120V varistor voltage. If there is no allowance for the brake operation time, use the 220V product.

8. Troubleshooting


8-1 Points of caution and confirmation	8-2
8-2 Troubleshooting at start up	8-3
8-3 Protective functions list of units	8-4
8-3-1 List of alarms	8-4
8-3-2 List of warnings	8-16
8-3-3 Protection functions and resetting methods	
8-3-4 Parameter numbers during initial parameter error	8-19
8-3-5 Troubleshooting	8-20
8-4 Spindle system troubleshooting	8-39
8-4-1 Introduction	
8-4-2 First step	8-39
8-4-3 Second step	8-40
8-4-4 When there is no alarm or warning	8-41

8-1 Points of caution and confirmation


If an error occurs in the servo drive unit or spindle drive unit, the warning or alarm will occur. When a warning or alarm occurs, check the state while observing the following points, and inspect or remedy the unit according to the details given in this section.

<Points of confirmation>

- 1. What is the alarm code display?
- 2. Can the error or trouble be repeated? (Check alarm history)
- 3. Is the motor and servo drive unit temperature and ambient temperature normal?
- 4. Are the servo drive unit, control unit and motor grounded?
- 5. Was the unit accelerating, decelerating or running at a set speed? What was the speed?
- 6. Is there any difference during forward and backward run?
- 7. Was there a momentary power failure?
- 8. Did the trouble occur during a specific operation or command?
- 9. At what frequency does the trouble occur?
- 10. Is a load applied or removed?
- 11. Has the drive unit been replaced, parts replaced or emergency measures taken?
- 12. How many years has the unit been operating?
- 13. Is the power supply voltage normal? Does the state change greatly according to the time band?

LED display during servo alarm or spindle alarm

LED display during servo warning or spindle warning

	 This power supply unit uses a large capacity electrolytic capacitor. When the CHARGE lamp on the front of the power supply unit is lit, voltage is still present at the PN terminal (TE2). Do not touch the terminal block in this state. Before replacing the unit, etc., always confirm that there is no voltage at the PN terminal (TE2) with a tester or wait at least 15 minutes after turning the main power OFF. The conductivity in the unit cannot be checked. Do not carry out a megger test as the unit could be damaged.
--	---

8-2 Troubleshooting at start up

If the CNC system does not start up correctly and a system error occurs when the CNC power is turned ON, the servo drive unit or spindle drive unit may not have been started up correctly. Confirm the LED display on each unit, and take measures according to this section.

LED display	Symptom	Cause of occurrence	Investigation method	Remedy
AA	the CNC was not	The drive unit axis No. setting is incorrect.	Is there any other drive unit that has the same axis No. set?	Set correctly.
	completed correctly.	The CNC setting is incorrect.	Is the No. of CNC controlled axes correct?	Set correctly.
		Communication with CNC is incorrect.	Is the connector (CN1A, CN1B) disconnected?	Connect correctly.
			Is the cable broken? Check the conductivity with a tester.	Replace the cable.
Ab	Initial communication with the CNC was not carried	The axis is not used, the setting is for use inhibiting.	Is the axis setting rotary switch set to "7" to "F"?	Set correctly.
	out.	Communication with CNC is incorrect.	Is the connector (CN1A, CN1B) disconnected?	Connect correctly.
			Is the cable broken? Check the conductivity with a tester	Replace the cable.
AC	During parameter transmission request	Communication with CNC is incorrect.		
Ad	During parameter conversion request	Communication with CNC is incorrect.	Refer to the remedies for	"Ab"
AE	Unit initialization standby	Communication with CNC is incorrect.		
b[]	READY OFF			
C[]	SERVO OFF			
d[]	SERVO ON	Drive operation preparation c	ompleted (The drive unit is normal)	
9[]	WARNING	Drive unit is incorrect.	Check with the warping No. for th	o targot upit
E[]	WARNING	Drive unit is incorrect.	Check with the warning No. for the target unit.	
			E6: Control axis being removed	
			E7: CNC emergency stop	Remove the cause
F[]	Control axis No. (n = axis No.)			

8-3 Protective functions list of units

8-3-1 List of alarms

When an alarm occurs, the servo drive unit will make the motor stop by the deceleration control or dynamic brake. The spindle drive unit will coast to a stop or will decelerate to a stop. At the same time, the alarm No. will appear on the NC monitor screen and with the LEDs on the front of the drive unit. Check the alarm No., and remove the cause of the alarm by following this list.

No.	Name	Details	Cause of occurrence	Investigation method	Remedy
11	Axis selection error	The rotary switches are set to the same value. Otherwise, the switches are set to an illegal value.	Axis No. setting is incorrect.	Check the axis-No. setting for each unit.	Set correctly.
12	Memory error 1	An error was detected in a	CPU peripheral	Check the repeatability.	Replace the unit.
		memory IC or feedback IC by self-check to be made during the unit power ON.	circuit error	Check the grounding state and ambient temperature.	Improve the ambient environment.
13	Software	Software operation	CPU peripheral	Check the repeatability.	Replace the unit.
	processing error 1	sequence error or operation timing error [Also detected while the control axis is removed.]	circuit error	Check the grounding state and ambient temperature.	Improve the ambient environment.
14	Software	An error was detected in	CPU peripheral	Check the repeatability.	Replace the unit.
	processing error 2	the current processing circuit.	circuit error	Check the grounding state and ambient	Improve the ambient
16			Automotio	temperature.	environment.
16	Magnetic pole position	Starting of the IPM spindle was commanded before	Automatic adjustment has not	Check SP205 = 0: Incomplete/ 1: Completed	Carry out automatic adjustment
	detection error	positioning the magnetic poles.	been completed.	Check whether the unit has been replaced.	Carry out automatic adjustment
17	A/D converter error		CPU peripheral circuit error	Check the repeatability. (Occurs each time the power is turned ON)	Replace the unit.
				Check the grounding state and ambient temperature.	Improve the ambient environment.
18	Motor side detector, initial communication	Initial communication with the detector was not possible.	The detector input connector is disconnected.	Check the connector (CN2) connection. Check the cable connection.	Connect correctly.
	error	[Also detected when the control axis is installed.]	The detector cable is broken.	Replace with the cable for another axis and check the repeatability.	Replace the detector cable.
			Detector fault	Exchange the detector and drive unit for	Replace the parts on
			Drive unit input circuit fault	those of another axis and check the repeatability. (Pinpoint the cause)	the side that caused the alarm.
1A	Machine side detector, initial communication	the detector cannot be performed in the system	The detector input connector is disconnected.	Check the connector (CN3) connection. Check the cable connection.	Connect correctly.
	error	that uses OHA25K-ET or high-speed serial detector as the machine side	The detector cable is broken.	Replace with the cable for another axis and check the repeatability.	Replace the detector cable.
		detector. (Refer to the	Detector fault	Exchange the detector and drive unit for	Replace the parts on
		detector alarms list.)	The unit input circuit is broken.	those of another axis and check the repeatability. (Pinpoint the cause)	the side that caused the alarm.
			The parameters are set incorrectly.	The serial detector bit (SP034/bit8 =1) is valid even through the serial detector is not connected.	Set correctly.
1B	Machine side detector, CPU error 1	In the high-speed serial detector connected with the machine side, an error was detected in the data stored in an EEPROM. (Refer to the detector alarms list.)		Refer to No. "1A".	

No.	Name	Details	Cause of occurrence	Investigation method	Remedy
1C	Machine side detector, EEPROM/LED abnormality	In the linear scale connected with the machine side, an error in an EEPROM was detected. Otherwise, in the high-speed serial detector connected with the machine side, a deteriorated LED was detected.			
1D	Machine side detector, data error	In the high-speed serial detector connected with the machine side, an error (a position error within one rotation) was detected.			
1E	Machine side detector, memory error	In the linear scale connected with the machine side, an error on ROM or RAM was detected. Otherwise, in the high-speed serial detector connected with the machine side, the built-in thermal protector functioned.		Refer to No. "1A".	
1F	Machine side detector, communication error	In the high-speed serial detector connected with the machine side, communication with the detector stopped.			
20	Motor side detector, No signal 1	An error was detected in A, B, Z-phase of the motor side detector, or U, V,	The detector input connector is disconnected.	Check the connector (CN2) connection. Check the cable connection.	Connect correctly.
		W-phase.	The detector cable is broken.	Replace with the cable for another axis and check the repeatability.	Replace the detector cable.
			Detector fault	Exchange the detector and drive unit for those of another axis and check the repeatability. (Pinpoint the cause)	Replace the parts on the side that caused the alarm.
			Drive unit input circuit fault		
			Z phase is not input (Only spindle)	Check whether the Z phase is output within 3 rotations after orientation is started	Replace the PLG.
			The spindle parameter setting is incorrect.	Check that SP037 bit-8 is set to "1".	Set correctly.
21	Machine side detector, No signal 2	An error was detected in the A, B, Z-phase in a servo closed-loop system.	The detector input connector is disconnected.	Check the connector connected with the detector. Check the cable connection.	Connect correctly.
		Otherwise, an error was detected in the A, B,	The detector cable is broken.	Replace with the cable for another axis and check the repeatability.	Replace the detector cable.
		Z-phase in the spindle encoder.	Detector fault Drive unit input	Exchange the detector and drive unit for those of another axis and check the	Replace the parts on the side that caused
			circuit fault	repeatability. (Pinpoint the cause)	the alarm.
			The spindle parameter setting is incorrect.	Check that SP037 bit-8 is set to "0".	Set correctly.
22	LSI error	LSI operation error	Unit fault	Check the repeatability.	Replace the unit.
		[Also detected while the control axis is removed.]		Check the grounding state and ambient temperature.	Improve the ambient environment.

No.	Name	Details	Cause of occurrence	Investigation method	Remedy
23	Excessive speed	Occurs when the difference between the speed	is broken.	Replace with the cable for another axis and check the repeatability.	Replace the detector cable.
de	deflection 1	ection 1 command and motor speed is large.	The spindle parameter setting is incorrect.	Check SP034, 040, 055, 257 and following.	Set correctly.
		Occurs during acceleration/ deceleration.	Measure the forward run \rightarrow	If higher than 12 seconds, increase the value.	Set correctly.
			reverse run time, and reset SP055.	If less than 12 seconds, check the load rate.	Reduce the load.
		Occurs during cutting.	Check the load rate.	If higher than 120%, reduce the load.	Reduce the load.
24	Ground fault	A motor cable ground fault was detected. (Detected after emergency stop have been released.)	Drive unit fault Motor fault	Is the cable sheath damaged?	Replace the unit. Replace the motor.
25	Absolute position lost	The absolute position in the detector was lost.	Battery voltage drop	Check the battery voltage with a test. (Occurs at 3 V or less)	Replace the battery
			The communication cable is incorrectly connected or is disconnected.	Check that the wiring between the unit and battery unit is correct.	Connect correctly.
			The battery line in the detector cable or communication cable is broken.	Check the conductivity with a tester.	Replace or correctly wire the cable.
			The detector cable was disconnected when the power was turned OFF.	After alarm 18 has occurred, correctly connect the detector cable and turn the power ON again.	
26	Unusable axis	A power module error	2-axis unit	Check the repeatability.	Replace the unit.
	error	occurred in the axis set as the unusable axis "F".	dedicated alarm	Check the grounding state and ambient temperature.	Improve the ambient environment.
27	Machine side	An error was detected in	The detector is	Check the repeatability.	Replace the detector.
	detector, CPU error 2	the CPU for the linear scale or serial detector.	faulty.	Check the grounding state and ambient temperature.	Improve the ambient environment.
28	Machine side		The detector is	Check the repeatability.	Replace the detector.
	detector, overspeed	at the power ON. A frequency signal exceeding the tolerable speed was detected.	faulty.	Check the grounding state and ambient temperature.	Improve the ambient environment.
29	Machine side	In the absolute position	Linear scale fault	Check the repeatability.	Replace the detector.
	detector, absolute position data error	linear scale, an error was detected in the circuit.		Check the grounding state and ambient temperature.	Improve the ambient environment.
2A	Machine side	In the incremental position	Linear scale fault	Check the repeatability.	Replace the detector.
	detector, incremental position data error	linear scale, an error was detected in the circuit.		Check the grounding state and ambient temperature.	Improve the ambient environment.
2B	Motor side detector, CPU error 1	Detector internal circuit error	Detector fault	Check the repeatability. Check the ambient environment.	Replace the detector. Review the ambient environment.
2C	Motor side detector, EEPROM/LED error	EEPROM error was detected in the motor side linear scale. Also, the LED in the detector has deteriorated.	Detector fault (life)	Check the repeatability. Check the ambient environment.	Replace the detector. Review the ambient environment.

CAUTION Contact your nearest Service Center when an alarm not shown above occurs.

No.	Name	Details	Cause of occurrence	Investigation method	Remedy
	Motor side detector, data error	Detector position data error	Detector fault	Check the repeatability. Check the ambient environment.	Replace the detector. Review the ambient
2E	Motor side detector, memory error	ROM/RAM error was detected in the motor side linear scale.			environment.
2F	detector,	Communication with the detector was cut off or there was an error in the	The detector input connector is disconnected.	Alarm 18 occurs when the power is turned ON. Check the connector (CN2) connection.	Connect correctly.
	error	received data.	The detector cable is broken.	ble	Replace the detector cable.
			Detector fault	Alarm 18 occurs when the power is turned	Replace the parts on
			Drive unit input circuit fault	ON. Exchange the detector and drive unit for those of another axis and check the repeatability. (Pinpoint the cause)	the side that caused the alarm.
			Cable noise	Is the cable shielded? Is the cable wired in the same conduit as the motor power line?	Review the cable wiring and shield.
			Incorrect grounding	Are the motor grounding and drive unit grounding grounded separately?	Ground the motor and drive unit at one point.
31	Overspeed	d The motor speed exceeded the tolerable value.	The axis specification parameter (rapid) setting is incorrect.	Check the machine specifications.	Set correctly.
			The parameter setting is incorrect.	Check SV001 (PC1), SV002 (PC2), SV018 (PIT), SV025 (MTYP)	Set correctly.
				SP017 (TSP) or SP193 (SPECT) Maximum speed: (SP017) × 1.15 Check Slimit.	
			The speed is overshooting.	Is the speed loop gain too low?	Adjust the gain.
				Is the acceleration/deceleration time constant too short causing the current to be limited?	Increase the acceleration/decele-r ation time constant.
				Is the current limit value too low?	Adjust the limit value.
			Detector fault	Does the alarm occur when the power is turned ON? Change with another axis and check the repeatability.	Replace the detector.
32			The motor power line (U, V, W phase) has a short circuit or ground fault.	Does the alarm occur simultaneously with ready ON? Check the motor cable and connection. Check the conductivity between the cables.	Replace the cable Correct the connection
			Drive unit fault		Replace the unit.
			Motor fault		Replace the motor.
			The parameter setting is incorrect.	Check the setting of SP034, SP040, SP055 and SP257 and following.	Set correctly.
			The power voltage is low.	Is the power voltage 323V or less during the acceleration/deceleration?	Review the power supply capacity.
			Occurs during cutting.	If higher than 120%, reduce the load.	Reduce the load.
			Occurs before movement.	Occurs before READY ON.	Replace the unit.

Contact your nearest Service Center when an alarm not shown above occurs.

No.	Name	Details	Cause of occurrence	Investigation method	Remedy
33		The PN bus voltage exceeded 630V.	The power voltage is high. (550V or more)	Occurs at power ON. Check the power voltage with a tester.	Review the power supply.
		[Also detected while the control axis is	Broken wire to the terminal block.	The TE2 (L+/L–) wiring is faulty or disconnected.	Rewire.
		removed.]	The power voltage waveform distortion is great.	Using a synchroscope, check for abnormalities in the power voltage.	Review the power, and suppress the waveform distortion.
34	Communication or CRC error	There was an error in the communication	The communication cable is broken.	Check the conductivity with a tester.	Replace the cable.
	between NC and drive unit	data from the CNC. [Also detected while the control axis is removed.]	The communication cable connection is incorrect.	Are the communication pair cables connected in reverse?	
		-	The terminal connector fault	Is the terminal connector dislocated?	Check the connection.
		This alarm occurs if the CRC error is detected 20 or more		Replace the terminal connector.	Replace the connector.
		times within 910ms while the error	Battery unit fault	Is the battery unit dislocated?	Check the connection.
		detection is valid.		Replace the battery unit.	Replace the battery.
			The grounding is incomplete.	Check the grounding state.	Correctly ground.
			The communication cable is disconnected	Check the connectors (CN1A, CN1B) (Including other axes)	Connect correctly.
			Incorrect grounding	Are the motor grounding and drive unit grounding grounded separately?	Ground the motor and drive unit at one point.
			Drive unit fault CNC unit fault	Change the connection with that for another drive unit and find the cause.	Replace the unit. Replace the CNC unit.
35	NC command error	The movement command data sent	NC program is incorrect.	Check the program and CNC specifica- tions.	Check CNC unit.
		from the CNC was excessive.		Also refer to No. "34".	
36	Communication or transmission error between NC and drive unit	The communication from the CNC was cut off. [Also detected while the control axis is removed.]		Also refer to No. "34".	
37	Initial parameter error			Check the setting range of the parameter that the error No. have been displayed.	Set correctly.
		parameter No. If there are several error parameters, the most	The HEX setting parameter setting is incorrect.	Check SV025, SV027 and SV036.	Set correctly.
		recent No. is output. [Also detected when the control axis is installed.]	The electronic gears' constant is overflowing.	Check parameters SV001, SV002 and SV018.	If the settings are OK, consult with Mitsubishi.
			ABS was set for an INC detector connected axis.	Check parameters SV017.	Set correctly or replace the detector.
			The drive unit and motor capacities do not match.	Check the corresponding drive unit model for each servomotor in "10. Specifications".	Replace with the correct combination.
			The SHG control option setting is not provided.	Check parameters SV057 and SV058.	Set correctly.
			The adaptive filter option setting is not provided.	Check parameter SV027 bit F.	Set correctly.

No.	Name	Details	Cause of occurrence	Investigation method	Remedy
38		There was an error in the communication data		Check the conductivity with a tester.	Replace the cable.
	drive unit	unit [Also detected while the	The communication cable connection is incorrect.	Are the communication pair cables connected in reverse?	
			The grounding is incomplete.	Check the grounding state.	Correctly ground.
			Drive unit fault	Change the connection with that for	Replace the unit.
			CNC unit fault	another drive unit and find the cause.	Replace the CNC unit.
		There was an error in the communication data	The communication cable is broken.	Check the conductivity with a tester.	Replace the cable
	between NC and drive unit	from the CNC. [Also detected while the control axis is removed.]	cable connection is	Are the communication pair cables connected in reverse?	
			The grounding is incomplete.	Check the grounding state.	Correctly ground.
			Drive unit fault.	Change the connection with that for	Replace the unit.
			CNC unit fault	another drive unit and find the cause.	Replace the CNC unit.
3A	Overcurrent	urrent The servomotor drive current is excessive.	The speed loop gain (VGN1) is excessive.	Is VGN1 higher than the standard value in respect to the load inertia? (The standard VGN1 differs according to the motor. Check "Chapter 4" again.)	Lower VGN1.
				Is vibration occurring?	
			The current loop gain setting is incorrect.	Check the current loop gain.	Set the standard value.
			The inductive voltage compensation gain is high.	Is the current FB exceeding the current command during acceleration/deceleration?	Lower EC.
			The motor power	Is the U, V, W phase connection incorrect?	Connect correctly.
			line connection is	The line is connected to the motor of another axis.	
			The detector cable connection is incorrect.	The detector cable is connected to another axis.	Connect correctly.
			The grounding is incomplete.	Measure the resistance value between drive unit FG and the ground, or the potential difference during operation.	Securely ground.
			Drive unit fault	Check the repeatability.	Replace the unit.
			Detector fault		Replace the detector.
		current was excessive (during motor rotation	The spindle unit's capacity is insufficient.	Check parameter SP039 and the unit capacity.	Set correctly.
		command).	An excessive motor load continued	View the load meter to see whether the motor's maximum output is exceeded.	Reduce the motor load.
			The motor power	Is the U, V, W phase connection incorrect?	Connect correctly.
			line connection is incorrect.	The low-speed and high-speed coils are interchanged.	
		An excessive current flowed during the initial magnetic pole	The spindle unit's capacity is insufficient.	Check parameter SP039 and the unit capacity.	Set correctly.
		estimation for the IPM spindle motor. (When emergency stop was	The motor power line connection is	Is the U, V, W phase connection incorrect?	Connect correctly.
		released after power ON.)	incorrect. The parameter	The low-speed and high-speed coils are interchanged. Check parameter SP268.	Consult with
			setting is incorrect.		Mitsubishi if the setting is correct.

No.	Name	Details	Cause of occurrence	Investigation method	Remedy
3B	Power module The power modul overheat temperature protection functio activated.		the unit power is turned ON again.		If the fan is rotating,
			Check the inner- panel temperature.	Check whether the inner-panel temperature exceeds 55°C.	Lower the inner- panel temperature.
			stopped.	Check whether the cooling fan at the back of the unit is stopped.	Replace the unit or fan.
				Check whether continuous operation exceeding the rating is being carried out.	Change the program. Review the pattern.
				Also refer to No. "32".	
3C	Regenerative circuit error	An error was detected in the regenerative transistor or resistor.	error	Check the resistance value of the regenerative resistor. (Refer to "Chapter 6" for the resistance values.)	Replace the regenerative resistor.
			The regenerative transistor is damaged by a short circuit.	Is the regenerative resistor burned?	Replace the amplifier.
					Review the power supply.
3D	Spindle speed lock	The motor maximum torque command continued for longer than the time set with sp239 while rotating at 45 or higher.	is incorrect.	Check the parameters.	Set correctly.
3E	Spindle speed overrun	The motor rotated more than 10° when a stop command was issued while continuously rotating, exceeding 112.5% of the designated value.		Check the parameters.	Set correctly.
3F	Speed excessive deflection 2	A state exceeding the deflection detection range (sp238) continued for longer than the detection time (sp239).	is incorrect.	Check the parameters.	Set correctly.
40		The changeover signal order is incorrect.	Check TK unit wiring.	Is the connector or wire loose?	Connect correctly.
	Detector changeover unit, communication error	Communication with the TK unit is not correct.	The communication cable is broken.	Check the continuity with a tester.	Replace the cable.
42	Feedback error 1	A feedback pulse skip or Z-phase error was	Detector fault	Check the repeatability. Check the ambient environment.	Replace the detector.
		detected in the detector.		Check for broken wires, and check A, B, Z phase waveform.	Replace the cable.
		The detector's number of pulses and the parameter setting	The detector is incorrect.	Check the detector's number of pulses.	Replace the detector.
		value did not match when positioning the IPM spindle motor's magnetic poles.	The parameter setting is incorrect.	Check parameter SP263/327.	Set correctly.
43	Feedback error 2	Excessive difference was detected in the feedback amount between the motor side detector and the machine side detector. Otherwise a feedback IC error was detected.	Detector fault	Check the repeatability. Check the ambient environment.	Replace the detector. Review the ambient environment.

No.	Name	Details	Cause of occurrence	Investigation method	Remedy
	C-axis changeover alarm	When using a coil changeover motor, the C-axis was controlled with the H coil.	Check the wiring.	Is the connector or connection disconnected?	Correctly connect.
46	Motor overheat	motor was detected.	The ambient temperature is high.	Check the ambient temperature.	Improve the ambient environment.
		The detector or motor's built-in thermal protector activated. (Activated at 100°C)	The motor load is large.	OFF and performed the forced reset to release the overload alarm (50)?	Review the operation pattern.
10		``````````````````````````````````````		Is the load too large?	
48		The CPU in the absolute position linear scale is not	Detector fault	Check the repeatability. Check the ambient environment.	Replace the detector.
		operating correctly.	The cable is broken.	Check the connection	Replace the cable.
49		A speed exceeding 45m/s was detected when the power was turned ON.	Detector fault	Check the repeatability. Check the ambient environment.	Replace the detector.
		An error was detected in the scale or scale's circuit.	Detector fault	Check the repeatability. Check the ambient environment.	Replace the detector.
	Incremental position detection circuit error	An error was detected in the scale or scale's circuit.	Detector fault	Check the repeatability. Check the ambient environment.	Replace the detector.
	Current error during magnetic pole detection	A current was not detected during initial magnetic pole	The spindle unit's capacity is insufficient.	Check parameter SP039 and the unit capacity.	Set correctly.
		estimation of the IPM spindle motor. (When emergency stop was released	connection is incorrect.	Is the U, V, W phase connection incorrect?	Connect correctly.
				The low-speed and high-speed coils are interchanged.	
		after power ON.)		The motor power line is cut off	
			The parameter setting is incorrect.	Check parameter SP268.	Consult with Mitsubishi if the setting is correct.
50	Overload 1	An excessive load was applied for longer than		Review the motor capacity selection.	Change the motor or drive unit capacity.
		the set time.	released.	Check the brake operation. • Check the brake relay. • Check the connector (CN3) connection.	Repair the faulty section.
			being applied from the machine.		Replace the faulty section in the machine.
				Is there interference?	Check the structure.
			is incorrect.	Are SV021 and SV022 set to the standard values? Check the setting of SP034, SP040, SP055, SP063, SP064, SP257 and following.	Set the standard values.
				Check whether the load meter is exceeding the motor's maximum output in the locked state.	Unlock the spindle.

CAUTION Contact your nearest Service Center when an alarm not shown above occurs.

No.	Name	Details	Cause of occurrence	Investigation method	Remedy
51	Overload 2	An excessive load was applied for longer	The machine was collided with.	Visually check whether there was a collision with the machine.	Check the cause of the collision.
		than the set time.		Is there interference?	Check the structure.
			The motor cable connection is incorrect.	 Check the motor power line (U, V, W). Is the U, V, W phase order correct? The power line is not connected. Is the cable connected to the motor for another axis? 	Connect correctly.
			Detector fault	Change the detector for that of another axis and check the repeatability.	Replace the detector.
			The detector connection is incorrect.	Check the connection.	Connect correctly.
52	Excessive error 1	The actual motor position and model	The speed loop gain (VGN1) is small.	Is the motor speed fluctuating?	Adjust the gain.
		position difference was excessive. The position tracking	The motor load is too large.	Is the acceleration/deceleration time constant too short?	Adjust the parameters.
		error exceeds the specified value.		The current limit value is too low and a sufficient torque is not output.	
				The motor brake cannot be released?	Repair the brake circuit.
			The motor is demagnetized.	Remove the motor, and check that it rotates smoothly. (CNC motor)	Replace the motor.
			The excessive error detection width is too small.	Check the SV023 (SV053) setting value.	Adjust the parameters.
			Occurs during orientation.	Check SP097 (SPECO), and double the SP001 and SP00 values, or half the SP006 value.	Set correctly.
			Occurs during spindle synchronization.	Check SP177 (SPECS) bit 5. Check SP010 (PGS).	Set correctly.
			Occurs during synchronous tapping.	Check SP193 (SPECT) bit 5. Check SP009 (PGT).	Set correctly.
			The input voltage is low.	Is the input voltage 323V or less, or near 323V? Is the input voltage unstable?	Check the power supply. Increase the acceler- ation/deceleration time constant.
			The motor cable connection is incorrect.	Check the motor power line (U, V, W).Is the U, V, W phase order correct?Is the cable connected to the motor for another axis?	Connect correctly.
			Detector fault	Change the detector for that of another axis and check the repeatability.	Replace the detector.
			The detector connection is incorrect.	Check the connection.	Connect correctly.
53	pos	The actual motor position and model position difference	The excessive error detection width is too small.	Check the SV026 setting value.	Adjust the parameter.
		was excessive.	The CNC has stopped the follow up function.	Check the NC parameters.	
54	Excessive error 3	When an excessive error 1 is detected, no motor current flows.	Excessive error 1	Reinvestigate the causes of excessive error 1.	Set correctly.
55	External emergency stop error	ernal There is no contactor shutoff command	Main emergency stop (sequence input) error	Check the emergency stop input and sequence program.	Improve the emergency stop sequence.
	extern stop. [Also c the co		The parameter setting is incorrect.	Check the setting of the SV036 external emergency stop selection.	Set correctly.

No.	Name	Details	Cause of occurrence	Investigation method	Remedy
58	Collision detection 1 G00	ction 1 (G0), the disturbance	The machine collided.	Check the machine and workpiece state.	Check the program. Check the overtravel setting.
			The machine friction increased.	The machine was stopped for a long time.	Check the repeatability.
				This can occur easily in the morning during the winter.	Readjust the detection level.
			The detection level is too low.	Set the detection level to approx. 1.5 times the maximum disturbance torque, and provide an allowance.	
59	Collision detection 1	During cutting traverse (G1), the	The machine collided.	Check the machine and workpiece state.	Same as ALM58.
	G01	disturbance torque exceeded the collision detection level.	The detection level is too low.	Check the maximum cutting load.	Set to above the maximum cutting load.
5A	Collision detection 2	The command torque reached the motor's	The machine collided.	Check the machine and workpiece state.	Same as ALM58.
		maximum torque.	The machine friction increased.	The machine was stopped for a long time.	Check the repeatability.
				This can occur easily in the morning during the winter.	Increase the acceleration/decele-
			The acceleration/	Check the current during acceleration.	ration time constant.
			deceleration time constant is too small.	The time constant cannot be increased.	Set to detection ignoral.
5C	Orientation feedback error	ack error during orientation stop	Checking of the parameters failed.	Check the SP114 (OPER) setting.	Set correctly.
		exceeded the parameter setting value.	The cable is broken.	Check the encoder cable and shield.	Change the wiring.
5D	Speed monitor/ input mismatch	The DI input for speed monitor differs from	The cable is broken.	Check the DI input wiring.	Correctly wire.
	p at internation	the state from the NC.	The unit is faulty.	Check the repeatability.	Replace the unit.
5E	Speed monitor/ feedback error	The specified speed was exceeded while monitoring the speed.	Check the investigation items for No. "2F".		
61	Power module overcurrent	The power supply unit IPM detected an overcurrent.	The unit is faulty.	Check the repeatability.	Replace the unit.
62	Frequency error	The input power frequency is not within the specifications.	The input power is faulty.	Check the frequency input to the power supply unit.	Improve the power related matters.
67	Phase failure	A fault occurred in the 3-phase input voltage.		Check the voltage input to the power supply unit.	Improve the power related matters.
68	Watch dog	The power supply unit	The unit is faulty.	Check the repeatability.	Replace the unit.
		cannot operate correctly.	The grounding is incomplete.	Check the grounding state.	Correctly ground.
69	Ground fault	There is a ground fault in the motor or unit	The motor is faulty.	The insulation across the motor UVW terminals and ground is $100k\Omega$ or less	Replace the motor and cable.
			Oil entered the motor	A large amount of oil has contacted the motor or cannon connector	Clean the connector, and study measures to prevent oil adhesion
			The unit is faulty.	The insulation across the unit UVW terminals and ground is less than $100 k\Omega$	Replace the drive unit.
				The insulation across the motor UVW terminals and ground is $100k\Omega$ or more	Replace the power supply unit.
6A	External contactor melting	The external contactor has melted.	The contactor has melted.	Check the contactor contact melting.	Replace the contactor.
			The parameter setting is incorrect.	Check SV036 (PTYP) (Set only for the axis actually controlling the contactor.)	Correct the parameter setting.
			The unit is faulty.	A short-circuit or infinite value was detected when measured across P(N)- L1, 2, 3 with a tester.	Replace the unit.

No.	Name	Details	Cause of occurrence	Investigation method	Remedy
6C	Main circuit error	Main circuit capacitor charging error	The unit is faulty.	Check the repeatability.	Replace the unit.
6E	Memory error	An error was detected in the power supply unit's internal circuit.	The unit is faulty.	Check the repeatability. Check the working environment.	Replace the unit.
6F	Power supply error	An error was found in the power supply unit's A/D converter, or emergency stop from the NC cannot be detected.	The unit is faulty.	Check the repeatability.	Replace the unit.
71	Instantaneous power failure/	The power failed instantly for 55ms or	The power supply connection is poor.	Is the connector or connection disconnected?	Correctly connect.
	external emergency stop	more. The external contactor turned OFF.	The power supply state is poor.	Has lightning struck (the weather changed)?	Improve the power related matters.
				The power related matters are poor in the working area.	
75	Overvoltage	The voltage across	The drive unit is faulty.	Check the repeatability.	Replace the unit.
		L+/L– exceeded 820VDC.	The grounding is incomplete.	Check the grounding state.	Correctly ground.
76	External emergency stop setting error	The power supply unit's setting rotary switch and parameters do not match.	The parameter setting is incorrect.	Check SW1 and SV036/SP041 (PTYP).	Set correctly.
77	Power module overheat	odule The power module's temperature protection function activated.	Check the time when the unit power is turned ON again.	Assuring more than 10 seconds for the time from when the power is turned OFF till when it is turned ON, turn the unit power ON again, and check the rotation speed of the fan.	If the fan is rotating, continue to use.
			Check the inner-panel temperature.	Check whether the inner-panel temperature exceeds 55°C.	Lower the inner-panel temperature.
			The cooling fan is stopped.	Check whether the cooling fan at the back of the unit is stopped.	Replace the unit or fan.
			Check the operation state.	Check whether continuous operation exceeding the rating is being carried out.	Change the program.
7F	Power reboot request	Start software selection error E ² ROM data error	Refer to the investigation methods for ala		o. "75"
80	HR unit, connection error	The connection to the MDS-B-HR unit is incorrect.	The power supply connection is poor.	Is the connector or connection disconnected?	Correctly connect.
81	HR unit, HSS error	An error occurred in the communication	The power supply connection is poor.	Is the connector or connection disconnected?	Correctly connect.
		between the MDS-B- HR unit and scale.	HR unit is faulty.	The error is not eliminated even when the wiring is changed with that for another unit.	Replace the HR unit.
			The grounding is incomplete.	Check the grounding state.	Correctly ground.
83	HR unit, scale judgment error	The MDS-B-HR unit could not judge the	The power supply connection is poor.	Is the connector or connection disconnected?	Correctly connect.
		connected linear scale.	Detector fault	Check the repeatability.	Replace the detector.
84	HR unit, CPU	The MDS-B-HR unit	HR unit is faulty.	Check the repeatability.	Replace the HR unit.
	error	CPU is faulty.		The error is not eliminated even when the wiring is changed with that for another unit.	Replace the HR unit.
			Drive unit fault	The error is eliminated when the wiring is changed with that for another unit.	Replace the drive unit.
			The grounding is incomplete.	Check the grounding state.	Correctly ground.

No.	Name	Details	Cause of occurrence	Investigation method	Remedy
85	HR unit, data	An error was found in	HR unit is faulty.	Check the repeatability.	Replace the HR unit.
	error	the MDS-B-HR unit's analog interpolation data.		The error is not eliminated even when the wiring is changed with that for another unit.	Replace the HR unit.
			The grounding is incomplete.	Check the grounding state.	Correctly ground.
86			HR unit is faulty.	Check the repeatability.	Replace the HR unit.
	pole error	the magnetic pole data for the MDS-B- HR unit.	The grounding is incomplete.	Check the grounding state.	Correctly ground.
88	Watch dog	The drive unit did not	Drive unit fault	Check the repeatability.	Replace the unit.
		operate correctly. [Also detected while the control axis is removed.]	The grounding is incomplete.	Check the grounding state.	Ground correctly.
89	HR unit, connection error (SUB)	The connection to the MDS-B-HR unit on the SUB side is incorrect.	The power supply connection is poor.	Is the connector or connection disconnected?	Correctly connect.
8A	connection error (SUB)	was detected between the MDS-B-HR unit on the SUB side and scale.	The power supply connection is poor.	Is the connector or connection disconnected?	Correctly connect.
			HR unit is faulty.	The error is not eliminated even when the wiring is changed with that for another unit.	Replace the HR unit.
			The grounding is incomplete.	Check the grounding state.	Correctly ground.
8C	HR unit, scale recognition error (SUB)	The MDS-B-HR unit on the SUB side did not recognized the connected linear scale.	The power supply connection is poor.	Is the connector or connection disconnected?	Correctly connect.
			Detector fault	Check the repeatability.	Replace the detector.
8D	HR unit, CPU	The CPU of MDS-B-	HR unit is faulty.	Check the repeatability.	Replace the HR unit.
	s			The error is not eliminated even when the wiring is changed with that for another unit.	Replace the HR unit.
			Drive unit is faulty.	The error is eliminated when the wiring is changed with that for another unit.	Replace the drive unit.
			The grounding is incomplete.	Check the grounding state.	Correctly ground.
8E	HR unit, data error (SUB)		HR unit is faulty.	Check the repeatability.	Replace the HR unit.
			The grounding is incomplete.	Check the grounding state.	Correctly ground.
8F	HR unit, magnetic polarity error (SUB)	In MDS-B-HR unit on the SUB side, an error was detected in the	HR unit is faulty.	Check the repeatability.	Replace the HR unit.
			The grounding is incomplete.	Check the grounding state.	Correctly ground.

8-3-2 List of warnings

When a warning occurs, a warning No. will appear on the NC monitor screen and with the LEDs on the front of the drive unit. Check the warning No., and remove the cause of the warning by following this list.

r	i		i	i	1
No.	Name	Details	Cause of occurrence	Investigation method	Remedy
90	Detector, initial communication error	Initial communication with the absolute position linear scale cannot be performed.	Detector error	Check the repeatability	Replace the detector.
91	Detector, communication error	The absolute position data could not be transmitted correctly from the OHA type detector or low- speed absolute position linear scale.		Check the installation and wiring lead-in methods.	Change the wiring path.
92	Detector, protocol error	There was an illegal format data in the serial data.			
93	Initial absolute position fluctuation	The position data fluctuated when creating the initial absolute position.	dropped when the CNC power was turned ON.	Check the state of the axis when the CNC power was turned ON.	Repair the fault section.
			The axis moved due to an external force when the CNC power was turned ON.		
96	MP scale feedback error	There is an excessive difference in the feedback amount between the motor side detector and the MP scale.	Refer to the MP scale specific	ations.	
97	MP scale offset error	An error was detected in the data to be read by CNC power ON.			
9E	Absolute position detector, multi- rotation counter error	There was an error in the data of the multi-rotation counter in the detector.	Detector fault	Check the repeatability.	Replace the detector.
9F	Battery voltage drop	The battery voltage dropped. To protect the absolute position data, do not turn OFF the control	Battery life	The battery life is approx. 5 years. (This will change according to the usage state.)	Replace the battery.
		power (L11, L21) to the servo drive unit when this warning is	The battery connector (in the drive unit) is disconnected.	Open the panel at the top of the drive unit and check.	Connect correctly.
		detected.	The battery line in the detector cable is broken.	Check the conductivity with a tester.	Replace the cable.
E1	Overload warning	The load level reached 80% or more.	Refer to the alarm No. 50 "Ov	erload 1".	
E3	Absolute position counter warning	A deviation was detected in the absolute position data and relative position data	There is an error in the detector's multi-rotation data	Check the movement of the multi-rotation data (Rn) from the NC monitor screen.	
E4	Parameter error warning	A parameter exceeding the setting range was set.	The parameter setting range is not within the range.	Check the parameter setting conditions.	Set correctly.
E6	Control axis removal warning	Control axis removal was commanded. (Status display)	Control axis removal was input from the CNC unit sequence.	The control axis removal ha correctly.	as been input
E7	CNC emergency stop	Emergency stop was input from the CNC. (Status display)	The CNC emergency stop has been input.	The CNC emergency stop h correctly.	nas been input
			An alarm has occurred with another axis.	Has an alarm occurred with another axis?	Reset the alarm in the other axis to cancel this warning.
			The terminal resistor or battery unit connector is disconnected.	Check the connection of the CNC communication line cable (CN1A, CN1B).	Connect correctly.
E9	Instantaneous power failure warning	The power was shut off for 25ms or more, 50ms or less	Refer to the alarm No. 71 "Ins	tantaneous power failure".	
EA	External emergency stop	External emergency stop (CN23 connector input) was input.	Only CN23 of the power supply emergency stop.	y unit was input without input	tting the CNC unit

8-3-3 Protection functions and resetting methods

The following alarm and warning indications are provided as functions to protect the unit.

The methods for resetting the alarms and warnings include turning the power OFF and ON, and using resetting operations.

No.	Name	Deceleration method	Reset method	Explanation
11	Axis selection error	Dynamic	AR	
12	Memory error 1		AR	
13	Software processing error 1	Dynamic	PR	
14	Software processing error 2	Dynamic	PR	
15	Memory error 2	Initial error	AR	
16	Magnetic pole position detection error		PR	
17	A/D converter error	Dynamic	PR	
10	Motor side detector, initial communication error	Initial error	PR	
	Machine side detector, initial communication error		PR	
	Machine side detector, CPU error 1		PR	
	Machine side detector, EEPROM/LED abnormality		PR	
1D	Machine side detector, data error		PR	
	Machine side detector, memory error		PR	
	Machine side detector, communication error		PR	
20	Motor side detector, No signal 1		PR	
	Machine side detector, No signal 2		PR	
22	LSI error	Dynamic	AR	
23	Excessive speed deflection 1		PR	
24	Ground fault	Dynamic	PR	
25	Absolute position lost	Initial error	AR	
26	Unusable axis error		PR	
27	Machine side detector, CPU error 2		PR	
28	Machine side detector, overspeed		PR	
29	Machine side detector, absolute position error		PR	
	Machine side detector, incremental position error		PR	
2B	Motor side detector, CPU error 1	Initial error	AR	
	Motor side detector, EEPROM/LED error	Deceleration control	PR	
2D	Motor side detector, data error	Dynamic	PR	
2F	Motor side detector, serial detector communication error	Dynamic	PR	
	Overspeed	Deceleration control	PR	
	Power module overcurrent	Dynamic	PR	
	Overvoltage	Dynamic	PR	
	Communication or CRC error between NC and drive unit	Deceleration control	PR	
	NC command error	Deceleration control	PR	
36	Communication or transmission error between NC and drive unit	Deceleration control	PR	
	Initial parameter error	Initial error	PR	
	Communication or protocol error 1 between NC and drive unit	Deceleration control	PR	
39	Communication or protocol error 2 between NC and drive unit	Deceleration control	PR	
ЗA	Overcurrent	Dynamic	PR	
3B	Power module overheat		PR	
3C	Regeneration circuit error	Dynamic	AR	
	Spindle speed Lock		PR	
	Spindle speed overrun		PR	
3F	Speed excessive deflection 2		PR	
	Detector changeover unit, changeover error		PR	
41	Detector changeover unit, communication error		PR	
42	Feedback error 1		PR	

No.	Name	Deceleration method	Reset method	Explanation
	Feedback error 2		PR	
44	C-axis changeover alarm		NR	
40	Motor overheat Thermal error	Deceleration control	NR	NR and PR reset cannot be carried out when the motor is overheated.
	Initial magnetic pole detection		NR	
4E	NC command mode error		NR	
50	Overload 1	Deceleration control	NR	NR or PR reset is not possible when the load level is 50% or more. Do not reset (AR) forcibly by turning off the drive unit. If AR is carried out at 50% or more, 80% will be set at the next time the power is turned ON.
51	Overload 2	Dynamic	NR	
52	Excessive error 1		NR	
53	Excessive error 2	Dynamic	NR	
54	Excessive error 3		NR	
55	External emergency stop error	Dynamic	NR	Forcibly turn the contactor OFF.
58	Collision detection 1 G00	Deceleration control	NR	After detecting a collision, the axis will decelerate and
59	Collision detection 1 G01	Deceleration control	NR	stop at 80% of the motor's maximum torque or the servo parameter current limit value (torque limit value),
5A	Collision detection 2	Deceleration control	NR	whichever is smaller.
5C	Orientation feedback error		NR	
5D	Speed monitor/input mismatch		PR	
-	Speed monitor/feedback error		PR	
	External contactor melting	At ready ON	NR	Detected at the rising edge of ready ON
	Power module overcurrent	At ready ON	PR	Delected at the fising edge of ready ON
			PR	
	Frequency error Phase failure		PR	
			AR	
	Watch dog Ground fault		PR	
	External contactor melting		PR	
-			PR	
	Main circuit error		AR	
	Memory error			
	Power supply error		AR	
	Instantaneous power failure/external emergency stop		NR	
75	Overvoltage		NR	Reset the alarm after the L+/L- voltage has dropped below the power voltage (after five or more minutes have elapsed).
76	External emergency stop setting error		AR	
	Power module overheat		AR	
7F	Power reboot request		AR	
	Watch dog	Dynamic	AR	
90	Detector, initial communication error		PR	
91	Detector, communication error		*	
	Detector, protocol error		*	
	Initial absolute position fluctuation		PR	
96	MP scale feedback error		*	
	MP scale offset error	The motor will not	PR	
9E	Absolute position detector, multi- rotation counter error	stop.	*	
9F	Battery voltage drop		*	
E0	Over-regeneration warning		*	
E1	Overload warning		*	
E3	Absolute position counter warning		*	
E4	Parameter error warning		*	
E7	CNC emergency stop	Dynamic	*	
	Instantaneous power failure warning	The motor will not stop.	NR	When the instantaneous warning occur, use NR reset. The state will also be reset automatically after 5 minutes.
	External emergency stop		*	
	celeration method			

 Deceleration method Deceleration control :

Dynamic • Reset method

thod
trol : The motor will be decelerated and controlled with the time constant set in the servo parameter (SV056).
: If dynamic brake stop is selected with the servo parameters (SV055, 056), the motor will stop with the dynamic brakes.
: The unit will be automatically reset when the state in which the warning occurred is canceled.
NR : Reset with the CNC reset button. Resetting is also possible with the PR or AR resetting conditions.
PR : Reset by turning the CNC power ON again. Resetting is also possible with the AR resetting conditions.
Resetting while the control axis is removed is possible with the CNC unit reset button. (Note that alarm 32, 37 and warning 93 are excluded) are excluded.) AR : Reset by turning the power supply unit on servo/spindle drive unit power ON again.

8-3-4 Parameter numbers during initial parameter error

If an initial parameter error (alarm 37) occurs, the alarm and the number of the parameter that may be set incorrectly will appear on the CNC Diagnosis screen. The method of displaying this information on the CNC differs according to the CNC Series and screen size, so refer to the Instruction Manual and Operation Manual for each Series.

S02 Initial parameter error	[][][][]	[]
		Axis name display

If a number larger than the parameter number is displayed for the servo drive unit, the alarm is occurring for several related parameters. Refer to the following table, and correctly set the parameters.

No.	Details	Related parameter
69	The CNC setting maximum rapid traverse rate value is incorrect. The CNC system software may be illegal. Turn the power ON again.	NC setting rapid
71	The CNC setting maximum cutting speed setting value is incorrect. The CNC system software may be illegal. Turn the power ON again.	NC setting clamp
101	The following settings are overflowing. • Electronic gears • Position loop gain • Speed feedback	SV001, SV002 SV003, SV018 SV019, SV020 SV049
102	The absolute position detection parameter is valid when OSE104 and OSE105 are connected.	SV017, SV025
103	The servo option is not available. The closed loop or dual feedback control function is set.	SV025, SV017
104	The servo option is not available. The SHG control function is set.	SV057, SV058
105	The servo option is not available. The adaptive filter function is set.	SV027
106	The servo option is not available. The MP scale absolute position function is set.	SV017
107	The dual-axis control is executed. Or, the rotary motor setting is applied. The high-speed processing mode function is dedicated for the linear motor single-axis control.	SV017
108	The valid/invalid setting of the 4th or 5th notch filter is changed from the initial setting.	SV087, SV088

8-3-5 Troubleshooting

Follow this section to troubleshoot the main alarms that occur during start up or while the machine is operating. Also, refer to the explanations in section "8-3-1 List of alarms".

[Alarm/warning check timing]

f1: When servo drive unit power is turned ON

f2: When CNC power supply is turned ON (emergency stop ON)

f3: During normal operation (servo ON)

f4: During axis removal (ready ON, servo OFF)

(Note) Note that warning "93" could occur even when the axis is reinstalled after removal.

	Alarm No.	Memory error:			Alar	m che	eck tir	ning			
	12	Error in drive unit mem	ory IC (SRAM, FROM)		f1	f2	f3	f4			
					0	-	-	-			
	Investi	gation details	Investigation results	Remedies							
1	Check the repea	tability.	The error is always repeated.	Replace the drive unit.							
			The state returns to normal once, but occurs sometimes thereafter.	Investigate item 2.							
2	Check if there is	any abnormality in the	No abnormality is found in particular.	Replace the drive u	init.						
	unit's ambient er (Ex. Ambient ten grounding)		An abnormality was found in the ambient environment.	the abnormality. Ex. High temperatu	5						

	Alarm No.	Software process error				m ch	eck tir	ning
	13	The driver's software po IT process was carried	rocessing time did not end within the specifion out.	ed time, or an illegal	f1 _	f2 0	f3 O	f4 O
	Invest	igation details	Investigation results	Ren	nedie	s	1	
1	Check whether to version was cha	the servo software anged recently.	The version was changed.	Try replacing with the drive unit cont the original software version.			t conta	ining
			The version was not changed.	Investigate item 2.	Investigate item 2.			
2	Check the repea	atability.	The error is always repeated.	Replace the drive u	nit.			
			The state returns to normal once, but occurs sometimes thereafter.	Investigate item 3.				
3	Check if there is	any abnormality in the	No abnormality is found in particular.	Replace the drive up	nit.			
	unit's ambient e (Ex. Ambient ter grounding)	nvironment. mperature, noise,	An abnormality was found in the ambient environment.	Take remedies acco the abnormality. Ex. High temperature	0	: Ch	e caus eck th	е
				Incomplete grou	unding			

	Alarm No.	Software processing er	ror 2:		Alar	m che	eck tir	ning	
	14	The current loop proces the specified time.	ess, of the driver software processing times, did not end within			f2	f3	f4 0	
	Invest	igation details	Investigation results	Rer	OO Remedies				
1	Check whether t version was cha	the servo software nged recently.	The version was changed.	Try replacing with the drive unit the original software version.			t conta	ining	
			The version was not changed.	Investigate item 2.					
2	Check the repea	atability.	The error is always repeated.	Replace the drive unit.					
			The state returns to normal once, but occurs sometimes thereafter.	Investigate item 3.					
3		any abnormality in the	No abnormality is found in particular.	Replace the drive u	nit.				
		nvironment. nperature, noise,	An abnormality was found in the ambient environment.	the abnormality. Ex. High temperature : Ct co Incomplete grounding : Ac			e caus	es of	
	grounding)						eck th bling fa	an.	
							ditiona ound.	ally	

	Alarm No.	A/D converter error:			Alar	m che	eck tir	ning			
	17	There is an error in the	e drive unit's A/D converter.			f2	f3	f4			
	_				-	0	-	-			
	Investi	gation details	Investigation results	Rer	nedie	s					
1	Check the repea	itability.	The error is always repeated.	Replace the drive unit.							
			The state returns to normal once, but occurs sometimes thereafter.	0							
2		any abnormality in the	No abnormality is found in particular.	Replace the drive u	nit.						
		it's ambient environment. x. Ambient temperature, noise, bunding) An abnormality was found in the ambient the abnormality. Ex. High temperature									
Incomplete groundir					unding	,	ditiona und.	ally			

	Alarm No.	Initial communication e	rror:		Alar	m che	eck tir	ning
	18	Initial communication w speed serial detector fo	as not possible with the detector in the sys or the motor side.	stem using a high-	f1 _	f2 0	f3 _	f4 _
	Investi	gation details	Investigation results	Rei	medie	s		
1		parameter (SV025)	The value is not set correctly.	Correctly set VO20	ectly set VO205.			
	setting value.		The value is set correctly.	Investigate item 2.				
2	33	ectors by hand to check	The connector is disconnected (or loose).	Correctly install.				
	whether the dete unit side and det disconnected.	ector connectors (drive tector side) are	The connector is not disconnected.	Investigate item 3.				
3		OFF, and check the	There is a connection fault.	Replace the detect	or cab	e.		
	detector cable co	onnection with a tester.	The connection is normal.	Investigate item 4.				
4		her normal axis driver,	The alarm is on the driver side.	Replace the drive u	init.			
	and check wheth driver side or de	ner the fault is on the tector side.	The alarm is on the detector side.	Investigate item 5.				
5		any abnormality in the	No abnormality is found in particular.	Replace the detected	or.			
	unit's ambient er (Ex. Ambient ten grounding)	nvironment. nperature, noise,	An abnormality was found in the ambient environment.	Take remedies acc the abnormality. Ex. High temperatu Incomplete gro	ire	: Ch coo g : Ade	e caus eck the bling fa ditiona	e an.

1A Initial communication was not possible with the detector in the system using a					m che	eck tir	ning
1A Initial communication was not possible with the detector in the system using a high-speed serial detector for the machine side.				f1	f2	f3	f4
	nigh-speed senal delec	tor for the machine side.		-	0	-	-
Investi	igation details	Investigation results	Remedies				
Check the alarm	No. "18" items.						

	Alarm No.	CPU error (SUB):			Alar	m che	eck tir	ning		
	1B	An error was detected i scale connected to the	n the data stored in the EEPROM of an abs machine side.	solute position linear	f1	f2	f3	f4		
	Invest	igation details	Investigation results	Ren	- nedie	o s	0	0		
1	-	the connector on the	The connector is disconnected (or loose).	Correctly install.						
	drive unit side o disconnected.	r scale side is	The connector is not disconnected.	Investigate item 2.						
2		OFF, and check the	There is a connection fault.	Replace the detector cable.						
	detector cable c	onnection with a tester.	The connection is normal.	Investigate item 3.						
3	Connect to anot	her normal axis driver,	The alarm is on the driver side.	Replace the drive u	nit.					
	and check wheth drive unit side of	her the fault is on the r scale side.	The alarm is on the absolute position linear scale side.	Investigate item 4.						
4	Check if there is	any abnormality in the	No abnormality is found in particular.	Replace the absolut	e pos	ition li	inear s	scale.		
	unit's ambient en (Ex. Ambient ter grounding)	nvironment. nperature, noise,	An abnormality was found in the ambient environment.	ient Take remedies according to the cau the abnormality. Ex. High temperature : Check t cooling Incomplete grounding : Additior ground.						

Alarm No. EEPROM/LED error (SUB):					Alar	m che	eck tir	ning
	1C		n the EEPROM of an absolute position lir	in absolute position linear position linear			f3	f4
		scale connected to the	machine side.		-	0	0	0
	Investigation details		Investigation results	Rei	Remedies			
1	Check the alarm No. "1B" items.							

Γ	Alarm No.					Alarm check timing			
	1D An error was detected within one rotation position of an absolute position linear position linear scale connected to the machine side.				f1	f2	f3	f4	
	position linear scale connected to the machine side.					0	0	0	
	Investigation details		Investigation results	Remedies					
1	Check the alarm	No. "1B" items.							

Γ		/				Alarm check timir				
			A ROM/RAM error was machine side.	OM/RAM error was detected in the absolute position linear scale connected to the			f2	f3	f4	
					I	0	0	0		
		Investigation details		Investigation results	Ren	nedie	s			
	1	Check the alarm No. "1B" items.								

	Alarm No.	Serial detector commun				Alarm check timing				
	1F Communication was cut off with the detector in the absolute position scale connected to the machine side.				f1	f2	f3	f4		
			Ι	0	0	0				
	Investi	gation details	Investigation results	Rer	nedie	s				
1	Check items 2 and following for alarm No. "18".									

	Alarm No.	Scale CPU error (SUB)			Alar	m che	eck tir	ning		
	27	The CPU of the absolut operating correctly.	e position linear scale connected to the ma	achine side is not	ine side is not f1 f2					
	Investi	gation details	Investigation results	Rer	nedie	s				
1		ectors by hand to check	The connector is disconnected (or loose).	Correctly install.						
		olute position linear s (unit side and scale nected.	The connector is not disconnected.	Investigate item 2.						
2		OFF, and check the	There is a connection fault.	Replace the detector	or cab	e.				
	detector cable connection with a tester.		The connection is normal.	Investigate item 3.						
3		ner normal axis unit, and	The alarm is on the unit side.	Replace the drive u	unit.					
	check whether th or scale side.	ne fault is on the unit side	The alarm is on the absolute position linear scale side.	Investigate item 4.	4.					
4		any abnormality in the	No abnormality is found in particular.	Replace the absolu	te pos	ition li	near s	scale.		
	unit's ambient environment. (Ex. Ambient temperature, noise, grounding)		An abnormality was found in the ambient environment.	the abnormality. Ex. High temperatu						

	Alarm No.	Scale overspeed (SUB)			Alar	m che	eck tir	ning
	28		ner scale connected to the machine side d the CNC power was turned ON.	letected a speed of	f1 _	f2 O	f3 -	f4 _
	Invest	igation details	Investigation results	Rei	nedie	s	<u> </u>	
1		system is an absolute cale specification	The system is not the absolute position linear scale specifications.	Correctly set the SV	/025: N	ЛТҮР	paran	neter.
	system.		The system is the absolute position linear scale specifications.	Investigate item 2.	2.			
2		the machine was the alarm occurred.	The machine was operating.	Check the motor's machine system.	e motor's mechanical b system.			s and
			The machine was not operating.	Investigate item 3.				
3	Wiggle the conn	ectors by hand to check	The connector is disconnected (or loose).	Correctly install.				
	whether the absolute position linear scale connectors (unit side and scale side) are disconnected.		The connector is not disconnected.	Investigate item 4.				
4		OFF, and check the	There is a connection fault.	Replace the detected	or cab	e.		
	detector cable c	onnection with a tester.	The connection is normal.	Investigate item 5.				
5		her normal axis unit, and	The alarm is on the unit side.	Replace the drive u	nit.			
	check whether th or detector side.	ne fault is on the unit side	The alarm is on the absolute position linear scale side.	Investigate item 6.				
6		any abnormality in the	No abnormality is found in particular.	Replace the absolu	te pos	ition li	near s	scale.
	unit's ambient environment. (Ex. Ambient temperature, noise, grounding)		An abnormality was found in the ambient environment.	Take remedies acc the abnormality. Ex. High temperatu Incomplete gro	re	: Cho coc J : Ado	e caus eck th bling fa ditiona	e an.

	Alarm No.	Jarm No. Absolute position detection circuit error (SUB): An error was detected in the scale or scale side circuit of the absolute position linear			Alarm check timing					
29 An error was detected in the scale or scale side c scale connected to the machine side.				olute position linear	f1	f2	f3	f4		
	scale connected to the machine side.			-	0	0	0			
	Investigation details		Investigation results	Rer	nedie	s				
1	Check the alarm No. "28" items.									

	Alarm No.		tection circuit error (SUB):		Alar	m che	eck tir	ning
	2A	A speed exceeding the connected to the machi	max. movement speed of the absolute por ne side was detected.	sition linear scale	f1 _	f2 0	f3 0	f4 0
	Invest	igation details	Investigation results	Rer	nedie	s		
1		the machine was	The machine was operating.	Investigate item 3.				
	operating when	the alarm occurred.	The machine was not operating.	Investigate item 2.	8			
2		he operation is normal at	The machine was operating.	Investigate item 3.	item 3.			
	low-speeds.		The machine was not operating.	Check the precaution power ON. • Wiring check • Parameter check	< c			
3		ectors by hand to check	The connector is disconnected (or loose).	Correctly install.				-
	whether the absolute position linear scale connectors (unit side and scale side) are disconnected.		The connector is not disconnected.	Investigate item 4.				
4		OFF, and check the	There is a connection fault.	Replace the detector cable.				
	detector cable c	connection with a tester.	The connection is normal.	Investigate item 5.				
5		her normal axis unit, and	The alarm is on the unit side.	Replace the drive u	nit.			
	check whether the or detector side.	he fault is on the unit side	The alarm is on the absolute position linear scale side.	Investigate item 6.				
6	Check if there is unit's ambient e	any abnormality in the nvironment.	No abnormality is found in particular.	Replace the motor linear scale).	(the al	osolut	e posi	tion
	(Ex. Ambient ter grounding)	nperature, noise,	An abnormality was found in the ambient environment.	Take remedies acc the abnormality. Ex. High temperatu Incomplete grou	re	: Ch coo g : Ade	eck th bling fa	e an.

	Alarm No.	CPU error:			Alarm check timing				
	2B	olute position linear	f1	f3	f4				
		scale connected to the	notor side.		-	0	0	0	
	Investigation details		Investigation results	Ren	nedie	s			
1	Check items 3 an No. "2A".	nd following for alarm							

	Alarm No.	EEPROM/LED error:			Alar	m che	eck tir	ning
	2C	An error was detected in scale connected to the r	in the EEPROM of an absolute position linear position linear			f2	f3	f4
		Scale connected to the r			-	0	0	0
	Investigation details		Investigation results	Rer	nedie	s		
1	1 Check items 3 and following for alarm No. "2A".							

	Alarm No.	An error was detected within one rotation position of an absolute position linear				Alarm check timing					
	2D		vithin one rotation position of an absolute p inected to the motor side.	position linear	f1	f2	f3	f4			
		position inear scale cor			-	0	0	0			
	Investigation details		Investigation results	Rer	nedie	s					
1	Check items 3 and following for alarm No. "2A".										

	Alarm No.	ROM/RAM error:				m che	eck tir	ning
	2E	A ROM/RAM error was of motor side.	r was detected in the absolute position linear scale connected to the					f4
		motor side.			١	0	0	0
	Investigation details		Investigation results	Ren	nedie	s		
1	Check items 3 and following for alarm No. "2A".							

Alarm No.	Serial detector commun			Alar	Alarm check timing				
2F	Communication was cut to the motor side.	off with detector of the absolute position line	ear scale connected	f1	f2	f3	f4		
				-	0	0	0		
Invest	igation details	Investigation results	Rer	nedie	s				
Check items 2 and following for alarm No. "18".									

	Alarm No.	Overspeed:			Alar	m che	eck tir	ning
	31	Movement was carried	out at a speed exceeding the linear motor	s tolerable speed.	f1	f2	f3	f4
					-	0	0	0
	Investi	gation details	Investigation results	Rei	nedie	s		
1	Check whether t		The machine was operating.	Investigate item 4.				
	operating when t	he alarm occurred.	The machine was not operating.	Investigate item 2.				
2		ne operation is normal at	The machine was operating.	Investigate item 3.				
	low-speeds.		The machine was not operating.	Check the wiring an power ON.	heck the wiring and the parameters at ower ON.			
3	Check whether the rapid traverse speed		The speed is too high.	Lower the speed to	below	the ra	ated sp	beed.
	is too high.		The speed is set below the rated speed.	Investigate item 4.				
4	Check whether the acceleration/ deceleration constant is too small. • Check the current value display on the Servo Monitor screen.		A value that is 80% or more of the max. value is displayed.	Reduce the rapid traverse time constant that the current value on the Servo Moni screen is 80% or less of the max. value during rapid traverse acceleration/deceleration.				onitor
			The value is 80% or less of the max. value.	Investigate item 5.				
5	Check items 2 ar No. "18".	nd following for alarm						

	Alarm No.	Power module error (Ov			Alar	m che	eck tir	ning
	32	The IPM used for the in	verter detected an overcurrent.		f1	f2	f3	f4
					-	0	0	0
	Invest	igation details	Investigation results	Rer	nedie	s		
1	Check for a shore phases of the ur	rt-circuit in the UWV hit output.	The phases are short circuited or there is no continuity.	Replace the UVW v	vires.			
	from the termi	e U V W connection inal block and the on plug, and check with a	The phases are normal.	Investigate item 2.	em 2.			
2	Check whether t the UVW wires.	here is a ground fault in	The phases are short circuited or there is no continuity.	Replace the UVW v	VW wires.			
		en the UVW wires and tester in the state given	The phases are normal.	Investigate item 3.				
3	Check whether t the motor.	here is a ground fault in	The phases are short circuited or there is no continuity.	Replace the motor.				
		en the motor's wires and tester (megger) in the item 1.	The phases are normal. (same level as other axes)	Investigate item 4.				
4	Check the parar	neter setting values.	The settings are incorrect.	Correctly set.				
	 Refer to the a 	djustment procedures.	The settings are correct.	Investigate item 5.				
5	whether the dete	ectors by hand to check ector connectors (unit	The connector is disconnected (or loose).	Correctly install.				
	side and detector disconnected.	or side) are	The connector is not disconnected.	Investigate item 6.				
6		OFF, and check the	There is a connection fault.	Replace the detector	or cab	le.		
	detector cable c	onnection with a tester.	The connection is normal.	Investigate item 7.				
7	Check the repea	atability.	The alarm is not repeated. The alarm is repeated sometimes.	Investigate item 9.				
			The alarm is always repeated.	Investigate item 8.				
8		her normal axis driver,	The alarm is on the unit side.	Replace the drive u	nit.			
	and check wheth side or scale sid	ner the fault is on the unit le.	The alarm is on the detector.	Replace the motor	(the de	etecto	r).	
9		any abnormality in the	No abnormality is found in particular.	Monitor the state fo	r a wh	ile.		
	unit's ambient er (Ex. Ambient ter grounding)	nvironment. nperature, noise,	An abnormality was found in the ambient environment.	Take remedies acc the abnormality. Ex. High temperatu Incomplete grou	re	: Ch	eck th bling fa	e an.

	Alarm No.	CNC communication CI			Alar	m che	eck tir	ning		
	34	An error was detected in	n the data sent from the CNC to the driver.		f1	F2	f3	f4		
					-	0	0	0		
	Investi	gation details	Investigation results	Rer	nedie	s				
1	between the CN	,	The connector is disconnected (or loose).	Correctly install.						
	and between the of the connectors	any force is being	The connector is not disconnected.	Investigate item 2.						
2	Turn the power OFF, and check the connection of the communication cable					communication cable.				
	listed in item 1.	e communication cables	The connection is normal.	Investigate item 3.						
3		he CNC and drive unit	The version was changed.	Replace with the or	ginal	softwa	ware versio			
	software version recently.	s have been changed	The version was not changed.	Investigate item 4.						
4	Try replacing wit		The alarm is on the unit side.	Replace the drive u	nit.					
	determine wheth CNC side or unit	er the fault is on the s side.	The driver is not the cause.	Investigate item 5.						
5		any abnormality in the	No abnormality is found in particular.	Replace the MCP c	ard or	n the C	CNC s	ide.		
	unit's ambient er (Ex. Ambient ten grounding)		An abnormality was found in the ambient environment.	Take remedies acco the abnormality. Ex. High temperatu Incomplete grou	re	: Ch coc j : Ade	eck th oling fa	e an.		

	/	CNC communication da			Alar	m che	eck tir	ning
	35	An error was detected in the movement command data from the CNC.		NC.	f1	f2	f3	f4
					-	0	0	-
	Investigation details		Investigation results	Rer	nedie	s		
1	1 Check the alarm No. "34" items.							

	Alarm No.	CNC communication, co			Alar	m ch	eck til	ming
	36	The communication from	m the CNC was cut off.		f1	f2	f3	f4
					-	0	0	-
	Invest	igation details	Investigation results	Rer	nedie	S		
1	Check the alarm	n No. "34" items.						
		1						
	Alarm No.	Initial parameter error:			Alar	m ch	eck til	ming
	37	An illegal parameter wa turned ON.	s detected in the parameters sent when the	ne CNC power was	f1	f2	f3	f4
		tumed ON.			-	0	-	0
	Invest	igation details	Investigation results	Rer	nedie	S		
1		meter No. will appear on	The parameter is incorrect.	Set to the correct pa	barameter.			
		sis screen, so check that	The parameter is correct.	Investigate item 3.				
	adjustment proc	r with the parameter edures.	The parameter No. is not 1 to 64.	If the No. is 101, ch 2.	eck in	vestig	ation	item
2	Check whether the servo parameter (PIT) (RNG1) (RNG2) (PC1) and (PC2) combination is illegal, or whether the		The combination is illegal, or the setting range is exceeded.	Refer to the parame specifications and to set to the correct va	to the supplements, a			
	setting range is	exceeded.	The parameter is correct.	Investigate item 3.				

	Alarm No. 38 CNC communication An error was detected				Alar	m che	eck tir	ning
	38 An	An error was detected in	d in the communication frame sent from the CNC.			f2	f3	f4
					-	0	0	0
	Investi	gation details	Investigation results	Rer	nedie	s		
1	Check the alarm	No. "34" items.						

	Alarm No.	 CNC communication protocol error 2 An error was detected in the axis information data sent from the CNC. 				Alarm check t				
	39	An error was detected in	n the axis information data sent from the	CNC.	f1	f2	f3	f4		
					-	0	0	0		
	Investi	igation details	Investigation results	Rer	nedie	s				
1	Check the alarm No. "34" items.									

	Alarm No.	Overcurrent:			Alarm chec			ning
	3A An excessive current wa		as detected in the motor drive current.		f1	f2	f3	f4
					-	0	0	0
	Investigation details		Investigation results	Rer	nedie	s		
1	1 Check the alarm No. "32" items.							

	Alarm No.	Power module overheat			Alar	m che	eck tir	ning
	3B	The power module's ter	nperature protection function activated.		f1	f2	f3	f4
					-	0	0	0
	Investi	gation details	Investigation results	Ren	nedie	s		
1	confirm the rotati Note) Assure mo the time from wh OFF till when it is used for the dri	ore than 10 seconds for nen the power is turned s turned ON. For the fan ve unit, assuring more	The fan is rotating, and an alarm did not occur again.	Continue to use. The power may be the assuring more than time from when the when it is turned ON Leave for more than and turn the power of the source of the	10 se power N. n 10 se	conds is turi econd	s for th ned O	ie FF till
		for the time from when ned OFF till when it is uired.	The fan did not rotate. Or, an alarm occurred again.	Investigate item 2.				
2	chips, etc. at the any abnormality	n of cutting oil or cutting fan. Or check if there is such as low rotation	Large amounts of cutting oil or cutting chips, etc., are adhered, or the rotation is slow.	Clean or replace the fan.				
	speed.		The fan is rotating properly.	Investigate item 3.				
3	Check whether th are dirty.	he heat dissipating fins	Cutting oil or cutting chips, etc., are adhered, and the fins are clogged.	Clean the fins.				
			The fins are normal.	Investigate item 4.				
4	Measure the driv temperature.	e unit's ambient	55°C or more	Improve the ventilat power distribution p		nd coo	oling fo	or the
			Less than 55°C.	Investigate item 5.				
5	unit's ambient en		No abnormality is found in particular.	If the alarm occurs e temperature has dro				-
	(Ex. Ambient ten grounding)	nperature, noise,	An abnormality was found in the ambient environment.	Take remedies acco the abnormality. Ex. High temperatur Check t Incomplete grou Addition	re: he coo unding	oling f J:	an.	es of

	Alarm No. 43		of the feedback amount for the motor side vas detected in the 2-scale 2-motor (2-am		Alar f1	m che f2	f3	ming f4
	Investigation details		Investigation results	Rer	nedie	s	Ŭ	<u> </u>
1	Check items 3 an No. "2A".	nd following for alarm						

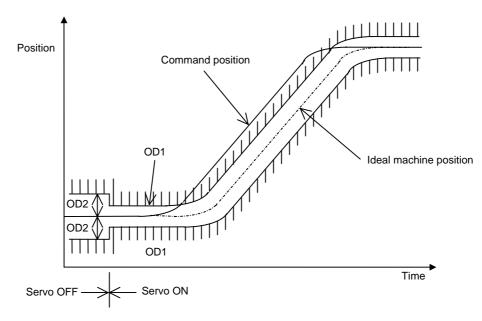
	Alarm No.	Motor overheat:			Alar	m che	eck tir	ning
	46	A temperature error wa (Temperature exceeded	s detected in the motor being driven. (°C)		f1	f2	f3	f4
		(Temperature exceeded		i	-	0	0	-
	Invest	igation details	Investigation results	Rer	nedie	s		
1	Check whether t the motor therma	he specifications provide al.	The specifications do not provide the motor thermal.	Investigate item 2.				
			The specifications provide the motor thermal.	Investigate item 3.				
2		o parameter (SV034)	The parameter is not set correctly.	Correctly set SV034	l/mohi	n		
	setting value.		The parameter is set correctly.	Investigate item 3.				
3	Check the repea	atability.	The alarm is repeated within one minute after startup.	Investigate item 5.				
			The alarm is repeated sometimes after operating for a while.	Investigate item 4.				
4	Check the moto alarm occurs.	r temperature when the	The motor is hot.	Ease the operation ↓ If the problem is not investigation item 5	t solve		eck	
			The motor is not high.	Investigate item 5.				
5		nectors by hand to check	The connector is disconnected (or loose).	Correctly install.				
		ector connectors (unit side cannon) are	The connector is not disconnected.	Investigate item 6.				
6		OFF, and check the	There is a connection fault.	Replace the detector	or cabl	e.		
	detector cable c	connection with a tester.	The connection is normal.	Investigate item 7.				
7		her normal axis unit, and	The alarm is on the unit side.	Replace the drive u	nit.			
	check whether t side.	he fault is on the unit	The alarm occurs even when the unit is replaced.	Investigate item 8.				
8		s any abnormality in the	No abnormality is found in particular.	Replace the motor.				
	unit's ambient environment. (Ex. Ambient temperature, noise, grounding)		An abnormality was found in the ambient environment.	Take remedies acco the abnormality. Ex. High temperatu Incomplete grou	re	: Ch coc : Ade	eck th bling fa	e an.

	Alarm No.	Scale CPU error:			Alar	m che	eck tir	ning	
	48	The CPU of the absolut operating correctly.	e position linear scale connected to the mo	otor side is not	f1	f2	f3	f4	
		operating correctly.			١	0	0	0	
	Investi	gation details	Investigation results	Rer	nedie	s			
1		ectors by hand to check	The connector is disconnected (or loose).	Correctly install.					
		blute position linear (unit side and scale nected.	The connector is not disconnected.	Investigate item 2.	stigate item 2.				
2		OFF, and check the	There is a connection fault.	ctor cable.					
	detector cable co	onnection with a tester.	The connection is normal.	Investigate item 3.					
3		ner normal axis unit, and	The alarm is on the unit side.	Replace the drive u	unit.				
	check whether th or scale side.	e fault is on the unit side	The alarm is on the absolute position linear scale side.	Investigate item 4.					
4		any abnormality in the	No abnormality is found in particular.	Replace the absolut	te pos	ition li	inear s	scale.	
	unit's ambient environment. (Ex. Ambient temperature, noise, grounding)		An abnormality was found in the ambient environment.	the abnormality. Ex. High temperatu	5				

	Alarm No.	Scale overspeed:			Alar	m che	eck tir	ning	
	49		ner scale connected to the motor side dete the CNC power was turned ON.	ected a speed of	f1 _	f2 O	f3 -	f4 _	
	Invest	igation details	Investigation results	Rei	nedie	s			
1		system is an absolute cale specification	The system is not the absolute position linear scale specifications.	Correctly set the SV	/025: N	MTYP	paran	neter.	
	system.		The system is the absolute position linear scale specifications.	Investigate item 2.	m 2.				
2		the machine was the alarm occurred.	The machine was operating.	Check the motor's machine system.	motor's mechanical /stem.		orakes	s and	
		The machine was not operating. Investigate item			n 3.				
3		ectors by hand to check	The connector is disconnected (or loose).	Correctly install.					
		olute position linear s (unit side and scale nected.	The connector is not disconnected.	Investigate item 4.					
4	Turn the power	OFF, and check the	There is a connection fault.	Replace the detected	or cabl	e.			
	detector cable c	onnection with a tester.	The connection is normal.	Investigate item 5.					
5		her normal axis unit, and	The alarm is on the unit side.	Replace the drive u	init.				
	check whether the or detector side.	ne fault is on the unit side	The alarm is on the absolute position linear scale side.	Investigate item 6.					
6		any abnormality in the	No abnormality is found in particular.	Replace the absolu	te pos	ition li	near s	scale.	
	unit's ambient er (Ex. Ambient ter grounding)	nvironment. nperature, noise,	An abnormality was found in the ambient environment.	Take remedies acc the abnormality. Ex. High temperatu Incomplete gro	ire	: Cho coc g : Ado	e caus eck the oling fa ditiona und.	e an.	

Alarm No. Absolute position detection circuit error: 4A An error was detected in the scale or scale side circuit of the absolute position scale connected to the motor side.					Alar	m che	eck tir	ning
			olute position linear	f1	f2	f3	f4	
		scale connected to the			-	0	0	0
	Investigation details Investigation results		Rer	nedie	s			
1	Check the alarm No. "49" items.							

	Alarm No.	Incremental position de			Alar	m ch	eck tir	ning
	4B	A speed exceeding the connected to the motor	max. movement speed of the absolute positive was detected.	sition linear scale	f1 _	f2 0	f3 0	f4 0
	Investi	igation details	Investigation results	Rer	nedie	s		
1	Check whether t	the machine was	The machine was operating.	Investigate item 3.				
	operating when	the alarm occurred.	The machine was not operating.	Investigate item 2.				
2	Check whether t	he operation is normal at	The machine was operating.	Investigate item 3.				
	low-speeds.		The machine was not operating.	Check the wiring an power ON.	nd the	paran	neters	at
3	Check whether t	the connector is	The connector is disconnected (or loose).	Correctly install.				
	disconnected fro side.	om the unit side or scale	The connector is not disconnected.	Investigate item 4.				
4		OFF, and check the	There is a connection fault.	Replace the detector	or cab	le.		
	detector cable c	onnection with a tester.	The connection is normal.	Investigate item 5.				
5		her normal axis unit, and	The alarm is on the unit side.	Replace the drive u	nit.			
	check whether th or detector side.	ne fault is on the unit side	The alarm is on the absolute position linear scale side.	Investigate item 6.				
6		any abnormality in the	No abnormality is found in particular.	Replace the motor ((the lir	near s	cale).	
	unit's ambient er (Ex. Ambient ter grounding)	nvironment. nperature, noise,	An abnormality was found in the ambient environment.	bient Take remedies according to the the abnormality. Ex. High temperature : Ch coo Incomplete grounding : Ad				e an.


	Alarm No.	Overload 1:			Alar	m che	eck tir	ning
	50		o drive unit load level obtained from the mo ith the overload detection level (SV022:OL		f1	f2	f3	f4
	i		``````````````````````````````````````	, 	-	0	0	0
		igation details	Investigation results	-	nedie	-		
1	value.	parameter (OLL) setting	The value differs from the standard setting value.	When not using spe the value to the star				
	Standard settin	g value OLL: 150.	The value is the standard setting value.	Investigate item 2.				
2	Check the motor alarm occurs.	r temperature when the	The motor is hot.	Ease the operation ↓ If the problem is no investigation item 3	\downarrow m is not solved, check			
			The motor is not high.	Investigate item 3.				
3	Check whether t	he motor is hunting.	The motor is hunting.	Refer to the adjus readjust. • Check the cable v connection.		•		
				 Check for incorrer Adjust the gain. If the problem is no investigation item 4 	t resol			ngs.
			The motor is not hunting.	Investigate item 4.				
4		her normal axis unit, and	The alarm is on the unit side.	Replace the drive u	nit.			
	check whether th side.	he fault is on the unit	The alarm occurs even when the unit is replaced.	Investigate item 5.				
5		he current value on the	An abnormal value is displayed.	Check the machine	syste	m.		
	CNC Servo Mon abnormally large and operating.	itor screen is an value when stopped	A correct value is displayed.	Investigate item 6.	nvestigate item 6.			
6		any abnormality in the	No abnormality is found in particular.	Replace the motor (the detector).				
	unit's ambient er (Ex. Ambient ten grounding)	nvironment. nperature, noise,	An abnormality was found in the ambient environment.	ent Take remedies according to the ca the abnormality. Ex. High temperature : Check cooling Incomplete grounding : Additio ground				e an.

	Alarm No.	Overload 2:			Alar	m che	eck tir	ning
	51	A current command exc sec. or more.	ceeding 95% of the drive units max. capac	ity continued for 1	d for 1 f1			f4
	Investi	gation details	Investigation results	Rer	- nedie	s –	0	_
1		ne PN power is supplied	The voltage is being supplied.	Investigate item 3.	vestigate item 3.			
		s for which the alarm is the axis farthest from ply.	The voltage is not being supplied.	Investigate item 2.				
2		he power supply unit's s lit, and the PN terminal	There is no voltage at the PN terminal. (The lamp is not lit.)	Check the power su	ipply ı	unit.		
	voltage.		There is voltage at the PN terminal.	Check the PN wirin	g betv	/een t	he uni	ts.
3	CNC Servo Mon abnormally large	value during accelera-	The max. value is exceeding the x level given on the previous page.	rel Increase the acceleration/deceleration time constant to lower to approx. 80% of the limit value. Investigate item 4.				
	tion/deceleration		A correct value is displayed.					
4	Check items 3 an No. "50".	nd following for alarm						

	Alarm No.	Excessive error 1:			Alar	m che	eck tir	ning		
	52	The difference of the ide SV023:OD1 (or SV053:	eal position and actual position exceeded OD3) at servo ON.	the parameter	f1 f2 f3 O			f4		
	Invest	igation details	Investigation results	Rei	medie	s	Ŭ			
1	Check whether t	he PN power is supplied	The voltage is being supplied.	Investigate item 3.	te item 3.					
	 to the drive unit. Check the axis for which the alarm is occurring and the axis farthest from the power supply. 		• Check the axis for which the alarm is occurring and the axis farthest from		Check the axis for which the alarm is occurring and the axis farthest from					
2		neck whether the power supply unit's There is no voltage a HARGE lamp is lit, and the PN terminal (The lamp is not lit.)		Check the power su	upply (unit.				
	voltage.		There is voltage at the PN terminal.	Check the PN wirin	g betv	veen t	he uni	ts.		
3	Check the servo setting value.	parameter (OD1)	The value differs from the standard setting value.	When not using special specification the value to the standard setting						
			The value is the standard setting value.	Investigate item 4.	ate item 4.					
4	Check items 3 a No. "50".	nd following for alarm								

Supplement

Depending on the ideal machine position in respect to the command position, the actual machine position could enter the actual shaded section shown below, which is separated more than the distance set in OD1.

	Alarm No.	Excessive error 2:			Alar	m che	eck tir	ning		
	53	The difference of the ide SV026:OD2 at servo OI	eal position and actual position exceeded FF.	parameter	f1	f2	f3	f4		
				i	-	0	-	-		
	Investi	gation details	Investigation results	-	nedie	-				
1	Check the servo setting value.	parameter (OD2)	The value differs from the standard setting value.	When not using spe the value to the star						
			The value is the standard setting value.	Investigate item 2.						
2	Check whether the during servo OFI	he machine is moving F.	The machine was operating.	Check the machine brakes.	he machine and mech		and mechanical			
			The machine was not operating.	Investigate item 3.						
3	Wiggle the comm		The connector is disconnected (or loose).	Correctly install.						
	hand to check w	C and final connector by hether the detector side and CNC side) are	The connector is not disconnected.	Investigate item 4.						
4	Turn the power 0	OFF, and check the	There is a connection fault.	Replace the commu	unicati	on cal	ole.			
	communication of tester. Try replacing wit	cable connection with a h normal cables.	The connection is normal.	Investigate item 5.						
5		other normal axis unit,	The alarm is on the unit side.	Replace the drive u	nit.					
	and check wheth	er the fault is in the unit.	The alarm occurs even when the unit is replaced.	Replace the MCP c ↓ If the problem is no investigation item 6	t resol			ide.		
6	Wiggle the conne	ectors by hand to check	The connector is disconnected (or loose).	Correctly install.	•					
U	whether the dete	ector connectors (unit side) are disconnected.	The connector is not disconnected.	Investigate item 7.						
7		OFF, and check the	There is a connection fault.	Replace the detector	or cabl	e.				
	detector cable co	onnection with a tester.	The connection is normal.	Investigate item 8.						
8		any abnormality in the	No abnormality is found in particular.	Replace the motor.						
	unit's ambient er (Ex. Ambient ten grounding)	nvironment. nperature, noise,	An abnormality was found in the ambient environment.	the abnormality. Ex. High temperature :				e an.		

	Alarm No.	Excessive error 3:			Alar	m che	eck tir	ning
	54	The motor current is not	t flowing when the excessive error alarm '	I was detected.	f1	f2	f3 0	f4
	Investi	gation details	Investigation results	Rer	− ○ ○ Remedies			
1	Check whether th	he PN power is supplied	The voltage is being supplied.	Investigate item 3.				
		s for which the alarm is the axis farthest from ply.	The voltage is not being supplied.	Investigate item 2.	2.			
2		he power supply unit's s lit, and the PN terminal	There is no voltage at the PN terminal. (The lamp is not lit.)	Check the power su	Check the power supply unit.			
	voltage.		There is voltage at the PN terminal.	Check the PN wiring	g betv	/een tl	he uni	ts.
3	connected to the	he motor power line is motor. e power line from the	The power line is not connected or is disconnected.	Increase the acceleration/deceleration time constant to lower to approx. 80% o the limit value.				
		, and check between	The power line is correctly connected.	Investigate item 4.				
4		other normal unit, and	The alarm is on the unit side.	Replace the drive unit.				
	check whether th	ne fault is in the unit.	The alarm is on the motor side.	Replace the motor.				

CAUTION Do not drive the moticapacity. The motor

	Alarm No.	Collision detection 0:			Alar	m che	eck tir	ning
	58		hod 1 error was detected during the G0 models are a compared by the tolerable disturbance torque was a compared by the torque was a compar		f1 _	f2	f3 O	f4
	Investi	gation details	Investigation results	Rer	nedie	s	•	
1	function is being		The collision detection function is not being used.	Investigate item 2.				
	Check whether t	he machine is colliding.	The motor is colliding.	Improve so that the collide.	so that the machine d		es no	t
			The collision detection is being used, but the machine is not colliding.	Investigate item 3.				
2	Check the param Is SV060 (TLTM		The setting is incorrect.	Set SV060 (TLMT)	Γ) to "0".			
3	rapid traverse ad	he current during normal cceleration/ deceleration	The current is 90% or more of the current limit value.	Lengthen the time of investigation item 4		nt, an	d cheo	k
		current limit value, or 6 or more of the limit	The current is less than 90% of the current limit value.	Investigate item 4.				
4		lision detection function,	The alarm does not occur.					
	and then operate collision detectio specifications.)	e. (Refer to the separate in function	The alarm occurs.	Investigate item 5.				
5	Is the machine o	r current vibrating?	They are vibrating.	Eliminate the vibrati gain, and check inv				e
			They are not vibrating.	Investigate item 6.				
6	Raise the detect	ion level.	The alarm does not occur.	If the problem is not replacing the drive				
			The alarm occurs.	Replace the drive u	nit.			

	Alarm No.	Collision detection 1:			Alar	m che	eck tir	ning	
	59		ethod 1 error was detected during the G1 n xceeding the tolerable disturbance torque		f1	f2	f3	f4	
		(A disturbance torque e		was delected.)	-	1	0	-	
	Investi	gation details	Investigation results	Ren	nedie	s			
1	function is being		The collision detection function is not being used.	Investigate item 2.	tem 2.				
	Check whether the	ne machine is colliding.	The motor is colliding.	Improve so that the collide.				machine does not	
			The collision detection is being used, but the machine is not colliding.	Investigate item 2.					
2	Check the param Is SV060 (TLTM)		The setting is incorrect.	Set SV060 (TLMT) t	:o "0".) "0".			
3	rapid traverse ac	ne current during normal celeration/ deceleration	The current is 90% or more of the current limit value.	Lengthen the time c investigation item 4.		nt, an	d cheo	ck	
		current limit value, or or more of the limit	The current is less than 90% of the current limit value.	Investigate item 4.					
4		ision detection function,	The alarm does not occur.						
	and then operate collision detection specifications.)	e. (Refer to the separate n function	The alarm occurs.	Investigate item 5.					
5	Is the machine o	r current vibrating?	They are vibrating.	Eliminate the vibrati gain, and check inve		ne			
			They are not vibrating.	Investigate item 6.					
6	Raise the detecti	on level.	The alarm does not occur.	If the problem is not replacing the drive u					
			The alarm occurs.	Replace the drive u	e unit.				

	Alarm No. Collision detection 2: A collision detection method 2 error was detected.				Alar	m che	eck tir	ning
	5A	A collision detection me	thod 2 error was detected.		f1	f2	f3	f4
					-	-	0	-
	Investigation details		Investigation results	Rer	nedie	s		
1	1 Check the alarm No. "58" items.							

	Alarm No.	HR unit connection erro	or:		Alar	m che	eck tir	ning	
	80	An incorrect connection to the motor side.	or cable breakage was detected in the MI	DS-B-HR connected	f1 _	f2 0	f3 0	f4 0	
	Investi	gation details	Investigation results	Ren	nedie	s			
1		ectors by hand to check	The connector is disconnected (or loose).	Correctly install.					
		S-B-HR connectors (unit id linear scale side) are	The connector is not disconnected.	Investigate item 2.					
2	Turn the power 0	OFF, and check the	There is a connection fault.	Replace the communication cable			ication cable.		
		e detector cables I/F units and between I/F vith a tester.	The connection is normal.	Investigate item 3.					
3		other normal axis unit (or	The alarm is on the unit side.	Replace the drive u	nit.				
		check whether the fault e or MDS-B-HR (linear	The alarm is on the MDS-B-HR (linear scale) side.	Investigate item 4.					
4		any abnormality in the	No abnormality is found in particular.	Replace MDS-B-HF	ace MDS-B-HR (linear scale).				
	unit's ambient er (Ex. Ambient ten grounding)	nvironment. nperature, noise,	An abnormality was found in the ambient environment.	Take remedies acco the abnormality. Ex. High temperatu Incomplete grou	re	: Ch coo g : Ade	eck th bling fa	e an.	

Γ		Alarm No.	HR unit HSS communic			Alar	m che	eck tir	ning
		81	The MDS-B-HR connected to the motor side detected an error in the communication f1 with the absolute position linear scale.			f1	f2	f3	f4
			with the absolute position	on linear scale.		١	0	0	0
	Investigation details		gation details	Investigation results	Rer	nedie	s		
	1 Check the alarm No. "80" items.		No. "80" items.						

	Alarm No.	HR unit scale judgment			Alar	m che	eck tir	ning	
	83	The MDS-B-HR connected linear sci	ted to the motor side could not judge the a ale.	analog frequency of	f1 _	f2 0	f3 0	f4 0	
	Investi	gation details	Investigation results	Ren	nedie	s			
1		ectors by hand to check	The connector is disconnected (or loose).	Correctly install.					
		S-B-HR connectors (unit lear scale side and MD nected.	The connector is not disconnected.	Investigate item 2.					
2		OFF, and check the	There is a connection fault.	Replace the commu	unicati	on ca	ble.		
		and I/F units, between and between I/F unit	The connection is normal.	Investigate item 3.	n 3.				
3		other normal axis unit (or	The alarm is on the unit side.	Replace the drive u	unit.				
		check whether the fault e or MDS-B-HR (linear MD) side.	The alarm is on the MDS-B-HR (linear scale or MDS-B-MD) side.	Investigate item 4.					
4	Check if there is unit's ambient en	any abnormality in the vironment.	No abnormality is found in particular.	Replace MDS-B-HR MDS-B-MD).	R (line	ar sca	le or		
	(Ex. Ambient terr grounding)	nperature, noise,	An abnormality was found in the ambient environment.	the abnormality. Ex. High temperature : (Incomplete grounding : /			eck th oling fa	e an.	

	Alarm No.	HR unit CPU error:			Alar	m che	eck tir	ning
	84	The CPU of the MDS-B	-HR connected to the motor side is not op	erating correctly.	f1	f2	f3	f4
	Investi	gation details	Investigation results	Rer	⊖ nedie	s –	-	_
1		ectors by hand to check	The connector is disconnected (or loose).	Correctly install.				
		S-B-HR connectors (unit e) are disconnected.	The connector is not disconnected.	Investigate item 2.				
2		DFF, and check the	There is a connection fault.	Replace the commu	nunication cable.			
		e detector cables init and I/F units) with a	The connection is normal.	Investigate item 3.				
3	Connect with and	other normal axis unit	The alarm is on the unit side.	Replace the drive u	nit.			
	and check wheth side or MDS-B-H	er the fault is on the unit IR side.	The alarm is on the MDS-B-HR side.	Investigate item 4.				
4		any abnormality in the	No abnormality is found in particular.	Replace MDS-B-HF	۲.			
	unit's ambient en (Ex. Ambient ten grounding)		An abnormality was found in the ambient environment.	Take remedies acc the abnormality. Ex. High temperatu Incomplete grou	re	: Ch coo g : Ade	eck th bling fa ditiona	e an.

Ī		/	HR unit data error:				ning		
			An error was detected ir the motor side.	ected in the analog interpolation data of the MDS-B-HR connected to		f1	f2	f3	f4
			ne motor side.		١	0	0	0	
Ī		Investigation details Investig		Investigation results	Ren	nedie	s		
	1	1 Check the alarm No. "80" items.							

	Alarm No.	HR unit pole error:			Alar	m ch	eck tiı	ming		
	86	An error was detected in	n the pole data of the MDS-B-HR connected	ed to the motor side.	f1	f2	f3	f4		
	Investi	gation details	Investigation results	Ren	Remedies					
1		ectors by hand to check S-B-HR connectors (unit	The connector is disconnected (or loose). The connector is not disconnected.	Correctly install. Investigate item 2.						
	side, HR side and MD side) are disconnected.		I MD side) are							
2		OFF, and check the	There is a connection fault.	Replace the commu	unicat	ion ca	ble.			
	(between drive u	e detector cables init and I/F units and and pole detector) with	The connection is normal.	Investigate item 3.	vestigate item 3.					
3	Connect with and	other normal axis unit (or	The alarm is on the unit side.	Replace the drive u	nit.					
	MDS-B-HR) and is on the unit sid (MDS-B-MD) sid		The alarm is on the MDS-B-HR (MDS-B-MD) side.	Investigate item 4.						
4	Check if there is	any abnormality in the	No abnormality is found in particular.	Replace MDS-B-HR	R (MD	S-B-N	1D).			
	unit's ambient environment. (Ex. Ambient temperature, noise, grounding)		An abnormality was found in the ambient environment.	Take remedies acco the abnormality. Ex. High temperatu	re	: Ch coo	eck th oling fa	ie an.		
				Incomplete grou	Incomplete grounding :			ally		

	Alarm No.	Watch dog:			Alar	m che	eck tir	ning
	88	The servo drive softwa	are processing time did not end within the specified time.		f1	f2	f3	f4
				_	0	0	0	0
	Invest	igation details	Investigation results	Rer	nedie	s		
1		he servo software	The version was changed.	Replace with the or	iginal	softwa	are vei	rsion.
	version has bee	n changed recently.	The version was not changed.	Investigate item 2.				
2			No abnormality is found in particular.	Replace the drive unit.				
	Check if there is any abnormality in the unit's ambient environment. (Ex. Ambient temperature, noise, grounding)		An abnormality was found in the ambient environment.	Take remedies acco the abnormality. Ex. High temperatu	re	: Ch	eck th oling fa	e an.
				incomplete grot	inanię	,	und.	

	Alarm No.	HR unit connection erro				m che	eck tir	ning
	89 An incorrect connection to the machine side.		or cable breakage was detected in the MI	DS-B-HR connected	f1	f2	f3	f4
to the machine side.		to the machine side.			-	0	0	0
	Investigation details		Investigation results	Rer	nedie	s		
1	1 Check the alarm No. "80" items.							

	Alarm No.	HR unit HSS communic			Alarm check timi				
	8A		ected to the machine side detected an error in the e absolute position linear scale.		f1	f2	f3	f4	
		communication with the			-	0	0	0	
	Investigation details		Investigation results	Rer	nedie	s			
1	Check the alarm No. "80" items.								

	Alarm No. HR unit scale judgment error (SUB): The MDS-B-HR connected to the machine side could not judge the analog frequency				Alar	m che	eck tir	ning
	8C The MDS-B-HR connected to the machine side could not judge the analog frequency of the connected linear scale.			f1	f2	f3	f4	
				-	0	0	0	
	Investigation details Investigation results		Rer	nedie	s			
1	Check the alarm No. "83" items.							

Ī		Alarm No.	HR unit CPU error (SUE			Alar	m che	eck tir	ning
		8D	The CPU of the MDS-B	of the MDS-B-HR connected to the machine side is not operating correctly.			f2	f3	f4
						0	1	1	-
		Investigation details		Investigation results	Rer	nedie	s		
	1	1 Check the alarm No. "84" items.							

	Alarm No.	HR unit data error (SUE				m che	eck tir	ning
	8E An error was detected in the analog interpolation data of the MDS-B-HR connected to the machine side.			-B-HR connected to	f1	f2	f3	f4
				١	0	0	0	
	Investigation details		Investigation results	Rer	nedie	s		
1	Check the alarm No. "80" items.							

	Alarm No.	HR unit pole error (SUE			Alar	m che	eck tir	ning
	8F		n the pole data of the MDS-B-HR connected to the machine		f1	f2	f3	f4
		side.			-	0	0	0
	Investigation details		Investigation results	Rer	nedie	s		
1	1 Check the alarm No. "86" items.							

	Alarm No.	Absolute position fluctua	ation:		Alar	m che	eck tir	ning
	93	A fluctuation exceeding detected when the CNC	the tolerable value was detected in the ab power is turned ON.	osolute position	f1 _	f2 0	f3 -	f4 -
	Investi	igation details	Investigation results	Rer	nedie	s		
1	Check whether t		The connector is disconnected (or loose).	Correctly install.				
	disconnected from the unit side or detector side.		The connector is not disconnected.	Investigate item 2.	gate item 2.			
2		OFF, and check the	There is a connection fault.	Replace the commu	unicati	on ca	ble.	
	connection of the tester.	ction of the detector cables with a The connection is normal. Investigate iter						
3	Check the repeatability. Carry out zero point return again.		The alarm is not repeated.	lf no abnormality is found with investig item 5, continue use.				jation
			The alarm is always repeated. Or, the state returns to normal once, but then is repeated sometimes.	Investigate item 4.				
4	Connect with an	other normal axis unit	The alarm is on the unit side.	Replace the drive u	nit.			
	and check wheth side.	ner the fault is on the unit	The alarm occurs even when the unit is replaced.	Investigate item 5.				
5		any abnormality in the	No abnormality is found in particular.	Replace the motor	detec	tor).		
	unit's ambient er (Ex. Ambient ten grounding)	nvironment. nperature, noise,	An abnormality was found in the ambient environment.	Take remedies acco the abnormality. Ex. High temperatu Incomplete grou	re	: Ch coc g : Ade	eck th bling fa	e an.

	Alarm No.	Pole shift warning:			Alar	m che	eck tir	ning
	9B	An error was detected in	n the pole shift amount set in servo parame	eter SV028.	f1	f2	f3	f4
				_	-	-	0	-
		gation details	Investigation results		nedie	s		
1	being used.	he MDS-B-MD system is	The system is not MDS-B-MD.	Investigate item 4.				
_	5		The system is MDS-B-MD.	Investigate item 2.				
2	the first moveme	he warning occurred at ant after setting the servo	Movement is possible several times without a warning.	Investigate item 4.				
	parameter (SV028).		The warning occurred at the first movement.	Investigate item 3.				
3	the servo param	citation again, and check eter (SV028) setting	The SV028 setting value is the same with the previous and current DC excitation.	Investigate item 4.				
	value.		The SV028 setting value is different with the previous and current DC excitation.	Set SV028 to the cuvalue. \downarrow	urrent	DC e>	citatio	n
				If the problem is not investigation item 4		ved, c	heck	
4		ectors by hand to check	The connector is disconnected (or loose).	Correctly install.				
	whether the MDS side, HR side an disconnected.	S-B-HR connectors (unit id MD side) are	The connector is not disconnected.	Investigate item 5.				
5		OFF, and check the	There is a connection fault.	Replace the commu	unicati	on ca	ole.	
	(between drive u	e detector cables init I/F units and and pole detector) with	The connection is normal.	Investigate item 6.				
6		other normal axis unit (or	The alarm is on the unit side.	Replace the drive u	nit.			
	MDS-B-HR) and is on the unit sid (MDS-B-MD) sid		The alarm is on the MDS-B-HR (MDS-B-MD) side.	Investigate item 7.				
7	unit's ambient environment. (Ex. Ambient temperature, noise,		No abnormality is found in particular.	Replace MDS-B-HF MDS-B-MD).	R (linea	ar sca	le or	
			An abnormality was found in the ambient environment.	Take remedies acco the abnormality. Ex. High temperatu Incomplete grou	re	: Ch	eck th oling fa	e an.
				meenpiete grot	anung		und.	an y

	Alarm No. 9C HR unit pole warning: An error was detected in the pole position data of the MDS-B-HR connected to the				Alar f1	m che f2	e ck tir f3	ning f4
	MAIN side after passing the Z phase.			-	0	0	0	
	Investi	gation details	Investigation results	Rei	nedie	s		
1	Check the alarm No. "86" items.							

	Alarm No. HR unit pole warning (SUB):				Alarm check timing			
	9D An error was detected in the pole position data of the MDS-B-HR connected to the SUB side after passing the Z phase.			f1	f2	f3	f4	
	SOB side aller passing the 2 phase.				-	0	0	0
	Investigation details Investigation results Rer			nedie	s			
1	1 Check the alarm No. "86" items.							

	Alarm No.	Overload warning:			Alar	m che	eck tiı	ning
	E1	An level 80% of the ove	rload alarm 1 was detected.		f1	f2	f3	f4
					-	0	0	0
	Investi	igation details	Investigation results	Rer	nedie	s		
1	Check whether the motor is hot.		The motor is not hot.	Check the alarm No. "50" items.			S.	
			The motor is hot.	Investigate item 2.				
2		here is a problem during	Operation is possible without problem.	1. If possible, ease	the o	perati	on pat	tern.
	acceleration/deceleration operation.			2. If an alarm does continued opera state.				nis
			There is a problem in the operation.	Check investigation of alarm No. "50".	items	s 3 and	d follo	wing

	Alarm No. Parameter error warning: A parameter exceeding the setting range was set.				Alarm check timing			
E4 A parameter exce		A parameter exceeding	the setting range was set.		f1	f2	f3	f4
					-	0	0	-
	Investi	gation details	Investigation results	Ren	nedie	s		
1	Set the correct values following the parameter adjustment procedures.							

	Alarm No. E7	CNC emergency stop: An emergency stop sign another axis.	nal is being sent from the CNC, or an alar	m is occurring in	Alar f1	m che f2	e ck tii f3	ming f4
					-	0	0	0
	Investi	gation details	Investigation results	Rer	nedie	s		
1	Check whether the CNC side emergency		The emergency stop state is entered.	Investigate item 2.				
	stop switch has b	een applied.	Emergency stop has been canceled.	Investigate item 3.				
2	Cancel the emer	gency stop.	Operation starts normally.	Normal				
			"E7" remains displayed.	Investigate item 3.				
3	3 Check whether the terminator or battery unit is connected, or whether these are loose.		Pinpoint the cause of the fault.	Correct the fault.				
			Normal	Check the alarm No	o. "34"	items	5.	

8-4 Spindle system troubleshooting

Use the following explanation to diagnose faults (symptoms) not described in "8-3 Protective functions list of units" when using a spindle drive unit and spindle motor combination.

8-4-1 Introduction

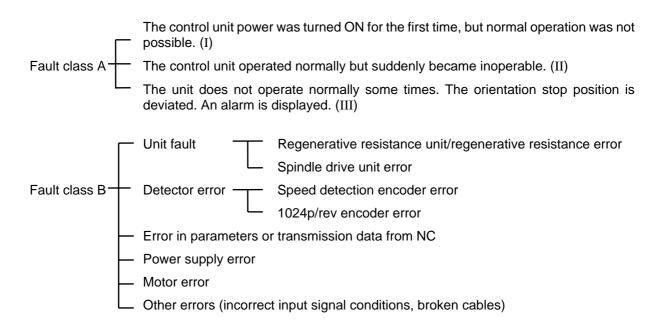
If any trouble occurs in the control unit, first check as many of the following matters as possible. Then, inspect and repair the unit following the explanations in this section.

These following matters are also helpful information when contacting the Mitsubishi Service Center.

NOTICE Do not perform a megger test (insulation resistance measurement) on the drive unit's control circuit.

Matters to confirm when trouble occurs

- Check the unit's 7-segment display or CNC Diagnosis screen to find the displayed alarm and the alarms that have occurred in the past. (Refer to section "8-3 Protective functions list of units".)
- 2. Can the fault or error be repeated?
- 3. Is the ambient temperature and inner-panel temperature normal?
- 4. Was the unit accelerating, decelerating or in constant speed operation? What was the speed?
- 5. Does the symptom change during forward run or reverse run?
- 6. Was there an instantaneous power failure?
- 7. Does the fault occur during specific operations or at a specific command?
- 8. How often does the fault occur?
- 9. Does the fault occur when a load is applied or removed?
- 10. Were remedial measures, etc., taken?
- 11. How many years has the system been operating?
- 12. Is the power voltage correct?
- 13. Do the symptoms change greatly depending on the time zone?


8-4-2 First step

Check the following matters as the first step of troubleshooting.

- (1) Check the power voltage. The voltage drop must be within the specified value.
 - (Example) The voltage drops at a set time each day.
 - The voltage drops when starting a specific machine.
- (2) Are the unit's peripheral control functions normal?
 - (Example) Are the NC and sequence circuits, etc., normal?
 - Visually check the wiring, etc., for abnormalities.
- (3) Is the control unit's peripheral temperature (inner-panel temperature) 55°C or less?
- (4) Are there any abnormalities on the outside of the unit?
 (Example) Loose connection connectors, damage, entry of foreign matter, etc.

By sufficiently checking the above state, a general idea on the faulty section can be grasped.

The MDS-CH-SP[] Series errors are largely categorized into the following groups.

8-4-3 Second step

Fault class I		Investigation items	Remedies
The control unit power was turned ON for the		e control unit is tested before shipment wer is turned ON for the first time may r	
first time, but normal operation was not possible.	1	The unit was bumped against something and damaged during operation or installation.	Investigate and remedy according to (2).
	2	Incorrect or broken external wiring or sequence. Is the cable broken? Is the ground wire correctly wired? Note that the power phase order is irrelevant.	Check that the unit's LED is ON. Check the operation sequence.
	3	Are the parameter settings correct?	Check the parameters.
	4	The motor speed does not increase.	Check the UVW wiring. Check the detector output waveform for the built-in type.
	5	Operation is normal when motor is run as a single unit.	Is the load too heavy?
	6	Orientation stop is incorrect (over- travels, etc.)	Adjust the orientation.
	7	The C-axis, synchronous tap and spindle synchronization are incorrect.	Adjust and check the detector waveform.
	8	The unit's LED is displayed.	Check section "8-3".

8-4-4 When there is no alarm or warning

(1) No abnormality is displayed, but the motor does not rotate.

	Investigation item	Investigation results	Remedies
1	Check the wiring around the spindle drive unit. Also check for loosening in the	The wiring is incorrect, the screws are loose, or the cables are disconnected.	Correctly wire. Correctly tighten the screws. Replace the cables.
	terminal screws and disconnec- tions, etc.	No particular problems found.	Investigate investigation item 2 and remedy.
2	Check the input voltage.	The voltage is exceeding the specification value.	Restore the power to the correct state.
2	Sheek the input voltage.	The voltage is within the specification value.	Investigate investigation item 3 and remedy.
	Chack all of the spindle	The correct values are not set.	Set the correct values.
3	Check all of the spindle parameters.	The correct values are set.	Investigate investigation item 4 and remedy.
	 Check the input signals. Are the READY, forward run and reverse run signals input? In particular, the forward run 	The signals are not input or the sequence is incorrect. The orientation command is input.	Correct the input signals.
4	 and reverse run signals must be input at least one second after READY is turned ON. Check whether the forward run and reverse run signals are turned ON simultaneously. 	No particular problems found.	Investigate investigation item 5 and remedy.
5	Check the speed command.	The speed command is not input correctly.	Input the correct speed command.
5	Check the speed command.	The speed command is input correctly.	Replace the unit.

(2) No fault is displayed, but the motor only rotates slowly, or a large noise is heard from the motor.

	Investigation item	Investigation results	Remedies
1	Check the U, V and W wiring between the spindle drive unit	The wires are not connected correctly.	Correctly connect.
	and motor.	The wires are connected correctly.	Investigate investigation item 2 and remedy.
2	Check the input voltage.	One of the three phases is not within the specification value. No particular problems found.	Restore the power to the correct state. Investigate investigation item 3 and remedy.
3	Check the speed command.	The speed command is not input correctly.	
5	Check the speed command.	The speed command is input correctly.	Investigate investigation item 4 and remedy.
4	Tug on the connector by hand to check whether the speed detector	The connector is disconnected (or loose).	Correctly connect the connector.
4	connector (spindle drive unit side and speed detector side) is loose.	The connector is not disconnected (or loose).	Investigate investigation item 5 and remedy.
5	Turn the power OFF, and check the connection of the speed	The connection is faulty or disconnected.	Replace the detector cable. Correct the connection.
	detector cable with a tester.	The connection is normal.	Replace the unit.

(3) The rotation speed command and actual rotation speed do not match.

	Investigation item	Investigation results	Remedies
1	Check the speed command.	The speed command is not input correctly.	Input the correct speed command.
1	check the speed command.	The speed command is correct.	Investigate investigation item 2 and remedy.
	Check whether there is slipping	There is slipping.	Repair the machine side.
	between the motor and spindle. (When connected with a belt or clutch.)	No particular problems found.	Investigate investigation item 3 and remedy.
	Check the spindle parameters	The correct values are not set.	Set the correct values.
	(SP034, SP040, SP017, SP257 and following).	The correct values are set.	Replace the spindle drive unit.

(4) The starting time is long or has increased in length.

	Investigation item	Investigation results	Remedies
	Check whether the friction torque	The friction torque has increased.	Repair the machine side.
		INO DAMCHIAL DIODEMS IOUDO	Investigate investigation item 2 and remedy.
2	Manually rotate the motor bearings and check the	The bearings do not rotate smoothly.	Replace the spindle motor.
	movement.		Investigate investigation item 3 and remedy.
2	Check whether the torque limit signal has been input.	The signal has been input.	Do not input this signal.
3	signal has been input.	The signal is not input.	Replace the unit.

(5) The motor stops during cutting.

	Investigation item	Investigation results	Remedies
1	Check the load rate during	The load meter sways past 120% during cutting.	Reduce the load.
	cutting.	No particular problems found.	Investigate investigation item 2 and remedy.
2	Investigate the same matters as item (4), and remedy.		

(6) The vibration and noise (gear noise), etc., are large.

	Investigation item	Investigation results	Remedies
1	Check the machine's dynamic balance. (Coast from the maximum speed.)	The same noise is heard during coasting.	Repair the machine side.
		No particular problems found.	Investigate investigation item 2 and remedy.
2	Check whether there is a resonance point in the machine. (Coast from the maximum speed.)	Vibration and noise increase at a set rotation speed during coasting.	Repair the machine side.
		No particular problems found.	Investigate investigation item 3 and remedy.
	Check the machine's backlash.	The backlash is great.	Repair the machine side.
3		No particular problems found.	Investigate investigation item 4 and remedy.
	Check the spindle parameter SP022 (VGNP1), SP023 (VGNI1), SP056 (PYVR) settings.	Symptoms decrease when setting value is set to approx. half.	Change the setting value. Note that the impact response will drop.
		The symptoms do not change even when the above value is set.	Return the setting values to the original values. Investigate investigation item 5 and remedy.
5	Tug on the connector by hand to check whether the speed detector connector (spindle drive unit side and speed detector side) is loose.	The connector is disconnected (or loose).	Correctly connect the connector.
		The connector is not disconnected (or loose).	Investigate investigation item 6 and remedy.
	Turn the power OFF, and check the connection of the speed detector cable with a tester.	The connection is faulty or disconnected.	Replace the detector cable. Correct the connection.
		The connection is normal.	Replace the unit.

(7) The spindle coasts during deceleration.

	Investigation item	Investigation results	Remedies
1	Check whether there is slipping between the motor and spindle. (When connected with a belt or clutch.)	There is slipping.	Repair the machine side.
		No particular problems found.	Replace the unit.

(8) The rotation does not stabilize.

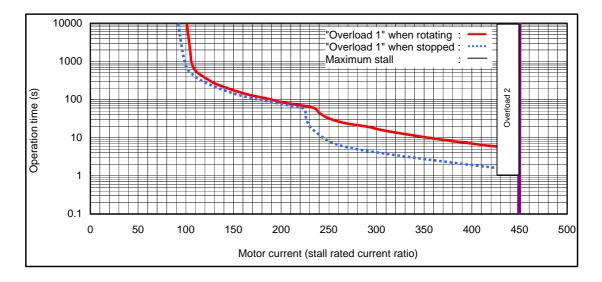
	Investigation item	Investigation results	Remedies
	Check the spindle parameter SP022 (VGNP1), SP023 (VGNI1) settings.	approx. double.	Change the setting value. Note that the gear noise may increase.
		The symptoms do not change even when the above value is set.	Return the setting values to the original values. Investigate investigation item 2 and remedy.
2	Tug on the connector by hand to check whether the speed detector connector (spindle drive unit side and speed detector side) is loose.	The connector is disconnected (or loose).	Correctly connect the connector.
		The connector is not disconnected (or loose).	Investigate investigation item 3 and remedy.
	Turn the power OFF, and check the connection of the speed detector cable with a tester. (Especially check the shield wiring.)	The connection is faulty or disconnected.	Replace the detector cable. Correct the connection.
		The connection is normal.	Investigate investigation item 4 and remedy.
4	 Is the ground correctly connected? 	1) The grounding is incomplete.	Correctly ground.
		 The alarm occurs easily when a specific device operates. 	Use noise measures on the device described on the left.
	 Are there any noise-generating devices near the unit? 	No particular problems found.	Replace the spindle drive unit.

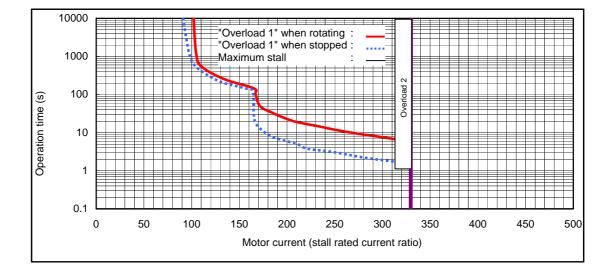
(9) The speed does not rise above a set level.

	Investigation item	Investigation results	Remedies
	Check the speed command. Check whether the override input is input from the machine operation panel.	The speed command is not input correctly.	Input the correct speed command.
		The speed command is input correctly.	Investigate investigation item 2 and remedy.
2	Check whether the load has suddenly become heavier.	The load has become heavier.	Repair the machine side.
		No particular problems found.	Investigate investigation item 3 and remedy.
	Manually rotate the motor bearings and check the movement.	The bearings do not rotate smoothly.	Replace the spindle motor.
		The bearings rotate smoothly.	Investigate investigation item 4 and remedy.
4	Tug on the connector by hand to check whether the speed detector connector (spindle drive unit side and speed detector side) is loose.	The connector is disconnected (or loose).	Correctly connect the connector.
		The connector is not disconnected (or loose).	Investigate investigation item 5 and remedy.
5	Turn the power OFF, and check the connection of the speed detector cable with a tester. (Especially check the shield wiring.)	The connection is faulty or disconnected.	Replace the detector cable. Correct the connection.
		The waveform is normal.	Replace the spindle drive unit.

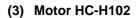
9. Characteristics

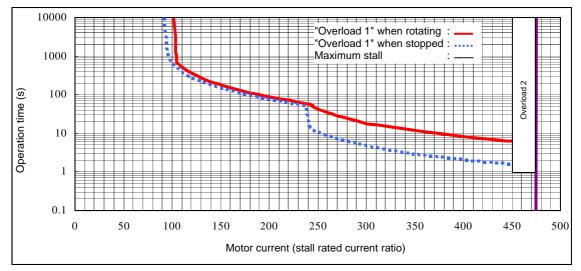
9-1 Overload protection characteristics	9-2
9-1-1 Servomotor (HC-H series)	
9-1-2 Linear servomotor (LM-NP Series)	
9-2 Duty characteristics	
9-3 Magnetic brake characteristics	9-14
9-4 Dynamic brake characteristics	9-17
9-4-1 Deceleration torque	9-17
9-4-2 Determining the coasting amount with emergency stop	9-18
9-5 Vibration class	

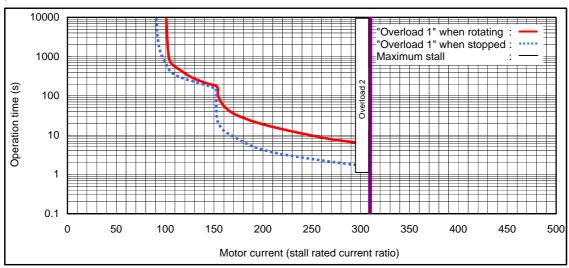

9-1 Overload protection characteristics

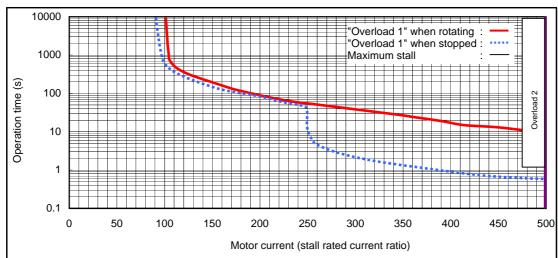

The servo drive unit has an electronic thermal relay to protect the servomotor and servo drive unit from overloads. The operation characteristics of the electronic thermal relay are shown below when standard parameters (SV021=60, SV022=150) are set.

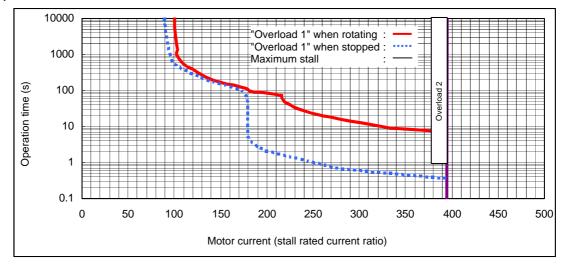
If overload operation over the electronic thermal relay protection curve shown below is carried out, overload 1 (alarm 50) will occur. If the maximum current is commanded at 95% or higher continuously for one second or more due to a machine collision, etc., overload 2 (alarm 51) will occur.

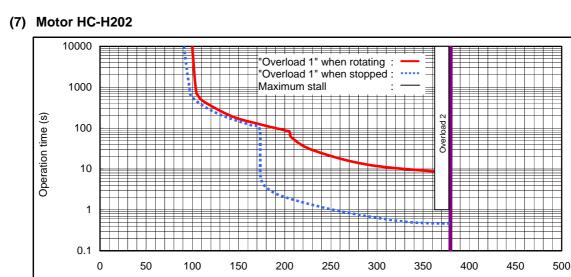

9-1-1 Servomotor (HC-H series)

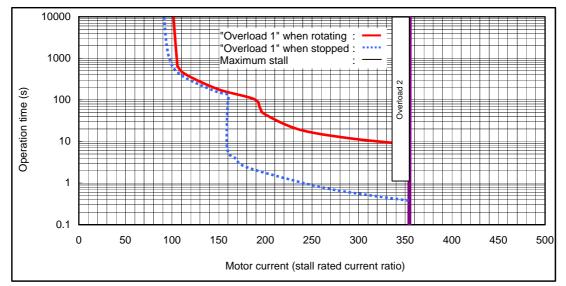

(1) Motor HC-H52



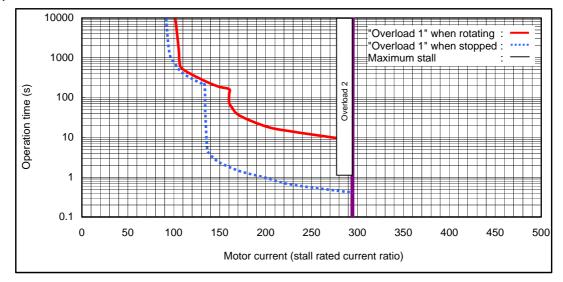

(2) Motor HC-H53


(4) Motor HC-H103

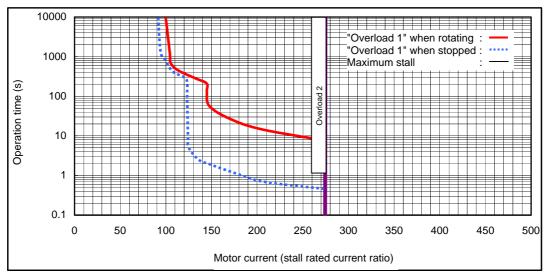


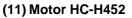

(5) Motor HC-H152

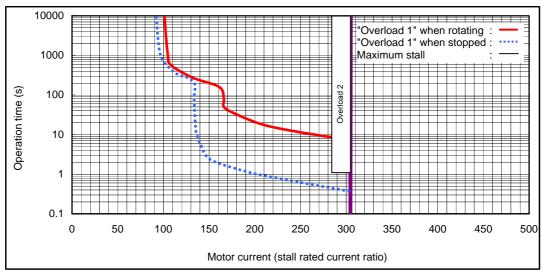
(6) Motor HC-H153

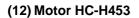


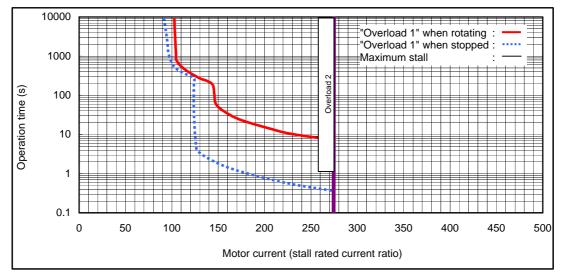
(8) Motor HC-H203

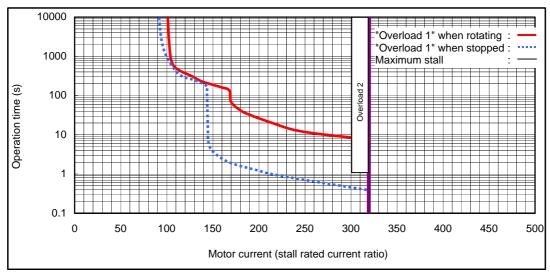


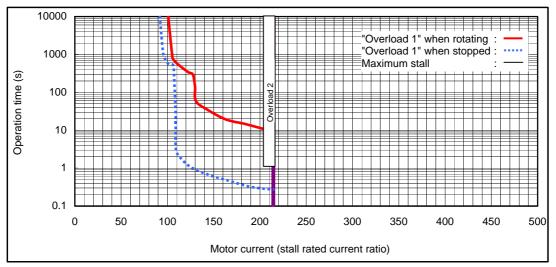

Motor current (stall rated current ratio)

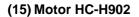

(9) Motor HC-H352

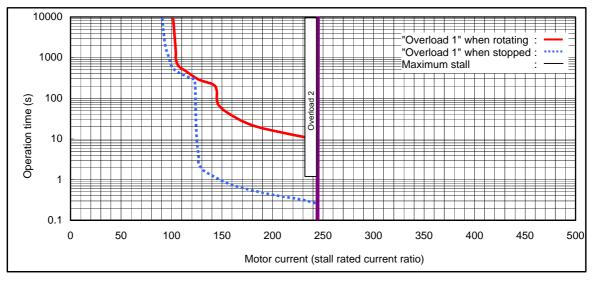



(10) Motor HC-H353

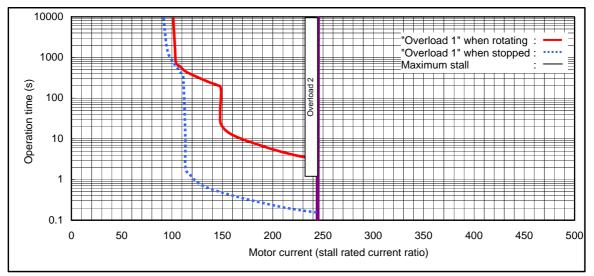


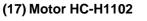


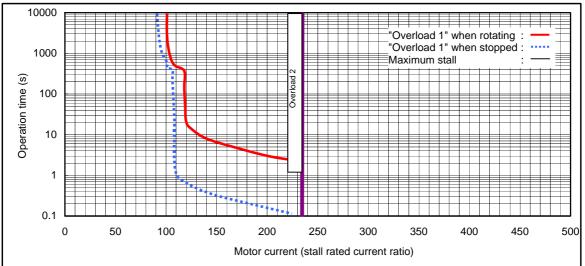

(13) Motor HC-H702



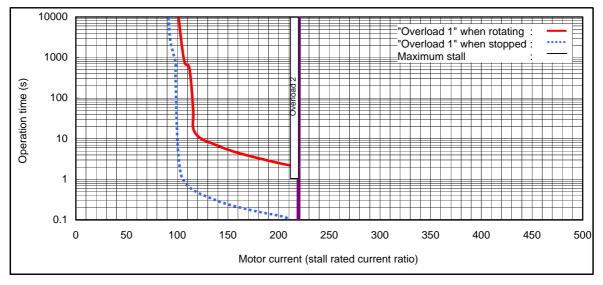
(14) Motor HC-H703

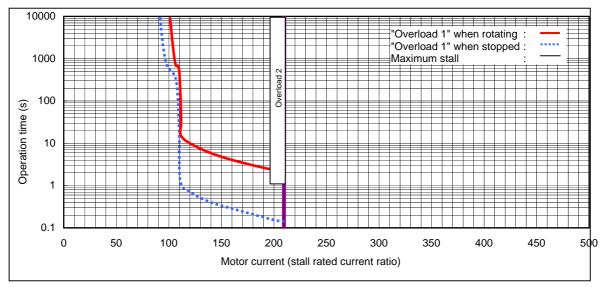


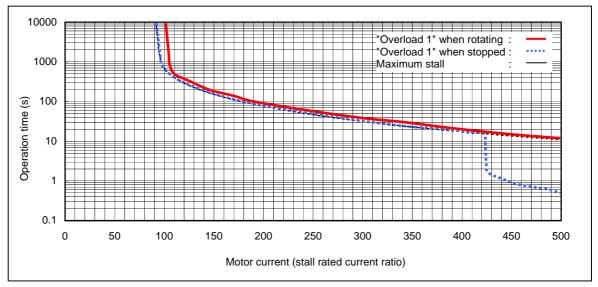

9. Characteristics

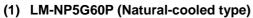


(16) Motor HC-H903

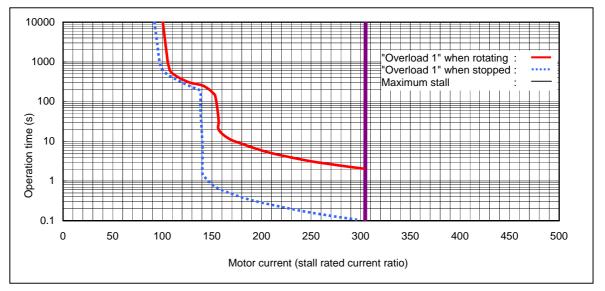





9. Characteristics

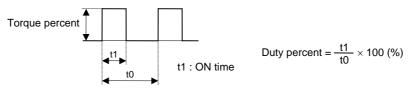


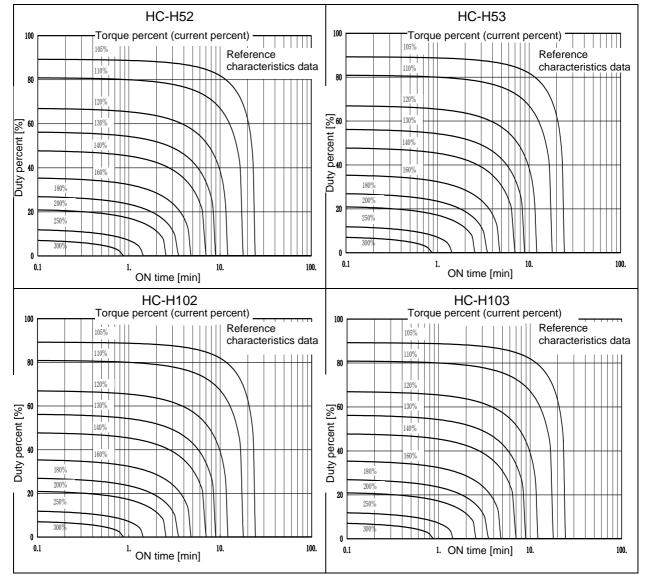
(19) Motor HC-H1502



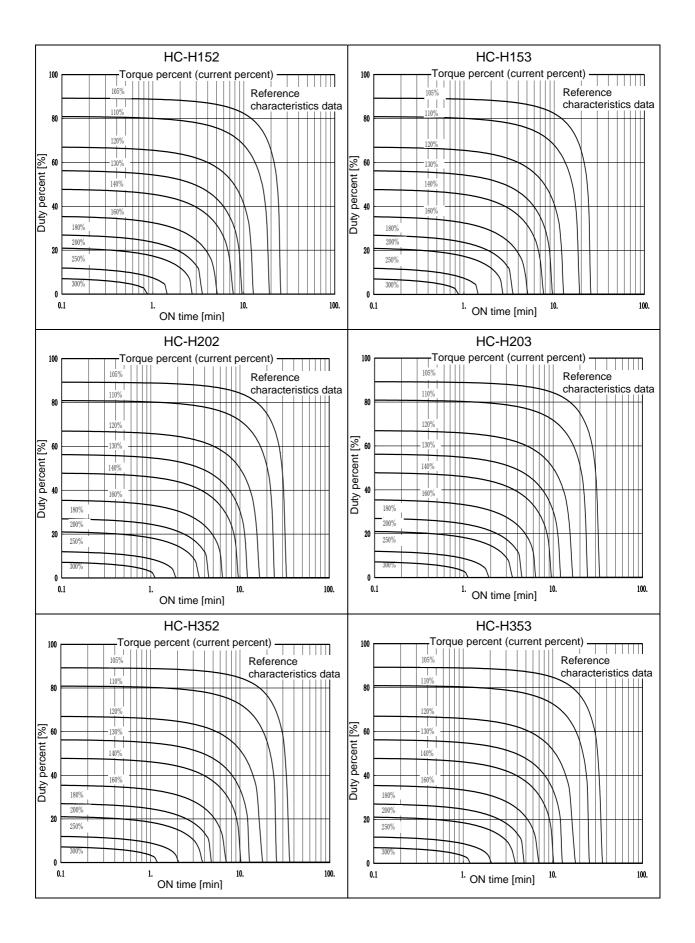
9-1-2 Linear servomotor (LM-NP Series)

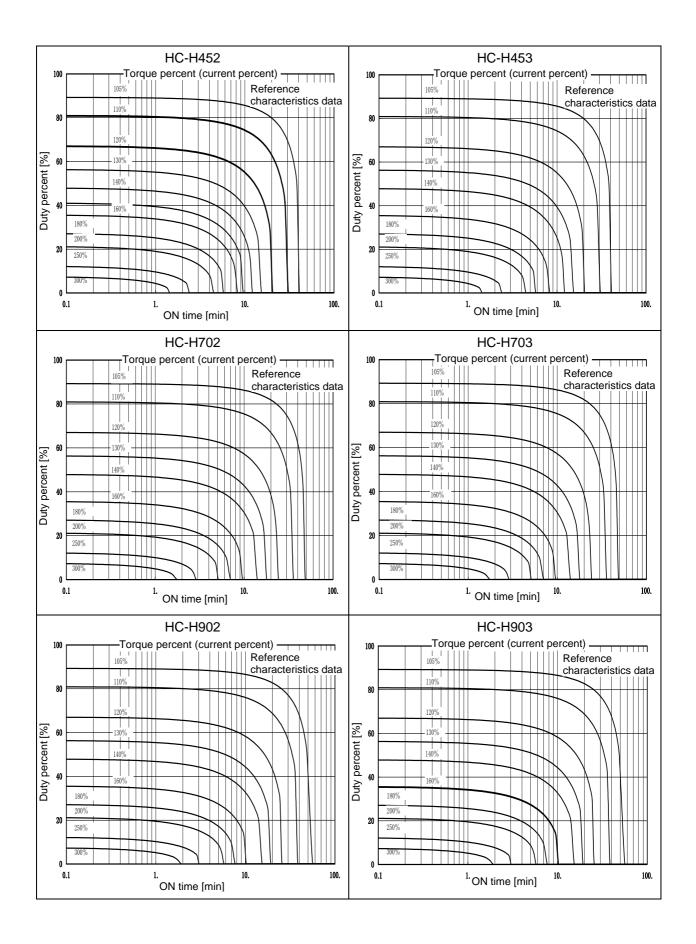
The maximum stall current is 732.

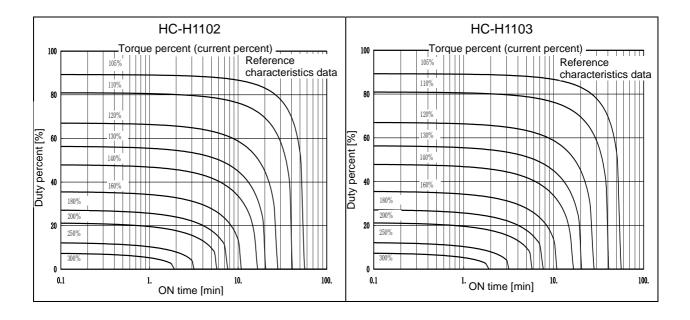


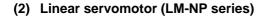

(2) LM-NP5G60P (Oil-cooled type)

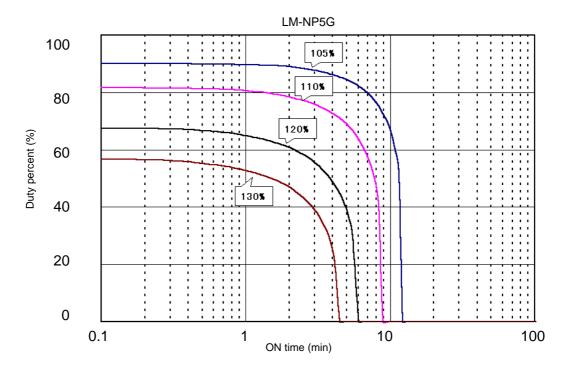
9-2 Duty characteristics


The duty drive characteristics are calculated from the motor's armature winding temperature rise element and heat time constant. These characteristics express the output limit characteristics for an independently rotating motor. The motor's thermal protection will activate and a motor overheat (ALM46) will be detected if this limit is exceeded.


In the actual servo system, the electronic thermal protection is also controlled with software operations in the servo amplifier. Thus, these characteristics may be limited by the servo amplifier.






(1) Servomotor (HC-H series)

9-3 Magnetic brake characteristics

(1) Motor with magnetic brake

(a) Types

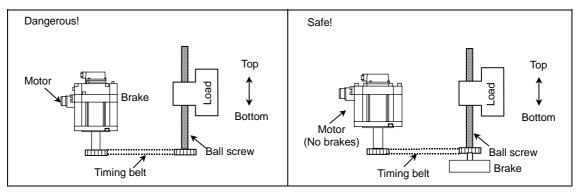
The motor with a magnetic brake is set for each motor. The "B" following the standard motor model stands for the motor with a brake.

(b) Applications

When this type of motor is used for the vertical feed axis in a machining center, etc., slipping and dropping of the spindle head can be prevented even when the hydraulic balancer's hydraulic pressure reaches zero when the power turns OFF. When used with a robot, deviation of the posture when the power is turned OFF can be prevented.

When used for the feed axis of a grinding machine, a double safety measures is formed with the deceleration stop (dynamic brake stop) during emergency stop, and the risks of colliding with the grinding stone and scattering can be prevented.

This motor cannot be used for the purposes other than holding and braking during a power failure (emergency stop). (This cannot be used for normal deceleration, etc.)


(c) Features

- 1) The magnetic brakes use a DC excitation method, thus:
 - The brake mechanism is simple and the reliability is high.
 - There is no need to change the brake tap between 50Hz and 60Hz.
 - There is no rush current when the excitation occurs, and shock does not occur.
 - The brake section is not larger than the motor section.
- 2) The magnetic brake is built into the motor, and the installation dimensions are the same as the motor without brake. (Note that the L dimension will be longer in comparison with the motor with no break. For details, refer to the outline dimension.)

(d) Considerations to safety

1) Using a timing belt

Connecting the motor with magnetic brakes and the load (ball screw, etc.) with a timing belt as shown on the left below could pose a hazard if the belt snaps. Even if the belt's safety coefficient is increased, the belt could snap if the tension is too high or if cutting chips get imbedded. Safety can be maintained by using the method shown on the right below.

Item	Motor type HC-H			102B 152B 103B 153B	202B 203B	352B 452B 353B 453B	702B 703B	902B 1102B 903B 1103B			
Type (Note 1)			Spring closed non-exciting operation magnetic brakes (for maintenance and emergency braking)								
Rated voltage					24\	/DC					
Rated current at 20°C (A)			0.91	0.86	1.0	1.4	1.4	1.7			
Capacity		(W)	22	21	24	34	34	41			
Static friction torque (N•m)			3.5	9	12	32	54.9	90			
Inertia (Note 2)		(kg•cm ²)	0.5	0.5	0.5	3.4	4.5	24			
Release delay t	me (Note 3)	(s)	0.1	0.1	0.1	0.12	0.3	0.3			
Braking delay tir (Note 3)	me (DC OFF)	(s)	0.1	0.1	0.1	0.1	0.1	0.1			
Tolerable	Per braking	(J)	700	700	700	4,500	4,500	4,500			
braking work amount	Per hour	(J)	7,000	7,000	7,000	45,000	45,000	45,000			
Brake play at m	otor axis	(degree)	0.2 to 0.6	0.2 to 0.6	0.2 to 0.6	0.2 to 0.6	0.2 to 0.6	0.2 to 0.6			
Brake life	No. of braking operations	(times)	20,000	20,000	20,000	20,000	20,000	20,000			
(Note 4)	Work amount per braking	(J)	200	200	200	1,000	1,000	1,000			

(2) Magnetic brake characteristics

(Note 1) There is no manual release mechanism. If handling is required such as during the machine core alignment work, prepare a separate 24VDC power supply, and electrically release a brake.

(Note 2) These are the values added to the servomotor without a brake.

(Note 3) This is the representative value for the initial attraction gap at 20°C.

(Note 4) The brake gap will widen through brake lining wear caused by braking. However, the gap cannot be adjusted. Thus, the brake life is considered to be reached when adjustments are required.

(Note 5) A leakage flux will be generated at the shaft end of the servomotor with a magnetic brake.

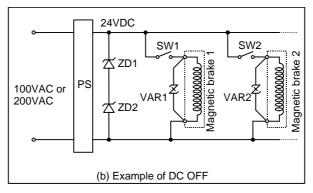
(Note 6) When operating in low speed regions, the sound of loose brake lining may be heard. However, this is not a problem in terms of function.

(3) Magnetic brake power supply

CAUTION

1. Always install a surge absorber on the brake terminal when using DC OFF. 2. Do not pull out the cannon plug while the brake power is ON. The cannon plug pins could be damaged by sparks.

(a) Brake excitation power supply


- Prepare a brake excitation power supply that can accurately ensure the attraction current 1) in consideration of the voltage fluctuation and excitation coil temperature.
- The brake terminal polarity is random. Make sure not to mistake the terminals with other 2) circuits.

(b) Brake excitation circuit

1) When turning OFF the brake excitation power supply (to apply the brake), DC OFF is used to shorten the braking delay time. A surge absorber will be required. Pay attention to the relay cut off capacity.

<Cautions>

- Provide sufficient DC cut off capacity at the contact.
- Always use a surge absorber.
- When using the cannon plug type, the surge absorber will be further away, so use shielded wires between the motor and surge absorber.

:24VDC stabilized power supply PS

ZD1, ZD2 : Zener diode for power supply protection (1W, 24V) VAR1, VAR2 : Surge absorber

Magnetic brake circuits

9-4 Dynamic brake characteristics

If a servo alarm that cannot control the motor occurs or emergency stop is input from NC, the dynamic brake stop the servomotor.

9-4-1 Deceleration torque

The dynamic brake use the motor as a generator, and obtains the deceleration torque by consuming that energy with the dynamic brake resistance. The characteristics of this deceleration torque have a maximum deceleration torque (Tdp) regarding the motor speed as shown in the following drawing. The torque for each motor is shown in the following table.

Fig. 9-2 Deceleration torque characteristics of a dynamic brake

Motor model	Stall torque (N·m)	Tdp (N⋅m)			Rated torque (N·m)	Tdp (N⋅m)	Ndp (r/min)	
HC-H52	3.0	2.96	284	HC-H53	3.0	2.95	326	
HC-H102	6.0	7.30	286	HC-H103	5.8	7.36	334	
HC-H152	9.0	12.53	281	HC-H153	9.0	12.53	345	
HC-H202	12.0	14.16	210	HC-H203	12.0	14.23	313	
HC-H352	22.0	25.92	272	HC-H353	22.0	25.78	458	
HC-H452	31.9	39.56	333	HC-H453	31.9	38.82	617	
HC-H702	49.0	71.42	402	HC-H703	49.0	70.69	765	
HC-H902	70.0	172.40	966	HC-H903	70.0	98.94	1178	
HC-H1102	110.0	182.16	1165	HC-H1103	110.0	182.16	1165	
HC-H1502	146.0	237.80	1828					

Table 9-3 Max. deceleration torque of a dynamic brake

9-4-2 Determining the coasting amount with emergency stop

(1) HC-H servomotor

The motor coasting amount when stopped by a dynamic brake can be approximated using the following expression.

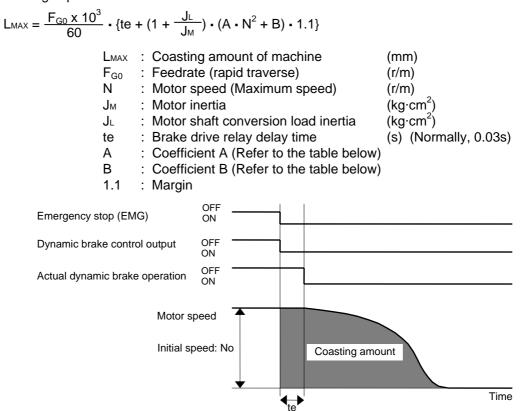


Fig. 9-3 Dynamic brake braking diagram

Table 9-4	Coasting	amount calculation	n coefficients	(HC-H Motor))
-----------	----------	--------------------	----------------	--------------	---

Motor model	Jм (kg⋅cm²)	А	В	Motor model	Jм (kg⋅cm²)	Α	В
HC-H52	4.6	9.57×10 ⁻⁹	2.31×10 ⁻³	HC-H53	4.6	8.35×10 ⁻⁹	2.67×10 ⁻³
HC-H102	7.4	6.20×10 ⁻⁹	1.52×10 ⁻³	HC-H103	7.4	5.25×10 ⁻⁹	1.76×10 ⁻³
HC-H152	10.1	5.00×10 ⁻⁹	1.19×10 ⁻³	HC-H153	10.1	4.08×10 ⁻⁹	1.46×10 ⁻³
HC-H202	30.2	17.70×10 ⁻⁹	2.35×10 ⁻³	HC-H203	30.2	11.82×10 ⁻⁹	3.48×10 ⁻³
HC-H352	42.9	10.64×10 ⁻⁹	2.35×10 ⁻³	HC-H353	42.9	6.35×10 ⁻⁹	3.99×10 ⁻³
HC-H452	57.0	7.55×10 ⁻⁹	2.51×10 ⁻³	HC-H453	57.0	4.15×10 ⁻⁹	4.74×10 ⁻³
HC-H702	95.0	5.78×10 ⁻⁹	2.80×10 ⁻³	HC-H703	87.0	2.81×10 ⁻⁹	4.93×10 ⁻³
HC-H902	205.0	2.25×10 ⁻⁹	6.31×10 ⁻³	HC-H903	205.0	3.22×10 ⁻⁹	13.41×10 ⁻³
HC-H1102	270.0	2.22×10 ⁻⁹	9.04×10 ⁻³	HC-H1103	270.0	2.22×10 ⁻⁹	9.04×10 ⁻³
HC-H1502	550.0	2.21×10 ⁻⁹	22.14×10 ⁻³				
HC-H52B	5.9	0.13×10 ⁻⁹	3.19×10 ⁻³	HC-H53B	5.1	9.29×10 ⁻⁹	2.97×10 ⁻³
HC-H102B	8.9	7.44×10 ⁻⁹	1.82×10 ⁻³	HC-H103B	7.9	6.02×10 ⁻⁹	2.01×10 ⁻³
HC-H152B	11.6	6.83×10 ⁻⁹	1.62×10 ⁻³	HC-H153B	10.6	4.67×10 ⁻⁹	1.67×10 ⁻³
HC-H202B	32.1	19.00×10 ⁻⁹	2.50×10 ⁻³	HC-H203B	30.7	12.00×10 ⁻⁹	3.54×10 ⁻³
HC-H352B	47.9	12.00×10 ⁻⁹	2.64×10 ⁻³	HC-H353B	46.3	6.85×10 ⁻⁹	4.31×10 ⁻³
HC-H452B	62.0	7.79×10 ⁻⁹	2.89×10 ⁻³	HC-H453B	60.4	4.38×10 ⁻⁹	5.01×10 ⁻³
HC-H702B	101.0	6.13×10 ⁻⁹	2.97×10 ⁻³	HC-H703B	91.5	2.94×10 ⁻⁹	5.18×10 ⁻³
HC-H902B	239.0	2.17×10 ⁻⁹	6.09×10 ⁻³	HC-H903B	215.0	2.94×10 ⁻⁹	12.71×10 ⁻³
HC-H1102B	294.0	2.27×10 ⁻⁹	10.48×10 ⁻³	HC-H1103B	314.0	2.57×10 ⁻⁹	10.56×10 ⁻³

(2) Linear servomotor

The motor coasting amount when stopped by a dynamic brake can be approximated using the following expression.

$$L_{MAX} = \frac{F_0}{60} \cdot \{\text{te} + M \cdot (A + B \cdot F_0^{-2}) \cdot 1.1\}$$

$$L_{MAX} : \text{Coasting amount of machine} (m)$$

$$F_0 : \text{Speed during brake operation} (m/min)$$

$$M : \text{Total weight of moving section} (kg)$$

$$\text{te} : \text{Brake drive relay delay time} (s) (\text{Normally, 0.03s})$$

$$A : \text{Coefficient A (Refer to the table below)}$$

$$B : \text{Coefficient B (Refer to the table below)}$$

$$1.1 : \text{Margin}$$

Table 9-5 Coasting amount calculation coefficients (Linear servomotor)

Motor model	Α	В
LN-NP5G-60P	1.31×10 ⁻⁴	5.38×10 ⁻⁹

9-5 Vibration class

The vibration class of the servomotor is V-10 at the rated speed. The servomotor installation posture and measurement position to be used when measuring the vibration are shown below.

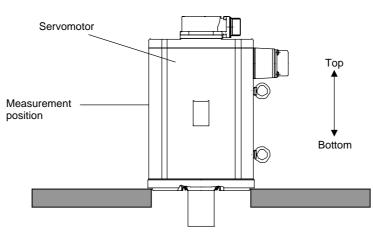


Fig. 9-4 Servomotor vibration measurement conditions

The vibration class of the spindle motor is V-5 or V10. The posture for installing the spindle motor for measurements is shown below. The vibration class will differ according to the motor, so refer to each corresponding motor specifications.

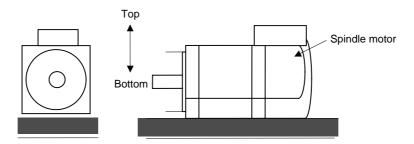


Fig. 9-5 Spindle motor vibration measurement conditions

10. Specifications

10-1 Power supply unit/drive unit	
10-1-1 Installation environment conditions	
10-1-2 Servo drive unit	
10-1-3 Spindle drive unit	
10-1-4 Power supply unit	
10-1-5 Outline dimension drawings	
10-1-6 Terminal layout	
10-1-7 The combination of servo drive unit and a motor	
10-2 Servomotor	
10-2-1 Specifications list	
10-2-2 Torque characteristics	
10-2-3 Model configuration	
10-2-4 Outline dimension drawings	
10-3 Linear servomotor	
10-3-1 List of specifications	
10-3-2 Outline dimension drawings	

10-1 Power supply unit/drive unit

10-1-1 Installation environment conditions

Common installation environment conditions for servo, spindle and power supply unit are shown below.

	Ambient temperature	0 to 55°C (with no freezing), Storage: -15°C to 70°C (with no freezing)							
	Ambient humidity	90%RH or less (with no dew condensation) Storage: 90%RH or less (with no dew condensation)							
Environ-	Environ- ment Atmosphere	Indoors (no direct sunlight)							
ment		With no corrosive gas, inflammable gas, oil mist, dust or conductive fine particles							
	Altitude	Operation/Storage: 1000 meters or less above sea level, Transportation: 13000 meters or less above sea level							
	Vibration/impact	4.9m/s ² (0.5G) / 49m/s ² (5G)							

10-1-2 Servo drive unit

(1) 1-axis servo drive unit

					1-axis servo drive unit MDS-CH-V1 Series										
Servo dri type	ve unit MDS-	CH-V1-	05	10	20	35	45	70	90	110	150	185			
Rated out		[kW]	0.5	1.0	2.0	3.5	4.5	7.0	9.0	11.0	150	18.5			
	Rated voltage	[V]	456VAC												
Juipui	Rated current	[A]	1.7	2.6	5.0	8.4	11.0	16	18	17	29	39			
Input	Rated voltage	[V]					513 to 6	648VDC							
input	Rated current	[A]	1.4	2.4	4.6	8.0	10	15	19	20	30	39			
	Voltage	[V]	380 t	380 to 440VAC (50Hz) / 380 to 480VAC (60Hz) Power fluctuation rate within +6%/-10%											
Control	Frequency	[Hz]	50 / 60Hz Frequency fluctuation within ±3%												
	Current	[A]	Max. 0.1												
power	Rush current	[A]	Max. 18												
p00	Rush														
	conductivity time	[ms]	Max. 6												
Earth leak	age current	[A]	1 (Max.2)												
Control m	ethod					Sine	wave PWN	/ control m	ethod						
Braking						Regenera	tive braking	g and dynar	nic brakes						
Dynan	nic brakes					Built-in		· · ·		Externa	al (MDS-B-I	DBU-150)			
Structure						Ope	n (Protectic	on method:	IP00)			,			
Weight		[kg]	5.5 6.0 7.0 10.0						15.0						
Maximum	radiated heat	[W]	40	65	105	150	210	320	370	400	550	800			
Noise					•	•	Less th	an 55dB	•	•	•	•			

(2) 2-axis servo drive unit

						2-axis serv	vo drive un	it MDS-CH	I-V2 Series					
Servo driv type	ve unit MDS-	-CH-V2-	0505	1005	1010	2010	2020	3510	3520	3535	4520	4535		
Rated outp	out	[kW]	0.5+0.5	1.0+0.5	1.0+1.0	2.0+1.0	2.0+2.0	3.5+1.0	3.5+2.0	3.5+3.5	4.5+2.0	4.5+3.5		
Output Note	Rated voltage	[V]	456VAC								-			
Output	Rated current	[A]	1.7 / 1.7	2.6/1.7	2.6/2.6	5.0/2.6	5.0/ 5.0	8.4 / 2.6	8.4/5.0	8.4/8.4	11.0 / 5.0	11.0/8.4		
Input	Rated voltage	[V]					513 to 6	648VDC						
mput	Rated current	[A]	2.8	3.8	4.8	7	9.2	10.4	12.6	16	14.7	18.1		
	Voltage	[V]	380	to 440VAC	; (50Hz) / 38	30 to 480VA	AC (60Hz)	Power flu	ctuation rate	e within +69	%/-10%			
	Frequency	[Hz]	50/60Hz Frequency fluctuation within ±3%											
Control	Current	[A]	Max. 0.1											
power	Rush current	[A]	Max. 18											
pene	Rush conductivity time	[ms]					Ma	x. 6						
Earth leak	age current	[A]	1 (Max.4 For 2 axes)											
Control m	nethod				Sine v	vave PWM	control met	hod Curre	nt control m	nethod				
Braking						Regenera	tive braking	and dynar	nic brakes					
Dynam	nic brakes			Built-in										
Structure						Ope	n (Protectio	n method: I	P00)					
Cooling n	nethod						Forced wi	nd cooling						
Weight		[kg]			5.5					6.0				
Maximum	n heating value	[W]	80	105	120	180	200	215	240	295	300	345		
Noise							Less that	an 55dB						

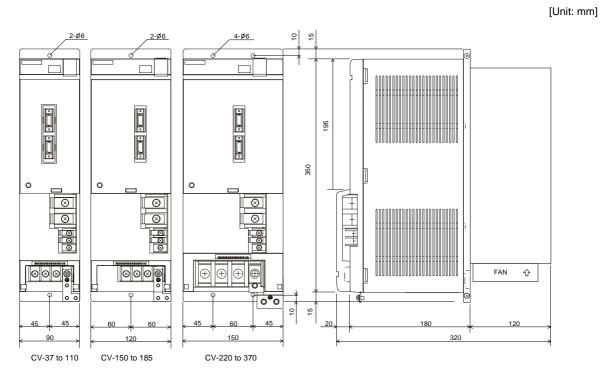
Note) The listed voltage in the output characteristics is the maximum value, and the current is the motor's continuous rated current value.

10-1-3	Spindle	drive	unit
--------	---------	-------	------

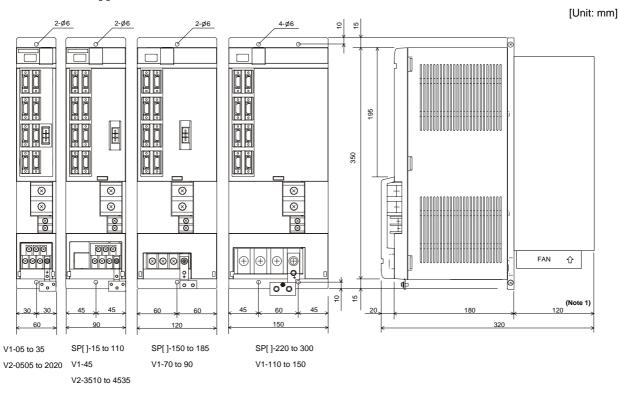
							Spin	dle driv	e unit l	MDS-CH	-SP[]S	eries				
Spindle o unit type		-SP[]-	15	37	55	75	110	150	185	220	260	300	370	450	550	750
Continue	ous rated output	[kW]	0.75	2.2	3.7	5.5	7.5	11	15	18.5	22	26	30	37	45	55
Output	Rated voltage	[V]		340VAC												
Note3	Rated current	[A]	2.3	7.5	9.0	13	19	25	32	40	49	65	73	87	103	132
Input	Rated voltage	[V]							513 to 6	648VDC						
mpar	Rated current	[A]	2.3	7.1	10	15	21	29	38	47	57	72	82	99	119	150
	Voltage	[V]	3	80 to 44	IOVAC (5	50Hz) / 3	380 to 48	80VAC (6	60Hz)	Power f	luctuatio	on rate w	ithin +69	%/-10%		
	Frequency	[Hz]		50 / 60Hz Frequency fluctuation within ±3%												
Control	Current	[A]	Max.0.1A													
power	Rush current	[A]	Max. 18													
	Rush conductivity time	[ms]	Max. 6													
Earth lea	akage current								6 (M	AX.15)						
Control I	method							Sine wa	ve PWN	1 control	method					
Braking							F	ower su	pply reg	eneratio	n brakin	g				
Structure	e							Open (F	Protectio	n metho	d: IP00)					
Cooling method Forced air cooling																
Weight		[kg]	g] 6.5 6.5 8.5 10.0 15.0 20.0).0	47.0					
Maximur	m heating value	[W]	70	105	145	180	240	315	455	490	645	825	1105	1300	1560	2145
Noise									Less that	an 55dB						

Note1) [] is either blank, or a combination of H and M Note2) C-axis detector [model: MBE90K and MHE90K] cannot be used with MDS-CH-SP[] series.

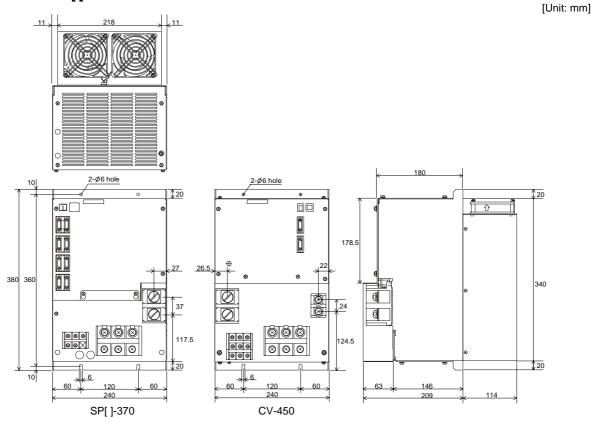
Note3) The listed voltage in the output characteristics is the maximum value, and the current is the motor's continuous rated current value.

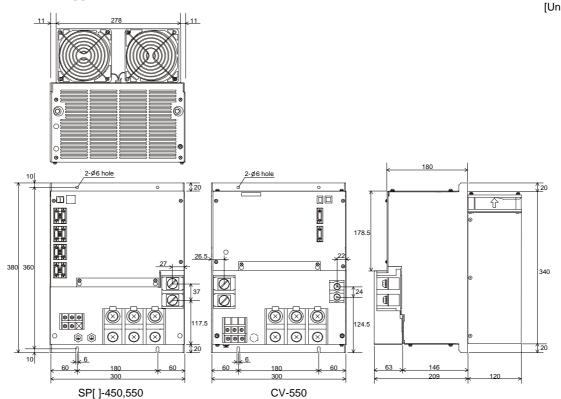

							Power	supply u	unit MD	S-CH-CV	Series				
Power su unit type		CH-CV-	37	55	75	110	150	185	220	260	300	370	450	550	750
Rated ou	utput	[kW]	3.7	5.5	7.5	11.0	15.0	18.5	22.0	26.0	30.0	37.0	45.0	55.0	75.0
Power ca	apacity	[KVA]	5.3	8.0	11.0	16.0	21.0	28.0	32.0	37.0	43.0	53.0	64.0	78.0	107.0
	Rated voltage	[V]	3	380 to 440VAC (50Hz) / 380 to 480VAC (60Hz) Power fluctuation rate within +6%/-10%											
Input	Frequency	[Hz]						50 / 60H	lz Fre	quency fl	uctuation	within ±	3%		
	Rated current	[A]	5.2	8.7	13	18	26	35	44	52	61	71	87	106	130
Outrast	Rated voltage	[V]		513 to 648VDC											
Output	Rated current	[A]	7.1	10	15	21	29	38	47	57	72	82	99	119	150
	Voltage	[V]		380 to 440VAC (50Hz) / 380-480VAC (60Hz) Power fluctuation rate within +6%/-10%											
	Frequency	[Hz]		50 / 60Hz Frequency fluctuation within ±3%											
Control	Current	[A]		Max. 0.1											
power	Rush current (in contactor ON	_{J)} [A]		Max. 18 (Max. 4					Max. 18 [™] (Max. 45)						
	Rush conductivity													Max. 6 ^{Note}	9
	time (in contactor ON	[ms] I)					Ma	ix. 6					(Max	. 200)	(Max. 260)
Protectiv	e function			Regeneration overvoltage shutdown, overload shutdown, regeneration fault protection, undervoltage/sudden power outage protection, etc											
Structure	9			Open (Protection method: IP00)											
Cooling r	method		Forced air cooling												
Weight		[kg]		8	.5		10).5		12	2.5		15.0	20.0	24.0
Maximun	n heating value	[W]	55	65	80	125	155	195	210	260	320	400	500	600	850
Noise								Les	ss than 5	5dB					

10-1-4 Power supply unit


Note) The value in the table is rush current and rush current conductivity time when the unit control power is turned ON. When the contactor is turned ON, rush current for charging flows.

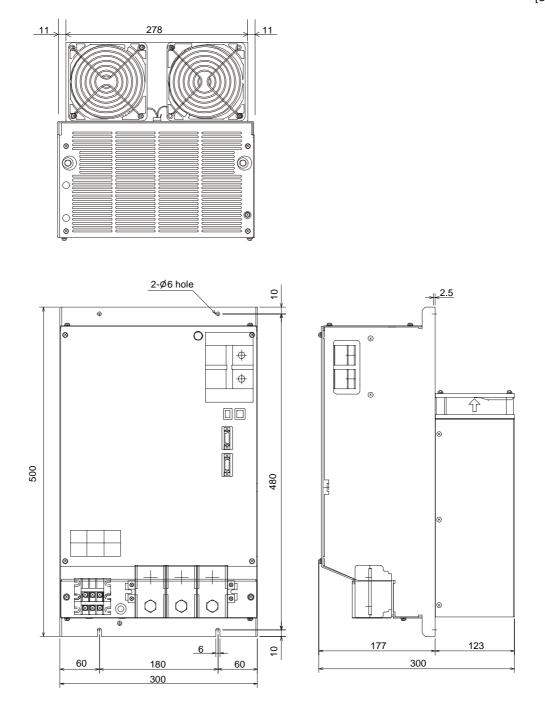
10-1-5 Outline dimension drawings


• MDS-CH-CV-37 to 370


• MDS-CH-SP[]-15 to 300/MDS-CH-V1-10 to 150/MDS-CH-V2-0505 to 4535

• MDS-CH-SP[]-370/MDS-CH-V1-185/MDS-CH-CV-450

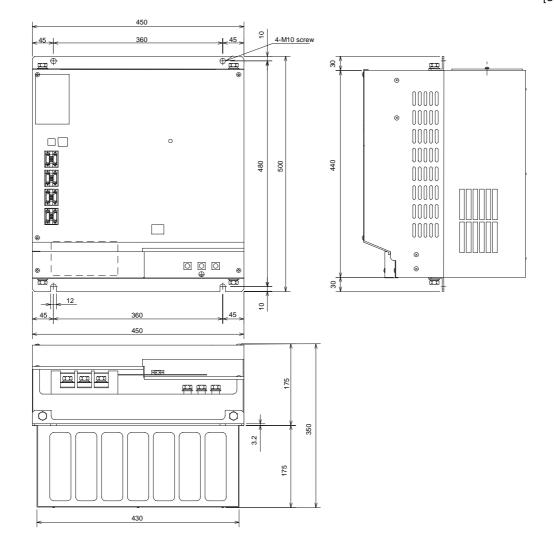
Note) DC connection bar is required. Always install a large capacity drive unit in the left side of power supply unit, and connect with DC connection bar.


Note) DC connection bar is required. Always install a large capacity drive unit in the left side of power supply unit, and connect with DC connection bar.

• MDS-CH-SP[]-450,550/MDS-CH-CV-550

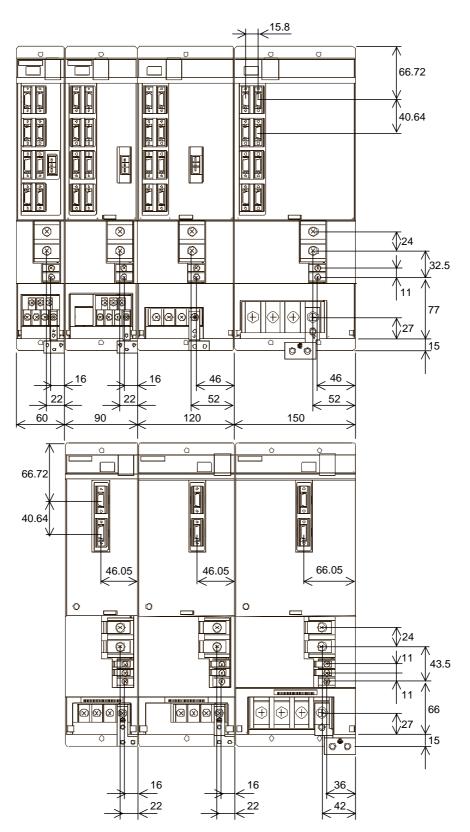
[Unit: mm]

• MDS-CH-CV-750


[Unit: mm]

Note) DC connection bar is required. Always install a large capacity drive unit in the left side of power supply unit, and connect with DC connection bar.

• MDS-CH-SP[]-750


[Unit: mm]

Note) DC connection bar is required. Always install a large capacity drive unit in the left side of power supply unit, and connect with DC connection bar.

10-1-6 Terminal layout

When manufacturing the bar connected between units, refer to the following positional relation of the TE2 and TE3 terminal blocks. [Unit: mm]

	Motor						Drive	e unit				
	Туре					Ν	/DS-CI	H-V1-[_]			
	туре		05	10	20	35	45	70	90	110	150	185
		52	Х									
		102		Х								
	HC-H[_] 2000 r/min	152			Х							
		202			Х							
		352				Х						
		452					Х					
		702						Х				
Middle		902							Х			
Middle inertia		1102									Х	
		1502										Х
		53	Х									
		103		Х								
		153			Х							
		203				Х						
	HC-H[_] 3000 r/min	353					Х					
		453						Х				
		703							Х			
		903								Х		
		1103									Х	

10-1-7 The combination of servo drive unit and a motor

Caution 1) "X" indicates the combination of the corresponding motor and unit. **Caution 2)** 2-axis integrated servo drive unit (MDS-CH-V2) is the same as the combination of the capacity of MDS-CH-V1.

10-2 Servomotor

10-2-1 Specifications list

	onvomotor co	iaa	1	I	Nedium	inertia H	C Series	(Rated	speed 2	000r/min)	
2	ervomotor ser	les	11	VC speci	fication:	HC**-E	51/-E42,	ABS spe	ecificatio	on: HC∗∗	-A51/-A4	2
Model	Servomotor	HC-	H52	H102	H152	H202	H352	H452	H702	H902	J1102	J1502
Specifica- tions	Drive unit	MDS-CH-V1/2-	05	10	20	20	35	45	70	90	150	185
	Rated output	[kW]	0.5	1.0	1.5	2.0	3.5	4.5	7.0	9.0	11.0	15.0
Continuous	Rated current	[A]	1.6	2.5	3.8	5.0	8.4	10.6	15.5	18.0	26.6	38.8
charac-	Stall current	[A]	1.9	3.0	4.3	6.3	10.9	15.8	20.2	29.4	55.8	76.8
teristics	Rated torque	[N·m]	2.39	4.78	7.16	9.55	16.7	21.5	33.4	43.0	42.0	71.6
	Stall torque	[N·m]	3.0	6.0	9.0	12.0	22.0	31.9	49.0	70.0	110.0	146.0
Rated rotation	on speed	[r/min]				20	00				2500	2000
Maximum ro	tation speed	[r/min]				20	00				25	00
Maximum cu	urrent	[A]	8.4	11.4	23.8	23.8	31.8	47.7	63.6	71.0	124.0	160.0
Maximum to	orque	[N·m]	10.0	19.0	35.3	41.7	58.0	87.5	120	170.0	230.0	280.0
Power rate a rated torque	at continuous	[kW/s]	13.6	33.8	54.2	30.0	67.0	81.0	117.0	89.8	100.0	104.5
Instantaneou acceleration	0	[rad/s ²]	29500	33600	40200	15900	16000	17700	14500	9500	8700	5860
Motor inertia	l	[×10 ⁻⁴ kg⋅m ²]	4.6	7.4	10.1	30.2	42.9	57.0	95.0	215.0	270.0	550
Motor inertia	with brake	[×10 ⁻⁴ kg⋅m ²]	5.1	7.9	10.6	30.7	46.3	60.4	99.5	239.0	194.0	-
Maximum motor shaft conversion load inertia rate				Genera	eed, high I machine I machine	e tool	cy machii	: 5 tim	les or les les or les nes or les	s of moto	or inertia	I
Armature re (phase 20°C		[Ω]	5.8	3.4	2.09	0.68	0.49	0.24	0.173	0.087	0.032	0.0381
Armature inductance [mH] (phase 20°C)		53.0	32.6	22.0	13.4	8.7	5.3	4.0	1.45	1.09	0.7026	
Inductive vo (phase 20°C	Itage constant C, ±10%)	[mV/r/min]	67.7	83.4	89.8	74.5	81.2	78.3	91.4	85.5	76.2	69.9
Torque cons	stant (±10%)	[N·m/A]	1.80	2.39	2.16	2.13	2.32	2.24	2.62	2.82	2.18	1.95
Electrical tim	ne constant	[ms]	9.1	9.6	10.5	20.0	18.0	22.0	23.0	34.0	34.0	18.4
Mechanical	time constant	[ms]	2.1	1.82	1.0	1.4	1.2	0.8	0.72	0.7	0.54	1.65
Thermal time	e constant	[min]	15	20	25	35	45	50	55	65	70	26.4
Armature co upper limit d	il temperature egree	[°C]	100									
Motor side d	etector		Resolution per motor rotation E51/A51: 1,000,000 pulse/rev, E42/A42: 100,000 pulse/rev									
Structure			Fully closed, self-cooling (protective degree: IP65, IP67)									
	Ambient temp	erature	Operation: 0 to 40°C (non freezing), Storage/transportation: –15 to 70°C (non freezing)									
	Ambient humi	dity			Oper	ation: 20	% to 90%	6RH (nor	n conden	sing),	~)	
Environ-	Atmosphare		Indo						. (non co flammabl			duct
ment	Atmosphere Elevation		Indo	0	peration/	storage:	1000 me	ters or le	ss above	e sea leve	el,	uust
	Vibration				ranspor	iation: 10	X: 19.6n	n/s² (2G)	ss above	sea leve	1	
						n	Y: 19.6n	n/s² (2G)	n	1	1	-
Weight With	nout/with brake	[kg]	5.1/ 6.4	7.0/ 8.5	8.2/ 9.7	15/ 16.9	19.1/ 24.1	23.2/ 28.2	38.5/ 44.5	55.4/ 65.8	78.7/ 89.1	160/-
Armature insulation class							Cla	ss F				

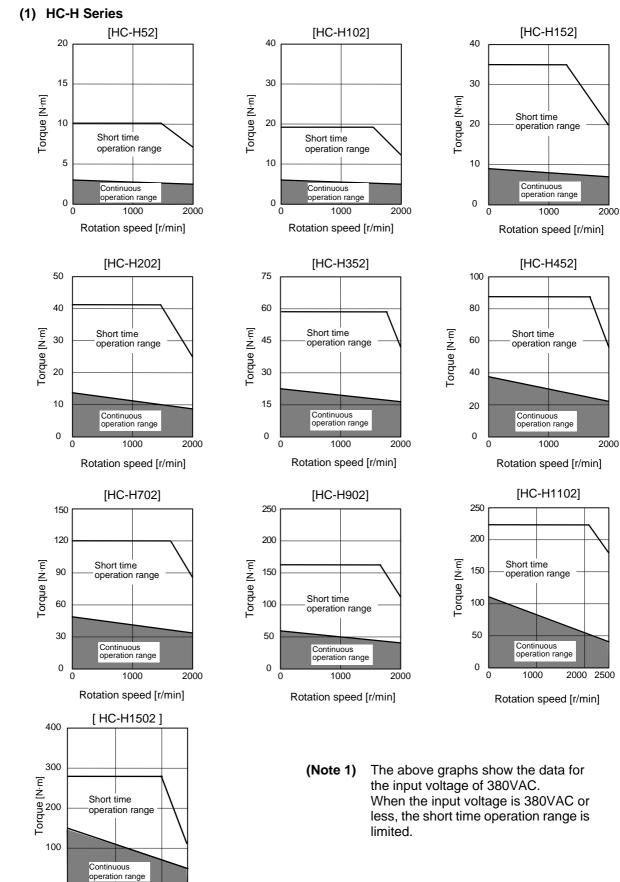
(Note) The above characteristics values are representative values. The maximum current and maximum torque are the values when combined with the drive unit.

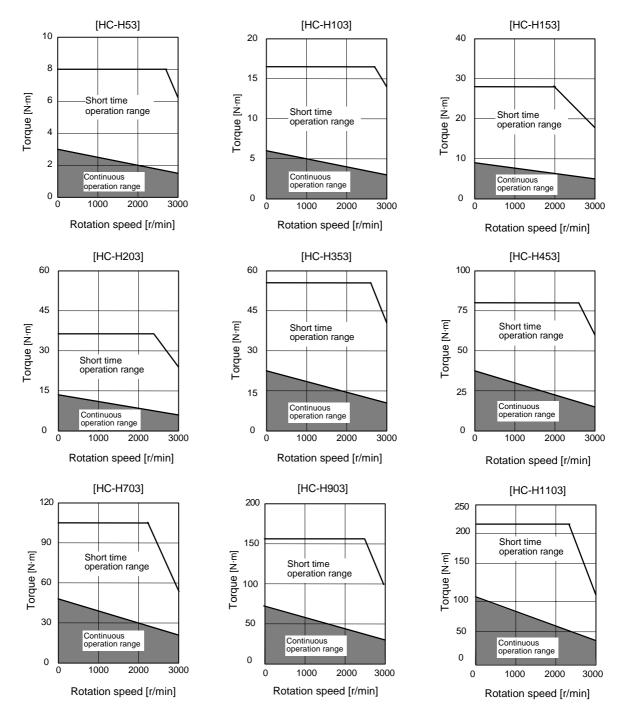
The HC-H1502 motor does not have brakes.

Use HC-H motor with the 200V input-compliant MDS-CH-V1/V2 Unit. It cannot be used with the conventional MDS-B/C1-V1/V2 Unit.

Model Ser Specifications Driving Specifications Rain Continuous State characteristics State Rated rotation speed Maximum rotation speed Maximum current Maximum torque Power rate at continuou torque Instantaneous angle at continuou torque Instantaneous angle at continuou torque Motor inertia		HC- MDS-CH- V1/2- [kW]	INC : H53 05 0.5 1.7 2.6 1.6 3.0	specifica H103 10 1.0 2.6 4.6 3.3	tion: HC H153 20 1.5 3.4 6.1	**-E51/-E H203 35 2.0 4.8	E42, ABS H353 45 3.5	specific H453 70 4.5	eation: H H703 90	C++-A51/ H903 110	H1103
Specifications Drivent Continuous Rai characteristics Sta Rated rotation speed Maximum rotation speed Maximum rotation speed Maximum torque Power rate at continuou torque Instantaneous angle ad Motor inertia Motor inertia with brake Maximum motor shaft Ioad inertia rate	rive unit ated output ated current all current ated torque all torque eed	MDS-CH- V1/2- [kW] [A] [A] [N·m] [N·m] [r/min]	05 0.5 1.7 2.6 1.6	10 1.0 2.6 4.6	20 1.5 3.4	35 2.0	45	70			
Specifications Rai Continuous Rai characteristics Sta Rated rotation speed Maximum rotation speed Maximum rotation speed Maximum torque Power rate at continuou torque Power rate at continuou torque Instantaneous angle ad Motor inertia Motor inertia with brake Maximum motor shaft load inertia rate Instantaneous	ated output ated current all current ated torque all torque eed	V1/2- [kW] [A] [A] [N·m] [N·m] [r/min]	0.5 1.7 2.6 1.6	1.0 2.6 4.6	1.5 3.4	2.0		_	90	110	150
Continuous characteristics Rai Rated rotation speed Maximum rotation speed Maximum current Maximum torque Power rate at continuou torque Instantaneous angle ad Motor inertia Motor inertia with brake Maximum motor shaft load inertia rate	ated current all current ated torque all torque eed	[A] [A] [N·m] [N·m] [r/min]	1.7 2.6 1.6	2.6 4.6	3.4		3.5	45			L
Continuous characteristics Sta Rai Sta Rated rotation speed Maximum rotation speed Maximum rotation speed Maximum torque Power rate at continuou torque Instantaneous angle ac Motor inertia Motor inertia with brake Maximum motor shaft load inertia rate	all current ated torque all torque eed	[A] [N·m] [N·m] [r/min]	2.6 1.6	4.6		48		т.5	7.0	9.0	11.0
characteristics Sta Rated rotation speed Maximum rotation speed Maximum current Maximum torque Power rate at continuor torque Instantaneous angle ad Motor inertia Motor inertia with brake Maximum motor shaft load inertia rate	ated torque all torque eed	[N·m] [N·m] [r/min]	1.6		61		9.8	10.6	15.0	17.4	28.5
Rai Rai Rated rotation speed Maximum rotation speed Maximum rotation speed Maximum current Maximum torque Power rate at continuor torque Power rate at continuor torque Instantaneous angle action of the second	all torque	[N·m] [r/min]		3.3	0.1	9.0	17.7	23.6	33.0	41.8	59.6
Rated rotation speed Maximum rotation speed Maximum current Maximum torque Power rate at continuo torque Instantaneous angle ac Motor inertia Motor inertia Motor inertia with brake Maximum motor shaft load inertia rate	eed	[r/min]	3.0		5.0	6.4	11.2	14.3	22.3	29.1	35.6
Maximum rotation spec Maximum current Maximum torque Power rate at continuo torque Instantaneous angle ac Motor inertia Motor inertia with brake Maximum motor shaft load inertia rate				5.8	9.0	12.0	22.0	31.9	49.0	70.0	110.0
Maximum current Maximum torque Power rate at continuo torque Instantaneous angle ac Motor inertia Motor inertia with brake Maximum motor shaft load inertia rate		[r/min]					3000		•		
Maximum torque Power rate at continuou torque Instantaneous angle ac Motor inertia Motor inertia with brake Maximum motor shaft load inertia rate	ous rated						3000				
Power rate at continuor torque Instantaneous angle ac Motor inertia Motor inertia with brake Maximum motor shaft load inertia rate	ous rated	[A]	8.4	14.1	23.8	31.8	47.7	63.6	71.0	106.0	124.0
torque Instantaneous angle ad Motor inertia Motor inertia with brake Maximum motor shaft load inertia rate	ous rated	[N·m]	8.0	16.7	28.4	36.0	55.9	79.8	105.0	153.0	210.0
Motor inertia Motor inertia with brake Maximum motor shaft load inertia rate		[kW/s]	8.7	14.7	24.8	30.0	67.0	81.0	129.0	86.0	100.0
Motor inertia with brake Maximum motor shaft load inertia rate	cceleration	[rad/s ²]	22000	26000	32300	15300	15000	16100	13900	8600	7900
Maximum motor shaft load inertia rate		[× 10 ⁻⁴ kg⋅m ²]	4.6	7.4	10.1	30.2	42.9	57.0	87.0	215.0	270.0
load inertia rate	æ	$[\times 10^{-4} \text{ kg} \cdot \text{m}^2]$	5.1	7.9	10.6	30.7	46.3	60.4	91.5	239.0	294.0
Armature resistance	Maximum motor shaft conversion			High-speed, high-accuracy machine : 3 times or less of motor inertia General machine tool : 5 times or less of motor inertia General machine :10 times or less of motor inertia							
(phase 20°C)	[0]		2.7	1.29	1.06	0.34	0.19	0.12	0.077	0.033	0.032
Armature inductance (phase 20°C)		[mH]	23.4	12.8	10.8	6.4	3.6	2.4	1.8	1.08	1.09
Inductive voltage constant (phase 20°C, ±10%)		[mV/r/min]	44.9	52.5	62.9	51.6	52.1	52.2	61.0	55.9	76.2
Torque constant (±10%	%)	[N·m/A]	1.28	1.40	1.65	1.48	1.49	1.50	1.75	1.72	2.18
Electrical time constant	nt	[ms]	8.7	5.0	10.2	19.0	19.0	20.0	23.0	33.0	34.0
Mechanical time consta	tant	[ms]	2.3	2.54	1.0	1.4	1.1	0.9	0.7	0.77	0.54
Thermal time constant	t	[min]	15	20	25	35	45	50	55	65	70
Static friction torque		[N·m]									
Armature coil temperat limit degree	ture upper	[°C]	100								
Motor side detector			Resolution per motor rotation E51/A51: 1,000,000 pulse/rev, E42/A42: 100,000 pulse/rev								
Structure			Fully closed, self-cooling (protective degree: IP65, IP67)								
An	mbient temp	perature	Operation: 0 to 40°C (non freezing), Storage/transportation: –15 to 70°C (non freezing)								
Ar	mbient hum	idity	Operation: 20% to 90%RH (non condensing),								
Environment At	tmosphere		Storage/transportation: 90%RH max. (non condensing) Indoors (no direct sunlight); no corrosive gas, inflammable gas, oil mist, or dust								
7.0	levation		110010	Opera	ation/stor	age: 100) meters o meters o	or less at	oove sea	level,	5. 4401
Vil	ibration				.sponulo	X: 1	9.6m/s ² (9.6m/s ² (2G)	575 500 I		
Weight Without/with bi	Weight Without/with brake [kg]			7.0/	8.2/	15.0/	9.0m/s (23.2/	38.5/	55.4/	78.7/
Armature insulation cla	orake				9.7	16.9	24.1	28.2	44.5	65.8	89.1

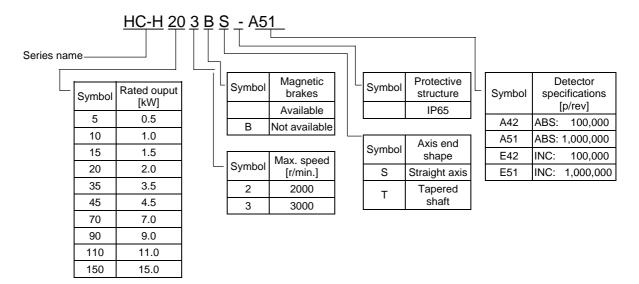
(Note) The above characteristics values are representative values. The maximum current and maximum torque are the values when combined with the drive unit. A HC-H motor is only for MDS-CH-V1/V2 Unit. It cannot be used for MDS-B/C1-V1/V2 Unit.

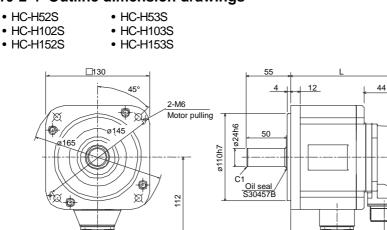

10-2-2 Torque characteristics

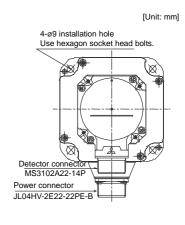

0

1000

Rotation speed [r/min]


2000 2500

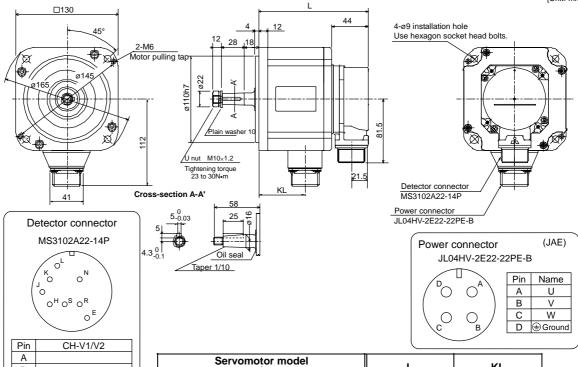



(Note 1) The above graphs show the data for the input voltage of 380VAC. When the input voltage is 380VAC or less, the short time operation range is limited.

10-2-3 Model configuration

10-2-4 Outline dimension drawings

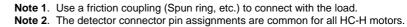
81.5

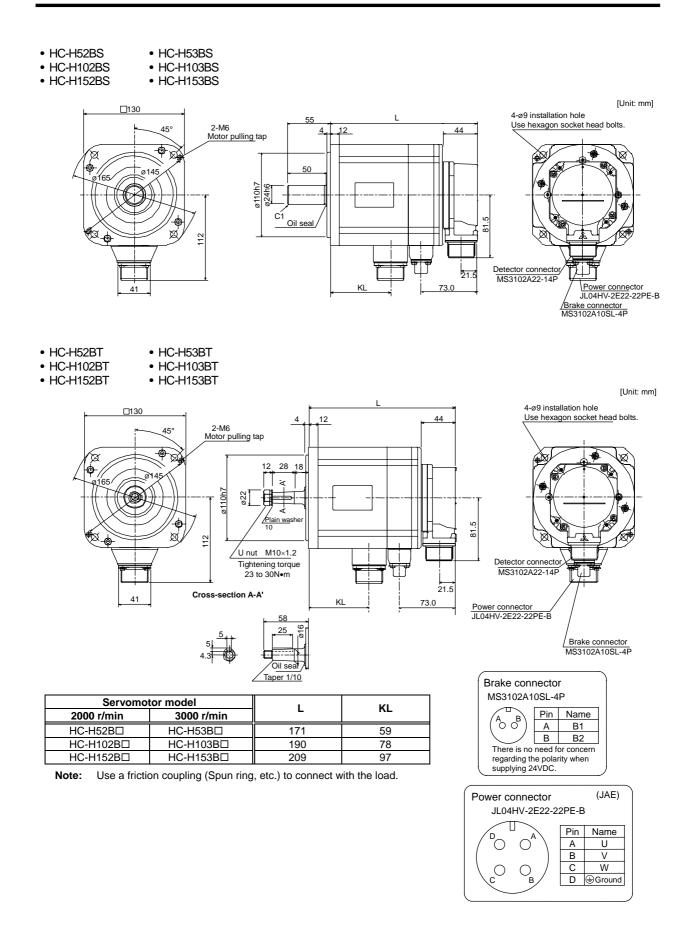

21.5

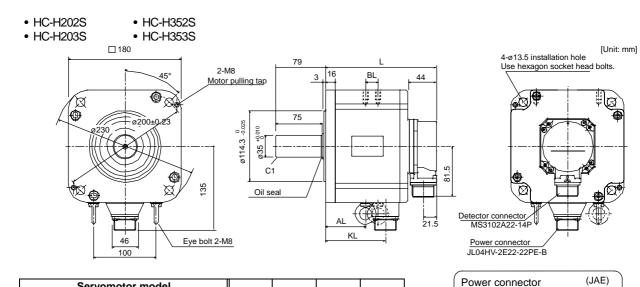
• HC-H52T • HC-H53T • HC-H103T

41

- HC-H102T • HC-H153T
- HC-H152T


[Unit: mm]




ĸ

Pin	CH-V1/V2
Α	
В	
С	
D	
Е	BT
F	
A B C D E F G H J K	
Н	SD
J	SD
Κ	RQ
L	RQ
М	
N P	SD
Р	
R S T U V	5G
S	+5V
Т	
U	
V	

Servomo	tor model		KL		
2000 r/min	3000 r/min	L	κL		
HC-H52□	HC-H53	139	59		
HC-H102□	HC-H103□	158	78		
HC-H152□	HC-H153□	179	97		

JL04HV-2E22-22PE-B

Pin

А

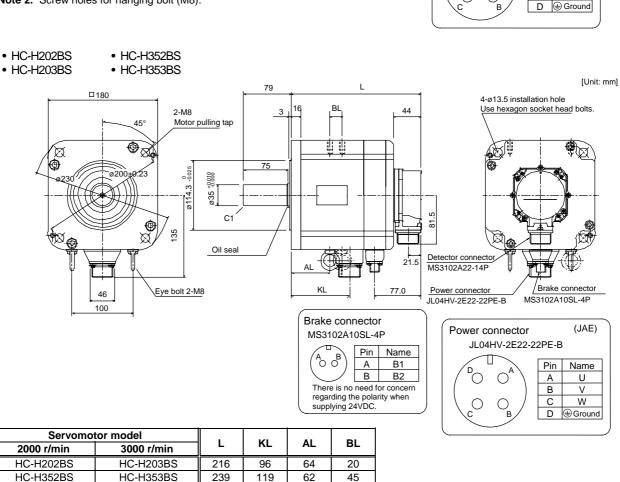
В

С

Name

U

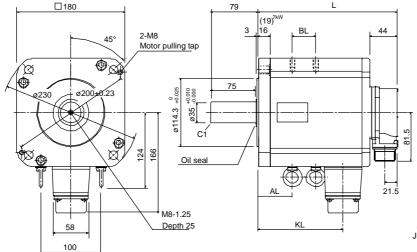
V

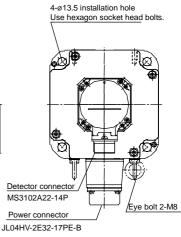

W

 \bigcirc

0 0

Servomot	tor model					
2000 r/min	3000 r/min	L	KL	AL	BL	
HC-H202S	HC-H203S	180	96	64	20	
HC-H352S	HC-H353S	203	119	62	45	


Note 1. Use a friction coupling (Spun ring, etc.) to connect with the load. **Note 2.** Screw holes for hanging bolt (M8).



Note 1. Use a friction coupling (Spun ring, etc.) to connect with the load.

Note 2. Screw holes for hanging bolt (M8).

- HC-H452S HC-H702S
- HC-H453S
- HC-H703S

Power connector

Π

0 0

 $\circ \circ$

JL04V-2E32-17PE-B

Pin

А

В

С

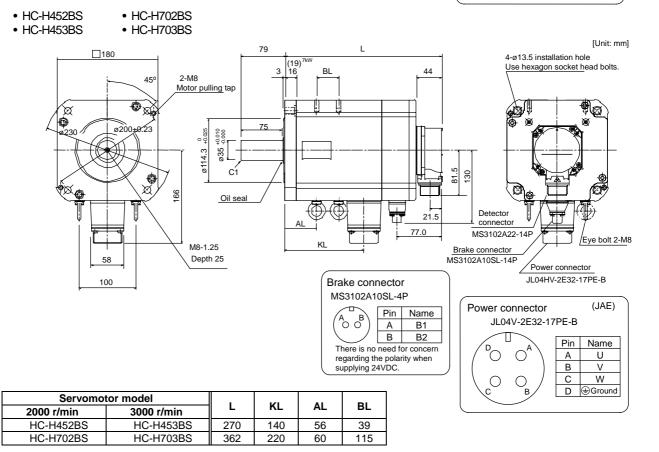
D

[Unit: mm]

(JAE)

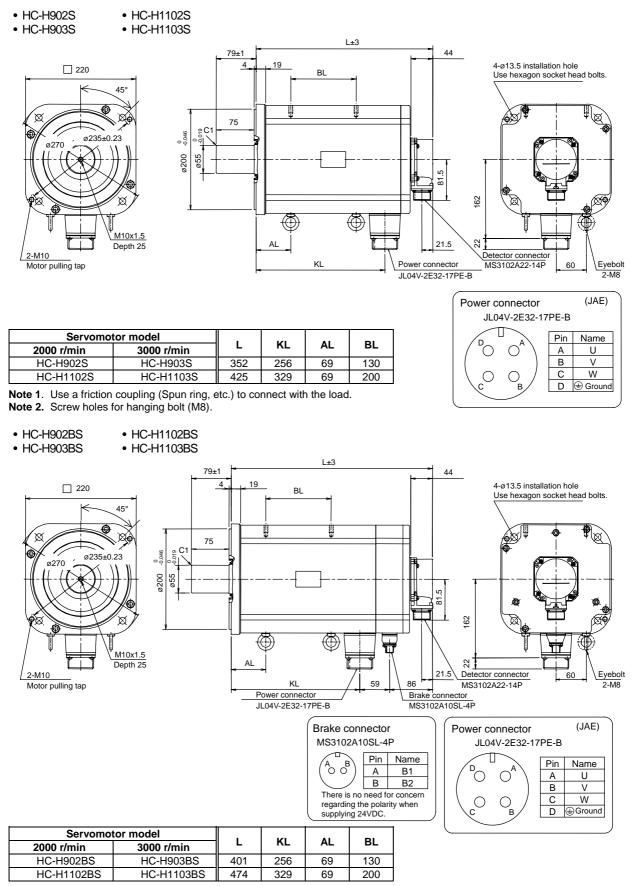
Name

U

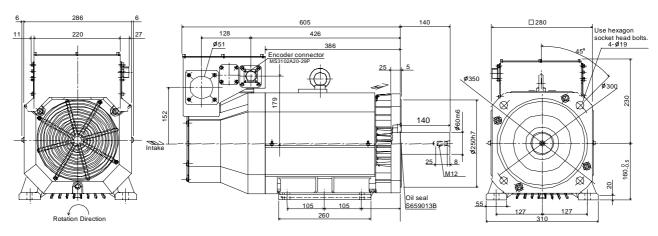

V

W

⊕ Ground


Servomo		141			
2000 r/min	3000 r/min	L	KL	AL	BL
HC-H452S	HC-H453S	234	140	56	39
HC-H702S	HC-H703S	314	220	60	115

Note 1. Use a friction coupling (Spun ring, etc.) to connect with the load. **Note 2.** Screw holes for hanging bolt (M8).

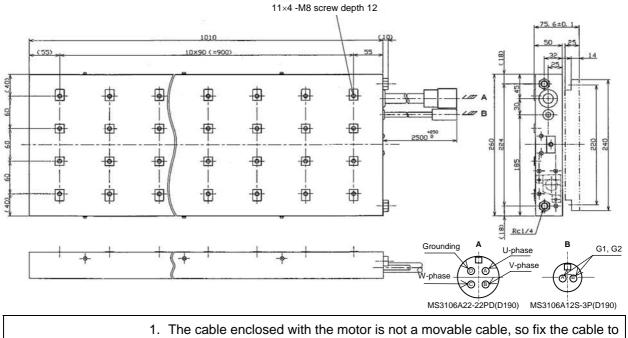

Note 1. Use a friction coupling (Spun ring, etc.) to connect with the load.

Note 2. Screw holes for hanging bolt (M8).

Note 1. Use a friction coupling (Spun ring, etc.) to connect with the load. **Note 2.** Screw holes for hanging bolt (M8).

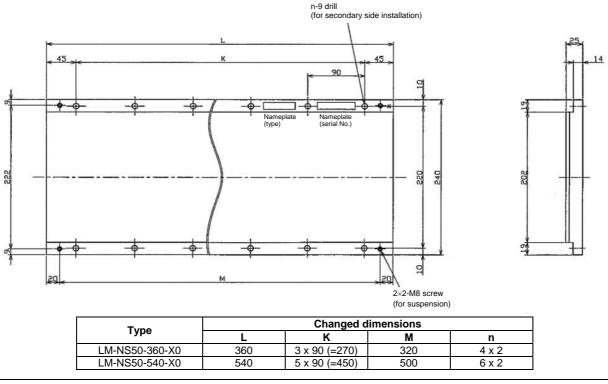
• HC-H1502S

10-3 Linear servomotor


10-3-1 List of specifications

	Primary side	LM-NS5G-60P-X0	Insulatio	n class	Class F		
Туре	Secondary side	LM-NS50-360-X0 LM-NS50-540-X0	Coil res	istance	1.22 [Ω at 20°C] (U-V, V-W, W-U)		
Electromotive voltage constant (at 20°C)		51.3 [Vrms/(m/s)/phase]	Working ambier	nt temperatur	e 0 to 40 [°C]		
Speed (maximum)		3.0 [m/s]	Installatio	on place	Indoors		
Thrust/ current	Continuous rating (natural-cooling type)	2,000 [N] / 14.0 [Arms]		Thrust			
(at 20°C)	Continuous rating (oil-cooling type)	6,060[N] / 43.0 [Arms]		[N]			
	Maximum rating	15,000 [N] / 124 [Arms]	Thrust/speed characteristics	15,000 S	hort-term rating		
Magnet attraction force		42,000 [N] *1	*2	6,060			
Dri	ve unit type	MDS-CH-V1-150		2,000 Co	ntinuous rating (Oil- cooled)		
Required	d cooling capacity	5.0 [L/min]		Co	ontinuous (Natural		
	Primary side	70.0 [kg]		0	rating cooling)		
Mass	Secondary side	15.0 [kg/unit]		0	1.5 3.0		
	(LM-NS-40-)	22.0 [kg/unit]		Speed [m/s			
*1) The ma	agnet attraction forc	e is a reference value and		Туре	T145AR3U1 (Matsushita)		
is not tl *2) The co	ne specified value. ntinuous thrust whe	n the oil-cooled type is	Thermal	Operation temperature	145 ± 5 [°C]		
	ted stopped is max		protector		6 [Vdc] / 0.15 [A]		
	The linear servomotor protection method is IP00.			Rated voltag	e/ 125 [Vac] / 3 [A]		
Use explos	sion-proof oil, etc., a	as necessary.		current	250 [Vac] / 2 [A]		

To ensure correct use, always carefully read the instruction manual and materials enclosed with the motor before starting installation, operation, maintenance or inspections.


10-3-2 Outline dimension drawings

(1) LM-NP5G-60P-X00 (Primary side type)

 The cable enclosed with the motor is not a movable cable, so fix the cable to the machine side to prevent it from moving. For the moving sections, select a cable that matches the operation speed and bending radius, etc.
 Use hexagon socket bolts (material SCM435, lower yield point 900[N/mm²] or more) for installation.

(2) LM-NS50-[_]-X0 (Secondary side type)

CAUTION Use hexagon socket bolts (material SCM435, lower yield point 900[N/mm²] or more) for installation.

11. Selection

11-1 Sele	ection of servomotor	11-2
	Servomotor	
11-1-2	Regeneration methods	11-3
	Motor series characteristics	
11-1-4	Servomotor precision	
11-1-5	Selection of servomotor capacity	
11-1-6	Example of servo selection	11-10
11-1-7	Motor shaft conversion load torque	11-13
11-1-8	Expressions for load inertia calculation	11-14
11-1-9	Other precautions	11-15
11-2 Sele	ection of linear servomotor	11-16
11-2-1	Maximum feedrate	11-16
11-2-2	Maximum thrust	11-16
	Continuous thrust	
11-3 Sele	ection of the power supply unit	11-20
11-3-1	Selection of the power supply unit capacity	11-20
11-3-2	Selection with continuous rated capacity	11-20
11-3-3	Selection with maximum momentary rated capacity	11-22

11-1 Selection of servomotor

The methods of selecting the HC-H servomotor are explained in this section. Refer to section 11-2. Selection of linear servomotor for details on selecting the linear servomotor.

11-1-1 Servomotor

It is important to select a servomotor matched to the purpose of the machine that will be installed. If the servomotor and machine to be installed do not match, the motor performance cannot be fully realized, and it will also be difficult to adjust the parameters. Be sure to understand the servomotor characteristics in this chapter to select the correct motor.

(1) Motor inertia

The servomotor series is mainly categorized according to the motor inertia size.

Select a medium inertia motor when interpolation precision is required, or for machines having a large load inertia. In general, use HC-H Series motors for the control axis. The servomotor has an optimum load inertia scale. If the load inertia exceeds the optimum range, the control becomes unstable and the servo parameters become difficult to adjust. When the load inertia is too large, decelerate with the gears (The motor axis conversion load inertia is proportional to the square of the deceleration ratio.), or change to a motor with a large inertia.

Motor shaft conversion recommended load inertia ratio High-speed, High-accuracy Standards: 3-times or less of motor inertia General machine tool (interpolation axis): 5-times or less of motor inertia General machine (non-interpolation): 10-times or less of motor inertia

(2) Rated speed

The motor's rated output is designed to be generated at the rated speed, and the output P (W) is expressed with expression (11-1). Thus, even when the motors have the same capacity, the rated torque will differ according to the rated speed.

 $P = 2\pi NT (W)$

..... (11-1)

N : Motor speed (1/s)T : Output torque $(N \cdot m)$

In other words, even with motors having the same capacities, the one with the lower rated speed will generate a larger torque. When actually mounted on the machine, if the positioning distance is short and the motor cannot reach the maximum speed, the motor with the lower rated speed will have a shorter positioning time. When selecting the motor, consider the axis stroke and usage methods, and select the motor with the optimum rated speed.

11-1-2 Regeneration methods

When the servomotor decelerates, rotating load inertia or the operation energy of the moving object is returned to the servo drive unit through the servomotor as electrical power. This is called "regeneration". The three general methods of processing regeneration energy are shown below.

Regeneration method	Explanation
 Capacitor regeneration method 	This is a regeneration method for small-capacity drive units. The regeneration energy is charged to the capacitor in the drive unit, and this energy is used during the next acceleration. The regeneration capacity decreases as the power supply voltage becomes higher.
2. Resistance regeneration method	If the capacitor voltage rises too high when regenerating with the capacitor only, the regenerative electrical power is consumed using the resistance. If the regeneration energy is small, it will only be charged to the capacitor. Because regeneration energy becomes heat due to resistance, heat radiation must be considered. In large capacity servo drive units the regenerative resistance becomes large and this is not practical.
3. Power supply regeneration method	This is a method to return the regeneration energy to the power supply. The regeneration energy is not converted into heat by the resistor. (Some heat is generated due to the regeneration efficiency to the power supply.) Regeneration control is complicated, but there is no need to install a resistor regeneration unit.

Table 11-2	Servo drive unit	regeneration methods
------------	------------------	----------------------

The "3. Power regeneration method" is used for the MDS-CH Series.

The MDS-CH Series uses a power regeneration method. Connect the regeneration energy to the power line via an AC reactor. If the AC reactor connection is improper, the other peripheral devices may not function correctly.

11-1-3 Motor series characteristics

The HC-H Series servomotor is a medium-inertia compact motor for the MDS-CH Series (400V series input) basic feed axis.

Motor series	Capacity (rated speed)	Detector resolution	Features
НС-Н	0.5 to 11kW (2000r/min) 0.5 to 11kW (3000r/min)	1,000,000p/rev/ 100,000p/rev	This is a motor for NC unit machine tool feed axes. It has smooth torque characteristics and is compatible to high resolution detectors. It has the same shaft shape and flange size as conventional 200V type HC motors and an easier to use design. It is drip-proofed against cutting oil entering the unit, and it clears IP65 specifications for environmental resistance performance as a standard.

Table 11-3 Motor series characteristics	Table 11-3	Motor	series	characteristics
---	------------	-------	--------	-----------------

11-1-4 Servomotor precision

The control precision of the servomotor is determined by the detector resolution, motor characteristics and parameter adjustment. This section examines the following four types of servomotor control precision when the servo parameters are adjusted. When selecting a servo, confirm that these types of precision satisfy the machine specifications before determining the servomotor series.

(1) Theoretic precision: $\Delta \epsilon$

This value is determined by the motor detector precision, and is the value obtained by dividing the movement amount (ΔS) per motor rotation by the detector resolution (RNG).

(2) Positioning precision : $\Delta \epsilon p$

This is the precision outline that affects the machine targeted for positioning, and expresses the machine's positioning precision.

When the motor is a single unit, this is determined by the detector resolution and matches with the theoretic precision $\Delta\epsilon p$. When the motor is actually installed on a machine, the positioning precision $\Delta\epsilon p$ becomes 1 to 2 times the theoretic precision $\Delta\epsilon$. This is due to the effect on the motor control by the machine rigidity, etc. Furthermore, the value to which the error from the motor shaft to the machine is added becomes the actual machine positioning precision. For machines requiring accurate positioning precision at the machine, the scale feedback input can be performed.

(3) Surface precision during machining : $\Delta \epsilon v$

This is the precision outline that affects the machine tools, etc., which are important factors in the machine operation path and interpolation functions. It also affects the surface roughness of the machining surface. The machining surface roughness is affected by elements caused by the detector resolution, the motor's electrical characteristics (torque ripple, etc.) and mechanical characteristics (cogging torque, etc.). In the NC unit feed axis motor (HC-H) those torque characteristics are excellent, and higher precision machining is possible than that of other motors. Because the effects of torque ripple and cogging torque are relatively smaller in motors with large amounts of inertia, the motor with the larger inertia of two identical capacity motors will be more advantageous for surface precision. Due to the effects of differences in characteristics of the motor itself, the surface precision during machining will differ greatly according to the motor series.

(4) Absolute position repeatability : $\Delta \epsilon a$

This is the precision outline that affects the absolute position system machine, and expresses the repeatability of the position before the power was shut off and the position when the power is turned on again.

With the single motor unit, the precision is 1 to 2 times the theoretic precision $\Delta \epsilon$. Note that the absolute position repeatability $\Delta \epsilon a$ is the difference from when the power was turned off last and returned on. This error is not cumulated.

Table 11-4 shows the approximate precision at the motor of each motor series. Obtain the precision at the machine during actual operating by adding the machine precision to the value in the table.

Motor series	Control resolution RNG (p/rev)	Theoretic precision Δε	Positioning precision Δερ	Surface precision Δεν	Absolute position repeatability ∆εa
HC-H[]-A42/E42 (OSA104S2, OSE104S2)	100,000	ΔS	As to 24s	10∆ε to 20∆ε	Δε to 2Δε
HC-H[]-A51/E51 (OSA253S2, OSE253S2)	1,000,000	RNG	$\Delta \epsilon$ to $2\Delta \epsilon$	τυμε το 20Δε	Δε ιυ ΖΔε

 Table 11-4
 Precision by motor series

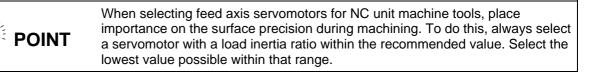
Table 11-5 Example of precision when movement amount is $\Delta s = 10$ mm per motor rotation

(Unit: µm)

Motor series	Theoretic precision Δε	Positioning precision Δερ	Surface precision Δεν	Absolute position repeatability ∆εa
HC-H[]-A42/E42	0.1	0.1 to 0.2	1 to 2	0.1 to 0.2
HC-H[]-A51/E51	0.1	0.1 to 0.2	1 to 2	0.1 to 0.2

11-1-5 Selection of servomotor capacity

The following three elements are used to determine the servomotor capacity.


- 1. Load inertia ratio
- 2. Short time characteristics (acceleration/deceleration torque)
- 3. Continuous characteristics (continuous effective load torque)

Carry out appropriate measures, such as changing the motor series or increasing the motor capacity, if any of the above conditions is not fulfilled.

(1) Load inertia ratio

Each servomotor has an appropriate load inertia ratio (load inertia/motor inertia). The control becomes unstable when the load inertia ratio is too large, and the servo parameter adjustment becomes difficult. It becomes difficult to improve the surface precision in the feed axis, and the positioning time cannot be shortened in the position axis because the settling time is longer.

If the load inertia ratio exceeds the recommended value in the servomotor specifications list, increase the motor capacity or change to a motor series with a large inertia. Note that the recommended value for the load inertia ratio is strictly one guideline. This does not mean that controlling a load with inertia exceeding the recommended value is impossible.

(2) Short time characteristics

In addition to the continuous operation range, the servomotor has the short time operation range that can only be used for short times such as acceleration/deceleration. This range is expressed at the maximum torque. The maximum torque differs for each motor even at the same capacity, so confirm the specifications in section "10-2 Servomotor".

The maximum torque affects the acceleration/deceleration time constant that can be driven. The linear acceleration/deceleration time constant ta can be approximated from the machine specifications using expression (11-2). Determine the maximum motor torque required from this expression, and select the motor capacity. The same selection can also be made by using the simple motor capacity selection diagrams on the last pages of this section (11-3).

$$ta = \frac{(J_{L} + J_{M}) \times N}{95.5 \times (0.8 \times T_{MAX} - T_{L})} \quad (ms)$$
(11-2)

Ν	: Motor reach speed	(r/min)
J∟	: Motor shaft conversion load inertia	(kg⋅cm²)
Jм	: Motor inertia	(kg⋅cm²)

- J_M : Motor inertia T_{MAX} : Maximum motor torque
- T_{MAX} : Maximum motor torque (N·m) T_{L} : Motor shaft conversion load (friction, unbalance) torque (N·m)

(3) Continuous characteristics

A typical operation pattern is assumed, and the motor's continuous effective load torque (Trms) is calculated from the motor shaft conversion and load torque. If numbers <1> to <8> in the following drawing were considered a one cycle operation pattern, the continuous effective load torque is obtained from the root mean square of the torque during each operation, as shown in the expression (11-3).

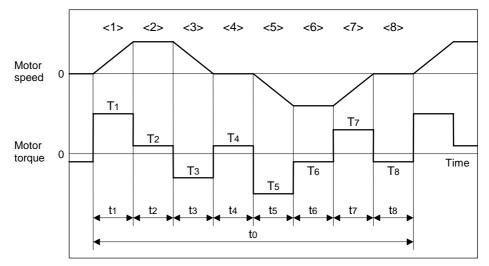


Fig. 11-1 Continuous operation pattern

$$Trms = \sqrt{\frac{T1^2 \cdot t1 + T2^2 \cdot t2 + T3^2 \cdot t3 + T4^2 \cdot t4 + T5^2 \cdot t5 + T6^2 \cdot t6 + T7^2 \cdot t7 + T8^2 \cdot t8}{t0}}$$
(11-3)

Select a motor so that the continuous effective load torque Trms is 80% or less of the motor stall torque Tst.

The amount of acceleration torque (Ta) shown in tables 11-6 and 11-7 is the torque to accelerate the load inertia in a frictionless state. It can be calculated by the expression (11-5). (For linear acceleration/ deceleration)

$$Ta = \frac{(J_{L} + J_{M}) \times N}{95.5 \times ta} \quad (N \cdot m)$$
(11-5)

Ν	:	Motor reach speed	(r/min)
J∟	:	Motor shaft conversion load inertia	(kg·cm²)
Јм	:	Motor inertia	(kg⋅cm²)
ta	:	Linear acceleration/deceleration time constant	(ms)

(3-1) Horizontal axis load torque

When operations <1> to <8> are for a horizontal axis, calculate so that the following torques are required in each period.

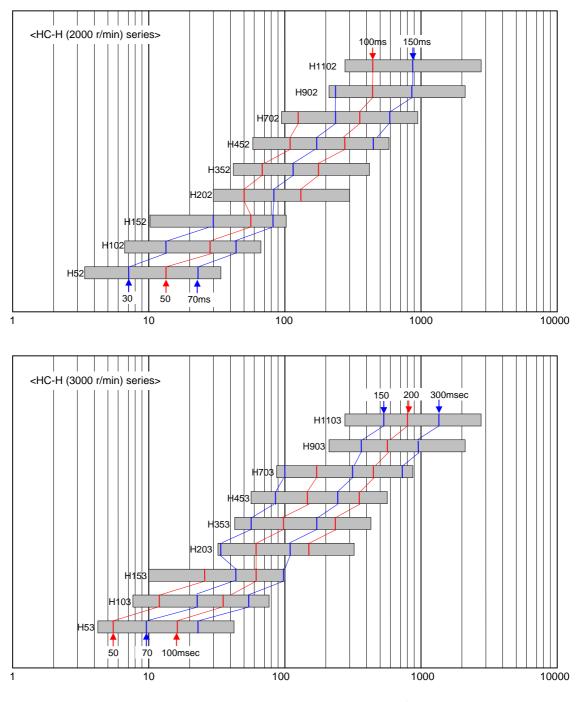
Period	Load torque calculation method	Explanation
<1>	(Amount of acceleration torque) + (Kinetic friction torque)	Normally the acceleration/deceleration time constant is calculated so that this torque is 80% of the maximum torque of the motor.
<2>	(Kinetic friction torque)	-
<3>	(Amount of deceleration torque) + (Kinetic friction torque)	The absolute value of the acceleration torque amount is same as one of the deceleration torque amount. The signs for the amount of acceleration torque and amount of deceleration torque are reversed.
<4>	(Static friction torque)	Calculate so that the static friction torque is always required during a stop.
<5>	 – (Amount of acceleration torque) – (Kinetic friction torque) 	The signs are reversed with period <1> when the kinetic friction does not change according to movement direction.
<6>	– (Kinetic friction torque)	The signs are reversed with period <2> when the kinetic friction does not change according to movement direction.
<7>	 – (Amount of deceleration torque) – (Kinetic friction torque) 	The signs are reversed with period <3> when the kinetic friction does not change according to movement direction.
<8>	- (Static friction torque)	Calculate so that the static friction torque is always required during a stop.

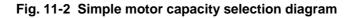
Table 11-6	Load torques of horizontal axes
------------	---------------------------------

(3-2) Unbalance axis load torque

When operations <1> to <8> are for an unbalance axis, calculate so that the following torques are required in each period. Note that the forward speed shall be an upward movement. The torque while the unbalance axis is stopped should be 50% or less than the stall torque (40% or less for V1-185).

Period	Load torque calculation method	Explanation
<1>	(Amount of acceleration torque) + (Kinetic friction torque) + (Unbalance torque)	Normally the acceleration/deceleration time constant is calculated so that this torque is 80% of the maximum torque of the motor.
<2>	(Kinetic friction torque) + (Unbalance torque)	_
<3>	(Amount of deceleration torque) + (Kinetic friction torque) + (Unbalance torque)	The absolute value of the acceleration torque amount is same as one of the deceleration torque amount. The signs for the amount of acceleration torque and amount of deceleration torque are reversed.
<4>	(Static friction torque) + (Unbalance torque)	The holding torque during a stop becomes fairly large. (Upward stop)
<5>	 – (Amount of acceleration torque) – (Kinetic friction torque) + (Unbalance torque) 	_
<6>	– (Kinetic friction torque) + (Unbalance torque)	The generated torque may be in the reverse of the movement direction, depending on the size of the unbalance torque.
<7>	 – (Amount of deceleration torque) – (Kinetic friction torque) + (Unbalance torque) 	_
<8>	- (Static friction torque) + (Unbalance torque)	The holding torque becomes smaller than the upward stop. (Downward stop)


Table 11-7 Load torques of unbalance axes


During a stop, the static friction torque may constantly be applied. The static friction torque and unbalance torque may be applied during an unbalance axis upward stop, and the torque during a stop may become extremely large. Therefore, caution is advised.

< Acceleration/deceleration time constant 1 for servomotors >

When No = Rated speed and PGN1 = 33.

Motor shaft conversion load inertia (kg·cm²)

CAUTION The friction torque and unbalanced torque are not considered in the acceleration/ deceleration time constants given in Fig. 11-2.

11-1-6 Example of servo selection

A servomotor is selected using a machining center with the following specifications as an example.

Specification item	Unit	X axis	Y axis	Z axis
Axis type		Linear	Linear	Linear
Movement direction		Horizontal	Horizontal	Vertical
Table support method		Rolling	Rolling	Rolling
Table movement friction coefficient	%	5	5	2
Ball screw diameter	mm	40	40	40
Ball screw length	mm	900	800	1000
Ball screw lead	mm	10	10	10
Deceleration ratio		1	1	2/3
Primary side gear inertia	kg ⋅ cm ²	-	-	1.6
Secondary side gear inertia	kg ⋅ cm ²	-	-	8.1
Motor/ball screw connection section inertia	kg·cm ²	2.0	2.0	-
Weight of moving object installed on the machine (table, etc.)	kg	500	400	400
Weight of standard-added-moving object (workpiece, etc.)	kg	100	100	10
Rapid traverse rate	mm/min	30000	30000	20000
Target acceleration/deceleration time constant	ms	120	120	120
Rapid traverse positioning frequency	times/min	20	20	20
Motor brake		Without	Without	With

(1) Motor selection calculation

The selection calculation is carried out in order using the Z axis as an example.

1) Determine the maximum rotation speed

Select the motor from the 2000r/min system or 3000r/min system

2) Obtaining the load inertia

Calculate the motor shaft conversion load inertia separately for the rotation load and linear movement load. Furthermore, calculate the rotation load inertia separately for the primary and secondary side.

• Primary side rotation load inertia: JR1

This is the primary side gear inertia.

$$J_{R1} = 1.6 (kg \cdot cm^2)$$

Secondary side rotation load inertia: JR2

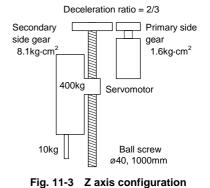
This is the sum of the ball screw inertia J_B and secondary side gear inertia. The ball screw is generally calculated as a cylinder made of steel. Refer to section "11-1-8 Expressions for load inertia calculation".

$$J_{R2} = J_B + 8.1 = \frac{\pi \cdot \rho \cdot L}{32} D^4 + 8.1 = \frac{\pi \times 7.80 \times 10^{-3} \times 100}{32} \times 4^4 + 8.1$$

= 19.6 + 8.1 = 27.7 (kg⋅cm²)

Total rotation load inertia: JR

This is the sum of the primary side load inertia and secondary side load inertia. To convert the secondary side load inertia to the motor shaft (primary side), multiply by the square of the deceleration ratio.


$$J_R = J_{R1} + (\frac{2}{3})^2 \times J_{R2} = 1.6 + \frac{4}{9} \times 27.7 = 1.6 + 12.3 = 13.9 \text{ (kg·cm}^2)$$

• Linear movement load inertia: JT

,

The inertia is calculated when a standard workpiece, tool, etc., is attached. The conversion to the motor shaft by the deceleration ratio is included in the movement increment per motor rotation. Refer to section "11-1-8 Expressions for load inertia calculation".

$$J\tau = W \cdot (\frac{\Delta S}{20\pi})^2 = (400 + 10) \cdot (\frac{10 \times 2}{20\pi \times 3})^2 = 4.6 \text{ (kg·cm}^2)^2$$

• Load inertia: J∟

This is the sum of the total rotation load inertia and the linear movement inertia.

 $J_{L} = 13.9 + 4.6 = 18.5 (kg \cdot cm^{2})$

When looking at the load inertia components, the linear movement weight tends to increase. However, the rotation load generally accounts for most of the inertia. The load inertia does not change much even if the workpiece weight changes greatly in the table axis.

3) Obtaining unbalance torque

The unbalance torque is obtained from the moving object weight. Here, the drive system efficiency is calculated as 1.

Refer to section "11-1-7 Motor shaft conversion load torque". $T_{U} = \frac{(W_1 - W_2) \cdot g \cdot \Delta S}{2 \times 10^3 \pi \cdot \eta} = \frac{(410 - 0) \times 9.8 \times 10 \times 2}{2 \times 10^3 \pi \times 1 \times 3} = 4.3 \text{ (N-m)}$

4) Obtaining friction torque

The friction torque is obtained from the moving object weight and friction coefficient. Here, the drive system efficiency is calculated as 1. Refer to section "11-1-7 Motor shaft conversion load torque".

$$T_{F} = \frac{F \cdot \Delta S}{2 \times 10^{3} \pi \cdot \eta} = \frac{\mu \cdot W \cdot g \cdot \Delta S}{2 \times 10^{3} \pi \cdot \eta} = \frac{0.02 \times 410 \times 9.8 \times 10 \times 2}{2 \times 10^{3} \pi \times 1 \times 3} = 0.09 \text{ (N-m)}$$

5) Selecting the appropriate motor from the load inertia ratio

Because it is a machine tool, the HC-H Motor Series is required for the control precision, and a motor maximum speed of 3000r/min. or more is required because of the rapid traverse speed and gear ratio. Furthermore, the motor to be selected is limited to HC-H[]B Series because a motor with a brake is required. The load inertia for all the HC-H53B to HC-H153B motors in the table below is judged to be appropriate if the load inertia is within 5-fold of the recommended load inertia ratio.

Motor type	Motor inertia (kg·cm²)	Load inertia (kg·cm ²)	Load inertia magnification	Judgment
HC-H53B	8.6	18.5	2.15	0
HC-H103B	15.7	18.5	1.18	0
HC-H153B	22.0	18.5	0.84	0

6) Selecting the appropriate motor from the short time characteristics (acceleration/deceleration time constant)

The acceleration/deceleration time constant is calculated using expression (11-2), and it is judged whether it satisfies the target acceleration/deceleration time constant of 120ms.

HC53B : ta =
$$\frac{(J_L + J_M) \times N}{95.5 \times (0.8 \times T_{MAX} - T_U - T_F)} = \frac{(18.5 + 8.6) \times 3000}{95.5 \times (0.8 \times 8.82 - 4.3 - 0.09)} = 320.5 \text{ (ms)}$$

HC103B : ta =
$$\frac{(JL + JM) \times N}{95.5 \times (0.8 \times TMAX - TU - TF)} = \frac{(18.5 + 15.7) \times 3000}{95.5 \times (0.8 \times 16.7 - 4.3 - 0.09)} = 119.9 \text{ (ms)}$$

HC153B : ta =
$$\frac{(JL + JM) \times N}{95.5 \times (0.8 \times TMAX - TU - TF)} = \frac{(18.5 + 22.0) \times 3000}{95.5 \times (0.8 \times 28.4 - 4.3 - 0.09)} = 69.4 \text{ (ms)}$$

The motors that satisfy the conditions from the calculation results above are the HC-H103B and HC-H153B as shown below.

Motor type	Maximum torque (N·m)	Total inertia (kg⋅cm²)	Acceleration/ deceleration time constant [ms]	Judgment
HC-H53B	8.82	27.1	320.5	×
HC-H103B	16.7	34.2	119.9	0
HC-H153B	28.4	40.5	69.4	0

7) Selecting the appropriate motor from the continuous characteristics

Generally, the expressions (11-3) and (11-4) are calculated following the typical operation pattern, and the motor is judged from the continuous characteristics. Because the Z axis is the vertical axis here, the motor will be judged by the stopped torque during an upward stop.

The unbalance axis torque during a stop should be 50% or less of the stall torque. This is one of the references for motor selection. As shown in the following table, the only motor that satisfies this reference is HC-H153B. From the judgment in steps (4) to (6) it is the appropriate motor with Z axis.

Motor type	Stall torque (N⋅m)	Torque during stop T∪+T _F (kg·cm²)	Load rate (%)	Judgment	Explanation	
HC-H53B	2.9	4.39	151.4	×	An overload alarm occurs from just holding.	
HC-H103B	5.8	4.39	75.7 × There is no allowance for an acc deceleration operation.		There is no allowance for an acceleration/ deceleration operation.	
HC-H153B	9.0	4.39	48.8	0	The torque during stop should be 50% or less.	

(2) Servo selection results

As a result of calculating the servo selection, the servo specifications for the Z axis of this machining center have been determined.

Item	Туре
Servo drive unit	MDS-CH-V1-20
Servomotor	HC-H153B[]

The [] in the motor model will be decided based on separate machine specifications such as motor shaft shape and absolute position system.

The following table shows the servo selections for all axes.

Item	Unit	X axis	Y axis	Z axis
Axis type		Linear	Linear	Linear
Movement direction		Horizontal	Horizontal	Vertical
Table support method		Rolling	Rolling	Rolling
Table movement friction coefficient	%	5	5	2
Ball screw diameter	mm	40	40	40
Ball screw length	mm	900	800	1000
Ball screw lead	mm	10	10	10
Deceleration ratio		1	1	2/3
Primary side gear inertia	kg·cm ²	_	Ì	1.6
Secondary side gear inertia	kg·cm ²	_	-	8.1
Motor/ball screw connection section inertia	kg·cm ²	2.0	2.0	-
Weight of moving object installed on the machine (table, etc.)	kg	500	400	400
Weight of standard-added-moving object (workpiece, etc.)	kg	100	100	10
Rapid traverse rate	mm/min	30000	30000	20000
Target acceleration/deceleration time constant	ms	120	120	120
Rapid traverse positioning frequency	times/min	20	20	20
Motor brake		Without	Without	With
Motor shaft conversion rotation load inertia	kg·cm ²	19.6	17.7	13.9
Motor shaft conversion linear movement load inertia	kg·cm²	15.2	12.7	4.6
Motor shaft conversion total load inertia	kg·cm ²	34.8	30.3	18.5
Motor inertia	kg·cm ²	13.7	13.7	22.0
Motor shaft conversion load inertia magnification	-fold	2.54	2.22	0.84
Motor shaft conversion unbalance torque	N∙m	0.0	0.0	4.3
Motor shaft conversion friction torque	N∙m	0.47	0.39	0.09
Motor shaft conversion total load torque	N∙m	0.47	0.39	4.39
Motor speed during rapid traverse	r/min	3000	3000	3000
Rapid traverse acceleration/deceleration time constant	ms	118.3	106.7	69.4
Maximum torque during motor stop	N∙m	0.47	0.39	4.39
Maximum load rate during motor stop	%	8.0	6.6	49.8
Servo drive unit model		MDS-CH-V1-10	MDS-CH-V1-10	MDS-CH-V1-20
Servomotor model		HC-H103[]	HC-H103[]	HC-H153B[]

11-1-7 Motor shaft conversion load torque

The main load torque calculation expressions are shown below.

Туре	Mechanism	Calculation expression
Linear movement		$\begin{split} T_{L} &= \frac{F}{2 \times 10^3 \pi \eta} \cdot \left(\begin{array}{c} \frac{V}{N} \end{array} \right) = \frac{F \cdot \Delta S}{2 \times 10^3 \pi \eta} \\ & T_{L} &: L \text{ oad torque} & (N \cdot m) \\ & F &: F \text{ orce in axial direction of the machine} \\ & \text{ that moves linearly} & (N) \\ & \eta &: Drive system efficiency \\ & V &: Speed of object that moves linearly & (mm/min) \\ & N &: Motor speed & (r/min) \\ & \Delta S &: Object movement amount per motor \\ & \text{ rotation} & (mm) \\ & Z1, Z2: Deceleration ratio \\ & F \text{ in the above expression is obtained from the lower expression} \\ & when the table is moved as shown on the left. \\ & F = Fc + \mu \left(W \cdot q + F_0\right) \\ & Fc : Force applied on axial direction of moving section & (N) \\ & F_0 : Tightening force on inner surface of table guide & (N) \\ & W : Total weight of moving section & (kg) \\ & g : Gravitational acceleration = 9.8 & (m/s^2) \\ & \mu : Friction coefficient \\ \end{array}$
Rotary movement	TLO Z1 Z2 Servomotor	$ \begin{array}{ll} & \begin{array}{c} Z_{1} & \displaystyle \frac{1}{\eta} & \cdot T_{LO} + T_{F} = \displaystyle \frac{1}{n} \cdot \displaystyle \frac{1}{\eta} \cdot T_{LO} + T_{F} \\ & T_{L} & : \mbox{ Load torque} & (N \cdot m) \\ & T_{LO} & : \mbox{ Load torque on load shaft} & (N \cdot m) \\ & T_{F} & : \mbox{ Motor shaft conversion load friction torque} & (N \cdot m) \\ & \eta & : \mbox{ Drive system efficiency} \\ & Z_{1}, Z_{2} & : \mbox{ Deceleration ratio} \\ & n & : \mbox{ Deceleration rate} \end{array} $
Vertical movement	Servomotor 1/n Guide U U U U U U U U U U U U U	When rising $T_{L} = T_{U} + T_{F}$ When lowering $T_{L} = -T_{L} : Load torque (N \cdot m)$ $T_{U} : Unbalanced torque (N \cdot m)$ $T_{F} : Friction torque on moving section (N \cdot m)$ $T_{U} = \frac{(W_{1} - W_{2}) \cdot g}{2 \times 10^{3} \pi \eta} \cdot (\frac{V}{N}) = \frac{(W_{1} - W_{2}) \cdot g \cdot \Delta S}{2 \times 10^{3} \pi \eta}$ $T_{F} = \frac{\mu \cdot (W_{1} + W_{2}) \cdot g \cdot \Delta S}{2 \times 10^{3} \pi \eta}$ $W_{1} : Load weight (kg)$ $W_{2} : Counterweight weight (kg)$ $\eta : Drive system efficiency$ $g : Gravitational acceleration = 9.8 (m/s^{2})$ $V : Speed of object that moves linearly (mm/min)$ $N : Motor speed (r/min)$ $\Delta S : Object movement amount per motor rotation (mm)$ $\mu : Friction coefficient$

11-1-8 Expressions for load inertia calculation The calculation method for a representative load inertia is shown.

Туре	Mechanism	Calculation expression			
	Rotary shaft is cylinder center	$ \begin{array}{ll} J_{L} = & \displaystyle \frac{\pi \cdot \rho \cdot L}{32} \cdot (D_{1}^{\ 4} - D_{2}^{\ 4}) = \displaystyle \frac{W}{8} \cdot (D_{1}^{\ 2} - D_{2}^{\ 2}) \\ J_{L} : Load inertia & \displaystyle [kg \cdot cm^{2}] & \mbox{Material densities Iron} \\ \rho : Density of cylinder material & \displaystyle [kg \cdot cm^{3}] & \mbox{Material densities Iron} \\ L : Length of cylinder & \displaystyle [cm] & \mbox{Aluminum} \\ D_{1} : Outer diameter of cylinder & \displaystyle [cm] & \mbox{mum} \\ D_{2} : Inner diameter of cylinder & \displaystyle [cm] & \mbox{Copper} \\ W : Weight of cylinder & \displaystyle [kg] & \mbox{mum} \\ 8.96 \times 10^{-3} [kg/cm^{3}] \end{array} $			
Cylinder	When rotary shaft and cylinder shaft are deviated	$J_{L} = \frac{W}{8} \cdot (D^{2} + 8R^{2})$ $J_{L} : Load inertia [kg \cdot cm^{2}]$ $W : Weight of cylinder [kg]$ $D : Outer diameter of cylinder [cm]$ $R : Distance between rotary axis and$ $cylinder axis [cm]$			
Column	Rotary shaft	$J_{L} = W \left(\frac{a^{2} + b^{2}}{3} + R^{2} \right)$ $J_{L} : \text{Load inertia} \qquad [kg \cdot cm^{2}]$ $W : \text{Weight of cylinder} \qquad [kg]$ $a.b.R : \text{Left diagram} \qquad [cm]$			
Object that moves linearly	Servomotor	$\begin{array}{l} J_{L} = W \; (\; \frac{1}{2\pi N} \cdot \; \frac{V}{10} \;)^{2} = W \; (\; \frac{\Delta S}{20\pi})^{2} \\ J_{L} & : \; Load \; inertia \\ \; [kg \cdot cm^{2}] \\ W & : \; Weight \; of \; object \; that \; moves \; linearly \\ N & : \; Motor \; speed \\ \; [r/min] \end{array} $ [kg]			
Suspended object		$J_{L} = W \left(\frac{D}{2}\right)^{2} + J_{P}$ $J_{L} : Load inertia \qquad [kg \cdot cm^{2}]$ $W : Object weight \qquad [kg]$ $D : Diameter of pulley \qquad [cm]$ $J_{P} : Inertia of pulley \qquad [kg \cdot cm^{2}]$			
Converted load	Load B N ₃ J ₂₁ Servomotor J ₂₂ Load A N ₂ Load A N ₂ J ₁₁	$\begin{split} J_L &= J_{11} + (J_{21} + J_{22} + J_A) \cdot (\frac{N_2}{N_1})^2 + (J_{31} + J_B) \cdot (\frac{N_3}{N_1})^2 \\ & J_L &: \text{Load inertia} & [kg \cdot cm^2] \\ & J_A, J_B &: \text{Inertia of load } A, B & [kg \cdot cm^2] \\ & J_{11} \sim J_{31} &: \text{Inertia} & [kg \cdot cm^2] \\ & N_1 \sim N_3 &: \text{Each shaft's speed} & [r/\text{min}] \end{split}$			

11-1-9 Other precautions

The following precautions apply when selecting the servomotor.

	 The maximum torque that can be used with the motor is limited. Select a torque at 80% of each motor's specifications. For the parallel drive axis calculate the maximum load inertia with the conditions establishing the maximum load for each axis. (If the load inertia fluctuates by 30% or more between the parallel driven axes, the position and speed gain may be limited.) The unbalanced torque caused by gravity is calculated with the (unbalanced torque element when stopped) + (frictional torque). Select a torque within 50% of the motor stall torque in this case.
--	---

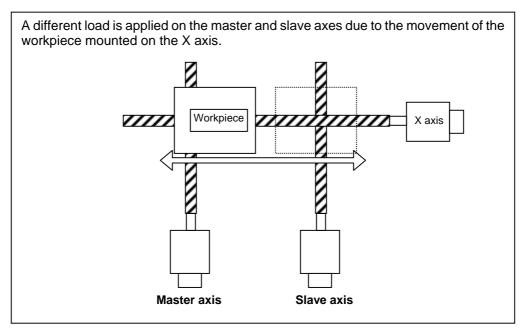


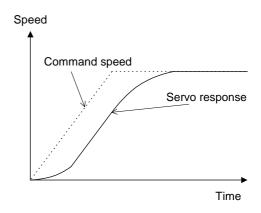
Fig.: For parallel drive system (Example)

11-2 Selection of linear servomotor

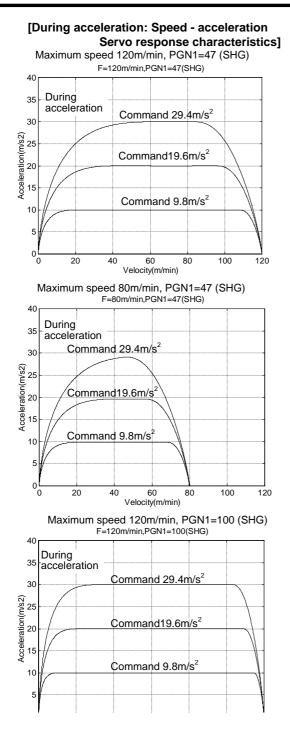
The linear servomotor must be selected according to the purpose of the machine in which it is installed. If the installed machine and linear servomotor do not match, the motor's performance will not be utilized to the fullest, and it will be difficult to adjust the servo parameter. Read through this section to fully understand the characteristics of the linear servomotor, and select the correct motor.

11-2-1 Maximum feedrate

The maximum feedrate for the LM-N Series linear servomotor is 120m/min. However, there are systems that cannot reach the maximum speed 120m/min because of the linear scale being used. Refer to the section "10-3 Linear servomotor" for the main systems and possible maximum feedrates.


11-2-2 Maximum thrust

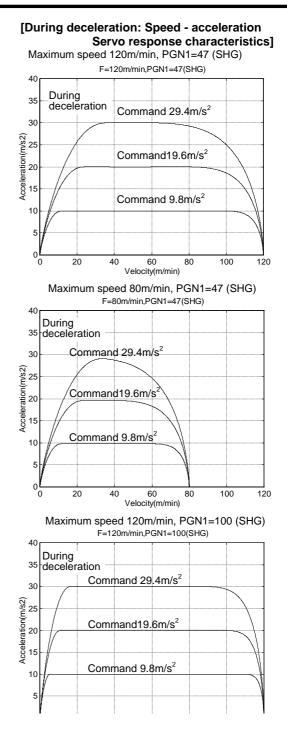
The linear servomotor has an output range for the continuous thrust that can be used only for short times such as acceleration/deceleration. If the motor is a natural-cooled type motor, a thrust that is approx. 6-fold can be output. For an oil-cooled type motor, a thrust that is approx. 3-fold can be output. The maximum linear motor thrust required for acceleration/deceleration can be approximated using the machine specifications and expression (3-1). Select the linear servomotor based on these results.


 $Fmax = (M \times a + Ff) \times 1.2$

Μ	:	Maximum motor thrust Movable mass (including motor's moving sections) Acceleration during acceleration/deceleration	(N) (kg) (m/s ²)
		Load force (including cutting force, friction and unbalance force)	· · ·

Note that there is a servo response delay as shown on the right in respect to the acceleration in the acceleration/ deceleration command set with the NC. Thus. the acceleration characteristics (thrust characteristics required for acceleration/deceleration when movable mass is applied) in respect to the speed required for the linear servomotor will be as shown on the page. (Conditions: Indicates next the characteristics using the position loop gain during SHG control using a linear acceleration/deceleration command pattern.) Thus, when selecting the linear motor, refer to the speed - acceleration (thrust) characteristics on the next page, and confirm the (4-4 - thrust characteristics speed Torque characteristics drawing) for the linear motor.

(Note) The speed - acceleration characteristics on the next page are reference values at a specific condition, so if the position loop gain differs when an S-character acceleration/deceleration filter is applied on the command, the characteristics will also differ.



During acceleration

Command 29.4m/s²

Command19.6m/s²

Command 9.8m/s²

Maximum speed 80m/min, PGN1=100 (SHG)

During deceleration Command 29.4m/s²

Command19.6m/s²

Command 9.8m/s²

11-2-3 Continuous thrust

The continuous effective thrust Frms is calculated from the load force using a typical operation pattern. If the operation pattern consists of the one cycle of <1> to <8>, as shown below, the continuous effective load thrust can be obtained from the square mean of the thrust for each operation as shown in expression (3-2).

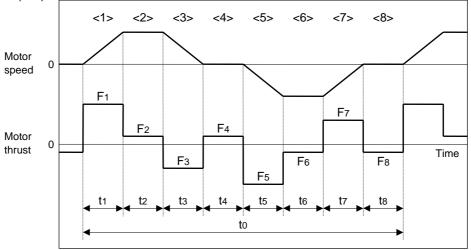


Fig. 3-1 Continuous operation pattern

$$Frms = \sqrt{\frac{F1^2 \cdot t1 + F2^2 \cdot t2 + F3^2 \cdot t3 + F4^2 \cdot t4 + F5^2 \cdot t5 + F6^2 \cdot t6 + F7^2 \cdot t7 + F8^2 \cdot t8}{t0}}$$
(3-2)

Select the motor so that the continuous effective load thrust Frms is 80% or less of the motor's continuous thrust Fs.

$$Frms \le 0.8 \times Fs$$
 (3-3)

(1) Load thrust for horizontal axis

If a horizontal axis is used for steps <1> to <8>, calculate so that the following thrust is attained between each interval.

Interval	Load torque calculation expression	Explanation
<1>	(Acceleration thrust) + (kinetic friction force)	Usually, calculate the acceleration/deceleration time constant so that this thrust is 80% of the motor's maximum thrust.
<2>	(Kinetic friction force) + (cutting force)	_
<3>	(Deceleration thrust) + (kinetic friction force)	The acceleration thrust and the deceleration thrust are the same absolute value with reversed signs.
<4>	(Static friction force)	Calculate as a static friction force is always required when stopped.
<5>	- (Acceleration thrust) - (kinetic friction force)	If the kinetic friction does not change according to the moving direction, the sign is the opposite of <1>.
<6>	- (Kinetic friction force) - (cutting force)	If the kinetic friction does not change according to the moving direction, the sign is the opposite of <2>.
<7>	- (Deceleration thrust) - (kinetic friction force)	If the kinetic friction does not change according to the moving direction, the sign is the opposite of <3>.
<8>	- (Static friction force)	Calculate as a static friction force is always required when stopped.

Table 3-1	Load thrusts	s for	horizontal axis

(2) Load thrust for unbalanced axis

If the operation in steps <1> to <8> is unbalanced, calculate so that the following thrust is attained between each interval. Note that the forward speed is an upward movement.

Interval	Load torque calculation expression	Explanation
<1>	(Acceleration thrust) + (kinetic friction force) + (unbalance force)	Usually, calculate the acceleration/deceleration time constant so that this thrust is 80% of the motor's maximum thrust.
<2>	(Kinetic friction force) + (unbalance force) + (cutting force)	-
<3>	(Deceleration thrust) + (kinetic friction force) + (unbalance force)	The acceleration thrust and the deceleration thrust are the same absolute value with reversed signs.
<4>	(Static friction force) + (unbalance force)	The holding force when stopped increases greatly. (Upward stop)
<5>	 – (Acceleration thrust) – (kinetic friction force) + (unbalance force) 	_
<6>	 – (Kinetic friction force) + (unbalance force) – (cutting force) 	Depending on the size of the unbalanced force, the generated force may be the opposite of the movement direction.
<7>	 – (Deceleration thrust) – (kinetic friction force) + (unbalance force) 	_
<8>	- (Static friction force) + (unbalance force)	The holding force is smaller than the upward stop. (Downward stop)

Table 3-2	Load thrusts for	unbalanced axis

POINT

The static friction force may be constantly applied when stopped. During the upward stop of an unbalanced axis, the static friction force and unbalanced force are applied, and the thrust increases greatly when stopped.

(3) Maximum cutting force and maximum cutting duty

If the maximum cutting force and maximum duty (%) are known, the selection conditions can be obtained easily with the following expression.

$$0.8 \times Fs \ge Fc \times \sqrt{\frac{D}{100}}$$

Fs: Motor continuous thrust

Fc : Maximum cutting force during operation

D : Maximum cutting duty

[N] [N] [%]

(4) Unbalance force

For an unbalanced axis, such as a gravity axis, basically balance it with a device such as a counterbalance. With the linear motor, the continuous thrust is lower than the rotary motor, so if the axis is unbalanced the motor's heating amount will increase. If an error should occur, the axis will drop naturally. This is hazardous as the dropping distance and dropping speed are large.

11-3 Selection of the power supply unit

11-3-1 Selection of the power supply unit capacity

In addition to "selection following the rated capacity (continuous rated capacity)", select the power supply unit so that "selection under the maximum momentary rated capacity" are simultaneously satisfied.

11-3-2 Selection with continuous rated capacity

The rated output used in selection is 30-minute rated output.

(1) When using 1-axis servomotor

Power supply unit rated capacity $> \Sigma$ (Spindle motor output) + (Servomotor output)

(2) When using 2 or more axes servomotor

Power supply unit rated capacity > Σ (Spindle motor output) + 0.7 × Σ (Servomotor output)

(Note 1) Σ (Spindle motor output) is the total of the spindle motor's short time rated output (kW). If the output characteristics during acceleration/deceleration differ from the output characteristics at the constant state, set the larger output in "spindle motor output". If the short time output characteristics of the spindle motor are less than 10 minutes, multiply the characteristics with the following coefficient, and set as the "spindle motor output".

Short time output rating time	Coefficient	Short time output rating time	Coefficient
1 minute	0.2	5 minutes	0.7
2 minutes	0.4	6 to 7 minutes	0.8
3 minutes	0.5	8 to 9 minutes	0.9
4 minutes	0.6	10 minutes or more	1.0

To limit the spindle motor's output, set the output multiplied by the limit rate in "spindle motor output".

- Σ (Servomotor output) is the total of the servomotor rated output (kW).
- (Note 2) Please check having satisfied the following conditions.

Power supply unit capacity	Motor Output Capacity (Total)
MDS-CH-CV-185 or less	Use is possible to 0.5 [kW] over.
MDS-CH-CV-220 or more	Use is possible to 1.0 [kW] over.

(Note 3) If the selected power supply unit exceeds 55[kW], reduce the number of motors connected to one power supply unit, and select again using a combination of two or more power supply units.

(Note 4) For the spindle drive unit, the drive unit capacity may become large depending on the spindle motor such as high-troupe motor. Make sure that the capacity limit of drive unit which can be connected is provided depending on the power supply.

Power supply		Spindle drive unit
MDS-CH-CV-	37	MDS-CH-SP□-15 to 75
	55	MDS-CH-SP□-15 to 110
	75	MDS-CH-SP□-15 to 150
	110	MDS-CH-SP□-15 to 185
	150	MDS-CH-SP□-15 to 220
	185	MDS-CH-SP□-15 to 260
	220	MDS-CH-SP□-15 to 300
	260	MDS-CH-SP□-15 to 370
	300	MDS-CH-SP□-15 to 450
	370	MDS-CH-SP□-15 to 550
	450	MDS-CH-SP□-15 to 550
		Note that it must be used in combination including MDS-SP \Box -370 to 550.
	550	MDS-CH-SP□-370 to 550
		Note that it must be used in combination including MDS-SP \Box -370 to 550.
	750	It can be used in combination with MDS-CH-SP□-750.

11-3-3 Selection with maximum momentary rated capacity

Select the capacity so that the total value of the two outputs "total sum of maximum momentary output during spindle motor acceleration" and "total sum of maximum momentary output during acceleration of servomotor that is accelerating and decelerating simultaneously" is not more than the maximum momentary rated capacity of the power supply unit.

Maximum momentary rated capacity of power supply unit

- $\geq \Sigma$ (Maximum momentary output of spindle motor)
- + Σ (Maximum momentary output of servomotor accelerating/decelerating simultaneously)

If the total value of the right side exceeds 55kW, divide the capacity in two power supply units.

Maximum momentary output of spindle motor

Maximum momentary output of spindle motor

= Spindle motor acceleration/deceleration output × 1.2

Spindle motor acceleration/deceleration output means the maximum output (kW) specified in the acceleration/deceleration output characteristics, or the maximum output (kW) of the short time rated output specified at a time of 30 minutes or less.

If there are no specifications other than the 30-minute rated output, the 30-minute rated output will be the spindle motor acceleration/deceleration output.

Selection data

The maximum momentary output in this table is reference data for selecting the power supply unit and does not guarantee the maximum output.

Motor model	HC-H	52	102	152	202	352	452	702	902	1102
Unit model	MDS-CH-	V1-05	V1-10	V1-20	V1-20	V1-35	V1-45	V1-70	V1-90	V1-150
Rated output (kW)		0.5	1.0	1.5	2.0	3.5	4.5	7.0	9.0	11.0
Maximum momentary output (kW)		1.5	2.7	4.5	5.3	7.4	10.6	15	19.5	37.0

Motor model	HC-H	53	103	153	203	353	453	703	903	1103
Unit model	MDS-CH-	V1-05	V1-10	V1-20	V1-35	V1-45	V1-70	V1-90	V1-90	V1-150
Rated output (kW)		0.5	1.0	1.5	2.0	3.5	4.5	7.0	9.0	11.0
Maximum momentary output (kW)		1.6	3.2	5.4	7.6	10.6	13.7	20.1	29.0	40.0

Unit model MDS-CH-CV-	37	55	75	110	150	185	220	260	300	370	450	550	750
Rated output (kW)	3.7	5.5	7.5	11	15	18.5	22	26	30	37	45	55	75
Maximum momentary output (kW)	14	19	21	28	41	42	53	54	55	75	91	125	150

When the large capacity drive unit (MDS-CH-V1-185, MDS-CH-SP-370 to 750) is connected to the power supply unit, always install the drive unit proximally in the left side of the power supply unit and connect PN terminal with the dedicated DC connection bar.

(1) Selection example

(Example 1) Spindle motor Servomotor

: 30-minute rated output 22kW × 1 unit : HC-H352 (V1-35) × 3 units The three units are simultaneously accelerated/decelerated.

(a) Selection with rated capacity

 $22kW + 0.7 \times (3.5kW \times 3) = 29.35kW$

- \rightarrow Rated capacity 30kW:
 - MDS-CH-CV-300 or more is required.
- (b) Selection with maximum momentary rated capacity

 $22kW \times 1.2 + 7.4kW \times 3 = 48.6kW$

- \rightarrow Maximum momentary rated capacity 53kW:
 - MDS-CH-CV-220 or more is required.

Power supply unit that satisfy conditions (1) and (2):

• Select MDS-CH-CV-300.

(Example 2)	Spindle motor	: 30-minute rated output 22kW × 1 unit
	Servomotor	: HC-H353 (V1-45) × 1 units
		HC-H453 (V1-70) × 2 units
		The three units are simultaneously accelerated/decelerated.

(a) Selection with rated capacity

 $22kW + 0.7 \times (3.5kW + 4.5kW \times 2) = 30.75kW$

- \rightarrow Rated capacity 30kW:
 - MDS-CH-CV-300 or more is required.
- (b) Selection with maximum momentary rated capacity

 $22kW \times 1.2 + 10.6kW + 13.7kW \times 2 = 64.4kW$

- \rightarrow Maximum momentary rated capacity 75kW:
 - MDS-CH-CV-370 or more is required.

Power supply unit that satisfy conditions (1) and (2):

• Select MDS-CH-CV-370.

12. Inspection

12-1	Inspections	12-2
	Service parts	
12-3	Daily inspections	12-3
12-	3-1 Maintenance tools	12-3
	3-2 Inspection positions	
12-4.	Replacement methods of units and parts	12-4
12-	4-1 Drive unit and power supply unit replacements	12-4
12-	4-2 Battery unit replacements	12-4
12-	4-3 Cooling fan replacements	12-4

	Turn the main circuit power and control power both OFF before starting maintenance and inspection. It will take approx. 15 minutes for the main circuit's capacitor to discharge. After the CHARGE LAMP goes out, use a tester to confirm that the input and output voltages are zero. Inspections must be carried out by a qualified technician. Failure to observe this could lead to electric shocks. Contact the Service Center for repairs and part replacements.
	Never perform a megger test (measure the insulation resistance) of the servo drive unit. Failure to observe this could lead to faults. The user must never disassemble or modify this product.

12-1 Inspections

Periodic inspection of the following items is recommended.

- <1> Are any of the screws on the terminal block loose? If loose, tighten them.
- <2> Is any abnormal noise heard from the servomotor bearings or brake section?
- <3> Are any of the cables damaged or cracked? If the cables move with the machine, periodically inspect the cables according to the working conditions.
- <4> Is the core of the load coupling shaft deviated?

12-2 Service parts

A guide to the part replacement cycle is shown below. Note that these will differ according to the working conditions or environmental conditions, so replace the parts if any abnormality is found. Contact Mitsubishi branch or your dealer for repairs or part replacements.

	Part name	Standard replacement time	Remarks				
	Smoothing capacitor	10 years	The standard replacement time				
Servo drive Spindle drive	Unit built-in relay	100,000 times	is a reference. Even if the				
Power supply	Cooling fan	10,000 to 30,000 hours (2 to 3 years)	standard replacement time is not reached, the part must be replaced if any abnormality is				
_	Bearings	20,000 to 30,000 hours	found.				
Servomotor Spindle motor	Detector	20,000 to 30,000 hours	7				
Note 1	Oil seal, V-ring	5,000 hours					
	Cooling fan	20,000 to 30,000 hours					
Battery unit	MDS-A-BT-[]	45,000 hours (7 years)	7				
AC reactor	CH-AL-[_]K	At fault					

Note 1: The details will differ according to the motor, so refer to the respective motor specifications.

<1> Power smoothing capacitor	: The characteristics of the power smoothing capacitor will deteriorate due to the effect of ripple currents, etc. The capacitor life is greatly affected by the ambient temperature and working conditions. However, when used continuously in a normal air-conditioned environment, the service life will be ten years.
<2> Relays	: Contact faults will occur due to contact wear caused by the switching current. The service life will be reached after 100,000 cumulative switches (switching life).
<3> Motor bearings	: The motor bearings should be replaced after 20,000 to 30,000 hours of rated load operation at the rated speed. This will be affected by the operation state, but the bearings must be replaced when any abnormal noise or vibration is found in the inspections.
<4> Motor oil seal, V-ring	: These parts should be replaced after 5,000 hours of operation at the rated speed. This will be affected by the operation state, but these parts must be replaced if oil leaks, etc., are found in the inspections.

12-3 Daily inspections

12-3-1 Maintenance tools

Prepare the following measuring instruments to check the unit power wiring, etc.

Instrument	Application
Tester	Use this to check that the wiring to the unit is correct before turning the power ON.
Oscilloscope	Use this for general measurement and troubleshooting.
AC voltmeter	Use this to measure the AC power voltage.
DC voltmeter	Use this to measure the DC power voltage. (Relays and I/O, etc.)
AC/DC ammeter	Use this to measure the alternating current supplied to the motor.
Driver tool	Use this to remove the unit and to set the rotary switches.

12-3-2 Inspection positions

(1) Unit inspection

	Inspection item	Inspection cycle	Points	Remedies
1	Cooling fan	Monthly	 Rotate by hand to check that the fan rotates smoothly. (AC fan) Turn the power ON to check that the fan rotates with force. Is there any abnormal noise from the bearings? 	Replace the unit
2	Contamination/ screw loosening	As required	Periodically clean the areas outside the unit, particularly the cooling fan section. Tighten the input/output terminals and connections.	
3	Wiring	As required	Check that the wires are not connected to other conductive sections, and that they are not caught.	

(2) Motor inspection

	Inspection item	Inspection cycle	Points	Remedies
1	Noise/vibration	Monthly	 Check whether any noise or vibration, previously unnoticed, is occurring. Check the following items when abnormal. (1) Check the foundation and installation. (2) Check the coupling core alignment accuracy. (3) Check whether vibration is being conveyed from the coupler. (4) Check whether the bearings are damaged or are generating abnormal noise. (5) Check for vibration or noise at the reduction gears or belt. (6) Check for abnormalities at the control unit. (7) Check to abnormalities at the cooling fan. (8) Check the belt tension. 	Clean
2	Temperature rise	Monthly	 Is the bearing temperature abnormal? (Normally, the temperature should be the ambient temperature +10 to 40°C.) Is the motor frame temperature abnormal? Check the following items when abnormal. (1) Is the cooling fan rotating correctly? (2) Is the cooling fan wind path (between the frame and cover) obstructed with foreign matter? (3) Is the load abnormally high? (4) Check for abnormalities at the control unit. 	Refer to Troubleshooting.
3	Insulation resistance value	Six months	 Is the insulation resistance value abnormally low? Disconnect the wiring with the spindle drive unit, and perform a megger test between the circuit batch and ground. (No problem if the value is 1MΩ or more with a 500V megger.) If the insulation resistance is 1MΩ or less, the inside of the motor must be cleaned and dried. To dry, disassemble the motor, and dry it in a drying furnace set at 90°C or less. 	
4	Cooling fan	Weekly, monthly	 Check that the fan is rotating correctly and feeding air, and that there is no abnormal noise or vibration. 	

12-4. Replacement methods of units and parts

CAUTION Please do not do replacement work except an expertise person.

12-4-1 Drive unit and power supply unit replacements

Replacement

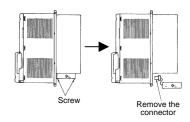
- (1) Power off of a cabinet.
- (2) All terminal blocks are disconnected with wire.
- (3) A fixed screw is loosened and a unit is removed.

Install

- (1) Type of a unit is checked and it installs in a cabinet.
- (2) Wire is connected correctly.
- (3) Connection and installation are reconfirmed.
- (4) Power of a cabinet is turned on. It checks whether a machine runs by MDI etc.

12-4-2 Battery unit replacements

Replacement


- (1) Power off of a NC system. All connecter is disconnected with wire.
- (2) A fixed screw is loosened and a battery unit is removed.
- (3) Complete the battery replacement work within the approx. 10 hours that the detector position information is held.

Install

- (1) Type of a battery unit is checked and it installs in a cabinet.
- (2) Wire is connected correctly.
- (3) Power of a NC system is turned on. It checks whether an alarm etc. Confirm that no alarms, such as the absolute position illegal alarm, are occurring.

12-4-3 Cooling fan replacements

- Remove the screws fixing the cooling fan at the bottom of the unit. (The mounting position and number of fans differ according to the unit.)
- (2) Disconnect the fan power cable.
- (The position may differ according to the unit, but the procedure is the same.)
- (3) Exchange with the new fan.

Appendix 1. Compliance to EC Directives

1.	European EC Directives	A1-:	2
2.	Cautions for EC Directive compliance	A1-:	2

Appendix 1. Compliance to EC Directives

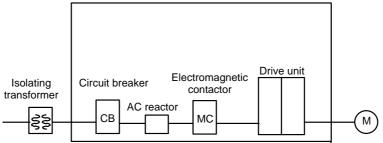
1. European EC Directives

In the EU Community, the attachment of a CE mark (CE marking) is mandatory to indicate that the basic safety conditions of the Machine Directives (issued Jan. 1995), EMC Directives (issued Jan. 1996) and the Low-voltage Directives (issued Jan. 1997) are satisfied. The machines and devices in which the servo and spindle drive are assembled are the targets for CE marking.

(1) Compliance to EMC Directives

The servo and spindle drive are components designed to be used in combination with a machine or device. These are not directly targeted by the Directives, but a CE mark must be attached to machines and devices in which these components are assembled. The next section "EMC Installation Guidelines", which explains the unit installation and control panel manufacturing method, etc., has been prepared to make compliance to the EMC Directives easier.

(2) Compliance to Low-voltage Directives


The MDS-CH Series units are targeted for the Low-voltage Directives. An excerpt of the precautions given in this specification is given below. Please read this section thoroughly before starting use.

A Self-Declaration Document has been prepared for the EMC Directives and Low-voltage Directives. Contact Mitsubishi or your dealer when required.

2. Cautions for EC Directive compliance

Use the Low-voltage Directive compatible parts for the servo/spindle drive and servo/spindle motor. In addition to the items described in this instruction manual, observe the items described below.

(1) Configuration

Use a type B (AC/DC detectable type) breaker

(2) Environment

Use the units under an Overvoltage Category III and Pollution Class of 2 or less environment as stipulated in IEC60664.

These units do not provide protection against electric shock and fire sufficient for the requirements of the Low-voltage Directive and relevant European standards by themselves, so provide additional protection (refer to 5.2.4 and 7.1.6.1 of EN50178)

Motor

Drive	unit
Drive	um

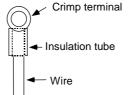
Drive unit		_	
	During operation	Storage	During transportation
Ambient temperature	0°C to 55°C	-15°C to 70°C	-15°C to 70°C
Humidity	90%RH or less	90%RH or less	90%RH or less
Altitude	1000m or less	1000m or less	13000m or less

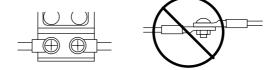
	During operation	Storage	During transportatio
			n
Ambient temperature	0°C to 40°C	-15°C to 70°C	-15°C to 70°C
Humidity	80%RH or	90%RH or	90%RH or
-	less	less	less
Altitude	1000m or less	1000m or less	13000m or less

(3) Power supply

- [1] Use the power supply and servo/spindle drive unit under an Overvoltage Category III as stipulated in IEC60664.
- [2] In case of Overvoltage Category III, connect the PE terminal of the units to the earthed-neutral of the star-connection power supply system.
- [3] Do not omit the circuit breaker and electromagnetic contactor.

(4) Earthing

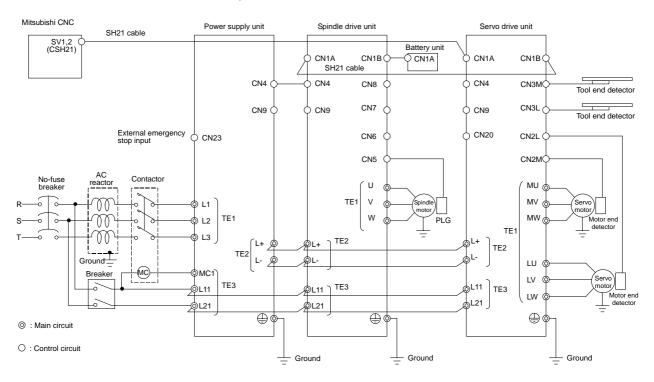

- [1] To prevent electric shocks, always connect the servo/spindle drive unit protective earth (PE) terminal (terminal with ()) mark) to the protective earth (PE) on the control panel.
- [2] When connecting the earthing wire to the protective earth (PE) terminal, do not tighten the wire terminals together. Always connect one wire to one terminal.


[3] Select the earthing wire size in accordance with Table 1 of EN60204-1.

(5) Wiring

[1] Always use crimp terminals with insulation tubes so that the connected wire does not contact the neighboring terminals.

[2] Do not connect the wires directly.


[3] Select the size of the wires for input power supply to Power Supply unit in accordance with Table 4 and 5 of EN60204-1.

(6) Peripheral devices

- [1] Use EN/IEC Standards compliant parts for the circuit breaker and contactor.
- [2] Select circuit breaker with instantaneous trip function. (Trip within 30 second when over current of 600%). Apply Annex C of EN60204-1 for sizing of the circuit breaker.

(7) Miscellaneous

- [1] Refer to the next section "EMC Installation Guidelines" for methods on complying with the EMC Directives.
- [2] Ground the facility according to each country's requirements.
- [3] The control circuit connector (O) is safely separated from the main circuit (\bigcirc).
- [4] Inspect the appearance before installing the unit. Carry out a performance inspection of the final unit, and save the inspection records.

Appendix 2. EMC Installation Guidelines

1. Introduction	A2-2
2. EMC Instructions	
3. EMC Measures	
4. Measures for panel structure	
4.1 Measures for control box unit	
4.2 Measures for door	
4.3 Measures for operation board panel	A2-4
4.4 Shielding of the power supply input section	
5. Measures for various cables	A2-5
5.1 Measures for wiring in box	
5.2 Measures for shield treatment	
5.3 Servomotor power cable	A2-6
5.4 Servomotor feedback cable	
5.5 Spindle motor power cable	
5.6 Cable between control box and operation board panel	A2-7
6. EMC Countermeasure Parts	
6.1 Shield clamp fitting	A2-8
6.2 Ferrite core	A2-9
6.3 Power line filter	
6.4 Surge protector	

Appendix 2 EMC Installation Guidelines

1. Introduction

EMC Instructions became mandatory as of January 1, 1996. The subject products must have a CE mark attached indicating that the product complies with the Instructions. As the NC unit is a component designed to control machine tools, it is believed that it is not a direct EMC Instruction subject. However, we would like to introduce the following measure plans to backup EMC Instruction compliance of the machine tool as the NC unit is a major component of the machine tools.

- (1) Methods for installation in control/operation panel
- (2) Methods of wiring cable outside of panel
- (3) Introduction of countermeasure parts

Mitsubishi is carrying out tests to confirm the compliance to the EMC Standards under the environment described in this manual. However, the level of the noise will differ according to the equipment type and layout, control panel structure and wiring lead-in, etc. Thus, we ask that the final noise level be confirmed by the machine manufacturer.

These contents are the same as the EMC INSTALLATION GUIDELINES (BNP-B8582-45). For measures for CNC, refer to "EMC INSTALLATION GUIDELINES" (BNP-B2230).

2. EMC Instructions

The EMC Instructions largely regulate the following two withstand levels.

(1) Emission...... Capacity to prevent output of obstructive noise that adversely affects external sources.

(2) Immunity...... Capacity not to malfunction due to obstructive noise from external sources.

The details of each level are classified as Table 1. It is assumed that the Standards and test details required for a machine are the same as these.

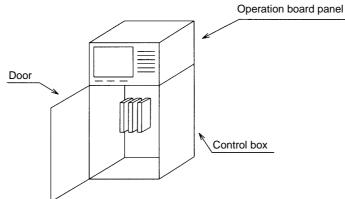
Class	Name	Details	Generic Standard	Standards for determining test and measurement
	Radiated noise	Electromagnetic noise radiated through the air		EN55011
Emission	Conductive noise	Electromagnetic noise discharged from power	Iine EN61800-3 (Industrial environment)	
	Static electricity electrical discharge	Example) Withstand level of static electricity discharge from a charged human b	ody	IEC61000-4-2
	Radiated magnetic field	Example) Simulation of immunity from digital wireless transmitters		IEC61000-4-3
	Burst immunity	Example) Withstand level of noise from relays connecting/disconnecting live wires		IEC61000-4-4
Immunity	Conductive immunity	Example) Withstand level of noise entering through power line, etc.	EN61800-3 (Industrial	IEC61000-4-6
	Power supply frequency field	Example) 50/60Hz power frequency noise	environment)	IEC61000-4-8
	Power dip (fluctuation)	Example) Power voltage drop withstand level		IEC61000-4-11
	Surge	Example) Withstand level of noise caused by lightning		IEC61000-4-5

Table 1

3. EMC Measures

The main items relating to EMC measures include the following.

- (1) Store the device in an electrically sealed metal panel.
- (2) Earth all conductors that are floating electrically. (Lower the impedance.)
- (3) Wire the power line away from the signal wire.
- (4) Use shielded wires for the cables wired outside of the panel.
- (5) Install a noise filter.

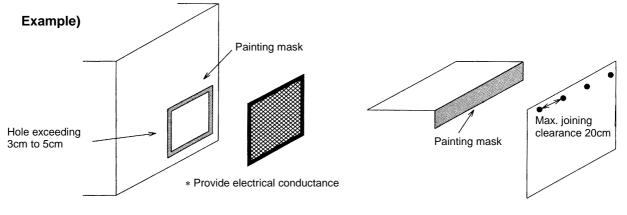

Take caution to the following items to suppress noise radiated outside of the panel.

- (1) Securely install the devices.
- (2) Use shielded wires.
- (3) Increase the panel's electrical seal. Reduce the gap and hole size.

Note that the electromagnetic noise radiated in the air is greatly affected by the clearance of the panel and the quality of the cable shield.

4. Measures for panel structure

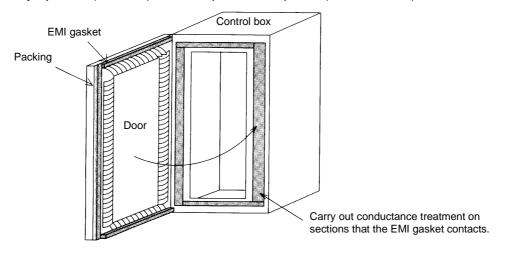
The design of the panel is a very important factor for the EMC measures, so take the following measures into consideration.



4.1 Measures for control box unit

- (1) Use metal for all materials configuring the panel.
- (2) For the joining of the top plate and side plates, etc., mask the contact surface with paint, and fix with welding or screws.

In either case, keeping the joining clearance to a max. of 20cm for a better effect.

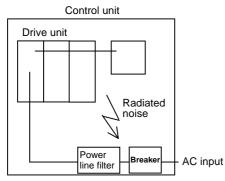

- (3) Note that if the plate warps due to the screw fixing, etc., creating a clearance, noise could leak from that place.
- (4) Plate the metal plate surface (with nickel, tin) at the earthing section, such as the earthing plate.
- (5) The max. tolerable hole diameter of the openings on the panel surface, such as the ventilation holes, must be 3cm to 5cm. If the opening exceeds this tolerance, use a measure to cover it. Note that even when the clearance is less than 3cm to 5cm, noise may still leak if the clearance is long.

4.2 Measures for door

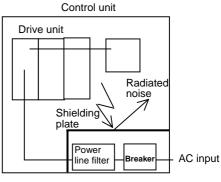
- (1) Use metal for all materials configuring the door.
- (2) Use an EMI gasket or conductive packing for the contact between the door and control box unit.
- (3) The EMI gasket or conductive packing must contact at a uniform and correct position of the metal surface of the control box unit.
- (4) The surface of the control box unit contacted with the EMI gasket or conductive packing must have conductance treatment.

Example) Weld (or screw) a welded plate that is plated (with nickel, tin).

(5) As a method other than the above, the control box unit and door can be connected with a plain braided wire. In this case, the box and door should be contacted at as many points as possible.


4.3 Measures for operation board panel

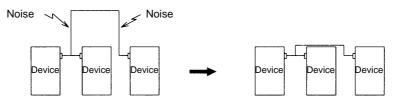
- (1) Always connect the operation board and indicator with an earthing wire.
- (2) If the operation board panel has a door, use an EMI gasket or conductive packing between the door and panel to provide electrical conductance in the same manner as the control box.
- (3) Connect the operation board panel and control box with a sufficiently thick and short earthing wire.


Refer to the "EMC INSTALLATION GUIDELINES" BNP-B2230 for the NC for more details.

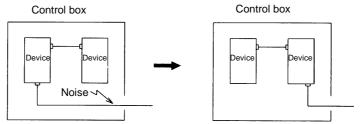
4.4 Shielding of the power supply input section

- (1) Separate the input power supply section from other parts of the control box so that the input power supply cable will not be contaminated by radiated noise.
- (2) Do not lead the power line through the panel without passing it through a filter.

The power supply line noise is eliminated by the filter, but cable contains noise again because of the noise radiated in the control box.


Use a metal plate, etc., for the shielding partition. Make sure not to create a clearance.

5. Measures for various cables

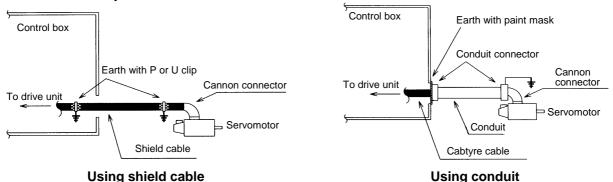

The various cables act as antennas for the noise and discharge the noise externally. Thus appropriate treatment is required to avoid the noise. The wiring between the drive unit and motor act as an extremely powerful noise source, so apply the following measures.

5.1 Measures for wiring in box

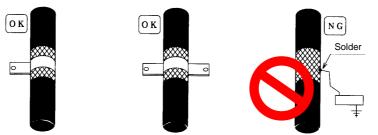
(1) If the cables are led unnecessarily in the box, they will easily pick up the radiated noise. Thus, keep the wiring length as short as possible.

(2) The noise from other devices will enter the cable and be discharged externally, so avoid internal wiring near the openings.

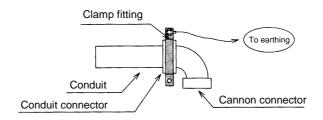
(3) Connect the control device earthing terminal and earthing plate with a thick wire. Take care to the leading of the wire.

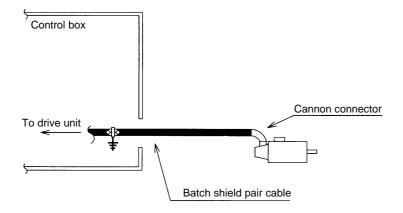

5.2 Measures for shield treatment

Use of shield clamp fittings is recommended for treating the shields. The fittings are available as options, so order as required. (Refer to section "6.1 Shield clamp fitting".)

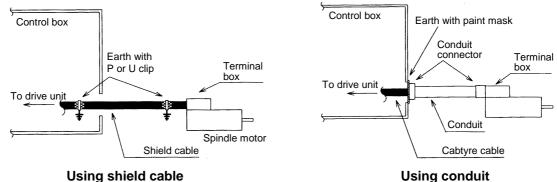

Clamp the shield at a position within 10cm from the panel lead out port.

POINT	 When leading the cables, including the grounding wire (FG), outside of the panel, clamp the cables near the panel outlet (recommendation: within 10cm). When using a metal duct or conduit, the cables do not need to be clamped near the panel outlet. When leading cables not having shields outside the panel, follow the instructions given for each cable. (Installation of a ferrite core, etc., may be required.)
-------	--

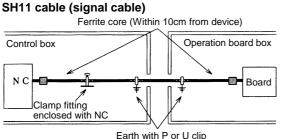

5.3 Servomotor power cable


- (1) Use four wires (3-phase + earthing) for the power cable that are completely shielded and free from breaks.
- (2) Earth the shield on both the control box side and motor chassis side.
- (3) Earth the shield with a metal P clip or U clip.
- (A cable clamp fitting can be used depending on the wire size.)
- (4) Directly earth the shield. Do not solder the braided shield onto a wire and earth the end of the wire.

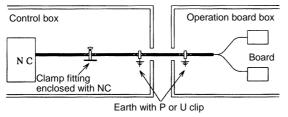
- (5) When not using a shield cable for the power cable, use a conventional cabtyre cable. Use a metal conduit outside the cable.
- (6) Earth the power cable on the control box side at the contact surface of the conduit connector and control box. (Mask the side wall of the control box with paint.)
- (7) Follow the treatment shown in the example for the conduit connector to earth the power cable on the motor side. (Example: Use a clamp fitting, etc.)


5.4 Servomotor feedback cable

Use a pair shield cable for the servomotor and spindle motor feedback cables, and ground them in the control panel.


Directly mounting a ferrite core onto the unit connector is also effective in suppressing noise.

5.5 Spindle motor power cable


- (1) Use four wires (3-phase + earthing) for the power cable, that are completely shielded and free from breaks.
- (2) Earth the shield with the same manner as the servomotor power cable.
- (3) When not using a shield cable for the power cable, use a conventional cabtyre cable. Use a metal conduit outside the cable.
- (4) Earth the power cable on the control box side at the contact surface of the conduit connector and control box side wall in the same manner as the servomotor power cable. (Mask the side wall of the control box with paint.)
- (5) Earth at the conduit connector section in the same manner as the servomotor drive cable.

5.6 Cable between control box and operation board panel

Earth with P or U clip

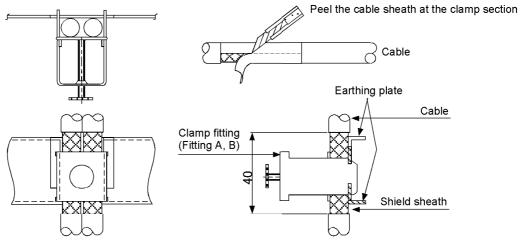
PD05 cable (power supply cable)

- (1) Use a shield cable for the cable between the control box and operation board.
- (2) Earth the shield in the same manner as the other cables.
- (3) Insert a ferrite core in the SH11 cable at a position within 10cm from the device. (This provides a better effect.)

The PD05 cable is used with the MELDAS500 Series. Refer to the EMC INSTALLATION GUIDELINES for each NC for details.

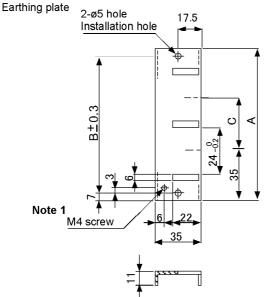
6. EMC Countermeasure Parts

6.1 Shield clamp fitting

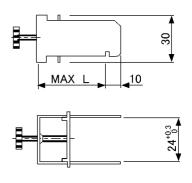

The effect can be enhanced by connecting the cable directly to the earthing plate.

Install an earthing plate near each panel's outlet (within 10cm), and press the cable against the earthing plate with the clamp fitting.

If the cables are thin, several can be bundled and clamped together.


Securely earth the earthing plate with the frame ground. Install directly on the cabinet or connect with an earthing wire.

Contact Mitsubishi if the earthing plate and clamp fitting set (AERSBAN-[]SET) is required.



View of clamp section

• Outline drawing

Clamp fitting

Unit: mm

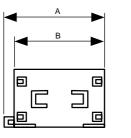
Note 1) Screw hole for wiring to earthing plate in cabinet. **Note 2)** The earthing plate thickness is 1.6mm.

	Α	В	С	Enclosed fittings		L
AERSBAN-DSET	100	86	30	Two clamp fittings A	Clamp fitting A	70
AERSBAN-ESET	70	56	-	One clamp fitting B	Clamp fitting B	45

6.2 Ferrite core

A ferrite core is integrated and mounted on the plastic case.

Quick installation is possible without cutting the interface cable or power cable.


This ferrite core is effective against common mode noise, allowing measures against noise to be taken without affecting the signal quality.

Recommended ferrite core

TDK ZCAT Series

Shape and dimensions

ZCAT type

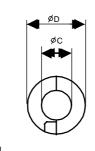
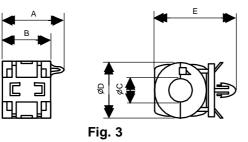



Fig. 1

ZCAT-B type

ZCAT-A type

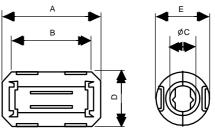


Fig. 2



Fig. 4

Recommended ferrite core

0

Recommended ferrite co	re							Unit [mm]
Part name	Fig.	Α	В	с	D	Е	Applicable cable outline	Weight
ZCAT3035-1330 (-BK)*1	1	39	34	13	30		13 max.	63
ZCAT2035-0930-M (-BK)	2	35	29	13	23.5	22	10 to 13	29
ZCAT2017-0930B-M (-BK)	3	21	17	9	20	28.5	9 max.	12
ZCAT2749-0430-M (-BK)	4	49	27	4.5	19.5		4.5 max.	26

*1 A fixing band is enclosed when shipped.

ZCAT-B type: Cabinet fixed type, installation hole ø4.8 to 4.9mm, plate thickness 0.5 to 2mm ZCAT-C type: Structured so that it cannot be opened easily by hand once closed.


6.3 Power line filter

The low leakage current 3-phase inverter and power drive system filter is recommended for the power line filter. EMC Measures have been confirmed by Mitsubishi using the following filter. Install on the primary side (factory power side) of the AC reactor.

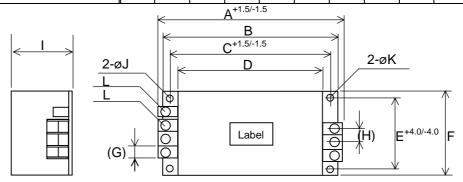
OKAYA Electric Industries Co., Ltd. 3SUP-HL-ER-6B Series

- 3-phase, 3-wire type high attenuation type
- CE marking compatible
- Rated current value 30A to 200A
- For EN55011 Class A, B measures
- Application: Primary side of inverter power supply, UPS, CNC machine tool, etc.

1. Technical specifications

Туре	3SUP-HL30-ER- 6B	3SUP-HL50-ER- 6B	3SUP-HL75-ER- 6B	3SUP-HL100-ER -6B	3SUP-HL150-ER -6B			
Rated current	30A (50°C)	50A (50°C)	75A (50°C)	100A (50°C)	150A (50°C)			
Maximum working voltage		500Vrms (50°C)						
Working frequency			50 / 60Hz					
Leakage current	[A leakage curren		nA (at 500Vrms 60Hz no phase failure in a po	,	a neutral point.]			
Connection terminal	M4	M6	M6	M6	M8			
Weight	5.2kg	6.5kg	12.0kg	12.5kg	23.5kg			
Nominal inductance	6×1.4mH	6×1.4mH	6×1.0mH	6×0.56mH	6×0.6mH			
Safety standards	EN133200 (compliant)							

These specifications are for reference. Contact the filter maker for detailed data.


Notes:

- If the leakage current is limited, use 3SUP-HL[_]-ER-6B-4 (leakage current 4mA product).
- Please use 3SUP-HL[_]-ER-6 series, when high specification is required.

2. Mechanical data

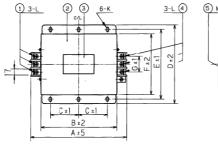
[unit: mm] Tolerance: ±1.5mm

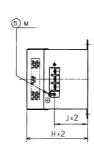
										10101	unioo	21.011
	Α	В	С	D	Е	F	G	Η		J	K	L
3SUP-HL30-ER-6B	246	230	215	200	100	85	13	18	140	4.5x7	4.5	M4
3SUP-HL50-ER-6B	286	270	255	240	120	90	13	18	150	5.5x7	5.5	M6
3SUP-HL75-ER-6B	396	370	350	330	170	140	18	23	155	6.5x8	6.5	M6
3SUP-HL100-ER-6B	396	370	350	330	170	140	18	23	155	6.5x8	6.5	M6
3SUP-HL150-ER-6B	484	440	420	400	200	170	30	25	200	6.5x8	6.5	M8
3SUP-HL200-ER-6B	484	440	420	400	200	170	30	25	200	6.5x8	6.5	M8

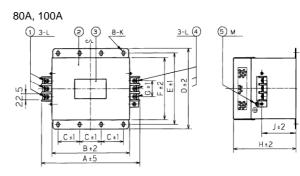
SOHIN ELECTRIC Co., Ltd. HF3000C-TMA series

• 3-phase, 3-wire type high attenuation type

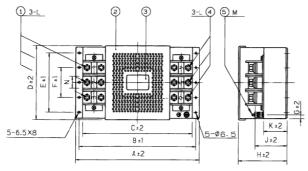
1. Technical specifications

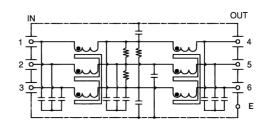

30C-TMA	HF3050C-TMA	HF3060C-TMA	HF3080C-TMA	HF3100C-TMA	HF3150C-TMA	HF3200C-TMA		
30A	50A	60A	80A	100A	150A	200A		
460VAC (50°C) For Natural grounding								
50 / 60Hz								
5.3mA (at 460Vrms 60Hz) [A leakage current will not flow if there is no phase failure in a power supply grounded at a neutral point.]								
		Rated	current x 150%	1min				
M5 / M4(E) M6 / M4(E) M6 / M4(E) M8 / M6(E) M8 / M6(E) M10 / M8(E) M10 / M8(E)								
3.2kg 6.7kg 10.0kg 13.0kg 14.5kg 23.0kg 23.5kg								
EN133200 (compliant)								
3.2Kg			EN	EN133200 (compli	EN133200 (compliant)	EN133200 (compliant)		


These specifications are for reference. Contact the filter maker for detailed data.

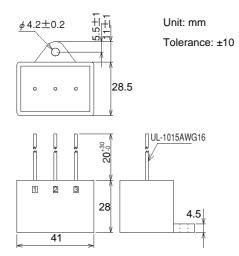

[unit: mm] Tolerance: ±1.5mm

											10101		±1.0111
	Α	В	С	D	Е	F	G	Н	J	K	L	М	Ν
HF3030C-TMA	260	210	85	155	140	125	44	140	70	R3.25 / L8	M5	M4	
HF3050C-TMA	290	240	100	190	175	160	44	170	100	R3.25 / L8	M6	M4	
HF3060C-TMA	290	240	100	190	175	160	44	230	160	R3.25 / L8	M6	M4	
HF3080C-TMA	405	350	100	220	200	180	56	210	135	R4.25 / L12	M8	M6	
HF3100C-TMA	405	350	100	220	200	180	56	210	135	R4.25 / L12	M8	M6	
HF3150C-TMA	570	550	530	230	190	100	15	210	140	100	M10	M8	33
HF3200C-TMA	570	550	530	230	190	100	15	210	140	100	M10	M8	33

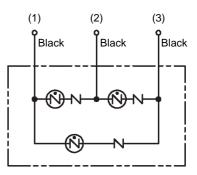

30A to 60A



150A, 200A


6.4 Surge protector

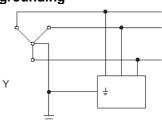
Insert a surge protector in the power input section to prevent damage to the control unit or power supply unit, etc. caused by the surge (lightning or sparks, etc.) applied on the AC power line. Use a surge protector that satisfies the following electrical specifications.


(1)	Surge protector	R. A. V Series	Okaya Electric Co., Ltd.
(1)	ourge protector		

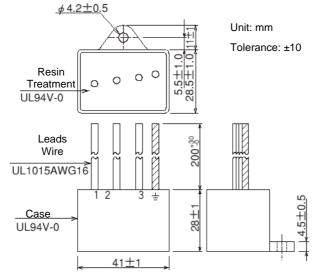
Part name	Circuit voltage 50/60Hz Vrms	Maximum tolerable circuit voltage	Clamp voltage (V) ± 10%	Surge withstand level 8/20 μS (A)	Surge withstand voltage 1.2/50 μS (V)	Electrostatic capacity	Service temperature
RAV-152BYZ-2A	3AC 430V	500V	1476V	2500A	20kV	35pF	-20 to 70°C

Outline dimension drawings

Circuit diagram

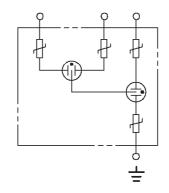


Refer to the maker's catalog for details on the surge protector's characteristics and specifications, etc.

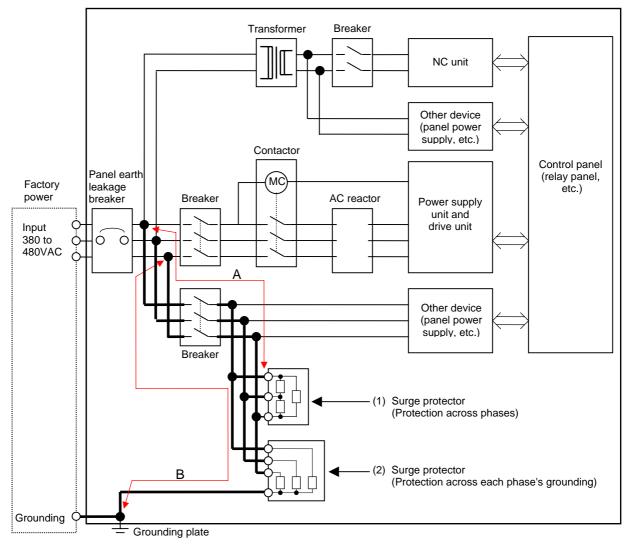

(2) Surge protector RCM Series Okaya Electric Co., Ltd.

Part name	Rated voltage	AC discharge start voltage (V) ± 20%	Surge withstand level 8/20 μS (A)	Surge withstand voltage 1.25/50 μS (V)
RCM-781BUZ-4	3AC 250/430V	700VAC	2500A	2kV
RCM-801BUZ-4	3AC 290/500V	800VAC	2500A	2.32kV

For neutral point grounding



Outline dimension drawings


Voltage across three phases is 500Vrms or less

Circuit diagram

Example of surge protector installation

An example of installing the surge protector in the machine control panel is shown below. A short-circuit fault will occur in the surge protector if a surge exceeding the tolerance is applied. Thus, install a circuit protection breaker in the stage before the surge protector. Note that almost no current flows to the surge protector during normal use, so a breaker installed as the circuit protection for another device can be used for the surge protector.

Installing the surge absorber

CAUTION 1. The wires from 2. If the surge protection the wiring leng

- 1. The wires from the surge protector should be connected without extensions.
- 2. If the surge protector cannot be installed just with the enclosed wires, keep the wiring length of A and B to 2m or less. If the wires are long, the surge protector's performance may drop and inhibit protection of the devices in the panel.

Appendix 3. EC Declaration of conformity

1.	. Low voltage equipment	A3-2
2.	. Electromagnetic compatibilityA	\3-12

Appendix 3 EC Declaration of conformity

MDS-CH Series can respond to LVD and EMC directive. Approval from a third party certification organization has been acquired for the Low Voltage Directive. The declaration of conformity of each unit is shown below.

1. Low voltage equipment

MDS-CH-CV-37 to 370

	MITSUBISHI ELECTRIC
	SHI
MITSUBISHI ELECTRIC CORPORATION NAGOYA WORKS 1-14 YADA-MINAMI 5-CHOME,	
HGASHI-KU, NAGOYA, 441-8670 JAPAN Phone: (052) 721-2111	
	RATION OF CONFORMITY
	Low Voltage Directive 73/23/EEC) ded by EEC Directive 93/68/EEC)
We hereby state that the follow	ving products are in conformity with Low Voltage
Directive 73/23/EEC and 93/68/EH This is supported by product tests	
	ly Unit (Low Power Units) V-[x] Series
	n be 37, 55, 75, 110, 150, 185, 220, 260, 300 and 370.
Manufactured by : MITSUBISH	I ELECTRIC CORPORATION NAGOYA WORKS
Address: 1-14 Yada-Minami 5	i-Chome, Higashi-Ku, Nagoya, 461-8670, Japan
Standard(s): EN50178	
Year of CE marking : 2002	
	MITSUBISHI ELECTRIC CORPORATION NAGOYA WORKS
Issued by :	T Y I I
NAGOYA, 28 / January, 2002	<u> </u>
	Manager Numerical Control System Department
	BNP-B3940-012-* Page 1/2

Zertifikat	Certificate		the first of the second se	4
Zertifikat Nr. <i>Certificate No.</i> R 50019313	Blatt Page 0001			τΰν
lhr Zeichen <i>Client Reference</i> T.E.	Unser Zeichen (ZO-YUS- 12	Our Reference	Ausstellungsdatum 27.11.2002	Date of Issue (day/mo/yr)
Genchmigungsinhaber License Mitsubishi Electric Nagoya Works 5-1-14 Yada-Minami, Nagoya-shi, Aichi 40 Japan	Corp. Higashi-ku	Mitsubis Nagoya W 5-1-14 Y	tte <i>Manafactaring Plant</i> hi Electric Cor orks ada-Minami, Hig hi, Aichi 461-8	p. ashi-ku
Prüfzeichen Test Mark TÖV TÖV Rödust Safery Produst Safery	Geprüft nach 2 EN 50178 :			
Zertifiziertes Produkt (Gerät Certified Product (Produ	eidentifikation) ct Identification)			entgelte - Einhei 2 Fee - Unit
Einbau-Schaltnetzte	<u>eil</u> Power Suppl	ly Unit		
x = 37 Rated Voltages : 3AC	DS-CH-CV-x ,55,75,110,150,18 380-440V, 50Hz/3. 380-440V, 50Hz/AC	AC 380-480V, 6	0Hz and	6 4
Protection Class : I Output Voltage Output Current	ee Appendix 1) : DC 513-648 : (see Append	ix 1)		
Signal Output Values Ambient Temperature Overvoltage Category Pollution Degree	: DC max. 24 : 0 to +55°C : III : 2			
Protection again maintained by b		signal circui ock has to be nít must be in	ts. stalled	
ANLAGE (Appendix):	1	12/1	- 13	10
Dem Zertifikat liegt ansere Prüf- und Z Das Produkt entspricht den o.g. Anford Dis certificate is based on our Testing ültills above mentioned requirements, tha	ertifizierungsordnung zugrunde erungen, die Herstellung wird and Certification Regulation.	t uberwacht. III III III The product	CPu () (mianut) () Zertifizierungs	stelle
	·	100 m	In 13 11/1	
TÜV Rheinland Product Safety	Guinni, Am Graden		1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
TÜV Rheinland Product Safety Tel.:(+49/221)8 06 - 13 71 Fax.(+49		dthofff@de.tuv.com	CO, MES	n a waa waxaa ahaan ahaa

Supplement: Refer to "Chapter 10 Specifications" for the rated values indicated in (See Appendix 1).

MDS-CH-CV-450 to 750

MITSUBISHI ELECTRIC CORPORATION NAGOYA WORKS 1-14 YADA-MINAMI 5-CHOME, HIGASHI-KU, NAGOYA, 461-8670 JAPAN Phone: (052) 721-2111
DECLARATION OF CONFORMITY (According to Low Voltage Directive 73/23/EEC) (as last amended by EEC Directive 93/68/EEC)
We hereby state that the following products are in conformity with Low Voltage Directive 73/23/EEC and 93/68/EEC. This is supported by product tests of the following standards.
Description :Power Supply Unit (High Power Units)Type :MDS-CH-CV-[x] Series[x] can be 450, 550 and 750.
Manufactured by : MITSUBISHI ELECTRIC CORPORATION NAGOYA WORKS
Address : 1-14 Yada Minami 5-Chome, Higashi-Ku, Nagoya, 461-8670, Japan
Standard(s) : EN50178
Year of CE marking : 2002
MITSUBISHI ELECTRIC CORPORATION NAGOYA WORKS
Issued by : NAGOYA, 28 / January, 2002 <u> </u>
BNP-B3940-012-* Page 2/2

Zertifikat	Certificate			A
Zertifikat Nr. Certificate No. R 50019306	Blatt Page 0001			ΤÜV
Ihr Zeichen <i>Client Reference</i> T.E.	Unser Zeichen Ø ZO-YUS- 123	· · · · · · · · · · · · · · · · · · ·	Ausstellungsdatum 27.11.2002	Date of Issue (day/mo/yr)
Genchmigungsinhaber License Mitsubishi Electri Nagoya Works 5-1-14 Yada-Minami Nagoya-shi, Aichi Japan	c Corp. , Higashi-ku	Mitsubish Nagoya Wc 5-1-14 Ya	te <i>Manufacturing Plant</i> ni Electric Corp orks da-Minami, Higa ni, Aichi 461-86	shi-ku
Prüfzeichen Test Mark Lagen Gerüft Tüv Riteinland Product Safary	Geprüft nach Te EN 50178:			
Zertifiziertes Produkt (Ger. Certified Product (Prod	äteidentifikation) luct Identification)			tgelte - Einheit Fee - Unit
Einbau-Schaltnetzi		/ Unit		
Rated Voltages : 3A AC Rated Currents : (s Protection Class : 1 Output Voltage Output Current Signal Output Values Ambient Temperature Overvoltage Category Pollution Degree Short Circuit Protect Remarks: Directly con provide protect Protection aga maintained by	<pre>= 450, 550 or 750 C 380-440V, 50Hz/3A 380-440V, 50Hz/AC ee Appendix 1) : DC 513-648V : (see Appendi : DC max. 24V : 0 to +55°C : III : 2 ion : none</pre>	380-480V, 60Hz x 1) /0.1A utput power ci the signal cir ck has to be it must be ins	rcuits cuits. talled	62
ANLAGE (Appendix)	1			8
Dem Zertifikat liegt unsere Prüf- und Das Produkt entspricht den 0.g. Arför Dis certificate is based om our Teröf halfills above-mentioned-requirements. TÜV Rheinland Product Safo Fel.:(+49/221)8 06 - 13 71 Fax:(+	iderungen, die Herstellung wird 19 and Certification Regulation 7 the production is subject to surve 14 GmbH, Am Grauen S	the product eillance. Stein, D-51105 Köll	Zertifizierungsste n W. WİS	lle and FUM
			DiplIng. W. N	ölke

Supplement: Refer to "Chapter 10 Specifications" for the rated values indicated in (See Appendix 1).

MDS-CH-V1-05 to 150 MDS-CH-V2-0505 to 4535

4TSUBISHI ELECTRIC CORPORATION VAGOYA WORKS -14 YADA-MINAMI 5-CHOME. IIGASHI-KU, NAGOYA, 431-8470 JAPAN Phons: (052) 721-2111	
(According to Lo	ATION OF CONFORMITY ow Voltage Directive 73/23/EEC) d by EEC Directive 93/68/EEC)
We hereby state that the followin Directive 73/23/EEC and 93/68/EEC Chis is supported by product tests of	
Description : Servo Drive Un Type : MDS-CH-V1 /	
Manufactured by : MITSUBISHI H	ELECTRIC CORPORATION NAGOYA WORKS
Address: 1-14 Yada-Minami 5-C	Chome, Higashi-Ku, Nagoya, 461-8670, Japan
Standard(s): EN50178	
Year of CE marking : 2002	
	MITSUBISHI ELECTRIC CORPORATION NAGOYA WORKS
ssued by : NAGOYA, 28 / January, 2002	T- Lo zhi da Toshio Yoshida Manager
	Manager Numerical Control System Department BNP-B3940·013·*

Zertifikat	Certificate		A
Zertifikat Nr. <i>Certificate No.</i> R 50019316	Blatt Page 0001		τϋν
lbr Zeichen <i>Client Reference</i> T.E.	Unser Zeichen Ø ZO-YUS- 123		sstellungsdatum Date of Issue (day/mo/yr)
Genchmigungsinhaber License H Mitsubishi Electric Nagoya Works 5-1-14 Yada-Minami, Nagoya-shi, Aichi 46 Japan	Corp. Higashi-ku	Nagoya Works 5-1-14 Yada-1	<i>nufacturing Plant</i> lectric Corp. Minamı, Higashi-ku Aichi 461-8670
Prüfzeichen Test Mark Liv Tüv Bhoiniand Product Sofety Booliniand Product Sofety	Geprüft nach T EN 50178:		
Zertifiziertes Produkt (Geräte Certified Product (Produc	identifikation) et Identification)		Lizenzentgelte - Einheit License Fee - Unit
Steuergerät für Ste	llmotoren AC S	arvo Drive Unit	
Type Designations	MDS-CH-V1-xx		5
Rated Voltages : Rated Currents : Protection Class : Output Voltage Output Current Ambient Temperature Overvoltage Category	DC 513-648V and AC 380-440V, 50 (see Appendix 1 I : 3AC 456V, 0 : (see Appendi : 0 to +55°C : III : 2 m : none	Hz/AC 380-480V, 60 or 1.1) - 240Hz x 1 or 1.1)	ΗŻ
Protection again maintained by bu	ve separation to ist electrical sho ilding-in. The un	signal circuits.	
Short Circuit Protectic Remarks: Directly conne provide protecti Protection agair maintained by bu in accordance wi	ve separation to est electrical sho eilding-in. The un th the manufactur	signal circuits. ck has to be it must be install	
Short Circuit Protectic Remarks: Directly conne provide protecti Protection again maintained by bu in accordance wi ANLAGE (Appendix): Dem Zenijikat Hegt unsere Prif- und Ze Das Produkt entspricht dem oz. Anforde hus cenijikat integrunsere Prif- und Ze	ve separation to ist electrical sho ailding-in. The un th the manufactur 1, 1.1 nificienting sordning anguinder nungen, die Herstellung wird and Cernification Regulation.	signal circuits. ck has to be it must be install er's specification <i>überwacht.</i> The product	S.
Short Circuit Protectic Remarks: Directly conne provide protecti Protection agair maintained by bu in accordance wi	ve separation to ist electrical sho ilding-in. The un th the manufactur 1, 1.1 rhfsierungsordnung angrunde: rangen, die Herstellung wird and Cerhfernion Regulation. 7 production is subject to surv GmbH, Am Grauen S	signal circuits. ck has to be it must be install er's specification Wherwacht. The product eillance. Stein, D-51105 Köln	10

Supplement: Refer to "Chapter 10 Specifications" for the rated values indicated in (See Appendix 1).

MDS-CH-SP[_]-04 to 300

	MITSUBISHI ELECTRIC
MITSUBISHI ELECTRIC CORPORATION NAGOVA WORKS 1-14 YADA-MINAMI 5-CHOME, HIGASHI KU, NAGOVA, 461-8670 JAPAN Phone: (052)721-2111	
(According to	ARATION OF CONFORMITY Low Voltage Directive 73/23/EEC) ded by EEC Directive 93/68/EEC)
We hereby state that the follow Directive 73/23/EEC and 93/68/EI This is supported by product tests	
Type : MDS-CH-S [x] can b	ve Unit (Low Power Units) SP[x]·[y] Series he the combination of H, M, X and blank. he 15, 22, 37, 55, 75, 110, 150, 185, 220, 260 and 300.
Manufactured by : MITSUBISH	II ELECTRIC CORPORATION NAGOYA WORKS
Address: 1-14 Yada-Minami	5-Chome, Higashi-Ku, Nagoya, 461-8670, Japan
Standard(s): EN50178	
Year of CE marking:2002	
	MITSUBISHI ELECTRIC CORPORATION NAGOYA WORKS
Issued by : NAGOYA, 28 / January, 2002	Toshio Yoshida Manager Numerical Control System Department
	BNP-B3940-014-* Page 1/2

Zertifikat	Certificate			A
Zertifikat Nr. <i>Certificate No.</i> R 50019315	Blatt Page			ΤÜ٧
Ihr Zeichen <i>Client Reference</i> T.E.	Unser Zeichen C ZO-YUS- 12		Ausstellungsdatum 27.11.2002	Date of Issue (day/mo/yr)
Genehmigungsinhaber License Mitsubishi Electri Nagoya Works 5-1-14 Yada-Minami Nagoya-shi, Aichi Japan	c Corp. Higashi-ku	Mitsubish Nagoya Wc 5-1-14 Ya	te <i>Manufacturing Plant</i> ni Electric Cor orks ada-Minami, Hig ni, Aichi 461-8	p. ashi-ku
Prüfzeichen Test Mark	Geprüft nach 7 EN 50178:			
	luct Identification)		Licens	entgelte - Einheit e Fee - Unit
y = Rated Voltages Rated Currents Protection Class Output Voltage Output Current Ambient Temperature Overvoltage Category Pollution Degree Short Circuit Protect Remarks: Directly com provide protect Protection aga maintained by	: MDS-CH-SFy-x 22,37,55,75,110,150 H, M or blank : DC 513-648V and AC 380-440V, 50F : (see Appendix 1) : 1 : 3AC 340V, 0-500F : (see Appendix 1) : 0 to +55°C : III : 2 ion : none nected input- and c tive separation to inst electrical sho building-in. The ur with the manufactur 1 Zertificierungsondmung zugnnder derungen, die Herstellung wind g and Certification Regulation.),185,220,260 o Hz/AC 380-480V, Hz/0-1167Hz(onl butput power ci signal circuit bock has to be hit must be ins cer's specifica therwach	or 300 60Hz y y=H) rcuits s. talled tions.	6 4 1
Fet: (+49/221)8 06 - 13 71 Fax: (+	19/221)8 06 - 39 35 e-mail: Al	thofff@de.uy.com	W.Mes	
e di k Setta Handel di di			DiplIng. W.	Nölke

Supplement: Refer to "Chapter 10 Specifications" for the rated values indicated in (See Appendix 1).

MDS-CH-SP[_]-370 to 750

	MITSUBISHI ELECTRIC
NAGOVA WORKS 1-14 YADA-MINAMI 5-CHOME, HIGASHI-KU, NAGOYA, 481-8470 JAPAN Phone: (052) 721-2111	
(According to	ARATION OF CONFORMITY Low Voltage Directive 73/23/EEC) Ided by EEC Directive 93/68/EEC)
We hereby state that the follo Directive 73/23/EEC and 93/68/E This is supported by product test	
Type: MDS-CH-5 [x] can b	ive Unit (High Power Units) SP[x]-[y] Series be the combination of H, M, X and blank. be 370, 450, 550 and 750.
Manufactured by : MITSUBISI	HI ELECTRIC CORPORATION NAGOYA WORKS
Address: 1-14 Yada-Minami	5-Chome, Higashi-Ku, Nagoya, 461-8670, Japan
Standard(s): EN50178	
Year of CE marking:2002	
Issued by : NAGOYA, 28 / January, 2002	MITSUBISHI ELECTRIC CORPORATION NAGOYA WORKS T- (
	BNP-B3940-014.* Page 2/2

Zertifikat	Certificate			A
Zertifikat Nr. Certificate No. R 50019308	Blatt Page 0001			ΤÜV
hr Zeichen <i>Client Reference</i> F.E.	Unser Zeichen <i>Our</i> ZO-YUS- 1230		usstellungsdatum 27.11.2002	Date of Issue (day/mo/yr)
Genchmigungsinhaber License Litsubishi Electric Jagoya Works 5-1-14 Yada-Minami, Jagoya-shi, Aichi (Japan	e Corp. , Higashi-ku	Mitsubishi Nagoya Work 5-1-14 Yada	Manufacturing Plana Blectric Cor s -Minami, Hig Aichi 461-8	p. Jashi-ku
rüfzeichen Test Mark	Geprüft nach <i>Test</i> EN 50178:19			
Zertifiziertes Produkt (Gera				
				entgelte - Einheit e Fee - Unit
	luct Identification)	indle Drive U	Licens	æntgelte - Einheit e Fee - Unit
Certified Product (Prod Steuergerät für St Type Designation Rated Voltages Rated Currents Protection Class Output Voltage Output Voltage Output Current Ambient Temperature Overvoltage Category Pollution Degree Short Circuit Protect Remarks: Directly com provide protect Protection aga maintained by J	<pre>Auct Identification) cellmotoren AC Spi c MDS-CH-SPy-x x = 370, 450, 550 y = H, M or blank DC 513-648V and AC 380-440V, 50Hz, (see Appendix 1) I AC 340V, 0-500Hz, (see Appendix 1) 0 to +55°C III 2 ion ; none</pre>	or 750 /AC 380-480V, 6/ /0-1167Hz(only) tput power circuits. ignal circuits. k has to be t must be insta.	<i>Licens</i> nit DHz y=H) Hits	

Supplement: Refer to "Chapter 10 Specifications" for the rated values indicated in (See Appendix 1).

2. Electromagnetic compatibility

MDS-CH-CV-37 to 370

MITSUBISHI ELECTRIC CORPORATION NAGOYA WORKS 1-14 YADA-MINAMI 5-CHOME, HIGASHI-KU, NAGOYA, 441-8670 JAPA Phone: (052) 721-2111	
A)	MANUFACTURERS DECLARATION According to EMC Directive 89/336/EEC)
manufactured in accorda	e following component has been designed and ance with the following transposed Harmonized European to these standards on condition that EMC Installation
Component Description Type :	: Power Supply Unit MDS·CH-CV Series
Manufactured by : MI	TSUBISHI ELECTRIC CORPORATION NAGOYA WORKS
Address: 1-14 Yada-M	finami 5-Chome, Higashi-Ku, Nagoya, 461-8670, Japan
[EN	300-3 : 1996 50011: 1998/A1: 1999] 51000-6-2: 1999]
Additional Information	: · · · · · · · · · · · · · · · · · · ·
Compliance of the instal component of NC system component, it cannot bea	CH Series specifications manual of appendix 2" (BNP-C3016). llation is the responsibility of the installer. Since a a is considered by the European commission to be a complex ar the CE mark. Component of NC system has no inherent nd EMC performance is only to be considered when placed a apparatus.
ncorporation :	
	e must not be put into service until the machinery into corporated has been declared in conformity with the EMC
	MITSUBISHI ELECTRIC CORPORATION NAGOYA WORKS
Issued by : NAGOYA, 28 / January,	, 2002 <u>1. Jozhi da</u> Toshio Yoshida Manager Numerical Control System Department
	BNP-B3896-032•*

MDS-CH-V1-05 to 150 MDS-CH-V2-0505 to 4535

ITSUBISHI ELECTRIC CORPORATION	0
AGOYA WORKS 14 YADA-MINANI 5-CHOME, GASHI-KU, NAGOYA, 461-8670 JAPAN 1008:(052) 721-2111	
	IFACTURERS DECLARATION ng to EMC Directive 89/336/EEC)
anufactured in accordance wit	ing component has been designed and th the following transposed Harmonized European e standards on condition that EMC Installation
omponent Description : Serve ype : MDS	Drive Unit •CH•V1 / V2 Series
anufactured by : MITSUBIS	HI ELECTRIC CORPORATION NAGOYA WORKS
ddress: 1-14 Yada-Minami	5-Chome, Higashi-Ku, Nagoya, 461-8670, Japan
andard(s): EN61800-3:: [EN50011:1 [EN61000-6	1998/A1: 1999]
ditional Information :	
ompliance of the installation i mponent of NC system is cons mponent, it cannot bear the C	ties specifications manual of appendix 2" (BNP-C3016). s the responsibility of the installer. Since a sidered by the European commission to be a complex 2E mark. Component of NC system has no inherent C performance is only to be considered when placed atus.
corporation :	
	not be put into service until the machinery into ted has been declared in conformity with the EMC
	MITSUBISHI ELECTRIC CORPORATION NAGOYA WORKS
ssued by : JAGOYA, 28 / January, 2002	To shi du Toshio Yoshida Manager Numerical Control System Department
	BNP-B3896-033-*

MDS-CH-SP[_]-04 to 750

MITSUBISHI
NAGOYA WORKS 1-14 YADA-MINAMI 5-CHOME.
HIGASHI-KU, NAGOYA, 441-8670 JAPAN Phone: (052) 721-2111
MANUFACTURERS DECLARATION (According to EMC Directive 89/336/EEC)
We hereby state that the following component has been designed and manufactured in accordance with the following transposed Harmonized European Standards, and conform to these standards on condition that EMC Installation Guidelines are met.
Component Description : Spindle Drive Unit Type : MDS-CH-SP[x] Series [x] can be the combination of H, M, X and blank.
Manufactured by : MITSUBISHI ELECTRIC CORPORATION NAGOYA WORKS
Address: 1.14 Yada-Minami 5-Chome, Higashi-Ku, Nagoya, 461-8670, Japan
Standard(s) : EN61800-3 : 1996 [EN50011: 1998/A1: 1999] [EN61000-6-2: 1999]
Additional Information :
Please utilize the "MDS-CH Series specifications manual of appendix 2" (BNP-C3016). Compliance of the installation is the responsibility of the installer. Since a component of NC system is considered by the European commission to be a complex component, it cannot bear the CE mark. Component of NC system has no inherent function for end users, and EMC performance is only to be considered when placed into service as part of an apparatus.
Incorporation :
The products listed above must not be put into service until the machinery into which they have been incorporated has been declared in conformity with the EMC Directive 89/336/EEC.
MITSUBISHI ELECTRIC CORPORATION NAGOYA WORKS
Issued by : NAGOYA, 28 / January, 2002 Toshio Yoshida Manager Numerical Control System Department
BNP-B3896-034-*

Appendix 4. Instruction Manual for Compliance with UL/c-UL Standard

1. UL/c-UL listed products	A4-2
2. Operation surrounding air ambient temperature	A4-3
3. Notes for AC servo/spindle system	
3.1 General Precaution	A4-3
3.2 Installation	A4-3
3.3 Short-circuit ratings	A4-3
3.4 Peripheral devices	
3.5 Field Wiring Reference Table for Input and Output	A4-4
3.5.1 Power Supply Unit (MDS-CH-CV)	
3.5.2 Spindle Drive Unit (MDS-CH-SP)	A4-5
3.5.3 Servo Drive Unit (MDS-CH-V1/V2)	A4-6
3.6 Motor Over Load Protection	A4-6
3.6.1 MDS-CH-SP	A4-7
3.6.2 MDS-CH-V1/V2	A4-7
3.7 Flange of servomotor	A4-7
3.8 Spindle Drive / Motor Combinations	A4-7
4. AC Servo/Spindle System Connection	A4-8

Appendix 4 Instruction Manual for Compliance with UL/c-UL Standard

The instruction of UL/c-UL listed products is described in this manual.

The descriptions of this manual are conditions to meet the UL/c-UL standard for the UL/c-UL listed products. To obtain the best performance, be sure to read this manual carefully before use. To ensure proper use, be sure to read specification manual, connection manual and maintenance manual carefully for each product before use.

1. UL/c-UL listed products

[AC servo/spindle system]

Unit name	Unit part number
Power supply unit Note 1	MDS-CH-CV- [*1]
Servo drive unit	MDS-CH-V1- [*2], MDS-CH-V2- [*3]
Spindle drive unit	MDS-CH-SP [*4]-[*5]
Option unit	MDS-B-PJEX
Battery unit	FCU6-BT[*6], MDS-A-BT-[*7]
Servo motor	HC-H [*10][*11][*12][*13]-[*14][*15]
Spindle Motor	SJ-4- [*20][*21][*22]-[*23][*24][*25][*26]-[*27] SJ-4- [*28][*29][*30][*31][*32][*33][*34]

Suffixes listed below may be attached to the above part numbers at portions marked with [*]. For details regarding specifications, see the specification manuals.

37, 55, 75, 110, 150, 185, 220, 260, 300, 370, 450, 550, 750 [*1] [*2] 10, 20, 35, 45, 70, 90, 110, 150 [*3] 2010, 2020, 3510, 3520, 3535, 4520, 4535 [*4] None, H, M [*5] 22, 37, 55, 75, 110, 150, 185, 220, 260, 300, 370, 450, 550, 750 [*6] 4D1, BOX [*7] 2, 4, 6, 8 [*11] 2,3 [*10] 10, 15, 20, 35, 45, 70, 90, 110 [*12] None, B [*13] S, T [*14] A, E [*15] 42, 51 [*20] V, VL, PMF [*18] None, K [*22] None, S [*23] Two digits decimal two digits [*24] 01~99 [*25] None, F, G, Y, Z [*27] None, S01~S99 [*26] None, M [*28] None, K [*29] Two digits decimal two digits [*31] None, W, Hex [*30] A, B, L, M, N, X [*32] None, D, H, P, Z [*33] None, B, C, F, G, R [*34] None, M

Note 1) AC reactor (CH-AL-75 ~ 750) is included in the power supply unit.

2. Operation surrounding air ambient temperature

The recognized operation ambient temperature of each units are as shown in the table below. The recognized operation ambient temperatures are the same as an original product specification for all of the units.

Classification	Unit name	Operation ambient temperature
	Power supply unit	0 to 55°C
AC Servo/Spindle	Servo, Spindle drive unit	0 to 55°C
System	Option unit, Battery unit	0 to 55°C
	Servo, Spindle motor	0 to 40°C

3. Notes for AC servo/spindle system

3.1 General Precaution

It takes 15 minutes to discharge the bus capacitor. When starting wiring or inspection, shut the power off and wait for more than 15 minutes to avoid a hazard of electrical shock.

3.2 Installation

MDS-CH Series have been approved as the products which have been installed in the electrical enclosure. The minimum enclosure size is based on 150 percent of each MDS-CH Series combination. And also, design the enclosure so that the ambient temperature in the enclosure is 55°C (131°F) or less, refer to the specifications manual.

3.3 Short-circuit ratings

Suitable for use in a circuit capable of delivering, not more than 5kA rms symmetrical amperes.

3.4 Peripheral devices

To comply with UL/c-UL Standard, use the peripheral devices which conform to the corresponding standard.

Applicable power supply unit	Circuit Breaker	Fuse Class K5	Magnetic contactor (AC3)	AC Reactor
MDS-CH-CV-37	NF50 10A	20A	S-N21	CH-AL-7.5K
MDS-CH-CV-55	NF50 20A	40A	S-N21	CH-AL-7.5K
MDS-CH-CV-75	NF50 20A	40A	S-N21	CH-AL-7.5K
MDS-CH-CV-110	NF50 30A	60A	S-N21	CH-AL-11K
MDS-CH-CV-150	NF50 40A	80A	S-N25	CH-AL-18.5K
MDS-CH-CV-185	NF50 50A	100A	S-N25	CH-AL-18.5K
MDS-CH-CV-220	NF100 60A	125A	S-N35	CH-AL-30K
MDS-CH-CV-260	NF100 75A	150A	S-N50	CH-AL-30K
MDS-CH-CV-300	NF100 75A	150A	S-N50	CH-AL-30K
MDS-CH-CV-370	NF100 100A	200A	S-N65	CH-AL-37K
MDS-CH-CV-450	NF150 125A	250A	S-N80	CH-AL-45K
MDS-CH-CV-550	NF150 150A	300A	S-N95	CH-AL-55K
MDS-CH-CV-750	NF225 200A	400A	S-N150	CH-AL-75K

- Circuit Breaker, Fuses, Magnetic Contactor and AC Reactor

- Circuit Breaker for of spindle motor Fan

Select the Circuit Breaker by doubling the spindle motor fan rated.

A rush current that is approximately double the rated current will flow, when the fan is started

<Notice>

- For installation in United States, branch circuit protection must be provided, in accordance with the National Electrical Code and any applicable local codes.
- For installation in Canada, branch circuit protection must be provided, in accordance with the Canadian Electrical Code and any applicable provincial codes.

3.5 Field Wiring Reference Table for Input and Output

Use the UL-approved Round Crimping Terminals to wire the input and output terminals of MDS-CH Series. Crimp the terminals with the crimping tool recommended by the terminal manufacturer. Following described crimping terminals and tools type are examples of Japan Solderless Terminal Mfg. Co., Ltd.

This wire size is each unit maximum rating. The selection method is indicated in each specification manual. (See Manual: No. BNP-C3016 or BNP-A2993-77)

Unit Type		37 to 185	220 to 370	450	550	750
	L+, L-	M6		M6, M10		M10
	Screw Torque [lb in/ N m]	26.6/3.0		26.6/3.0	, 177/20	177/20
Terminal	L11, L21, MC1	M4		M4		
Screw Size	Screw Torque [lb in/ N m]	10.6/1.2		10.6/1.2		
	L1, L2, L3,🖶	M5 M8		M8	3 M10	
Screw Torque [lb in/ N m]		17.7/2.0	53.1/6.0	53.1/6.0	234.3	3/26.5

3.5.1 Power Supply Unit (MDS-CH-CV)

TE2 (L+, L-)

Unit Type	37, 55, 75	110	150	185	220
Wire Size (AWG)	#14/60°C	#10/60°C	#10/60°C	#8/60°C	#6/60°C
/Temp Rating Note 1	#14/75°C	#10/75°C	#10/75°C	#8/75°C	#8/75°C
Crimping Terminals Type	2-6	5.5-6	5.5-6	8-6	14-6
Chimping reminals type	2-0 5.5-0		5.5-0	0-0	8-6
Crimping Tools Type	pe YHT-2210			YPT-	60-21

Unit Type	260	300	370	450,550	750
Wire Size (AWG)	#4/60°C	#2/60°C	#2/60°C	The bus-bar is attache to the product.	
/Temp Rating Note 1	#6/75°C	#4/75°C	#4/75°C		
Crimping Terminals Type	22-6	38-S6	38-S6		
Chimping reminals type	14-6 22-6 22-6				
Crimping Tools Type	YPT-60-21				

TE3 (L11, L21, MC1)

Unit Type	37 to 750
Wire Size (AWG) /Temp Rating ^{Note 1}	#16/ 60°C
/Temp Rating Note 1	#16/ 75°C
Crimping Terminals Type	1.25-4
Crimping Tools Type	YHT-2210

TE1 (L1, L2, L3)

Unit Type	37,55,75	110	150	185	220	
Wire Size (AWG) /Temp Rating ^{Note 1}	#14/60°C	#12/60°C	#10/60°C	#8/60°C	#8/60°C	
/Temp Rating Note 1	#14/75°C	#12/75°C	#10/75°C	#8/75°C	#8/75°C	
Crimping Terminals Type	2-4	5.5-S4	5.5-5	8-5	8-8	
Crimping Tools Type		YHT-2210				
Earth Wire Size (AWG)	#14/60°C	#12/60°C	#10/60°C	#8/60°C	#8/60°C	
	#14/75°C	#12/75°C	#10/75°C	#8/75°C	#8/75°C	

Unit Type	260	300	370	450	550	750
Wire Size (AWG) /Temp Rating ^{Note 1}	#6/60°C	#4/60°C	#2/60°C	#2/60°C		
	#6/75°C	#6/75°C	#4/75°C	#2/75°C	#2/75°C	#1/0 / 75°C
Crimping Terminals Type	14-8	22-8	38-8	38-10		
Chimping reminals type	14-8	14-8	22-8	38-10	38-10	60-10
Crimping Tools Type	YPT-60-21					
	#6/60°C	#4/60°C	#2/60°C	#2/60°C		
Earth Wire Size (AWG)	#6/75°C	#6/75°C	#4/75°C	#2/75°C	#2/75°C	#1/0 /75°C

3.5.2 Spindle Drive Unit (MDS-CH-SP)

Unit Type		15 to 37	55 to 185	220 to 300	370	450 to 750	
	L+, L-	M6			M10		
	Screw Torque	26.6[lbf.in] / 3.0[Nm]			177[lb i	n] / 20[Nm]	
Terminal	L11, L21		M4	M4			
Screw	Screw Torque	10.	6[lbf.in] / 1.2	[Nm]	10.6[lbf.in] /1.2[Nm]		
Size	U, V, W,🕀	M4	M5	M8	M8	M10	
	Screw Torque [lb in/ N m]	10.6/1.2	17.7/2.0	53.1/6.0	53.1/6.0	234.3/26.5	

TE2 (L+, L-)

Wire size depends on the Power Supply Unit (MDS-CH-CV Series).

TE3 (L11, L21) (The clamping terminal is not used for 750.)

Unit Type	15~550	750
Wire Size (AWG)	#16/ 60°C	#16/ 60°C
/Temp Rating Note 1	#16/ 75°C	#16/ 75°C
Crimping Terminals Type	1.25-4	
Crimping Tools Type	YHT-2210	

TE1 (U, V, W)

Unit Type	15 to 37	55	110	150	185	220
Wire Size (AWG) /Temp Rating ^{Note 1}	#14/60°C		#12/60°C	#10/60°C	#8/60°C	
/Temp Rating Note 1	#14/75°C		#12/75°C	#10/75°C	#8/75°C	
Crimping Terminals Type	R2-4		5.5-S5	5.5-5	8-5	8-8
Chimping reminals type	R2-4		5.5-S5	5.5-5	8-5	8-8
Crimping Tools Type		YHT-2210				YPT-60-21
Earth Wire Size (AWG)	#14/60°C	#14/60°C	#12/60°C	#10/60°C	#8/60°C	#8/60°C
Earth Wile Size (AVVG)	#14/75°C	#14/75°C	#12/75°C	#10/75°C	#8/75°C	#8/75°C

Unit Type	260	300	370	450	550	750
Wire Size (AWG) /Temp Rating ^{Note 1}	#6/60°C	#4/60°C	#2/60°C	#2/60°C		
/Temp Rating Note 1	#8/75°C	#6/75°C	#4/75°C	#2/75°C	#2/75°C	#1/0/75°C
Crimping Terminals	R14-8	22-8	38-8	38-10		
Туре	R8-8	14-8	22-8	38-10	38-10	60-10
Tools Type	YPT-60-21					
Earth Wire Size (AWC)	#6/60°C	#4/60°C	#2/60°C	#2/60°C		
Earth Wire Size (AWG)	#8/75°C	#6/75°C	#4/75°C	#2/75°C	#2/75°C	#1/0/75°C

Note 1: 60°C: Polyvinyl chloride insulated wires (IV)

75°C: Grade heat-resistant polyvinyl chloride insulated wires (HIV).

Use copper wire only.

Above listed wire are for use in the electric cabinet on machine or equipment.

3.5.3 Servo Drive Unit (MDS-CH-V1/V2)

Axis		1-axis (V1)			2-axes (V2)		
Unit Type		10 to 35	45 to 90	110,150	2010,2020	3510 to 4535	
L+, L-			M6		M6		
	Screw Torque	26.6	[lbf.in] / 3.0	[Nm]	26.6[lb in] / 3.0[Nm]		
Terminal	L11, L21	M4			M4		
Screw	Screw Torque	10.6[lb in] / 1.2[Nm]			10.6[lb in] / 1.2[Nm]		
Size	U, V, W,🖶	M4	M5	M8	M4	M5	
	Screw Torque	10.6	17.7	53.1	10.6	17.7	
	[lb in/ N m]	/1.2	/2.0	/6.0	/1.2	/2.0	

TE2 (L+, L-)

Wire size depends on the Power Supply Unit (MDS-CH-CV Series).

TE3 (L11, L21)

Unit Type	10 to 15
Wire Size (AWG) /Temp Rating ^{Note 1}	#16/ 60°C
/Temp Rating Note 1	#16/ 75°C
Crimping Terminals Type	1.25-4
Crimping Tools Type	YHT-2210

TE1 (U, V, W)

Unit Type	10	20	35	45	70	90	110	150
Wire Size (AWG) /Temp Rating ^{Note 1}	#	#14/60°C		#14/60°C	#12/60°C		#12/60°C	#10/60°C
/Temp Rating Note 1	#	±14/75°	С	#14/75°C	#12/75°C	#12/75°C	#12/75°C	#10/75°C
Crimping Terminals Type	2-4		2-4		5-5-5		5-5-8	8-8
Crimping Tools Type		YHT-2210						
Earth wire Size (AWG)	#	±14/60°	°C	#14/60°C	#12/	60°C	#12/60°C	#10/60°C
Earth wife Size (AWG)	#	±14/75°	°C	#14/75°C	#12/75°C	#12/75°C	#12/75°C	#10/75°C

3.6 Motor Over Load Protection

Spindle drive unit MDS-CH-SP and V1/V2 series have each solid-state motor over load protection. When adjusting the level of motor over load, set the parameter as follows.

3.6.1 MDS-CH-SP

Parameter No.	Parameter Abbr.	Parameter Name	Setting Procedure	Standard Setting Value	Setting Range
SP063	OLT	Overload Time constant	Set the time constant for overload detection. (Unit: 1 second.)	60s	0 to 1000s
SP064	OLL	Overload Detection level	Set the overload current detection level with a percentage (%) of the rating.	110%	1 to 200%

3.6.2 MDS-CH-V1/V2

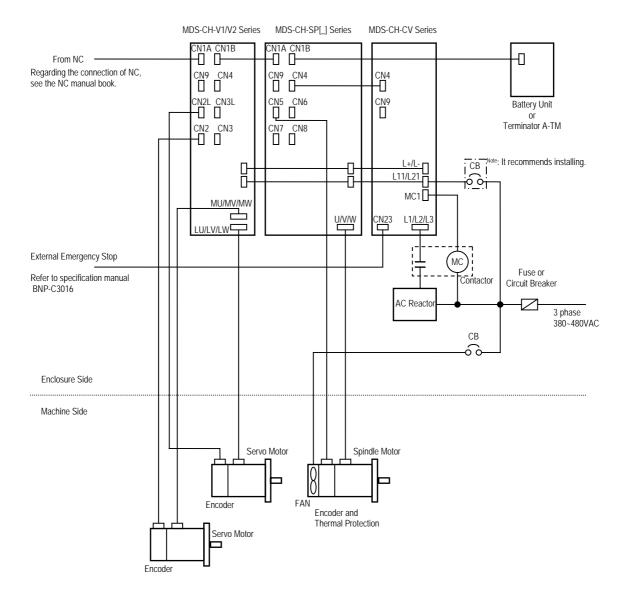
Parameter No.	Parameter Abbr.	Parameter Name	Setting Procedure	Standard Setting Value	Setting Range
SV021	OLT	Overload Time constant	Set the time constant for overload detection. (Unit: 1 second.)	60s	1 to 300s
SV022	OLL	Overload Detection level	Set the overload current detection level with a percentage (%) of the stall rating.	150%	1 to 500%

3.7 Flange of servomotor

Mount the servomotor on a flange which has the following size or produces an equivalent or higher heat dissipation effect:

Elango sizo (mm)	Servo Motor
Flange size (mm)	HC-H
250×250×12	1.0 to 1.5kW
300×300×20	2.0 to 7.0kW
800×800×35	9.0 to 11.0kW

3.8 Spindle Drive / Motor Combinations

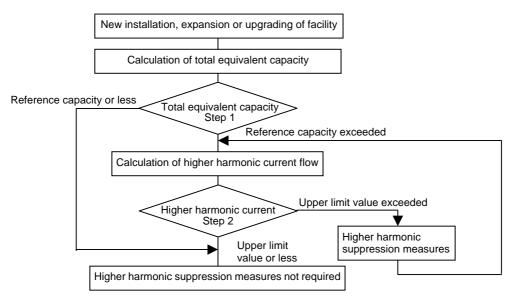

Following combinations are the Standard combinations

Drive Unit Note: 2	Rating Output (kW) of Applicable Spindle Motor	
Drive Offic	SJ-4 Series Note: 1	
MDS-CH-SP[_]-15	1.5	
MDS-CH-SP[_]-22	2.2	
MDS-CH-SP[_]-37	3.7	
MDS-CH-SP[_]-55	5.5	
MSD-CH-SP[_]-75	5.5, 7.5	
MDS-CH-SP[_]-110	5.5, 7.5, 11	
MDS-CH-SP[_]-150	7.5, 11, 15	
MDS-CH-SP[_]-185	11, 15, 18.5	
MDS-CH-SP[_]-220	11, 15, 18.5, 22	
MDS-CH-SP[_]-260	11, 15, 18.5, 22, 26	
MDS-CH-SP[_]-300	15, 18.5, 22, 26, 30	
MDS-CH-SP[_]-370	15, 18.5, 22, 26, 30, 37	
MDS-CH-SP[_]-450	22, 26, 30, 37, 45	
MDS-CH-SP[_]-550	30, 37, 45, 55	
MDS-CH-SP[_]-750	45, 55, 75	

Note 1: Applicable unit depends on the range of power constant of motor. Inquire of Mitsubishi about the detail of the combinations.

Note 2: [_] can be H, M or blank.

4. AC Servo/Spindle System Connection


Appendix 5. Higher Harmonic Suppression Measure Guidelines

1.	Calculating the equivalent capacity of the higher harmonic generator	A5-3
	1.1 Calculating the total equivalent capacity (Step 1)	A5-3
	1.2 Calculating the higher harmonic current flow (Step 2)	A5-4

Appendix 5 Higher Harmonic Suppression Measure Guidelines

These guidelines apply to users for which the 6-pulse equivalent capacity total of the installed higher harmonic generator exceeds the reference in the following table. (Note that household appliances and general-purpose products having a rated current of 20A/phase or less connected to a 300V or less commercial power supply are excluded from the generators.)

Use the following flow chart to confirm whether the total exceeds the reference.

Higher Harmonic Suppression Guidelines were set in September 1994 by the Ministry of International Trade and Industry's Agency of Natural Resources and Energy.

- Higher Harmonic Suppression Measure Guidelines for Household Appliances and General-purpose Products
- Higher Harmonic Suppression Measure Guidelines for Consumers Receiving High Voltage or Special High Voltage Power

1. Calculating the equivalent capacity of the higher harmonic generator

As a principle, the <Specific Consumer Guidelines> must be met by the consumer.

1.1 Calculating the total equivalent capacity (Step 1)

Calculate the total equivalent capacity with the following expression.

Total equivalent circuit: $Po = \Sigma \cdot Ki \cdot Pi$

- Ki : Conversion coefficient (Refer to following table)
- Pi : Rated input capacity of each device

Unit type	Rated input capacity Pi [kVA]	Unit type	Rated input capacity Pi [kVA]	Unit type	Rated input capacity Pi [kVA]
MDS-A/B/C1/CH-SP-37	4.61	MDS-A/B/C1-V1-03	0.6	MDS-A/B/C1-V2-0503	1.6
MDS-A/B/C1/CH-SP-55	6.77	MDS-A/B/C1-V1-05	1.0	MDS-A/B/C1-V2-0505	2.0
MDS-A/B/C1/CH-SP-75	9.07	MDS-A/B/C1/CH-V1-10	1.6	MDS-B/C1-V2-1003	2.2
MDS-A/B/C1/CH-SP-110	13.1	MDS-A/B/C1/CH-V1-20	2.7	MDS-A/B/C1-V2-1005	2.6
MDS-A/B/C1/CH-SP-150	17.6	MDS-A/B/C1/CH-V1-35	4.7	MDS-A/B/C1-V2-1010	3.2
MDS-A/B/C1/CH-SP-185	21.8	MDS-A/B/C1/CH-V1-45	5.9	MDS-A/B/C1-V2-2010	4.3
MDS-A/B/C1/CH-SP-220	25.9	MDS-A/B/C1/CH-V1-70	9.0	MDS-A/B/C1-V2-2020	5.4
MDS-A/B/C1/CH-SP-260	30.0	MDS-A/B/C1/CH-V1-90	11.5	MDS-A/B/C1-V2-3510	6.3
MDS-A/B/C1/CH-SP-300	34.7	MDS-A/B/C1/CH-V1-110	13.1	MDS-A/B/C1-V2-3520	7.4
MDS-B/CH-SP-370	42.8	MDS-A/B/C1/CH-V1-150	17.6	MDS-A/B/C1-V2-3535	9.4
MDS-B/CH-SP-450	52.1	MDS-CH-V1-185	21.8	MDS-A/B/C1-V2-4520	8.6
MDS-B/CH-SP-550	63.7			MDS-A/B/C1-V2-4535	10.6
MDS-CH-SP-750	86.8			MDS-C1-V2-4545	11.8
				MDS-C1-V2-7070	18.0

(Table 1)	Rated	capacity	of	each	unit
-----------	-------	----------	----	------	------

SP: Includes SPA, SPH, SPM and SPX V1: Includes V14

V2: Includes V24

Caution) The rated capacity Pi above, is the value used to calculate whether the product corresponds to the higher harmonic guidelines. Thus, the value will differ from the actual power facility's capacity. (The power supply unit is not included.)

Name	Model	Circuit class	Circuit type	Conversion coefficient Ki
AC servo drive unit	MDS-A-SVJ MDS-B-SVJ2 MR-J2-CT Series	3	3-phase bridge (with smoothing capacitor) Without reactor	K31=3.4
	MDS-A-V1/V2 MDS-B-V1/V14/V2/V24 MDS-C1-V1/V2 Series	3	3-phase bridge (with smoothing capacitor) With AC reactor ^{Note 1}	K32=1.8
	MDS-CH-V1/V2 Series	3	3-phase bridge (with smoothing capacitor) With AC reactor Note 1	K32=1.8
AC spindle drive unit	MDS-A-SPJ MDS-B-SPJ2 Series	3	3-phase bridge (with smoothing capacitor) Without reactor	K31=3.4
	MDS-A-SP/SPA MDS-B-SP/SPA/SPH/SPM/SPX MDS-C1-SP/SPH/SPM/SPX Series	3	3-phase bridge (with smoothing capacitor) With AC reactor Note 1	K32=1.8
	MDS-CH-SP Series	3	3-phase bridge (with smoothing capacitor) With AC reactor Note 1	K32=1.8

Note 1: This applies when an AC reactor is installed on the power supply unit.

(Table 3) Limit values for total equivalent capacity

Incoming voltage	Total of 6-pulse equivalent capacity
6.6kV	50kVA
22/33kV	300kVA
66kV	2,000kVA

If the total equivalent capacity Po exceeds the limit value given in (Table 3), proceed to "1.2 Calculating the higher harmonic current flow" below.

Measures are not required if the value is not exceeded.

— (Example 1) –

When using MDS-CH-SP-220/MDS-CH-CV-220 for incoming power voltage

Po = 1.8 × 25.9 = 46.6kVA

Following (Table 3), the limit value 50kVA for 6.6kV is not exceeded, so higher harmonic measures are not required. When two sets are used, the value will be 93.2kVA, and the current must be confirmed with Step 2.

1.2 Calculating the higher harmonic current flow (Step 2)

To calculate the higher harmonic current flow, calculate the rated current for the incoming power voltage conversion.

Rated current for incoming power voltage conversion (mA) = a • Pi

(Table 4)

Incoming power voltage conversion coefficient a

(Table 5) Upper limit of high	her harmonic current f	low (mA/kW)
(100100	, oppor mine or mgr		

conversion c	oefficient a									
Incoming power voltage	Coefficient a	Conversion coefficient	5th- order	7th- order	11th- order	13th- order	17th- order	19th- order	23rd- order	25th- order
6.6kV	87.5	6.6kV	3.5	2.5	1.6	1.3	1.0	0.9	0.76	0.70
22 kV	26.2	22kV	1.8	1.3	0.82	0.69	0.53	0.47	0.39	0.36
33 kV	17.5	33kV	1.2	0.86	0.55	0.46	0.35	0.32	0.26	0.24
66 kV	8.75	66kV	0.59	0.42	0.27	0.23	0.17	0.16	0.13	0.12
77 kV	7.5	77kV	0.50	0.36	0.23	0.19	0.15	0.13	0.11	0.10

Obtain the upper limit of the higher harmonic current flow (judgment value) for each order. (The contracted electricity must be known for this.)

Upper limit of higher harmonic current flow (mA) = Contracted electricity, flow upper limit value

Flow upper limit value : Insert a value from Table 5 according to the higher harmonic order to be calculated.

Obtain the higher harmonic current flow for each order using the following expression.

Higher harmonic current flow (mA) = (a • Pi), Device's maximum operation rate, target order

Device's maximum operation rate : The user must set the operation rate. Target order : Insert a value from Table 6 according

Insert a value from Table 6 according to the higher harmonic order to be calculated.

	(10010	o, ingito		ine earre	int genie	anonna		
Conversion coefficient	5th- order	7th- order	11th- order	13th- order	17th- order	19th- order	23rd- order	25th- order
K32 = 1.8	38.0	14.5	7.4	3.4	3.2	1.9	1.7	1.3
K31 = 3.4	65.0	41.0	8.5	7.7	4.3	3.1	2.6	1.8

(Table 6) Higher harmonic current generation rate %

Values when basic wave current is 100%.

Check whether the calculated results exceed the limit value.

If the limit value for the higher harmonic current flow is exceeded, consider the higher harmonic measures shown below.

Examples of higher harmonic measures

Item	Details
Power-factor improving capacitor	Higher harmonics are suppressed by adding a leading capacitor for improving the power factor.
Installation of AC line filter	A reactor and capacitor are combined to reduce the impedance for specific frequencies.

stry ails of higher harmonic generating device appositive devices appacity devices Pi (kVA) devices Pi (kVA) No. Ki [Ki [Ki [Ki] Ki] No. Ki [Ki] Ki [Ki] Fi] No. Ki [Ki] Fi]	Industry		Incoming			Contracted			Appli	cation	NO.		
alls of higher harmonic generating device alls of higher harmonic generating devices Rated cutvalent of the form o			power voltag	е		electricity		kγ	Date	of acce	eptance		
Rated atv. of same for appacity devices Total (type class- calculation equivalent incoming equivalent incoming string) Rated current bevice's maximum for incoming equivalent equivalent incoming equivalent equi	ep 1: Details of hi	gher harmonic ç	jenerating dev	/ice		Step 2:	: Calculation	n of hiç	lher ha	rmonic	currer	nt flow r	ate
apacity devices provided and the filter of the filteroof of the filteroof of the filteroof of the filteroof of the	Higher harmonic generating device Rated	Otv. of Total	Circuit	6-pulse	6-pulse		Device's	Hig	her ha	monic	curren	it flow p	oer ord
6-pulse equivalent capacity total P.	Maker Type (kVA)		sification No.	carculation coefficient Ki	equivalent capacity [Ki×Pi](kVA)		operation rate (%)		7th- 1- order or	Ith- 13 der or	th- 17th- der order	19th- er order	23rd- order
6-pulse equivalent capacity total P.											_		
6-pulse equivalent capacity total P.													
6-pulse equivalent capacity total P.													
6-pulse equivalent capacity total 6-pulse equivalent capacity total 1													
6-pulse equivalent capacity total P.													
6-pulse equivalent capacity total													
6-pulse equivalent capacity total P.													
6-pulse equivalent capacity total													
6-pulse equivalent capacity total													
6-pulse equivalent capacity total P.													
6-pulse equivalent capacity total P.													
6-pulse equivalent capacity total P.													
6-pulse equivalent capacity total P.													
6-pulse equivalent capacity total P.													
6-pulse equivalent capacity total P.													
	<pre><pre></pre></pre>	6-pulse eq	luivalent capac			Total							
Necessity of measures)				Necessit	y of measures							
Indicate the details of the higher harmonic generating device. Higher harmonic current flow upper limit value (Higher harmonic current flow upper limit value (Higher harmonic current flow upper limit per Refer to the reference and indicate the circuit type classification No., etc. If the device's circuit type classification No. is 10 complete the annication shown in contracted KW x contracted electricity)	te higher harmonic and indicate the circ of classification No.	generating devic uit type classific; is 10 complete	ie. ation No., etc. the application	4	Higher harn contracted I	nonic current flow kW x contracted e	upper limit v electricity)	alue (H	ligher h	armoni	c curren	it flow up	oper lin
Order 5th- 7th- 11th- order order order order	mina nower) 300k	. 13 10, 2011/proto	Composed of the second se			Orde		5th-7 order o	th- 11 order or	th- 13 der ore	th- 17th der orde	13th- 17th- 19th- order order order	23rd- 25th- order order
(66kV or higher incoming power), proceed to Step 2. (Step 2 does not need to be current upper limit value (mA) (mA)	(66kV or higher incoming power), proceed completed in all other cases.)	to Step 2. (Step	2 does not nee	d to be		Current upper (mA)	limit value						

1.3 Higher harmonic current flow calculation form

A higher harmonic current flow calculation form is shown below for reference.

Appendix 6. Transportation Restrictions for Lithium Batteries

Appendix 6-1 Transportation restrictions for lithium batteries	A6-2
Appendix 6-1-1 Restriction for packing	A6-2
1. Target products	
2. Handling by user	
3. Reference	
Appendix 6-1-2 Issuing domestic law of the United State for primary lithium battery transpo	rtation . A6-5
1. Outline of regulation	A6-5
2. Target products	A6-5
3. Handling by user	
4. Reference	A6-5

Appendix 6-1 Transportation restrictions for lithium batteries

Appendix 6-1-1 Restriction for packing

The United Nations Dangerous Goods Regulations "Article 12" became effective from 2003. When transporting lithium batteries with means subject to the UN Regulations, such as by air transport, measures corresponding to the Regulations must be taken. The UN Regulations classify the batteries as dangerous goods (Class 9) or not dangerous goods according to the lithium content.

To ensure safety during transportation, lithium batteries (battery unit) directly exported from Mitsubishi are packaged in a dedicated container (UN package) for which safety has been confirmed. When the customer is transporting these products with means subject to the UN Regulations, such as air transport, the shipper must follow the details explained in section 2.

1. Target products

The following Mitsubishi NC products use lithium batteries. The UN Regulations classify the batteries as dangerous goods (Class 9) or not dangerous goods according to the lithium content. (Refer to the battery unit's rating nameplate or section "4-1-2 Battery option" for details on the lithium content.) If the batteries subjected to hazardous materials are incorporated in a device and shipped, a dedicated packaging (UN packaging) is not required. However, the item must be packed and shipped following the Packing Instruction 912 specified in the IATA DGR (Dangerous Goods Regulation) book.

Also, all lithium battery products incorporated in a machinery or device must be fixed securely in accordance with the Packing Instruction 900 and shipped with protection in a way as to prevent damage or short-circuits.

Mitsubishi type	Battery type	Lithium metal content	Battery manufacturer	Battery class
MDS-A-BT-4	ER6-B4-11	2.6g		
MDS-A-BT-6	ER6-B6-11	3.9g		
MDS-A-BT-8	ER6-B8-11	5.2g	Toshiba Battery	Battery
FCU6-BT4-D1	Combination of ER6-B4D-11 and ER6	2.6g+0.65g		
(built-in battery)	CR23500SE-CJ5	1.52g	Sanyo Battery	Battery cell

(a) Products requiring dedicated packaging (Materials falling under Class 9)

(b) Products not requiring dedicated packaging (Materials not falling under Class 9)

Mitsubishi type	Battery type	Lithium metal content	Battery manufacturer	Battery class
MDS-A-BT-2	ER6-B2-12	1.3g		Battery
FCU6-BTBOX	2CR5	1.96g		Dattery
(built-in battery)	CR2032	0.067g	Toshiba Battery	
(built-in battery)	CR2450	0.173g	Toshiba Dattery	
(built-in battery)	ER6, ER6V	0.7g		Battery cell
MR-BAT	MR-BAT	0.48g		Dattory com
Q6BAT	Q6BAT	0.49g	Mitsubishi Electric Battery	

Note 1) Dedicated packaging is required if the shipment exceeds 12 batteries/24 battery cells. Package the batteries so that this limit is not exceeded.

Note 2) The battery units labeled as "FCUA-" instead of "MDS-A-" also use the same battery.

Note 3) Always use the cell battery (MR-BAT) in combination with the dedicated case (MDS-BTCASE). Maximum 8 (either 2, 4, 6 or 8) cell batteries can be installed to the dedicated case (MDS-BTCASE).

Example) Rating nameplate for battery units

	N <i>4</i> ¹ 4 - 1 + 1 + 4
TYPE MDS-A-BT-6	——— Mitsubishi type
LITHIUM BATTERIES: ER6 x6 Class 9	Safety class
(Battery Type: ER6-B6-11) Mercury Content: Less than 1 ppm	Battery manufacturer type
Lithium Metal Content: 3.9 g	Lithium metal content
INTSUBISHI ELECTRIC CORPORATION JAPAN	

2. Handling by user

The following technical opinion is solely Mitsubishi's opinion. The shipper must confirm the latest IATA Dangerous Goods Regulations, IMDG Codes and laws and orders of the corresponding export country. These should be checked by the company commissioned for the actual transportation.

```
IATA : International Air Transport Association
```

IMDG Code : A uniform international code for the transport of dangerous goods by seas determined by IMO (International Maritime Organization).

(a) When shipping isolated lithium battery products (Packing Instruction 903)

1) Reshipping in Mitsubishi UN packaging

The isolated battery's safety test and packaging specifications comply with the UN Regulations (Packing Instruction 903). Thus, the user only needs to add the following details before shipping. (Consult with the shipping company for details.)

i) Indication of container usage mark on exterior box (Label with following details recorded.)

- Proper shipping name (Lithium batteries)
- UN NO. (UN3090 for isolated battery, UN3091 for battery incorporated in a device or included)
- Shipper and consignee's address and name

SHIPPER :	Example	e of complet	ting form CONSIGNEE:
Shipper in	formation		Consignee information
PROPER SHIPPING NAME	LITHIUM BATTER	IES	
UN NO.: UN3090 Packing group: 11	CLASS: 9 PACKING (NST.:	SUBSIDIARY 903	RISK

ii) Preparation of shipping documents (Declaration of dangerous goods)

2) When packaged by user

The user must follow UN Regulations when packing, preparing for shipping and preparing the indications, etc.

i) Packing a lithium battery falling under Class 9

- Consult with The Ship Equipment Inspection Society of Japan for details on packaging.
- Prepare for shipping as explained in "1) Reshipping in Mitsubishi UN packaging".

The Ship Equipment Inspection Society of Japan Headquarters Telephone: 03-3261-6611 Fax: 03-3261-6979

ii) Packing a lithium battery not falling under Class 9

- Cells and batteries are separated so as to prevent short circuits and are stored in a strong outer packaging. (12 or less batteries, 24 or less cells.)
- Certificates or test results showing compliance to battery safety test. The safety test results have been obtained from the battery manufacturer. (Consult with Mitsubishi when the safety test results are required.)
- Prepare for shipping as explained in "1) Reshipping in Mitsubishi UN packaging".

(b) When shipping lithium batteries upon incorporating in a machinery or device (Packing Instruction 900)

Pack and prepare for shipping the item in accordance with the Packing Instruction 900 specified in the IATA DGR (Dangerous Goods Regulation) book. (Securely fix the batteries that comply with the UN Manual of Tests and Criteria to a machinery or device, and protect in a way as to prevent damage or short-circuit.)

Note that all the lithium batteries provided by Mitsubishi have cleared the UN recommended safety test; fixing the battery units or cable wirings securely to the machinery or device will be the user's responsibility.

Check with your shipping company for details on packing and transportation.

(c) When shipping a device with lithium batteries incorporated (Packing Instruction 912)

A device incorporating lithium batteries does not require a dedicated packaging (UN packaging). However, the item must be packed, prepared for shipping and labeled following the Packing Instruction 912 specified in the IATA DGR (Dangerous Goods Regulation) book. Check with your shipping company for details on packing and transportation.

The outline of the Packing Instruction 912 is as follows:

- All the items in the packing instructions for shipping the isolated lithium battery products (Packing Instruction 903) must be satisfied, except for the items related to container, short-circuit, and fixation.
- A device incorporating lithium batteries has to be stored in a strong water-proofed outer packaging.
- To prevent an accidental movement during shipment, securely store the item in an outer packaging.
- Lithium content per device should be not more than 12g for cell and 500g for battery.
- Lithium battery mass per device should be not more than 5kg.

3. Reference

Refer to the following materials for details on the regulations and responses.

Guidelines regarding transportation of lithium batteries and lithium ion batteries (Edition 2) Battery Association of Japan

Appendix 6-1-2 Issuing domestic law of the United State for primary lithium battery transportation

Federal Aviation Administration (FAA) and Research and Special Programs Administration (RSPA) announced an additional regulation (interim final rule) for the primary lithium batteries transportation restrictions item in "Federal Register" on Dec.15 2004. This regulation became effective from Dec.29, 2004.

This law is a domestic law of the United States, however if also applies to the domestic flight and international flight departing from or arriving in the United States. Therefore, when transporting lithium batteries to the United State, or within the United State, the shipper must take measures required to transport lithium batteries.

Refer to the Federal Register and the code of Federal Regulation ("(a), (b) and (c) in the item 4." described below) for details.

1. Outline of regulation

(a) Transporting primary lithium battery by passenger aircraft is forbidden.

• Excluding primary lithium battery for personal use in a carry-on or checked luggage (Lithium metal content should be not more than 5g for cell and 25g for battery. For details on the lithium metal content, refer to "(a) and (b) in the section 4-1-1 item 1.".)

(b) When transporting primary lithium battery by cargo aircraft, indicate that transportation by passenger aircraft is forbidden on the exterior box.

2. Target products

All NC products for which the lithium batteries are used are subject to the regulation. (Refer to the table "(a) and (b) in the section 4-1-1 item 1.".)

3. Handling by user

The "1. Outline of regulation" described above is solely Mitsubishi's opinion. The shipper must confirm orders of "(a), (b) and (c) in the item 4." described below for transportation method corresponding the regulation. Actually, these should be checked by the company commissioned for the actual lithium buttery transportation.

(a) Indication of exterior box

When transporting primary lithium battery by cargo aircraft, indicate that transportation by passenger aircraft is forbidden on the exterior box.

Display example

PRIMARY LITHIUM BATTERIES

FORBIDDEN FOR TRANSPORT ABOARD PASSENGER AIRCRAFT.

- The character color must be displayed with contrast. (black characters against white background, black characters against yellow background, etc.)
- The height (size) of characters to be displayed is prescribed depending on the packaging weight. When the total weight is over 30kg: at least 12mm
 When the total weight is less than 30kg: at least 6mm

4. Reference

- (a) Federal Register (Docket No. RSPA-2004-19884 (HM-224E)) PDF format http://www.regulations.gov/fredpdfs/05-11765.pdf
- (b) 49CFR (Code of Federal Regulation, Title49) (173.185 Lithium batteries and cells.) http://www.access.gpo.gov/nara/cfr/waisidx_00/49cfr173_00.html

(c) DOT regulation body (Department of Transportation)

http://hazmat.dot.gov/regs/rules/final/69fr/docs/69fr-75207.pdf

Appendix 7. Compliance with China Compulsory Product Certification (CCC Certification) System

Appendix 7-1	Outline of China Compulsory Product Certification System	A7-2
Appendix 7-2	First Catalogue of Products subject to Compulsory Product Certification	A7-2
Appendix 7-3	Precautions for Shipping Products	A7-3
	Application for Exemption	
Appendix 7-5	Mitsubishi NC Product Subject to/Not Subject to CCC Certification	A7-5

Appendix 7-1 Outline of China Compulsory Product Certification System

The Safety Certification enforced in China included the "CCIB Certification (certification system based on the "Law of the People's Republic of China on Import and Export Commodity Inspection" and "Regulations on Implementation of the Import Commodities Subject to the Safety and Quality Licensing System" enforced by the State Administration of Import and Export Commodity Inspection (SACI) on import/export commodities, and the "CCEE Certification" (certification system based on "Product Quality Certification Management Ordinance" set forth by the China Commission for Conformity Certification of Electrical Equipment (CCEE) on commodities distributed through China.

CCIB Certification and CCEE Certification were merged when China joined WTO (November 2001), and were replaced by the "China Compulsory Product Certification" (hereinafter, CCC Certification) monitored by the State General Administration of Quality Supervision, Inspection and Quarantine (AQSIQ) of the People's Republic of China.

The CCC Certification system was partially enforced from May 2002, and was fully enforced from May 2003. Target commodities which do not have CCC Certification cannot be imported to China or sold in China. (Indication of the CCIB or CCEE mark has been eliminated from May 1, 2003.)

CCIB : China Commodity Inspection Bureau

CCEE: China Commission for Conformity Certification of Electrical Equipment

CCC : China Compulsory Certification

Appendix 7-2 First Catalogue of Products subject to Compulsory Product Certification

The First Catalogue of Products subject to Compulsory Product Certification, covering 132 items (19 categories) based on the CCIB products (104 items), CCEE products (107 items) and CEMC products (Compulsory EMC Certification products) was designated on December 3, 2001.

lass	Product catalogue		Class	Product catalogue	
1	Electric Wires and Cables (5 items)		5	Electric tools	(16 items)
2	witches, Installation protective and connection devices (6 items)		6	Welding machines	(15 items)
3	Low-voltage Electrical Apparatus (9 items)	Compulsory Certification Regulations	7	Household and similar electrical appliances	(18 items)
	Circuit-breakers (including RCCB, RCBO, MCB)		8	Audio and video equipment	(16 items)
	Low-voltage switchers (disconnectors, switch-disconnectors, and fuse-combination devices. Other protective equipment for circuits (Current limiting devices, circuits protective devices, over current protective devices, thermal protectors, over load relays, low-voltage electromechanical contactors and motor starters)		9	Information technology equipment	(12 items)
			10	Lighting apparatus	(2 items)
			11	Telecommunication terminal equipment	(9 items)
			12	Motor vehicles and Safety Parts	(4 items)
			13	Tyres	(4 items)
			14	Safety Glasses	(3 items)
			15	Agricultural Machinery	(1 item)
	Relays (36V < Voltage ≤ 1000V)	CNCA -01C -011: 2001 (Switch and Control	16	Latex Products	(1 item)
	Other switches (Switches for appliances, vacuum switches,	Equipment) CNCA -01C -012: 2001 (Installation Protective Equipment)	17	Medical Devices	(7 items)
			18	Fire Fighting Equipment	(3 items)
	pressure switches, proximity switches, foot switches, thermal sensitive switches, hydraulic switches, push-button switches, position limit switches, micro-gap switches, temperature sensitive switches, travel switches, change-over switches, auto-change-over switches, knife switches)		19	Detectors for Intruder Alarm Systems	(1 item)
	Other devices (contactors, motor starters, indicator lights, auxiliary contact assemblies, master controllers, A.C. Semiconductor motor controllers and starters)				
	Earth leakage protectors				
	Fuses				
	Low-voltage switchgear CNCA-01C-010:2001 (Low-voltage switchgear)				
4 Note)	Small power motors (1 item)	CNCA-01C-013:2001 (Small power motors)			

(Note) When the servomotor or the spindle motor of which output is 1.1kW or less (at 1500 r/min) is used, NC could have been considered as a small power motor. However, CQC (China Quality Certification Center) judged it is not.

Appendix 7-3 Precautions for Shipping Products

As indicated in Appendix 7-2, NC products are not included in the First Catalogue of Products subject to Compulsory Product Certification. However, the Customs Officer in China may judge that the product is subject to CCC Certification just based on the HS Code.^{Note 2}

NC cannot be imported if its HS code is used for the product subject to CCC Certification. <u>Thus, the</u> <u>importer must apply for a "Certification of Exemption" with CNCA.</u>^{Note 3} Refer to Appendix 7-4. Application for Exemption for details on applying for an exemption.

- (Note 1) The First Catalogue of Products subject to Compulsory Product Certification (Target HS Codes) can be confirmed at <u>http://www.cqc.com.cn/Center/html/60gonggao.htm.</u>
- (Note 2) HS Code: Internationally unified code (up to 6 digits) assigned to each product and used for customs.
- (Note 3) CNCA: Certification and Accreditation Administration of People's Republic of China (Management and monitoring of certification duties)

Appendix 7-4 Application for Exemption

Following "Announcement 8" issued by the Certification and Accreditation Administration of the People's Republic of China (CNCA) in May 2002, a range of products for which application for CCC Certification is not required or which are exempt from CCC marking has been approved for special circumstances in production, export and management activities.

An application must be submitted together with materials which prove that the corresponding product complies with the exemption conditions. Upon approval, a "Certification of Exemption" shall be issued.

<Range of products for which application is exempt>

Range of products not requiring application	 (a) Items brought into China for the personal use by the foreign embassies, consulates, business agencies and visitors (Excluding products purchased from Service Company for Exporters) (b) Products presented on a government-to-government basis, presents (c) Exhibition products (products not for sale) (d) Special purpose products (e.g., for military use) Products not requiring application for CCC Certification are not required to be CCC marked or certified.
Range of products for which application is exempted	 (e) Products imported or manufactured for research and development and testing purposes (f) Products shipped into China for integration into other equipment destined for 100% re-export to a destination outside of China (g) Products for 100% export according to a foreign trade contract (Excluding when selling partially in China or re-importing into China for sales) (h) Components used for the evaluation of an imported product line (i) The products imported or manufactured for the service (service and repairs) to the end-user. Or the spare parts for the service (service and repairs) of discontinued products. (j) Products imported or manufactured for research and development, testing or measurements (k) Other special situations

The following documents must be prepared to apply for an exemption of the "Import Commodity Safety and Quality License" and "CCC Certification".

- (1) Formal Application
 - (a) Relevant introduction and description of the company.
 - (b) The characteristics of the products to be exempted.
 - (c) The reason for exemption and its evidence (ex. customs handbook).
 - (d) The name, trademark, quantity, model and specification of the products to be exempted. (Attach a detail listing of these items for a large quantity of products. When importing materials for processing and repair equipments, submit a list of the importing materials for each month and repair equipments.)
 - (e) Guarantee for the safety of the products; self-declaration to be responsible for the safety during the manufacturing and use.
 - (f) To be responsible for the authenticity and legitimacy of the submitted documents. Commitment to assist CNCA to investigate on the authenticity of the documents (When CNCA finds it necessary to investigate on the authenticity of the documents.)
- (2) Business license of the company (Copy)
- (3) Product compliance declaration Indicate which standard's requirements the products comply with or submit a test report (Copy is acceptable. The report can be prepared in a manufacturer's laboratory either at home or overseas.)
- (4) Import license (Only if an import license is needed for this product. Copy is acceptable.)
- (5) Quota certificate (Only if a quota certificate is needed for this product. Copy is acceptable.)
- (6) Commercial contract (Copy is acceptable.)
- (7) If one of item (4), (5) or (6) cannot be provided, alternative documents, such as bill of lading, the invoice, and other evidential documents must be submitted.

Appendix 7-5 Mitsubishi NC Product Subject to/Not Subject to CCC Certification

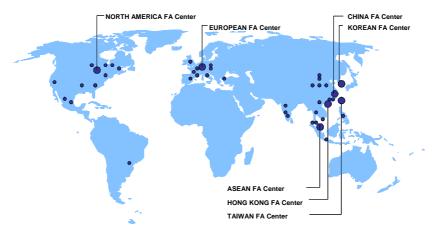
The state whether or not Mitsubishi NC products are subject to the CCC Certification is indicated below, based on the "First Catalogue of Products subject to Compulsory Product Certification" issued by the State General Administration of Quality Supervision, Inspection and Quarantine (AQSIQ) of the People's Republic of China and the Certification and Accreditation Administration of the People's Republic of China (CNCA) on July 1, 2002.

Model	China HS Code (Note 1)	Judgment on whether or not subject to CCC Certification	
Power supply unit Servo/spindle drive unit	85044090 85371010	Not subject to CCC Certification	
Servo/spindle	85015100 85015200	Not subject to CCC Certification	
NC	-	Not subject to CCC Certification	
Display unit	-	Not subject to CCC Certification	

- (Note 1) The China HS Code is determined by the customs officer when importing to China. The above HS Codes are set based on the HS Codes used normally when exporting from Japan.
- (Note 2) Reference IEC Standards are used as the actual IEC Standards may not match the GB Standards in part depending on the model.

Whether or not the NC products are subject to CCC Certification was judged based on the following five items.

- (a) Announcement 33 (Issued by AQSIQ and CNCA in December 2001)
- (b) HS Codes for the products subject to CCC Certification (Export Customs Codes)
 - * HS Codes are supplementary materials used to determine the applicable range. The applicable range may not be determined only by these HS Codes.
- (c) GB Standards (This is based on the IEC Conformity, so check the IEC. Note that some parts are deviated.)
- (d) Enforcement regulations, and products specified in applicable range of applicable standards within
- (e) "Products Excluded from Compulsory Certification Catalogue" (Issued by CNCA, November 2003)


Reference

- Outline of China's New Certification System (CCC Mark for Electric Products), Japan Electrical Manufacturers' Association
- Outline of China's New Certification System (CCC Mark for Electric Products) and Electric Control Equipment, Nippon Electric Control Equipment Industries Association

Revision History

Date of revision	Manual No.	Revision details
Mar. 2002	BNP-C3016A	First edition created.
Jul. 2003	BNP-C3016C	The MDS-CH-V1-185 specifications were added. Battery unit "FCU6-BTBOX" was added.
		Spindle specifications were added.
		 "Magnetic pole detection unit" was added.
		The HC-H1502 motor specifications were added.
		The linear servomotor specifications were added.
		• "UL/c-UL Standard Compatible Unit Instruction Manual" was added.
		Miswrite is corrected.
Apr. 2004	BNP-C3016D	LM491M (Heidenhain) was added to machine side detector.
		• Units scheduled for development, SP-15, V1-05, V1-10 and V2-0505 to 1010 were produced, and production of SP-04 to 075 and SP-22 was
		discontinued. • HC-H52, -H53 and -H102 were produced.
		Miswrite is corrected.
0		
Sep. 2005	BNP-C3016E	DC connection bar specifications were added.
		 Drive unit specifications list was revised. Selection of wire was revised.
		 Protection fuse specifications were added. Motor outline drawings of HC-H1102 and HC-C1103S were revised.
		• The section of "Compliance with China Compulsory Product Certification (CCC Certification) System " was added.
		Miswrite is corrected.
Feb. 2006	BNP-C3016F	Servo parameters SV081 to SV100 were added.
		Alarm "3B" and "77" were revised.
		• Troubleshooting "3B" and "77" were revised.
		Calculating the theoretical acceleration/deceleration was revised.
		Magnetic brake characteristic was revised.
		Miswrite is corrected.

Global service network

North America FA Center (MITSUBISHI ELECTRIC AUTOMATION INC.) Illinois CNC Service Center 500 CORPORATE WOODS PARKWAY, VERNON HILLS, IL. 60061, U.S.A. TEL: 41-847-478-2500 (Se FAX: 41-847-478-2650 (Se California CNC Service Center 5665 PLA2A DRIVE, C/PRESS, CA. 90630, U.S.A. TEL: 41-714-220-4796 FAX: 41-714-229-3818 Georgia CNC Service Center TEL: 41-714-220-4796 FAX: +1-/14-229-3810 Georgia CNC Service Center 2810 PREMIERE PARKWAY SUITE 400, DULUTH, GA., 30097, U.S.A. TEL: +1-678-258-4500 FAX: +1-678-258-4519
 2810 PREMIERE PARKWAT SOUTLE 100, DELEMENT

 TEL: +1-678-258-4500
 FAX: +1-678-258-4509

 New Jersey CNC Service Center
 200 COTTONTALL LANE SOMERSET, NJ. 08873, U.S.A.

 TEL: +1-722-560-4500
 FAX: +1-732-560-4531

 Michigan CNC Service Satellite
 2545 3371 STREET, ALLEGAN, MI, 49010, U.S.A.

 TEL: +1-722-560-4500
 FAX: +1-269-673-4092

 Ohio CNC Service Satellite
 62W. 500 S, ANDERSON, IN., 46013, U.S.A.

 TEL: +1-847-478-2608
 FAX: +1-847-478-2690

 Texas CNC Service Satellite
 1000, NOLEN DRIVE SUITE 200, GRAPEVINE, TX. 76051, U.S.A.

 TEL: +1-72-51-7488
 FAX: +1-817-416-1439

 Canada CNC Service Center
 4299 14TH AVENUE MARKHAM, ON, L3R OJZ, CANADA

 TEL: +1-847-57-728
 FAX: +1-847-57-733

 Mexico CNC Service Center
 FAX: +1-493-75-7035

 Mexico CNC Service Center
 FAX: +1-930-745-7935

 Mexico CNC Service Center
 FAX: +1-930-745-7935

 TEL:
 +1:095-475-7728
 FAX:
 +1:095-475-7935

 Mexico CNC Service Center
 MARIANO ESCOBEDO 69 TLALNEPANTLA, 54030 EDO. DE MEXICO
 TEL:
 +52-55-9171-7698

 TEL:
 +52-55-9171-7698
 FAX:
 +52-55-9171-7698
 FAX:
 +52-55-9171-7698
 MARIANO ESCUDEUC USE TEL: 452-55-9171-7662 Monterrey CNC Service Satellite ARGENITIAN 3900, FRACC. LAS TORRES, MONTERREY, N.L., 64720, MEXICO TEL: +52-81-8365-4171 Brazil MITSUBISHI CNC Agent Service Center (AUTOMOTION IND. COM. IMP. E EXP. LTDA) ACESSO JOSE SARTORELLI, KM 2.1 18550-000 BOITUVA – SP, BRAZIL TFI: +55-15-3363-9900 FAX: +55-15-3363-9911

European FA Center (MITSUBISHI ELECTRIC EUROPE B.V.)

 European FA Center (MITSUBISHI ELECTRIC EUROPE B.V.,

 Germany CNC Service Center

 GOTHAER STRASSE 8, 40880 RATINGEN, GERMANY

 TEL: 449-2102486-0
 FAX:+49-2102486-591

 South Germany CNC Service Center

 KUR2E STRASSE. 40, 70794 FILDERSTADT-BONLANDEN, GERMANY

 FEL: 449-711-3270-010

 FAX: +49-711-3270-010

 Fax: 49-711-3270-010

 FAX: +49-711-3270-0141

 France CNC Service Center

 25, BOULEVARD DES BOUVETS, 92741 NANTERRE CEDEX FRANCE

 FEL: +43-1-41-02-83-13
 FAX: +43-1-49-01-07-25

 Lyon CNC Service Satellite

U.K CNC Service Center TRAVELLERS LANE, HATFIELD, HERTFORDSHIRE, AL10 8XB, U.K. TEL: 444-1707-282-846 FAX:-44-1707-278-992 Italy CNC Service Center ZONA INDUSTRIALE VIA ARCHIMEDE 35 20041 AGRATE BRIANZA, MILANO ITALY TEL: +43-433-60531-342 FAX: +39-039-6053-206 Spain CNC Service Satellite CTRA. DE RUBI, 76-80 -APDO.420 08190 SAINT CUGAT DEL VALLES, BARCELONA SPAIN TEL: +34-935-65-2236 FAX: Turkey MITSUBISHI CNC Agent Service Center (GENEL TEKNIK SISTEMLER LTD. STI.) DARULACEZE CAD. FAMAS IS MERKEZI A BLOCK NO.43 KAT2 80270 OKMEYDANI ISTANBUL, TURKEY
 TURKEY
 TURKEY
 TURKEY
 TURKEY

 TURKEY
 TEL: +90-212-320-1640
 FAX: +90-212-320-1649

 Poland MTSUBISHI CNC Agent Service Center (MPL Technology Sp. z. o. o)
 UL SLUCZNA 34, 31-444 KRAKOW, POLAND

 TEL: +48-12-632-28-85
 FAX:

 Wroclaw MTSUBISHI CNC Agent Service Satellite (MPL Technology Sp. z. o. o)

 UL KOBIERZYCKA 23, 52-315 WROCLAW, POLAND

 TEL: +48-17-332-77-53

 FAX: +48-71-333-77-53

 Czech MITSUBISHI CNC Agent Service Center

 (AUTOCONT CONTROL SYSTEM S.R.O.)

 NEMOCNICNI 12, 702 00 OSTRAVA 2 CZECH REPUBLIC

 TEL: +48-12-636-152-426
 FAX: +420-596-152-112

ASEAN FA Center (MITSUBISHI ELECTRIC ASIA PTE. LTD.) Singapore CNC Service Center 307 ALEXANDRA ROAD #05-01/02 MITSUBISHI ELECTRIC BUILDING SINGAPORE 159943 TEL: +65-6478-2308 FAX: +65-6476-7439 Thailand MITSUBISHI CNC Agent Service Center (F. A. TECH CO., LTD) 898/19.20,21,22 S.V. CITY BUILDING OFFICE TOWER 1 FLOOR 12,14 RAMA III RD BANGPONGPANG, YANNAWA, BANGKOK 10120. THAILAND TEL: +66-2-682-652 FAX: +66-2-682-6020 Malaysia MITSUBISHI CNC Agent Service Center (FLEXIBLE AUTOMATION SYSTEM SDN. BHD.) 60, JALAN USJ 10/1B 47620 UEP SUBANG JAYA SELANGOR DARUL EHSAN MALAYSIA TEL: +60-3-5631-7605 FAX: +60-3-6631-7636 JOHOR MITSUBISHI CNC Agent Service Satellite (FLEXIBLE AUTOMATION SYSTEM SDN. BHD.) NO. 16, JALAN SHAHBANDAR 1, TAMAN UNGKU TUN AMINAH, 81300 SKUDAI, JOHOR MALAYSIA TEL: +60-7-557-3218 FAX: +60-7-557-3404 Indonesia MITSUBISHI CNC Agent Service Center (PT. AUTOTEKNINDO SUMBER MAKMUR) WISMA NUSANTIRA 14TH FLOOR JL. M.H. THAMRIN 59, JAKARTA 10350 INDONESIA TEL: +60-7-557-3417-144 FAX: +26-21-3917-164 India MITSUBISHI CNC Agent Service Center (PT. AUTOTEKNINDO SUMBER MAKMUR) WISMA NUSANTIRA 14TH FLOOR JL. M.H. THAMRIN 59, JAKARTA 10350 INDONESIA TEL: +60-21-3917-144 FAX: +20-2712-8115 BAGENER MITSUBISHI CNC Agent Service Center (MESSUNG SALES & SERVICES PVT. LTD.) B-36FF, PAVANA INDUSTRIAL PREMISES M.I.D.C., BHOASRI PUNE 411026, INDIA TEL: +91-20-2711-948 FAX: +91-20-2712-8115 EANGALCER MITSUBISHI CNC Agent Service Center (MESSUNG SALES & SERVICES PVT. LTD.) S1615, GTH FLOOR, MANIPAL CENTER, BANGALORE 560001, INDIA TEL: +91-80-509-2119 FAX: +91-80-530-2480 Delhi MITSUBISHI CNC Agent Parte Conter (MESSUNG SALES & SERVICES PVT. LTD.) 197, SECTOR 15 PART-2, OFF DELHI-JAIPUR HIGHWAY BEHIND 32ND MILESTONE GURGAON 122001, INDIA TEL: +91-89-1024-3895

122001, INDIA TEL: +91-98-1024-8895 FAX

 TEL: +91-98-1024-8995
 FAX:

 Philippines MITSUBISHI CNC Agent Service Center (FLEXIBLE AUTOMATION SYSTEM CORPORATION)
 UNIT No.411, ALABAMG CORPORATE CENTER KM 25, WEST SERVICE ROAD SOUTH SUPERHIGHWAY, ALABAMG MUNTINLUPA METRO MANILA, PHILIPPINES 1771

 TEL: +63-2-807-2416
 FAX: +63-2-807-2417

 Vietnam MITSUBISHI CNC Agent Service Center (SA GIANG TECHNO CO., LTD)
 47-49 HOANG SA ST. DAKAO WARD, DIST. 1H O CHI MINH CITY, VIETNAM

 TEL: +84-8-910-4763
 FAX: +84-8-910-2593

China FA Center (MITSUBISHI ELECTRIC AUTOMATION (SHANGHAI) LTD.)

 China FA Center (MITSUBISHI ELECTRIC AUTOMATION (SHANGHAI) LTD.)

 China CNC Service Center

 2/F., BLOCK 5 BLDG.AUTOMATION INSTRUMENTATION PLAZA, 103 CAOBAO RD.

 Shanyang CNC Service Center

 TEL: +86-21-6120-0808

 FAX: +86-21-6494-0178

 Shenyang CNC Service Center

 TEL: +86-24-2397-0185

 Beijing CNC Service Satellite

 9F, OFFICE TOWER1, HENDERSON CENTER, 18 JIANGUOMENNEI DAJIE, DONGCHENG DISTRICT,

 BELING 100005, CHINA

 FAX: +86-10-6518,8030
 EL: +86-10-6518-8830 FAX: +86-10-6518-8030 China MITSUBISHI CNC Agent Service Center (BEIJING JIAYOU HIGHTECH TECHNOLOGY DEVELOPMENT CO.) RM 709, HIGH TECHNOLOGY BUILDING NO.229 NORTH SI HUAN ZHONG ROAD, HAIDIAN DISTRICT, BEIJING 100083, CHINA TEL: +86-10-8288-3030 FAX: +86-10-6518-8030 Tianjin CNC Service Satellite RM909, TAIHONG TOWER, NO220 SHIZILIN STREET, HEBEI DISTRICT, TIANJIN, CHINA 300143

 RM509, TAIHONG TOWER, NO220 SHIZILIN STREET, HEBEI DISTRICT, TIANJIN, CHINA 300143

 TEL: -86-22-2653-9909
 FAX: +86-22-2635-99050

 Shenzhen CNC Service Satellite
 RM0202-2635-99050

 RM020, UNIT A, 13/F, TIANAN NATIONAL TOWER, RENMING SOUTH ROAD, SHENZHEN, CHINA 518005
 TEL: +86-755-515-6601

 FEL: +86-755-515-6601
 FAX: +86-755-8218-4776

 Changchun Service Satellite
 FAX: +86-755-8218-4776

 TEL: +86-73-150214540
 FAX: +86-431-5021690

 Hong Kong CNC Service Center
 UNIT A, 25/F RYODEN INDUSTRIAL CENTRE, 26-38 TA CHUEN PING STREET, KWAI CHUNG, NEW

 TERRITORIES, HONG KONG
 FAX: +852-2784-1323

Taiwan FA Center (MITSUBISHI ELECTRIC TAIWAN CO., LTD.)

Tainan CNC Service Satellite TEL: +886-4-2359-0688

 Alwahi FA Center
 NO.8-1, GONG YEH 16'H RD., TAICHUNG INDUSTIAL PARK TAICHUNG CITY, TAIWAN R.O.C.

 TEL: +886-4-2359-0688
 FAX: +886-4-2359-0689

 Taipei CNC Service Satellite TEL: +886-4-2359-0688

FAX: +886-4-2359-0689 FAX: +886-4-2359-0689

Korean FA Center (MITSUBISHI ELECTRIC AUTOMATION KOREA CO., LTD.)

Korea CNC Service Center DONOSEO GAME CHANNEL BLDG. 2F. 660-11, DEUNGCHON-DONG KANGSEO-KU SEOUL, 157-030 KOREA TEL: +82-2-3660-9607 FAX: +82-2-3663-0475

Notice

Every effort has been made to keep up with software and hardware revisions in the contents described in this manual. However, please understand that in some unavoidable cases simultaneous revision is not possible. Please contact your Mitsubishi Electric dealer with any questions or comments regarding the use of this product.

Duplication Prohibited

This instruction manual may not be reproduced in any form, in part or in whole, without written permission from Mitsubishi Electric Corporation.

© 2003-2006 MITSUBISHI ELECTRIC CORPORATION ALL RIGHTS RESERVED

HEAD OFFICE : TOKYO BUILDING,2-7-3 MARUNOUCHI,CHIYODA-KU,TOKYO 100-8310,JAPAN

 MODEL
 MDS-CH Series

 MODEL
 008-192

 Manual No.
 BNP-C3016F(ENG)