User Manual 07/2005 Edition

simodrive

Absolute Value Encoder with PROFIBUS-DP **SIEMENS** SIMODRIVE sensor

SIEMENS

SIMODRIVE sensor

Absolute Value Encoder with PROFIBUS-DP

User Manual

Valid for

Product SIMODRIVE sensor Version Firmware version 2.0

General Information	1
Installation	2
Device Configuration	3
Class 1 and Class 2	4
Encoder Classes, Version 2.1 and 2.2	5
Diagnostic Messages	6
Configuration Example STEP 7	7
DPV2 Functionality- General Information	8
Data Transfer Isochronous Operation	9
Parameterizing Isochronous Operation	10
Non-Cyclic Utilities	11
Fault Signals/ Diagnostics	12

Configuring Example 13 for Isochr. Operation

Technical Data 14

Appendix

07/05 Edition

Index

16

15

SIMODRIVE® Documentation

Printing history

Brief details of this edition and previous editions are listed below.

The status of each edition is shown by the code in the "Remarks" column.

Status code in the "Remarks" column:

- **A**.... New documentation.
- **B** Unrevised reprint with new Order No.
- **C** Revised edition with new status.

If factual changes have been made on the page within the same software version, this is indicated by a new edition coding in the header on that page.

Edition	Order No.	Remarks
05/97	6SN 1197-0AB10 – 0YP0	Α
02/99	6SN 1197-0AB10 – 0YP1	С
03/03	6SN 1197-0AB10 – 0YP2	С
03/04	6SN 1197-0AB10 – 0YP3	С
07/05	6SN 1197-0AB10 – 0YP4	С

Trademarks

SIMATIC[®], SIMATIC HMI[®], SIMATIC NET[®], SIROTEC[®], SINUMERIK[®] and SIMODRIVE[®] are trademarks of Siemens. Other product names used in this documentation may be trademarks which, if used by third parties, could infringe the rights of their owners.

Further information is available on the Internet under: http://www.siemens.com/motioncontrol This publication was produced with WinWord V 8.0 and Designer V 7.0 and the DokuTool AutWinDoc.	Other functions not described in this documentation might be executable in the control. This does not, however, represent an obligation to supply such functions with a new control or when servicing. We have checked that the contents of this publication agree with the hardware and software described herein. Nevertheless, differences might exist and therefore we cannot guarantee that they are completely identical. The information given in this publication is reviewed at regular intervals and any corrections that might be necessary are made in the subsequent printings. Suggestions for improvement are welcome at all times.
© Siemens AG 1997 - 2005. All Rights Reserved.	Subject to change without prior notice.

Contents

Gener	al Informat	tion	. 1-9
	1.1	Absolute value encoders	1-10
	1.2	Validity of the documentation and references	1-10
	1.3	Profibus technology	1-11
Instal	ation		2-13
	2.1	Settings in the connecting cover	
	2.1.1	Node address	
	2.1.2	Bus termination	2-15
	2.2	Connecting-up the signal and power supply cables	2-17
	2.3	Connecting-up the connecting cover	2-18
	2.4	Connecting the shielded cable	2-19
	2.5	Information on mechanically installing and electrically connecting-up the absolute value encoder	2-19
Devic	e Configura	ation	3-21
	3.1	Overview, data transfer principle	3-22
	3.2	Overview, functionality of the encoder classes	3-23
	3.3	Overview, data format of the encoder classes	3-24
Class	1 and Clas	s 2	4-25
	4.1	Note	4-27
	4.2	Parameterization	4-28
	4.2.1	Direction of rotation.	
	4.2.2	Activating/de-activating Class 2 functionality	
	4.2.3	Activating/de-activating commissioning diagnostics	
	4.2.4	Activating/de-activating the scaling function	
	4.2.5	Measuring steps per revolution	
	4.2.6	Total resolution 4-30	
	4.3	Data transfer in normal operation	
	4.3.1	Transferring the process actual value	
	4.3.2	Preset function	4-32

Encoder Class	es, Version 2.1 and 2.2	5-33
5.1	Parameters	
5.1.1	Activating the manufacturer-specific parameters	
5.1.2	Required measuring steps	
5.1.3	Resolution reference	
5.1.4	Activating the commissioning mode	5-37
5.1.5	Reduced diagnostics	
5.1.6	Software limit switches	
5.1.7	Physical measuring steps	
5.1.8	Absolute value encoder type	
5.1.9	Dimension units of the velocity	
5.1.9		
5.2	Data transfer in the normal mode	5-41
5.3	The commissioning mode	
5.3.1	Setting the direction of rotation	5-43
5.3.2	Starting teach-in	
5.3.3	Stopping teach-in	
5.3.4	Preset value	
Diagnostic Me	ssages	6-45
6.1	Overview	6-46
6.2	Diagnostic messages which are supported	6-47
6.2.1	Expanded diagnostics header	
6.2.2	Memory errors	
6.2.3	Operating state	
6.2.4	Encoder type	
6.2.5	Single-turn resolution	
6.2.6	Number of revolutions	
6.2.7	Operating time alarm	
6.2.8	Profile version	
6.2.9	Software version	
6.2.10	Operating time	
6.2.11	Zero offset	
6.2.12	Parameterized resolution per revolution	
6.2.12	Parameterized total resolution	6 40
6.2.13	Serial number	
6.2	Status sizuals using LEDs in the second sting second	C 50
6.3	Status signals using LEDs in the connecting cover	6-50
Configuration	Example STEP 7	7-51
7.1	Reading-in the GSD files	7-52
7.2	Configuring the absolute value encoder	7-53
7.3	Selecting the device class	7-54
7.4	Parameterization	7-55

DPV2 Function	onality – General Information	8-59
8.1	Isochronous operation	8-61
8.2	Slave-to-slave communication	8-62
Data Transfe	r Isochronous Operation	9-63
9.1	Run-up	
9.1.1	Slave parameterization, configuration	
9.1.2	Synchronizing to the clock cycle Global Control	9-65
9.1.3	Synchronizing the slave application to the master sign-of-life	
9.1.4 9.1.5	Synchronizing the master application to the slave sign-of-life character Cyclic operation9-66	9-66
9.2	Telegram type 81	9-67
Parameterizi	ng Isochronous Operation	
10.1	Parameter – overview	10-71
10.2	Device-specific parameters	
10.2.1	Direction of rotation	
10.2.2	Scaling/preset/counting direction	
10.2.3	Measuring steps per revolution	
10.2.4	Total resolution 10-73	
10.2.5	Maximum master sign-of-life character failures	10-73
10.3	Isochronous parameters	
10.3.1	T _{BASE DP}	
10.3.2	T _{DP}	
10.3.3	T _{MAPC}	
10.3.4	T _{BASE_IO}	
10.3.5	Τ ₁	
10.3.6	T ₀	
10.3.7	T _{DX}	
10.3.8	T _{PLL_W}	
10.3.9	T _{PLL_D}	
10.4	Slave-to-slave communication	
Non-Cyclic U	tilities	
Fault Signals	/Diagnostics in Isochronous Operation	
12.1	Profibus diagnostics	
12.2	Status signals using the LEDs in the connecting cover	12-81
12.3	Fault codes in G1_XIST2	

Config	guring Exa	ample for Isochronous Operation – STEP 7	13-83
	13.1	Downloading the GSD file	13-84
	13.2	Configuring the absolute value encoder	13-85
	13.3	Telegram selection	13-86
	13.4 13.4.1 13.4.2	Parameterization Device-specific parameters Isochronous parameters	13-87
Techn	ical Data		14-91
	14.1	Electrical data	14-92
	14.2	Mechanical data	14-93
	14.3	Ambient conditions	14-94
	14.4	Dimension drawings	14-95
Apper	ndix		15-97
	15.1 15.1.1 15.1.2 15.1.3 15.2 15.3	Additional encoder classes Version 2.0 multi-turn. Version 1.1 multi-turn. Version 1.0 multi-turn. FAQ Absolute value encoders, Profibus. Terminology.	15-98 15-98 15-98 15-99
Index			16-103

General Information

1.1	Absolute value encoders	1-10
1.2	Validity of the documentation and references	1-10
1.3	Profibus technology	1-11

1

1.1 Absolute value encoders

This Manual describes the commissioning and configuring of absolute value encoders with PROBIFUS-DP interface. The device fulfills the requirements placed on a Profibus slave in compliance with the Profibus Standard and is certified by the Profibus User Organization.

The basic principle of operation of the absolute measured value sensing is the optical scanning of a transparent coding disk which is coupled to the shaft to be measured. The position of the shaft can be determined by evaluating the code with a resolution of up to 8192 steps per revolution (13 bit).

For so-called multi-turn devices, other coding disks are coupled through stepdown gearing. These subsequently coupled disks allow the number of shaft revolutions to be determined in absolute terms (up to 16384 revolutions = 14 bits).

For absolute value encoders with PROFIBUS-DP, the position value, optically detected, is computed in an integrated microprocessor and the data is transferred via Profibus.

1.2 Validity of the documentation and references

This documentation applies to absolute value encoders with PROFIBUS-DP with the following Order No. [MLFB]: 6FX2001-5xPxx from Version A10 onwards; this can be seen in the lowest line on the rating plate.

Version	Version Introduction Introduction date from Serial No.		Feature			
A00	May 96		Release for general available with 2xPG9, 1xPG7			
A01	Nov 96		Connection cover is supplied with 3xPG9			
A02	01.08.97		Gearbox modification; length shortened for MT, length shortened to 109 mm			
A03	01.08.98		For multi-turn encoders, velocity signal averaged over 8 measured values			
A04	02.04.99	73871	Online parameterization LEDs in the connection cover Velocity output, now also for ST			
A05	01.07.00	87133	New shaft version with increased degree of protection for synchronous flange			
A06	04.07.02	114764	Connection cover with de-coupled continuing bus when the terminating resistor is switched-in			
A07	17.09.02	117670	Software change; improved rotary axis routine			
A08	01.04.03	125568	Software change: DPV2 functionality (can be called using an additional GSD file) changeover to 13/25 bit; downwards compatibility for Class 1 or disabled scaling is implemented by adapting the encoder software.			
A09	01.09.03	133050	Software change: Error message "Operating time alarm/incorrect limit value" rectified.			
A10	01.03.04	144258	Sensor system innovated, change over to Multiturn 27 bit			
A11	26.05.04	151904	Change only for 6FX2001-5LP25: Additional hole in the shaft and dowel pin provided Standard versions remain at A10			
A12	16.08.04	156529	Parameter 964, sub-index 1-4 changed: Device type adapted to "7010" hex, version and date			
A12	20.10.04	161000	Change, reset generator, basis sensor system			

Version	GSD file/version	Changes		
A00				
A01				
A02				
A03				
A04	SIEM0024.GSD - Version 2.0			
A05	SIEM0024.GSD - Version 2.0			
A06	SIEM0024.GSD - Version 3.0	Modification to change over to DPC31; new encoder also functional with V2.0		
A07	SIEM0024.GSD - Version 3.0			
A08	SIEM0024.GSD - Version 3.0 SIEM80F9 - Version 1.0	Clock cycle synchronism and peer-to-peer data transfer implemented, can be called using a special GSD file "SIEM80F9.GSD"		
A09	SIEM0024.GSD - Version 3.0 SIEM80F9 - Version 1.0			
A10	SIEM0024.GSD - Version 4.0 SIEM80F9 - Version 1.1	Both GSD files adapted to an extended measuring range (16384 revolutions)		
A11	SIEM0024.GSD - Version 4.0 SIEM80F9 - Version 1.1			
A12	SIEM0024.GSD - Version 4.0 SIEM80F9 - Version 1.1			
A12	SIEM0024.GSD - Version 4.0 SIEM80F9 - Version 1.4	Various changes "SIEM80F9": Default settings, comments		

Note regarding GSD files

SIEM80F9: From A08 onwards for functions, clock cycle synchronism and peer-to-peer data transfer

SIEM0024: Standard DP functionality, new encoder also functional for old versions. From A10 onwards, for correct teach-in operation, GSD version 4 or higher must be used.

1.3 Profibus technology

PROFIBUS is a non-proprietary, open fieldbus Standard which is defined by international Standards EN 50170 and EN 50254. There are 3 versions: DP, FMS and PA. SIEMENS absolute value encoders support the DP version and are designed for the usual data transfer rates of up to 12 Mbaud.

In addition to manufacturer-specific functions, the devices support Classes 1 and 2 according to the encoder profile. This device profile can be ordered from the Profibus User Organization under Order No. 3.062. Additional information on PROFIBUS can also be obtained from the Profibus User Organization (functionality, manufacturer, products) as well as Standards and profiles:

Profibus User Organization

Haid-und-Neu-Straße 7 D-76131 Karlsruhe Tel: +49 721 / 96 58 590 Fax: +49 721 / 96 58 589

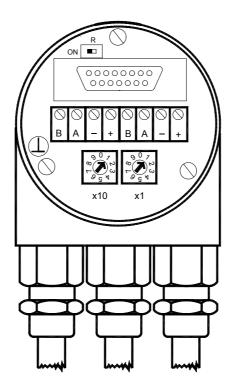
1.3 Profibus technology

Space for your notes

2

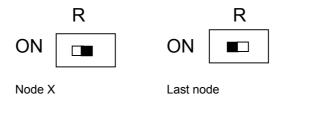
Installation

2.1	Settings in the connecting cover	2-15
2.1.1	Node address	2-15
2.1.2	Bus termination	2-15
2.2	Connecting-up the signal and power supply cables	2-17
2.3	Connecting-up the connecting cover	2-18
2.4	Connecting the shielded cable	2-19
2.5	Information on mechanically installing and electrically connecting-up the absolute value encoder	2-19


2.1 Settings in the connecting cover

The absolute value encoder is connected-up through the so-called connecting cover. This is connected to the rotary encoder through a 15-pin D-Sub plug connector. It can be removed by releasing 2 screws at the rear of the device. Bus and power supply cables are fed into the connecting cover through cable glands and connected to screw terminals.

2.1 Settings in the connecting cover


2.1.1 Node address

A decimal rotary switch in the connecting cover is used to set the Profibus node address. The weighting (x 10 or x 1) is specified at the switch. Permissible addresses lie between 1 and 99, whereby each one must be unique in the complete system. The device address is read-in from the absolute value encoder when the power supply voltage is switched-on. Address changes by the master ("Set_Slave_Add") are not supported.

2.1.2 Bus termination

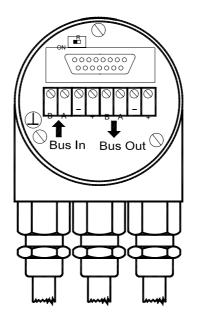
If the encoder is connected at the end or beginning of the bus line, the terminating resistor must be switched on (slide switch in position "ON"):

Note

When the terminating resistor is switched-in, the bus out is de-coupled!

2.1 Settings in the connecting cover

The bus has only been correctly terminated if the encoder is mounted to the connecting cover. If the encoder must be replaced in operation (hot swap), then we recommend that a separate active bus termination is used.

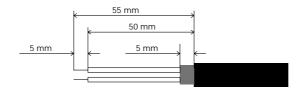

After the address has been set on the hardware side, and where necessary, the cable terminating-resistor switched-in, then the absolute value encoder can be commissioned.

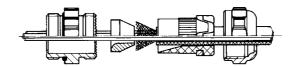
2.2 Connecting-up the signal and power supply cables

| \bigcirc |
|------------|------------|------------|------------|------------|------------|------------|------------|
| в | А | - | + | В | А | - | + |

Terminal	Description
B (left)	Signal cable B, bus in
A (left)	Signal cable A, bus in
-	0 V
+	10 – 30 V
B (right)	Signal cable B, bus out
A (right)	Signal cable A, bus out
-	0 V
+	10 – 30 V

The power supply cables only have to be connected once (it doesn't matter at which terminals). When the terminating resistor is switched-in the bus out is decoupled.




2.3 Connecting-up the connecting cover

2.3 Connecting-up the connecting cover

The pressure screw, insert and taper sleeve must be removed from the cable gland. Approximately 55 mm of the bus cable sheath must be removed and approximately 50 mm of the braided screen. Approximately 5 mm insulation must be removed from the individual conductors.

The pressure screw and insert are then threaded onto the cable. The taper sleeve is pushed under the screen as shown in the drawing. The complete assembly is then inserted in the cable gland and the pressure screw tightened.

2.4 Connecting the shielded cable

In order to achieve the highest possible noise immunity, shielded cables are used to transfer signals between the system components. The shields of these cables are connected at both ends. For specific system configurations an equalization current can flow through the cable shield which is connected at both ends. This is the reason that we recommend a potential bonding conductor.

2.5 Information on mechanically installing and electrically connecting-up the absolute value encoder

The following points should be observed:

- Do not drop the absolute value encoder or subject it to excessive vibration. The encoder is a precision device.
- Do not open the absolute value encoder housing (this does not mean that you cannot remove the cover). If the device is opened and closed again, then it can be damaged and dirt may enter the unit.
- The absolute encoder shaft must be connected to the shaft to be measured through a suitable coupling. This coupling is used to dampen vibrations and imbalance on the encoder shaft and also avoid inadmissibly high forces.
- Although SIEMENS absolute value encoders are rugged, when used in tough ambient conditions, they should be protected against damage using suitable protective measures. Care should be taken that they are not installed so that they can be used as handles or even steps.
- Only qualified personnel may commission and operate these devices. These are personnel who are authorized to commission, ground and tag devices, systems and circuits according to the current state of safety technology.
- It is not permissible to make any electrical changes to the encoder.
- Route the connecting cable to the absolute value encoder at a considerable distance away or completely separated from power cables with their associated noise. Completely screen cables must be used for reliable data transfer and good grounding must be provided.
- Cabling, establishing and interrupting electrical connections may only be carried-out when the equipment is in a no-voltage condition. Short-circuits, voltage spikes etc. can result in erroneous functions and uncontrolled statuses which can even include severe personnel injury and material damage.
- Before powering-up the system, check all of the electrical connections. Connections, which are not correct, can cause the system to function incorrectly and fault connections can result in severe personnel injury and material damage.

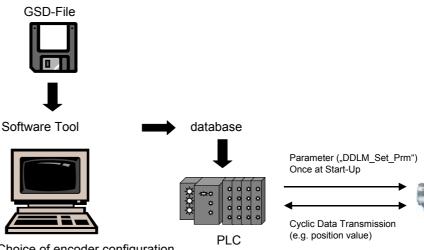
2.5 Information on mechanically installing and electrically connecting-up the absolute value encoder

Space for your notes

3

Device Configuration

3.1	Overview, data transfer principle	3-22
3.2	Overview, functionality of the encoder classes	3-23
3.3	Overview, data format of the encoder classes	3-24


3.1 Overview, data transfer principle

Absolute value encoders with PROFIBUS-DP can be configured and parameterized corresponding to the requirements of the user. To do this, so-called GSD files, associated with the device, are downloaded into the configuring tool. When configuring the encoders various "encoder classes" can be selected. Selectable parameters and functionality of the device depend on the selected encoder class. SIEMENS absolute value encoders support all of the encoder classes described in the following. This means that the functionality is not restricted from the hardware side and is exclusively defined by the user. In addition to the "Class 1" and "Class 2" encoder classes, described in the encoder profile, SIEMENS absolute value encoders offer additional encoder classes with manufacturer-specific functions.

When configuring the device, configuration and parameter data are defined by selecting the encoder class. This data, saved in the Profibus master is transferred once to the absolute value encoder when the system runs-up (configuration and parameterizing phase – "DDLM_Set_Prm"). It is not possible to change configuration or parameters during operation (exception: "Commissioning mode" refer to Section 5.3).

After the configuration and parameter data have been received the absolute value encoder goes into "normal operation" (cyclic data transfer – "DDLM_Data_Exchange mode"). Among other things, the position value is transferred in this mode. The length and format of the data exchanged are also defined when configuring the device by selecting the appropriate encoder class.

3.1 Overview, data transfer principle

Choice of encoder configuration Parameter settings

3.2 Overview, functionality of the encoder classes

Designation	Cyclic data transfer	Parameters which can be set	Others
Class 1 single-turn	Position value –16-bit input	Direction of rotation	-
Class 1 multi-turn	Position value – 32-bit input	Direction of rotation	-
Class 2 single-turn	Position value – 16-bit input preset value – 16-bit output	Direction of rotation Gearbox factor	Preset function
Class 2 multi-turn	Position value – 32-bit input Preset value – 32-bit output	Direction of rotation Gearbox factor	Preset function
Version 2.1 single-turn	Position value (32-bit input) Preset value/teach-in (32-bit output)	Direction of rotation Gearbox factor Reduced diagnostics Limit switch	Preset function Commissioning mode
Version 2.1 multi-turn	Position value (32-bit input) Preset value/teach-in (32-bit output)	Direction of rotation Gearbox factor Reduced diagnostics Limit switch	Preset function Commissioning mode
Version 2.2 single-turn	Position value (32-bit input) Preset value/teach-in (32-bit output) Velocity (16-bit input)	Direction of rotation Gearbox factor Reduced diagnostics Limit switch Units of the velocity output	Preset function Commissioning mode Velocity output
Version 2.2 multi-turn	Position value (32-bit input) Preset value/teach-in (32-bit output) Velocity (16-bit input)	Direction of rotation Gearbox factor Reduced diagnostics Limit switch Units of the velocity output	Preset function Commissioning mode Velocity output

3.3 Overview, data format of the encoder classes

Designation	Configuration (ID)		Input words (AWC	Output words (master ->	Description, refer to	
	Hex	Dec.	-> master)	AWC)	Section	Page
Class 1 single-turn (acc. to the encoder profile)	D0	208	1	0	4	27
Class 1 multi-turn (acc. to the encoder profile)	D1	209	2	0	-	
Class 2 single-turn (acc. to the encoder profile)	F0	240	1	1	-	
Class 2 multi-turn (acc. to the encoder profile)	F1	241	2	2		
Version 2.1 single-turn	F1	241	2	2	5	35
Version 2.1 multi-turn	F1	241	2	2		
Version 2.2 single-turn	F1	241	2	2		
-	D0	208	1			
Version 2.2 multi-turn	F1 D0	241 208	2 1	2		

The following encoder classes are still supported due to ensure upwards compatibility. However, these encoder classes should not be used for new projects (description: Refer to the Appendix):

Version 1.0 multi-turn	D3	211	4	0	15.1.3	98
Version 1.1 multi-turn	D3	211	4	0	15.1.2	98
	E1	225	0	2		
Version 2.0 multi-turn	F1	241	2	2	15.1.1	98
	D0	208	1			

4

Class 1 and Class 2

4.1	Note	4-27
4.2	Parameterization	4-28
4.2.1	Direction of rotation	4-29
4.2.2	Activating/de-activating Class 2 functionality	4-29
4.2.3	Activating/de-activating commissioning diagnostics	
4.2.4	Activating/de-activating the scaling function	
4.2.5	Measuring steps per revolution	
4.2.6	Total resolution	
4.3	Data transfer in normal operation	4-32
4.3.1	Transferring the process actual value	
432	Preset function	

4.1 Note

Encoder classes Class 1 and Class 2 are the versions according to the encoder profile defined by the Encoder Working Group in the Profibus User Organization (this is available from the PNO under Order No. 3.062).

4.1 Note

In order to guarantee compatibility to previously supplied devices with a resolution of 4096 steps per revolution (versions < "A08"), from version "A08" the absolute value encoders do not operate with the complete resolution of 8192 steps (13 bits) per revolution, but instead with 4096 steps per revolution (12 bits) scaled value:

- 1. Utilizing the device in Class 1
- 2. Utilizing the device in a higher class (Class 2 or manufacturer-specific) with disabled scaling function (parameter byte 9, bit 3)
- 3. Using the device in a higher class (Class 2 or manufacturer-specific) with disabled Class 2 functionality (parameter byte 9, bit 1)

In all three cases, the absolute value encoder generally operates with a 12-bit resolution (4096 steps) per revolution.

In order to use the full (that specified on the rating plate) resolution of 13 bits (8192 steps) per revolution, the device must be operated in Class 2 or in a manufacturer-specific class with the scaling function and with Class 2 functionality switched-in.

In order to ensure that compatibility is maintained to multi-turn encoders with 4096 revolutions that were previous supplied (version < "A10"). In the following cases, multi-turn angular encoders, from version "A10" do not operate with the full 16384 revolutions but instead with the reduced number of 4096:

- 1. Utilizing the device in Class 1
- 2. Utilizing the device in a higher class (Class 2 or manufacturer-specific) with disabled scaling function (parameter byte 9, bit 3)
- 3. Using the device in a higher class (Class 2 or manufacturer-specific) with disabled Class 2 functionality (parameter byte 9, bit 1)

In all three cases, the absolute value encoder generally operates with the number rotations reduced to 4096.

In order to use the full (specified on the rating plate) number of 16384 revolutions (14 bit), the device must be operated in Class 2 or a manufacturer-specific Class with the scaling enabled and Class 2 functionality enabled.

4.2 Parameterization

The following table includes an overview of the parameters which can be set according to the encoder profile as well as their arrangement in the parameterizing telegram. Generally, parameters are set using user-friendly input masks in the configuring tool. This means that a precise description of the parameterizing telegram is normally of little interest to the user.

Octet (=byte) No.	Parameter	Bit No.	Details, refer to
18	Profibus Standard parameters		
9	Direction of rotation	0	Section 4.2.1, page 29
	Class 2 functionality	1	Section 4.2.2, page 29
	Activate "Commissioning Diagnostics"	2	Section 4.2.3, page 29
	Scaling function	3	Section 4.2.4, page 29
	Reserved	4	
	Reserved	5	
	Not used for Class 1 and Class 2	6	
		7	
10	Measuring steps/revolution		Section 4.2.5, page 29
 13			
14	Total resolution		Section 4.2.6, page 30
 17			
18	Reserved (for the encoder profile)		
 25			
26	Not used for Class 1 and Class 2 (refer to version 2.1 and 2.2)		

4.2.1 Direction of rotation

The direction of rotation defines the counting direction when the process actual value is output as the shaft rotates clockwise (CW) or counter-clockwise (CCW) when viewing the shaft. The count direction is defined by bit 0 in octet 9:

Octet 9 bit 0	Direction of rotation when viewing the shaft	Output code
0	Clockwise	increasing
1	Counter-clockwise	increasing

For Class 1, this is the only parameter, which can be set.

4.2.2 Activating/de-activating Class 2 functionality

Using this switch, Class 2 angular encoders can be restricted to the functionality of Class 1, i.e. the parameterizing capability is disabled. Bit 1 in octet 9 is set in order to use the functions of a Class 2 encoder.

Octet 9 bit 1	Class 2 functionality
0	Switched-out
1	Switched-in

4.2.3 Activating/de-activating commissioning diagnostics

This function has no significance for the SIMODRIVE sensor absolute value encoder.

4.2.4 Activating/de-activating the scaling function

The scaling function enables the resolution per revolution and the selected total resolution to be parameterized. This switch should always be switched-<u>in</u>, if the functions of Class 2 (or manufacturer-specific classes) are to be used.

Octet 9 bit 3	Scaling function
0	Switched-out
1	Switched-in

4.2.5 Measuring steps per revolution

The 'Measuring steps per revolution' parameter is used to program the absolute value encoder so that a required number of steps can be realized, referred to one revolution.

If a value greater than the basic resolution of the absolute value encoder is selected as resolution per revolution, the output code is no longer in single steps.

For absolute value encoders from version "A06", in this case, a parameter error is displayed indicating that the device doesn't go into cyclic data transfer.

4.2 Parameterization

Octet	10	11	12	13	
Bit	31 - 24	23 - 16	15 - 8	7 - 0	
Data	2 ³¹ to 2 ²⁴	2 ²³ to 2 ¹⁶	2 ¹⁵ to 2 ⁸	2 ⁷ to 2 ⁰	
	Required number of measuring steps per revolution				

4.2.6 Total resolution

Octet	14	15	16	17	
Bit	31 - 24	23 - 16	15 - 8	7 - 0	
Data	2 ³¹ to 2 ²⁴	2 ²³ to 2 ¹⁶	2 ¹⁵ to 2 ⁸	2^7 to 2^0	
	Selected total resolution in measuring steps				

The user can adapt the measuring range of the device using the 'Total resolution' parameter: The absolute value encoder counts up to the parameterized total resolution and then starts again at 0.

Example: 100 steps are selected for each revolution, total resolution 12 800, and then the absolute value encoder starts again at zero after 128 revolutions and then counts up to 11 799.

For many configuring tools it is necessary to split-up the value into a high word and low word; also refer to Page 36.

When entering the parameter "Total resolution" the following must still be observed:

If n steps per revolution are selected, then the selected total resolution may not result in the fact that the periods are longer than the maximum available (physical) number of revolutions of the device (refer to the rating plate). For instance, for a multi-turn device with 16384 revolutions, the total resolution must be less than 16384 times the parameterized number of steps per revolution:

Total resolution < measuring steps per revolution x number of revolutions (physical revolutions)

If this is not observed, then the LEDs in the connecting cover display a parameterizing error and the device does not go into cyclic data transfer.

For older versions, when selecting the total resolution, an additional rule had to be observed (refer below). If the total resolution was not selected in compliance with this rule, when using the device on a so-called endless axis/rotary axis, when the physical zero was exceeded, a step was output. For new devices (version A06), this particular problem has been resolved using an internal software routine. This means that the rule, shown below, can be ignored for new devices.

Note

The internal software routine only intervenes if the device is operational. If the encoder shaft is rotated further than 4096 revolutions, and if the device is not connected to the power supply voltage, problems can occur. If this situation can occur in the application itself, the following rule should also be observed for new devices:

The periods, i.e. **total resolution/measuring steps per revolution** must be an integer number. This must fit an integer number of times (integer multiple) in 16384. Thus, the following equation must apply:

(16384 x measuring steps per revolution) / total resolution = integer number

4.3 Data transfer in normal operation

The so-called DDLM_Data_Exchange mode is the normal status when operating the system. When requested to do so, the absolute value encoder sends actual (position) values to the master. On the other hand, the absolute value encoder can also receive cyclic data (e.g. the preset value for Class 2 encoders).

4.3.1 Transferring the process actual value

For multi-turn encoders, the actual position value is transferred to the master as 32-bit value (double word):

Word	Wo	rd 1							
Function	Sta	Status bits							
Bit	31	30	29	28	27	26	25		
	0	0	0	0	0	0	0		

Word	Wo	Word 1							
Function	Sta	tus b	its						
Bit	24	23	22	21	20	19	18	17	16
	Х	Х	Х	Х	Х	Х	Х	Х	Х

Word	Wo	Word 0														
Function	Pro	cess	actu	al va	lue											
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Analog to this, for single-turn encoders data is transferred as 16-bit value (word). For Class 1 and Class 2 no status bits are included. The position value is max. 27 bit.

4.3.2 Preset function

The encoder zero point can be adapted to the mechanical zero of the system using the preset function The rotary encoder actual value is set to the required "preset value" by setting the preset value. The device computes the required zero offset and saves this in an EEPROM so that it is non-volatile (this takes less than 40 ms).

The preset value is activated by setting bit 31 in the (peripheral) output double word (this is transferred with a rising signal edge). The preset value is automatically set after the scaling parameters have been transferred, i.e. the preset value refers to the scaled actual value.

(This procedure is essentially the same for single-turn encoder versions – in this case, bit 15 is used to activate the preset value.)

		Status	Status bits									
	Bit	31	30	29	28	27	26	25				
Master -	→ AWC	1	0	0	0	0	0	0				
$AWC \rightarrow I$	Master	0	0	0	0	0	0	0				
Master -	→ AWC	0	0	0	0	0	0	0				
$AWC \rightarrow I$	Master	0	0	0	0	0	0	0				

Dete

		Da	ita t	oits																						
	Bit	2	2	2	2	2	1	1	1	1	1	1	1	1	1	1	9	8	7	6	5	4	3	2	1	1
		4	3	2	1	0	9	8	7	6	5	4	3	2	1	0										
Master -	Master \rightarrow AWC Required value is transferred (= preset value)																									
$AWC \rightarrow I$	$/C \rightarrow$ Master New = required process actual value is transferred here																									
Master -	laster \rightarrow AWC Reset bit 31 – normal mode																									
$AWC \rightarrow$	Master	aster New = required process actual value is transferred here																								

If high precision is required, the preset mode should only be executed when the encoder shaft is at a standstill. If the shaft moves quickly during this time, offsets can occur, as even when the preset value is set, bus propagation times occur (bus delay times). The preset value has max. 27 bit.

Encoder Classes, Version 2.1 and 2.2

5.1	Parameters	5-35
5.1.1	Activating the manufacturer-specific parameters	
5.1.2	Required measuring steps	5-35
5.1.3	Resolution reference	
5.1.4	Activating the commissioning mode	5-37
5.1.5	Reduced diagnostics	
5.1.6	Software limit switches	
5.1.7	Physical measuring steps	5-39
5.1.8	Absolute value encoder type	
5.1.9	Dimension units of the velocity	
5.2	Data transfer in the normal mode	5-41
5.3	The commissioning mode	5-42
5.3.1	Setting the direction of rotation	5-43
5.3.2	Starting teach-in	5-43
5.3.3	Stopping teach-in	5-44
5.3.4	Preset value	

5.1 Parameters

Using the manufacturer-specific encoder classes, Version 2.1 and Version 2.2, the absolute value encoder offers, in addition to the functions in compliance with the encoder profile, features such as commissioning mode (teach-in mode), velocity output and limit switch.

The transfer of the individual parameters in the parameterizing telegram is listed in the following Table. The following also applies in this case: Generally, users apply the user-friendly input masks (input screen forms) in the configuring tool; the structure of the parameterizing telegram is only of marginal interest in exceptional cases.

Octet (byte)	Parameter	Bit	Details	s ref. to
No.		No.	Sect.	Page
18	Profibus Standard parameters			
9	Direction of rotation	0	4.2.1	29
	Class 2 functionality	1	4.2.2	29
	Commissioning diagnostics	2	4.2.3	29
	Scaling function	3	4.2.4	29
	Reserved	4		
	Reserved	5		
	Activate manufacturer-specific parameters (octet 26)	6	5.1.1	35
	Reserved	7		
10 13	Required measuring steps (ref.: Octet 26 bits 0 and 1)		5.1.2	35
14 17	Total resolution		4.2.6	30
18 25	Reserved			
26	Reference for required measuring steps	0	5.1.3	36
		1	-	
	Activate commissioning mode	2	5.1.4	37
	Reduced diagnostics	3	5.1.5	37
	Reserved	4		
	Activate lower software limit switch	5	5.1.6	38
	Activate upper software limit switch	6	5.1.6	38
	Activate the parameter from octet 27	7	5.1.1	35
27 30	Lower limit switch		5.1.6	38
3134	Upper limit switch		5.1.6	38
35 38	Physical measuring steps		5.1.7	39
39	Reserved	0		
	Absolute value encoder type (single/multi-turn)	1	5.1.8	40
	Reserved	2		
	Reserved	3		
	Selecting the dimension units for velocity output	4	5.1.9	40
		5	1	Ì
	Reserved	6		
	Reserved	7		1

5.1 Parameters

The manufacturer-specific parameters are described in more detail in the following text. The description of the (also supported) parameters according to the encoder profile should be taken from Section 4.

5.1.1 Activating the manufacturer-specific parameters

The manufacturer-specific parameter byte 26 is activated using bit 6 in octet 9.

In turn, the manufacturer-specific bytes 27-39 are activated in byte 26.

When selecting the encoder classes, Version 2.1 or Version 2.2, this is realized automatically. These bits are only of significance if they are directly and manually parameterized in the hexadecimal notation.

Octet 9 bit 6	Octet 26
0	De-activated
1	Activated
Octet 26 bit 7	Octet 27 – 39
0	De-activated
1	Activated

5.1.2 Required measuring steps

The "required measuring steps" parameter is used to program the device so that any number of measuring steps, referred to a revolution, the complete measuring range or any partial measuring range can be covered.

Octet	10	11	12	13					
Bit	31 - 24	23 - 16	15 - 8	7 – 0					
Data	2 ³¹ to 2 ²⁴	2 ²³ to 2 ¹⁶	2 ¹⁵ to 2 ⁸	2^{7} to 2^{0}					
		Required measuring steps							

The parameter "Resolution reference" (refer to 5.1.3) is used to define the reference for the measuring steps entered here. If "per revolution" is selected here as reference for the requested measuring steps, then the measuring range can be adapted using the "Total resolution" parameter. In this case, the rules, listed in Section 4.2.6, should be carefully observed.

Note

For many configuring tools it is necessary to split-up the word into a high word and low word; also refer to Page 56.

5.1 Parameters

5.1.3 Resolution reference

This parameter is used to specify the reference for the "Required measuring steps" (refer to 5.1.2) which is entered:

- revolution
- maximum total resolution
- physical measuring steps

Parameters	Value
🖂 🚖 Station parameters	
🗄 🔄 Device-specific parameters	
Code sequence	Increasing clockwise (0)
— Scaling function control	Enable
 Desired Measuring units (high) 	1
 Desired Measuring units (low) 	4096
 — Physical impulses (high) 	0
 Physical impulses (low) 	4096
 Desired measuring units per 	Revolution 💌
 Total measuring range (high) 	Revolution
— Total measuring range (low)	Maximal total measuring range
— Commissioning mode	Physical impulses
 — Shorter diagnostics (16 bytes) 	No
— Lower limit switch	Disable
 Lower limit switch (high) 	0
 Lower limit switch (low) 	0
- 🗐 Upper limit switch	Disable
-) Upper limit switch (high)	0

Requested resolution per revolution

In this case, the position value is scaled so that the position value increases by the number of required measuring steps at each revolution. In addition, in this particular case, the "Total resolution" parameter is evaluated. This can be used to adapt the measuring range (refer to 4.2.6).

Requested resolution per maximum total resolution

The requested measuring steps which are entered refer to the complete measuring range of the device, i.e. the device outputs the parameterized number of measuring steps over the complete (physical) number of revolutions.

Requested resolution per physical measuring steps

In this case, the required number of steps refers to the physical measuring steps, entered using parameter "Physical measuring steps" (also refer to Section 5.1.7). In this particular case physical steps mean the following: The numerical value which is read from the coding disk internally from the absolute value encoder (e.g. 4096 steps per revolution for the standard 12-bit version). Gearbox factors can be freely set using this option.

Reference	Octet 26 bit 0	Octet 26 bit 1
Per revolution	0	0
Per maximum total resolution	1	0
Per physical measuring steps	0	1
(= steps specified in octet 35-38)		

5.1.4 Activating the commissioning mode

Bit 2 in octet 26 represents a switch for the so-called commissioning mode. The commissioning mode is a specific status of the device which can be used to transfer additional parameters, extending beyond the preset value, to the absolute value encoder. When the commissioning mode has been activated, a so-called "teach-in" can be executed. This means that the gearbox factor can be determined by directly moving the system. In this particular mode (this can be identified at the unit as a result of the flashing green LED), the direction of rotation and scaling, set when configuring the system, are ignored and instead, the values saved in the EEPROM are used.

The device can also be continually operated in the commissioning mode; however, we recommend that the parameters, determined in the commissioning mode, are transferred to the configuring and the device is then subsequently used in the normal mode (this means that it is possible to replace the device without having to carry-out a new teach-in).

A detailed description of the commissioning mode is provided in Section 5.3.

Octet 26 bit 2	Commissioning mode
0	Disabled
1	Enabled

5.1.5 Reduced diagnostics

For some Profibus masters, the full number of diagnostic bytes can result in problems (standard diagnostics: 57 bytes). Especially older masters often cannot process the full number of diagnostic bytes. With SIEMENS absolute value encoders it is possible to reduce the number of diagnostic bytes output from the absolute value encoder to 16. Only 16 diagnostic bytes are output if the "Class 1" device class is selected.

Octet 26 bit 3	Diagnostics
0	Standard = 57 bytes
1	Reduced = 16 bytes

5.1 Parameters

5.1.6 Software limit switches

2 positions can be programmed which when violated (exceeded or fallen below) the absolute value encoder sets bit 27 in the 32-bit process actual value to "1". This bit is set to "0" between the two positions. Both limit switch values can be set as required by appropriately parameterizing them; however the value of the "total resolution" parameter may not be exceeded. The limit switches are activated using bits 5 and 6 in octet 26.

Many configuring tools required that the value is split-up into a high word and low word; also refer to Page 56.

Octet	27	28	29	30	
Bit	31 - 24	23 - 16	15 - 8	7 - 0	
Data	2 ³¹ to 2 ²⁴	2 ²³ to 2 ¹⁶	2 ¹⁵ to 2 ⁸	2^7 to 2^0	
	Lower limit switch in measuring steps (referred to the scaled value)				

Octet	31	32	33	34
Bit	31 - 24	23 - 16	15 - 8	7 - 0
Data	2 ³¹ to 2 ²⁴	2 ²³ to 2 ¹⁶	2 ¹⁵ to 2 ⁸	2 ⁷ to 2 ⁰
	Upper limit switch in measuring steps (referred to the scaled value)			

Properties - DP slave		×
Address / ID Parameter Assignment		
Parameters	Value	
🖃 🔄 Station parameters		
Device-specific parameters		
—≝ Code sequence	Increasing clockwise (0)	
—III Scaling function control	Enable	
—III Desired Measuring units (high)	1	
— Desired Measuring units (low)	4096	
 Physical impulses (high) 	0	
 — Physical impulses (low) 	4096	
— I Desired measuring units per	Revolution	
 Total measuring range (high) 	1	
— I otal measuring range (low)	64064	
 E Commissioning mode 	Disable	
 Booter diagnostics (16 bytes) 	No	
- E Lower limit switch	Disable	
- E Lower limit switch (high)	0	
- E Lower limit switch (low)	0	
— (III) Upper limit switch	Enable	-
- III Upper limit switch (high)	Disable	<u> </u>
	Enable	
ОК	Cancel	Help
<u> </u>		noip

Octet 26 bit 5	Lower limit switch
0	Disabled
1	Enabled

Octet 26 bit 6	Upper limit switch
0	Disabled
1	Enabled

5.1.7 Physical measuring steps

Octet	35	36	37	38
Bit	31 - 24	23 - 16	15 - 8	7 - 0
Data	2 ³¹ to 2 ²⁴	2 ²³ to 2 ¹⁶	2 ¹⁵ to 2 ⁸	2 ⁷ to 2 ⁰
	Physical measuring steps			

The device evaluates this parameter if, the option "Physical measuring steps" is selected as reference for the required measuring steps (refer to 5.1.3).

A gearbox factor can be freely set using the "Physical measuring steps". In this case it is specified as to how many measuring steps ("Required measuring steps") should be output for a specified sub-measuring range. This option is helpful if "uneven" scaling factors are to be entered.

Here is an example:

Problem: The absolute value encoder should output 400 steps over 3 revolutions. This number of steps cannot be set with the reference "Required measuring steps per revolution" (the "Required measuring steps" parameter would have to contain the value 133,333; however, in this case only integer numbers may be entered).

Remedy:

The "Physical measuring steps" is selected as reference for the requested measuring steps.

Using the actual (physical) resolution of the device (rating plate) the number of physical measuring steps is determined over the required measuring range. For an absolute value encoder with 12-bit standard resolution this would be, for example, in this particular case

4096 steps/revolution x 3 revolutions = 12288 steps

This value is now entered as "Physical measuring steps" parameter; the actually required step number of 400 is entered under "Required measuring steps". The absolute value encoder now outputs 400 steps over a measuring range of 12288 physical steps (i.e. over 3 revolutions).

Note

Many configuring tools require that the value is split-up into a high word and low word; also refer to Page 57.

5.1 Parameters

5.1.8 Absolute value encoder type

The type of the absolute value encoder (single or multi-turn) is defined in bit 1 of octet 39. When the encoder class is selected this is realized automatically. The user must only observe these parameters if the parameterization is done directly in the hexadecimal code.

Octet 39 bit 1	Туре
0	Single-turn
1	Multi-turn

5.1.9 Dimension units of the velocity

The units in which the velocity is output (Version 2.2) is set using this parameter. This basis is saved in bit 4 and 5 of the octet 39.

Units	Bit 4	Bit 5
Steps/second	0	0
Steps/100 ms	1	0
Steps/10 ms	0	1
Revolutions/minute	1	1

5.2 Data transfer in the normal mode

For manufacturer-specific encoder classes, Version 2.1 and Version 2.2 the process actual value is generally transferred as 32-bit value (double word). In addition to 25 bits, which are provided for the position value, 7 additional bits are used as status bits. The master sends the preset value and additional control bits to the absolute value encoder in the (peripheral) output double word.

For a device class, Version 2.2, the actual velocity is transferred in an additional (peripheral) input word:

ID	F1 hex			D0 hex		
$AWC \to Master$	Status + position actual value			Velocity		
	Status + 2^{24} 2^{23} - 2^{16} 2^{15} - 2^{8} 2^{7} - 2^{0}				2 ¹⁵ - 2 ⁸	$2^7 - 2^0$

Master \rightarrow AWC	Preset value + control bits			
	Control + 2 ²⁴	2 ²³ - 2 ¹⁶	2 ¹⁵ - 2 ⁸	$2^7 - 2^0$

The status bits in the input double word have the following significance:

Bit 28	Bit 27	Bit 26	Bit 25	Significance
DICLO	Dit	Dit Lo	Dit 20	Ready
				2
				0 = absolute value encoder not ready
				1 = absolute value encoder ready
				Operating mode
				0 = commissioning mode
				1 = normal mode
				Software limit switch
				0 = lower limit switch \leq actual value \leq upper limit
				switch
				1 = actual value > upper limit switch or actual value <
				lower limit switch
				Direction of rotation
				0 = increasing in the clockwise rotation (when viewing

the shaft) 1 = increasing in the counter-clockwise rotation (when viewing the shaft)

5.3 The commissioning mode

If the absolute value encoder is switched into the commissioning mode using the appropriate parameterization, then gearbox factors can be directly determined in the system using a so-called "teach-in".

The absolute value encoder signals when it is in the commissioning mode by the flashing green LED in the connecting cover and using bit 26 in the input double word (this is set to 0).

In the commissioning mode, the parameters, set in the configuring (direction of rotation, scaling) are ignored and instead the values, saved in the internal EEPROM, are used. If the direction of rotation and gearbox factor are changed in the commissioning mode, then the new values are saved in the EEPROM and the device operates with these values.

The principle mode of operation in the commissioning mode is as follows:

- The device is installed in the system.
- The commissioning mode is switched-in using the appropriate parameterization (refer to 5.14).
- If required, the direction of rotation is modified.
- The system is moved into the initial position.
- The start command for the teach-in is transferred to the absolute value encoder.
- The system is moved to the end position.
- The required step number is transferred to the absolute value encoder with the teach-in stop command.
- The preset value is set.
- The values, determined in the teach-in phase are transferred into the configuring (parameter).
- The commissioning mode is switched-out in the parameterization.

5.3.1 Setting the direction of rotation

In the commissioning mode, the direction of rotation in which the output code increases, can be changed online. The actual direction of rotation is displayed using bit 28 in the input double word (0: increasing/1: decreasing in the clockwise direction of rotation). The direction of rotation can be reversed using bit 28 in the output double word.

		St	atus	s bi	ts				Data bits				
	Bit	31	30	29	28	27	26	æ	24 22 21 20 16 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	0			
Master $\rightarrow A$	AMC	0	0	0	1	0	0	0	The direction of rotation is changed via bit 28				
$AWC \rightarrow Ma$	aster	0	0	0	0/1	0	0	1	Absolute value encoder acknowledged in bit 0 and bit 28 with a new direction of rotation 01				
Master $\rightarrow A$	AMC	0	0	0	0	0	0	0	The changeover operation is completed by resetting bit 28				
$AWC \rightarrow Ma$	aster	0	0	0	0/1	Х	0	1	The process actual value is output with a modified direction of rotation				

The direction of rotation which is set is saved in a non-volatile fashion in the EEPROM.

5.3.2 Starting teach-in

After the system has been moved to the beginning of the measuring range, the teach-in start command is transferred to the absolute value encoder. The device now internally starts the measuring to determine the gearbox factor.

		Sta	atus	bit	s				Data	Data bits																						
	Bit	31	30	29	28	27	26	25	24 23	22	21	20	19	18	17	16	15	14	13	12	11	1C	9	8	7	6	5	4	3	2	1	0
Master \rightarrow	AWC	0	1	0	0	0	0	0	Teac	Teach-in is started by setting bit 30																						
$AWC \rightarrow M$	aster	0	1	0	Х	Х	0	1	The a	The absolute value encoder acknowledges the start of teach-in by setting bit 30																						
Master \rightarrow	AWC	0	0	0	0	0	0	0	Bit 30) is ı	rese	t																				
$AWC \rightarrow M$	aster	0	1	0	Х	Х	0	1		The non-processed actual value is output (gearbox factor = 1, preset is not active)																						

Note

The gearbox factor is internally set to 1 and the zero offset is deleted.

5.3.3 Stopping teach-in

After the system has been moved over the measuring range using the teach-in stop command, the step number, required over the traversing measured distance is transferred. In this case it must be ensured that the physical resolution is not exceeded (e.g. 3000 steps for quarter of a revolution). Positive and negative directions of rotation and if the zero is possibly exceeded, are automatically taken into account. The measuring distance moved through may not exceed 2047 revolutions.

The absolute value encoder transfers the total resolution, calculated by the device, as response to the teach-in stop command. This value should be documented and used later in the configuring/parameterization for normal operation of the system.

After this procedure has been completed, the device operates with the new scaling factor which has just been determined. This is then saved in the EEPROM in a non-volatile fashion.

		Sta	atus	bit	S				Data b	Data bits																					
	Bit	31	30	29	28	27	26	25	24 23	22 2	21 20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Master $\rightarrow A$	AWC	0	0	1	0	0	0	0	Numb	lumber of required steps over the measuring distance moved through																					
$AWC \rightarrow M$	aster	0	1	1	Х	Х	0	1		The complete resolution f. new gearbox factor is transferred (this should be locumented)																					
Master $\rightarrow A$	AWC	0	0	0	0	0	0	0	Bit 29	is re	set																				
$AWC \rightarrow M$	aster	0	0	0	Х	Х	0	1	Outpu	t of t	he a	ctua	l va	lue	incl	udi	ng	the	gea	rbc	ox fa	acto	or								

In order that the encoder can be subsequently replaced without requiring a new teach-in procedure, the total resolution, determined by the encoder, should be transferred into the configuring. This is realized by entering the complete resolution, determined in the teach-in phase (and documented) into the parameter field "Required measuring steps" (refer to 5.1.2). The "Resolution reference" switch is then set to "Maximum total resolution" (refer to 5.1.3). For the new configuration it must be ensured that the direction of rotation (refer to 4.2.1) is correctly entered – the setting in the commissioning mode must also be taken into account in the parameterization. The commissioning mode can then be disabled via the parameterization and the rotary encoder is now used in the "normal mode".

5.3.4 Preset value

The preset value is set in essentially the same way as the procedure described in 4.3.2. The only difference: For the manufacturer-specific classes, Version 2.1 and Version 2.2, when the preset value is set, this is acknowledged using a status bit:

		Sta	atus	s bi	ts				Data bits					
	Bit	31	30	29	28	27	26	25	24 23 22 21 2C 19 1E 17 1E 15 14 13 12 11 1C 9 8 7 E 5 4 3 2 1 0					
Master $\rightarrow A$	WC	1	0	0	0	0	0	0	ne required value is transferred (= preset value)					
$AWC \rightarrow Ma$	aster	1	0	0	0	0	0	1	ew = required process actual value is transferred					
Master $\rightarrow A$	WC	0	0	0	0	0	0	0	it 31 is reset – normal mode					
$AWC \rightarrow Ma$	aster	0	0	0	0	0	0	1	ew = required process actual value is transferred					

6

Diagnostic Messages

6.1	Overview	6-46
6.2	Diagnostic messages which are supported	
6.2.1	Expanded diagnostics header	
6.2.2	Memory errors	
6.2.3	Operating state	6-47
6.2.4	Encoder type	6-47
6.2.5	Single-turn resolution	6-47
6.2.6	Number of revolutions	6-48
6.2.7	Operating time alarm	6-48
6.2.8	Profile version	6-48
6.2.9	Software version	6-48
6.2.10	Operating time	6-48
6.2.11	Zero offset	6-48
6.2.12	Parameterized resolution per revolution	6-48
6.2.13	Parameterized total resolution	
6.2.14	Serial number	6-49
6.3	Status signals using LEDs in the connecting cover	6-50

6.1 Overview

When requested by the master, in the DDLM_Slave_Diag mode, a series of data is transferred. There are 57 pieces of diagnostics data. Exception: Reduced diagnostics (refer to 5.1.5). The diagnostics data are output according to the Profibus Standard (octet 1-6) and the encoder profile rules (from octet 7).

Diagnostics function	Data type	Diagnostics octet no.	Encoder class
Station status 1 (ref. to: Profibus Standard)	Octet	1	1
Station status 2 (ref. to: Profibus Standard)	Octet	2	1
Station status 3 (ref. to: Profibus Standard)	Octet	3	1
Diagnostics Master Add	Octet	4	1
PNO identification number	Octet	5,6	1
Extended diagnostics header	Octet String	7	1
Alarm messages	Octet String	8	1
Operating status	Octet String	9	1
Encoder type	Octet String	10	1
Resolution per revolution (hardware)	unsigned 32	11 - 14	1
Number of revolutions (hardware)	unsigned 32	15, 16	1
Additional alarm messages	Octet String	17	2
Supported alarm messages	Octet String	18, 19	2
Alarm messages	Octet String	20, 21	2
Supported alarms	Octet String	22, 23	2
Profile version	Octet String	24, 25	2
Software version	Octet String	26, 27	2
Operating time	Unsigned 32	28 - 31	2
Zero offset	Unsigned 32	32 - 35	2
Manufacturer-specific: Offset value	Unsigned 32	36 - 39	2
Parameterized resolution per revolution	Unsigned 32	40 - 43	2
Parameterized total resolution	Unsigned 32	44 - 47	2
Serial number	ASCII String	48 - 57	2

6.2 Diagnostic messages which are supported

The implemented diagnostics messages are described in more detail below.

6.2.1 Expanded diagnostics header

The length of the extended diagnostic bytes, including diagnostics header, is contained in diagnostics byte 7.

6.2.2 Memory errors

Bit 4 in diagnostics byte 8 is used to display whether a memory error has occurred. Memory errors means in this case, that the angular encoder EEPROM no longer functions correctly and the preset value is no longer saved so that it is kept during power outages (non-volatile data save).

Bit	Definition	0	1
4	Memory error (defect in the EEPROM)	No	Yes

6.2.3 Operating state

The operating parameters which are set can be interrogated using diagnostics byte 9.

Bit	Definition	0	1
0	Direction of rotation	CW	CCW
1	Class 2 functionality	Off	On
2	Diagnostic routine	Off	On
3	Scaling function	Off	On

6.2.4 Encoder type

The angular encoder version can be interrogated using diagnostics byte 10.

Byte 10	Definition
0	Single-turn angular encoder
1	Multi-turn angular encoder

6.2.5 Single-turn resolution

The hardware resolution per revolution of the angular encoder can be interrogated via diagnostic bytes 11-14.

6.2.6 Number of revolutions

The number of revolutions of the angular encoder which can be differentiated between on the hardware side, can be interrogated using diagnostic bytes 15 and 16. The two standard values are 1 for single-turn and/or 16384 for multi-turn.

6.2.7 Operating time alarm

The alarm signal when the operating time is exceeded, is output in bit 4 of diagnostic byte 20. This bit is set after 10^5 hours.

6.2.8 Profile version

The profile version of the angular encoder is saved in diagnostic bytes 24 and 25:

Byte	24	25
Bit	15 - 8	7 - 0
Data	2 ⁷ to 2 ⁰	2 ⁷ to 2 ⁰
	Service No.	Index

6.2.9 Software version

The software version of the angular encoder is saved in diagnostic bytes 26 and 27.

Octet	26	27
Bit	15 - 8	7 - 0
Data	2 ⁷ to 2 ⁰	2 ⁷ to 2 ⁰
	Service No.	Index

6.2.10 Operating time

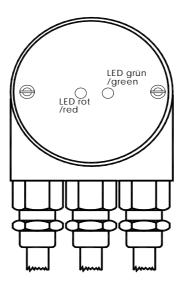
The angular encoder operating time is kept in diagnostic bytes 28 to 31. When the power supply voltage is connected, the operating time is saved every six minutes in 0.1h steps in the angular encoder.

6.2.11 Zero offset

The zero offset is output in diagnostic bytes 32 to 35.

6.2.12 Parameterized resolution per revolution

The parameterized resolution per revolution is saved in diagnostic bytes 40 to 43. This value is only valid, if the gearbox factor was calculated in the parameter mask using the setting "Resolution per revolution" (refer to 5.1.3).


6.2.13 Parameterized total resolution

The parameterized and calculated total resolution can be read-out of diagnostic bytes 44-47.

6.2.14 Serial number

Diagnostic bytes 48 - 57 are provided for a serial number. This signal has presently not been implemented. The bytes are pre-assigned hex 2A (default value).

6.3 Status signals using LEDs in the connecting cover

The connecting cover has two LEDs, which optically represent the status of the bus at the angular encoder. This red LED is used to display errors and the green LED is used to display the status of the angular encoder. Each LED can have one of three conditions: dark, bright, flashing. From the nine combination possibilities, six are used to display various conditions.

If problems occur when commissioning the device, then initially the status of the LEDs should be checked; these can often provide important information regarding the possible cause of the fault.

No.	Red LED	Green LED	Status signal/possible cause
1	Dark	Dark	Power supply missing
2	Bright	Bright	Absolute value encoder is ready, but after the power was connected, it still had not received configuration data. Possible causes: Address incorrectly set, bus cables incorrectly connected
3	Bright	Flashing	Parameterizing or configuring error i.e. the encoder receives configuring or parameterizing data with the incorrect length or inconsistent data. Possible cause: for example, the total resolution has been set too high
4	Flashing	Bright	Encoder ready, but is not addressed from the master (for example an incorrect address was addressed)
5	Bright	Dark	Encoder doesn't receive data for a longer period of time (approx. 40 sec) (for example, the data line has been interrupted)
6	Dark	Bright	Standard operation in the Data Exchange mode
7	Dark	Flashing	Commissioning mode in the Data Exchange mode

7

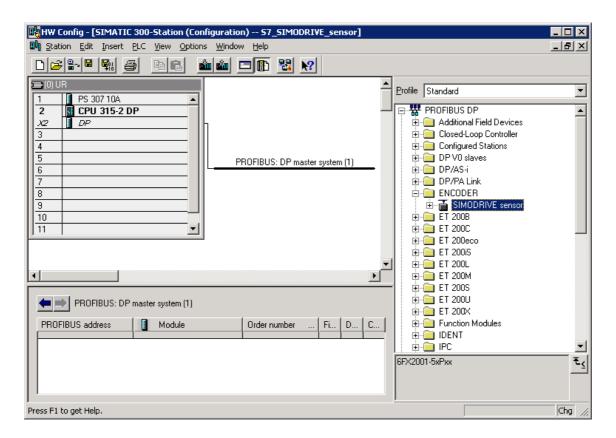
Configuration Example STEP 7

7.1	Reading-in the GSD files	.7-52
7.2	Configuring the absolute value encoder	.7-53
7.3	Selecting the device class	.7-54
7.4	Parameterization	.7-55

7.1 Reading-in the GSD files

7.1 Reading-in the GSD files

When used for the first time, the GSD file ("SIEM0024.gsd") must be installed in order to include the absolute value encoder in the hardware Catalog. To do this, the "Install new GSD .." item should be selected in the "HW Config" window of the SIMATIC Manager under the menu item "Options". The appropriate GSD file ("SIEM0024.gsd" or the German Version "SIEM0024.gsg") should be selected.


The GSD file can be obtained from SIEMENS.

۵ĥ	HW Co	onfig	- SIMA	TIC 3	00-Sta	ation			
Sta	ation	Edit	Insert	PLC	View	Options	Window	Help	
	ש נ	8~	G (G)	6		Custor	mize		Ctrl+Alt+E
Ē	U SIM	ATT	. 300-5	tation	ı (Loni	Specif	y Module		
	= (0)	UR				Config	jure Netwo	ork	ĺ
Ш	1		PS 307	10A			ol Table		Ctrl+Alt+T
Ш	2		CPU 3	15-2	DP	Repor	t System E	irror	
Ш	<u>X2</u>		DP			Edit C	atalog Prof	file	
	3	_				Updat	e Catalog		
Ш	4 5	+				Techall	New GSD.		
	<u> 5</u> 6	+					t Station G		·
	<u> </u>					mpon	. Juadion G	50	

After the GSD file has been read-in, the absolute value encoder appears in the hardware Catalog under "PROFIBUS-DP" - "Other field devices" - "Encoder" - "SIMODRIVE sensor".

For more recent versions of the "SIMATIC Manager" the sensor is already included in the hardware Catalog.

7.2 Configuring the absolute value encoder

After the Profibus network has been configured in the hardware configurator under the menu item "Insert" – "Master system" the absolute value encoder can be selected from the hardware Catalog and inserted in the network. To do this, the "SIMODRIVE sensor" device is coupled to the bus by dragging & dropping it (or by double clicking on the module with the bus selected).

After the device has been inserted, the node address of the slave device is entered. This must match the address set in the connecting cover.

Properties - PROFIBUS interface SIMODRIVE sensor	×
General Parameters	,
Address: 2	
Transmission rate: 1.5 Mbps	
Subnet	
not networked PROFIBUS 1.5 Mbps	<u>N</u> ew
	Properties
	Dejete
OK	rechen Hilfe

7.3 Selecting the device class

7.3 Selecting the device class

As described in Section 3, the functionality of the device depends on the selected encoder class. After the device, as described, was inserted in the Profibus network, the required device class can now be selected. In this case, one of the modules, listed in the hardware Catalog under "SIMODRIVE sensor" can be dragged&dropped at slot 1 (Table in the lower section of the station [node] window:

Image:	HW Config - [SIMATIC 300-Station (Configuration) 57_SIMODRIVE_sensor]	_ 🗆 🗙
Image: Construction of the image: Constructi	IN Station Edit Insert PLC View Options Window Help	_ B ×
1 PS 307 10A 2 CPU 315-2 DP 3 Closed-Loop Controller 3 Configured Stations 4 DP V0 slaves 5 DP V0 slaves 9 DP V0 slaves 9 DP V0 slaves 9 DP V0 slaves 10 SIMODRIVE sensor 11 Image: Simode stations 10 Image: Simode stations 10 Image: Simode stations 10 Image: Simode stations 11 Image: Simode stations 11 Image: Simode stations 11 Image: Simode stations 12 Image: Simode stations 13 Image: Simode stations 14 Image: Simode stations 15 Simode stations 16 Simode stations 17 Image: Simode stations 18 Image: Simode stations 19 Image: Simode stations 10 Image: Simode stations 11 Image: Simode stations 12 Image: Simode stationstationstations 10 <td></td> <td></td>		
Class 2 Multitum Version 1.0 Multitum Version 2.0 Multitum Version 2.1 Singletum Version 2.1 Singletum Version 2.1 Singletum Version 2.2 Singletum Version 2.2 Singletum Version 2.2 Multitum Ver	1 PS 307 10A 2 SCPU 315-2 DP X2 DP 3 4 5 6 6 7 7 8 9 10	Additional Field Devices Closed-Loop Controller Configured Stations DP V0 slaves DP/AS-i DP/PA Link Close SIMODRIVE sensor Class 1 Singleturn Class 1 Singleturn Class 1 Multiturn
Press F1 to get Help. Chg	(2) SIMDDRIVE sensor Slot Module / Order number I Address Q Address Comm 1 2 	Class 2 Multiturn Version 1.0 Multiturn Version 1.1 Multiturn Version 2.0 Multiturn Version 2.1 Singleturn Version 2.1 Multiturn Version 2.2 Singleturn

7.4 Parameterization

Select the absolute value encoder to be parameterized in the configuring and then double click on slot 1 (Table in the lower area of the station [node] window). The dialog box "Properties DP slave" is displayed. The default addresses (if required) of the device can be changed here.

The "Parameterizing" tab should be selected to enter parameters.

roperties - D	P slave							X
Address / ID	Parameter A	ssignment						
I/O Type:	[Out- input	Y				Direct Entry	ıl
Output								
Start:	Addr <u>e</u> ss: 260	Length:	Unit: Words	Ŧ	Consistent o			
End:	263		'	_	,	_		
Process in	hage partition:			7				
Input								
Start:	Address: 262	Length: 2 🔆	Uni <u>t:</u> Words	Ŧ	Consistent o			
End:	265							
Process in	nage partition			~				
	ecific <u>M</u> anufac							
(Maximum 1)	4 bytes hexadi	ecimal, sepa	rated by comm	na or bla	nk space)			
OK						Cancel	Help	

The parameters of the device are now entered here. After the "Device-specific parameter" folder has been selected, then, depending on the encoder class which has been selected, different parameters can be entered. If there are several possibilities in the fields located to the right, then an additional selection window opens with a double click. On the other hand, numerical values are directly entered. The example indicates the parameter selection for Version 2.2 – the device class with the highest functionality.

7.4 Parameterization

Parameters	Value
🖕 🔄 Device-specific parameters	
—🖺 Code sequence	Increasing clockwise (0)
— Scaling function control	Increasing clockwise (0)
—🗐 Desired Measuring units (high)	Increasing counter clockwise (1)
—🗐 Desired Measuring units (low)	4096
— 🗐 Physical impulses (high)	0
– Physical impulses (low)	4096
— Desired measuring units per	Revolution
—🗐 Total measuring range (high)	256
—🗐 Total measuring range (low)	0
— Commissioning mode	Disable
— Shorter diagnostics (16 bytes)	No
–≝ Lower limit switch	Disable
– Lower limit switch (high)	0
—🗐 Lower limit switch (low)	0
— 📺 Upper limit switch	Disable
—🗐 Upper limit switch (high)	0
└────────────────────────────────────	32767

As a result of the STEP 7 configuring software, 32-bit parameter values (e.g. total resolution, limit switch, etc.) are split-up into high and low words.

Example:

Decimal	Hexadecimal		Hexadecimal	Decimal
129600	<u>00 01 FA 40</u>	High word:	00 01	1
		Low Word:	FA 40	64 064

Decimal value "1" is now entered in the high field and decimal value "64 064" in the low field.

Or:

Divide the value by 65536 – enter the integer part of the result into the high word and the remainder into the low word:

129600 / 65536 = 1.977539	\rightarrow	integer part = 1	\rightarrow	high word: 1
129600 – 1 x 65536 = 64064	\rightarrow	remainder = 64064	\rightarrow	low word = 64064

The data can also be directly entered in the hexadecimal format. However, this is significantly more complex; if possible this alternative should not be used.

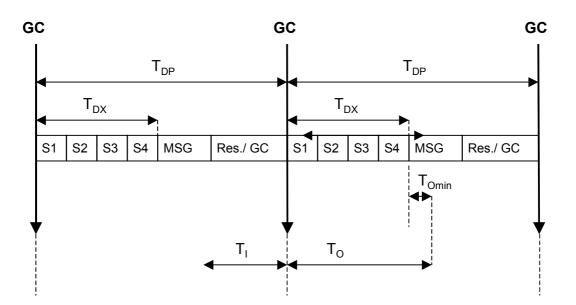
00,4A,00,01,10,00,00,01 FA,40,00,00,00,00,00
FA,40,00,00,00,00,00,00
00,00,80,00,00,00,00,00
00,7F,FF,00,00,10,00,02

7.4 Parameterization

Space for your notes

8

DPV2 Functionality – General Information


8.1	Isochronous operation	8-61
8.2	Slave-to-slave communication	8-62

8.1 Isochronous operation

The latest generation of SIEMENS Profibus absolute value encoders supports the new Profibus functionality – isochronous operation and slave-to-slave communications.

8.1 Isochronous operation

Isochronous communication (equidistance) forms the basis for synchronizing several drives. In this case, Profibus slaves are synchronized to a cyclic clock cycle signal (GC) sent by the master as "Global-Control-Command". The instants in time where the actual value is sensed (T_1) and the setpoint transfer (T_0) within the bus cycle (T_{DP}) can be selected in the configured software. This means that the position values of several axes can be simultaneously sensed to a precision of just microseconds.

8.2 Slave-to-slave communication

8.2 Slave-to-slave communication

The slave-to-slave communication function allows Profibus slave devices to "listen to" the actual values of other slaves and use these as setpoints. A slave device, which provides its actual values to other slaves is called a "Publisher". Devices which listen to the actual values of other slaves are called "Subscribers". A master must initiate slave-to-slave communications and this can be realized within one DP cycle.

07/05

9

Data Transfer Isochronous Operation

9.1	Run-up	9-65
9.1.1	Slave parameterization, configuration	9-65
9.1.2	Synchronizing to the clock cycle Global Control	9-65
9.1.3	Synchronizing the slave application to the master sign-of-life	9-65
9.1.4	Synchronizing the master application to the slave sign-of-life character	9-66
9.1.5	Cyclic operation	9-66
9.2	Telegram type 81	9-67

9.1 Run-up

The absolute value encoder must be operated with the GSD file "SIEM80F9.GSD" in order to be able to use the new functionality. If the device was previously used with another GSD file, then the operating voltage must initially be withdrawn and then it must be switched-in again. An example in Section 13 explains how the device should be configured.

9.1 Run-up

The device runs-up to cyclic operation in several phases:

9.1.1 Slave parameterization, configuration

Parameter and configuration data are transferred from the master to the slave. The parameter structure and possibilities of assigning parameters (parameterization) are described in more detail in Section 10.

Telegram type 81 (according to the PROFIdrive profile) is the only configuration possible. Telegram 81 is described in detail in Section 9.2.

Telegram type	Output data	Input data	ID (specific ID format)
81	2 words	6 words	0xC3,0xC1,0xC5,0xFD,0x00,0x51

9.1.2 Synchronizing to the clock cycle Global Control

As soon as the slave application detects the "Operate" state and receives valid Data_Exchange telegrams, synchronization to the clock cycle Global Control is started. Initially, a bus cycle time of T_{DP} (from the parameterization, refer to 10.3.2) is assumed and the tolerance window width is a multiple of the parameterized time T_{PLL_W} (refer to 10.3.8). During the synchronization phase, the bus cycle T_{DP} is adapted to the real bus cycle and the tolerance window is decreased down to the parameterized window width T_{PLL_W} (refer to 10.3.8).

The slave application starts with the clock cycle monitoring after synchronization has been completed. More detailed information on this can be taken from the PROFIdrive profile.

If the maximum permissible number of clock cycle failures is exceeded, the error bit is set in the status word, the appropriate error code (refer to 12.3) is output and the slave application re-attempts to synchronize itself.

9.1.3 Synchronizing the slave application to the master sign-of-life

After having successfully synchronized to the clock cycle Global Control, the slave application attempts to synchronize itself to the master sign-of-life. It expects that the master sign-of-life character counter increments itself at each cycle of the master application. The cycle time of the master application must be transferred via the parameter T_{MAPC} (refer to 10.3.3). Synchronization can start at any value of the master sign-of-life. If the value range of the master sign-of-life character was run-through once error-free, then the synchronization phase is considered to have been completed and the monitoring of the master sign-of-life character starts. More detailed information on this subject can be taken from the PROFIdrive profile.

If a "Sign-of-life error" occurs, the error bit is set in the status word, the appropriate fault code is output and the slave application re-attempts to re-synchronize itself.

9.1.4 Synchronizing the master application to the slave sign-of-life character

After the slave application has been successfully synchronized to the master sign-of-life character, the slave sign-of-life character is set to a value not equal to 0 and incremented with each bus cycle. This means that the master application can now synchronize to the slave sign-of-life character.

9.1.5 Cyclic operation

In the cyclic mode, the slave application monitors the sign-of-life character of the master application. When the sign-of-life character fails, the slave application automatically tries to re-synchronize itself. As long as the master sign-of-life character is available error-free, the slave sign-of-life character is incremented in each bus cycle and can be monitored by the master application.

9.2 Telegram type 81

Telegram type 81 (based on the Profidrive profile) is transferred in cyclic data transfer:

Output data (master to the absolute value encoder)

2 x 16 bits (consistent)

STW2 G1_STW1

Input data (absolute value encoder to the master)

2 x 16 bits + 2 x 32 bits (consistent)

ZSW2 G1_ZSW1 G1_XIST1 G1_XIST2

STW2 (16 bits): Master sign-of-life character

4-bit counter, left justified. The master application starts the master sign-of-life character at any value between 1 and 15. The master increments the counter in each master application cycle. The value range extends from 1 to 15; a value of "0" indicates a fault and is skipped in fault/error-free operation.

 X
 X
 X
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

ZSW2 (16 bits): Slave sign-of-life character

4-bit counter, left justified. The slave application starts the slave sign-of-life character at any value between 1 and 15 after it has been successfully synchronized to the clock cycle. The slave increments the counter in each DP cycle. The value range extends between 1 - 15, a value of "0" indicates a fault and is skipped in fault/error-free operation.

 X
 X
 X
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

9.2 Telegram type 81

Bit	Value	Significance	Description
0 10			Reserved, presently it is not used
11	0/1	"Home position mode"	Specifies whether the actual value is set to an absolute value or is to be shifted by a specific value. 0: set home position (absolute) 1: shift home position
12	1	Set preset/request shift	The preset value is set (or the value shifted) with the rising edge. Default (preset value, shift): 0
13	1	Request transfer, actual value 2	Requests that the actual value is additionally transferred in G1_XIST2. The additional actual value is generally transferred in the current version.
14	1	"Park encoder"	If this bit is set, then the encoder does not output any error messages.
15	1	Acknowledge encoder error	Acknowledges/resets an encoder error.

G1_STW1 (16 bits): Encoder control word

G1_ZSW1 (16 bits): Encoder status word

Bit	Value	Significance	Description
0			Reserved, presently it is not used
 10			
11		Acknowledges encoder error being processed	This bit is set if it takes longer than one bus cycle to reset an error after acknowledgement.
12	1	Acknowledgement, set preset/shift value	
13	1	Acknowledgement, transfer actual value 2	The actual value is additionally transferred in G1_XIST2
14	1	Acknowledgement "Park encoder"	Acknowledgement "Park encoder": The encoder does not output any error messages.
15	1	Encoder fault	This indicates an encoder fault. The fault code is output in G1_XIST2.

G1_XIST1 (32 bits): Actual value (position)

The absolute position value is output in G1_XIST1. The output is realized left justified. The "Shift factor" (number of bits through which the position value is shifted) can be read-out using parameter P979 (non-cyclic).

G1_XIST2 (32 bits): Actual value 2/error codes

An additional actual value (right justified) is transferred in G2_XIST2. A possible shift can be read-out using the non-cyclic parameter P979. When a fault situation occurs, fault codes are output depending on the encoder control word.

10

Parameterizing Isochronous Operation

10.1	Parameter – overview	10-71
10.2 10.2.1 10.2.2 10.2.3 10.2.4	Device-specific parameters Direction of rotation Scaling/preset/counting direction Measuring steps per revolution Total resolution	
10.2.5	Maximum master sign-of-life character failures	
10.3 10.3.1 10.3.2 10.3.3	Isochronous parameters T _{BASE_DP} T _{DP} T _{MAPC}	
10.3.4	T _{BASE_IO} T _I	
10.3.6 10.3.7	T _o T _{DX}	
10.3.8	T _{PLL W}	
10.3.9	T _{PLL_D}	
10.4	Slave-to-slave communication	10-76

The parameters which can be set and the various engineering/configuring possibilities are now described in the following.

10.1 Parameter – overview

The parameter data are transferred in the parameterizing telegram as so-called "Structured_Prm_Data" blocks:

Byte No.	Parameter	Data type	Details
1-7	Profibus Standard parameters		Refer to the Profibus Standard
8-10	DPV1 bytes		
11-14	Block header, user parameters	4 x unsigned8	
15 Bit 0	Direction of rotation	Bit	10.2.1
15 Bit 1	Scaling/preset/activate direction of rotation	Bit	10.2.2
15 Bit 3	Scaling function	Bit	10.2.2
15 Bit 2, 4- 7	Reserved		Presently not used
16 - 19	Measuring steps/revolution	Unsigned32	10.2.3
20 - 23	Total resolution	Unsigned32	10.2.4
24	Maximum failures, master sign-of-life character	Unsigned8	10.2.5
25 - 31	Reserved		Presently unused
32 - 35	Block header, isochronous parameters	4 x Unsigned8	
36	Version	Unsigned8	
37 – 40	T _{BASE_DP}	Unsigned32	10.3.1
41 - 42	T _{DP}	Unsigned16	10.3.1
43	T _{MAPC}	Unsigned8	10.3.3
44 - 47	T _{BASE_IO}	Unsigned32	10.3.4
48 – 49	T	Unsigned16	10.3.5
50 – 51	To	Unsigned16	10.3.6
52 - 55	T _{DX}	Unsigned32	10.3.7
56 - 57	T _{PLL_W}	Unsigned16	10.3.8
58 - 59	T _{PLL D}	Unsigned16	10.3.9

10.2

Device-specific parameters

The following device-specific parameters can be set to adapt the absolute value encoder to the particular application:

10.2.1 Direction of rotation

The direction of rotation defines the direction in which the counter of the output of the process actual value counts when the shaft rotates clockwise (CW) or counter-clockwise (CCW) when viewing the shaft. The count direction is defined by bit 0 in byte 15:

Octet 15 bit 0	Direction of rotation when viewing the shaft	Output code
0	Clockwise (CW)	Increasing
1	Counter-clockwise (CCW)	Increasing

10.2.2 Scaling/preset/counting direction

Using this switch, for the absolute value encoder, the scaling, preset and direction of rotation change functions can be either enabled or disabled.

This switch is important if the device is to be operated with the minimum time T_1 of 125 µs. This is only possible if scaling, preset and direction of rotation selection are disabled. In this particular case, the encoder rejects all data that is transferred using the parameters "direction of rotation", measuring steps per revolution" and "total resolution" and instead uses the following default settings:

Direction of rotation:	increasing in the clockwise sense
Measuring steps per revolution:	8192
Total resolution:	33554432

If this functionality "scaling, preset and direction of rotation" is enabled, then the following must be carefully observed:

 T_1 must be a minimum of 375 µs.

The time which elapses between the setpoint being accepted (T_0) up to the actual value latch (T_1) must be a minimum of 375 µs.

Octet 15 bit 1	Scaling/preset/direction of rotation change
0	Disabled
1	Enabled

In order that scaling can be executed, bit 3 must be additionally set in octet 15 (default setting):

Octet 15 bit 3	Scaling function
0	Disabled
1	Enabled

10.2.3 Measuring steps per revolution

The 'Measuring steps per revolution' parameter is used to assign the absolute value encoder the required number of steps referred to 1 revolution.

If the parameter value exceeds the actual (physical) basic resolution of the encoder, then the output value is no longer in single steps. In this particular case, a parameter error indicates that the device does not go into the cyclic data transfer mode.

Octet	16	17	18	19
Bit	31 - 24	23 - 16	15 - 8	7 - 0
Data	2 ³¹ to 2 ²⁴	2 ²³ to 2 ¹⁶	2 ¹⁵ to 2 ⁸	2 ⁷ to 2 ⁰
		Required measuring steps per revolution		

10.2.4 Total resolution

Octet	20	21	22	23
Bit	31 - 24	23 - 16	15 - 8	7 - 0
Data	2 ³¹ to 2 ²⁴	2 ²³ to 2 ¹⁶	2 ¹⁵ to 2 ⁸	2 ⁷ to 2 ⁰
	Selected total resolution in measuring steps			

The user can adapt the measuring range of the device using the 'Total resolution' parameter: The absolute value encoder counts up to the parameterized total resolution and then re-starts at 0.

Example: 100 steps are selected for each revolution, the total resolution is 12800 and then the absolute value encoder restarts after 128 revolutions and then counts again up to 11799.

For many configuring tools it is necessary to split-up the value into a high word and low word (refer to the User Manual). The following should be carefully observed when entering the parameter "Total resolution":

If n steps per revolution were selected then the selected total resolution may no longer result in the fact that the periods are longer than the maximum number of revolution of the device which are available (physically) (refer to the rating plate). This means, for a multi-turn device with 16384 revolutions, the total resolution must be less than 16384 x the parameterized number of steps per revolution:

Total resolution < measuring steps per revolution x number of revolutions (physical)

If this is not observed, the device outputs a parameter error and does not go into the cyclic data transfer mode.

10.2.5 Maximum master sign-of-life character failures

The maximum permissible number of master sign-of-life character failures can be parameterized in parameter byte 24. Default: 1.

10.3 Isochronous parameters

10.3 Isochronous parameters

Some of the isochronous parameters are set by the user and others by the configuring tool. The individual parameters are briefly described below:

10.3.1 T_{BASE_DP}

Timebase of the DP cycle time T_{DP} . Units: 1/12 µs Set to 125 µs using the GSD file.

10.3.2 T_{DP}

DP cycle time

Units: T_{BASE_DP}

Comprises the following:

- duration of the cyclic utility [service]: This depends on the number of slaves, telegram length
- duration of the non-cyclic utility [service]: This depends on the maximum length of the DPV1 telegrams
- duration up to the new DP clock cycle: GAP, token transfer, reserve, Global Control

The minimum DP cycle time, resulting from the secondary conditions, should be listed as recommendation when configuring the system; however it is still possible to enter higher values. The maximum value for T_{DP} is, for absolute value encoders, 32 ms – the (theoretical) minimum value is 500 µs.

10.3.3 T_{MAPC}

Cycle time of the master application. This is specified as a multiple of T_{DP} and is used to evaluate the master sign-of-life character.

10.3.4 T_{BASE_IO}

Timebase of $T_{\rm I}$ and $T_{\rm O}$ (instants in time of the actual value sensing/setpoint transfer)

Units: 1/12 µs

This is set to125 µs using the GSD file.

10.3.5 T_l

Instant in time of the actual value sensing referred to the end of the cycle. Units: $T_{\text{BASE_IO}}$

		The following rules apply:
		The minimum time for T_1 (this is also specified in the GSD file) is only 125 μ s if the scaling is <u>disabled</u> using the device-specific parameter.
		$T_{\rm I}$ must be at least 375 μs if the scaling function is used.
		Further, a minimum time must be maintained between the instants that the setpoint is transferred (this is defined using T_O) and the actual value sensing (this is defined using T_I). This minimum time is 125 µs when the scaling function is disabled and 375 µs when the scaling function is enabled.
10.3.6	To	
		Instant in time that the setpoint is accepted referred to the start of the cycle.
		Units: T _{BASE_IO}
		For an absolute value encoder, the setpoint is a preset value and various calculations must be carried-out internally before the actual value sensing. This means that a minimum time must be maintained between the instant that the setpoint is accepted (this is defined by T_0) and the actual value sensing (defined by T_1). When the scaling function is disabled, this minimum time is 125 µs, and when enabled, 375 µs.
		Further, the following must apply: $T_{O} > T_{DX} + T_{O_{MIN}}$
10.3.7	T _{DX}	
		Deta Evaluarea tima
		Data_Exchange_time
		Units: $1/12 \ \mu s$ This is the time which is required for the cyclic data transfer. This depends on the number of slaves and telegram lengths.
10.3.8	T _{PLL_W}	
		Half the tolerance window width.
		Units: 1/12 µs
		Clock cycles within the tolerance window, defined here, which the encoder identifies as being valid. When synchronizing, initially the encoder starts with a multiple of the tolerance window width and then reduces the window down to the parameterized window width.
10.3.9	T _{PLL_D}	
		Delay time of the clock cycle signal.
		Units: 1/12 µs
		This is internally added to the configured cycle time T_{DP} .

10.4 Slave-to-slave communication

10.4 Slave-to-slave communication

In order to use the slave-to-slave communication function, the slave-to-slave communication links must be defined in the configured software. The absolute value encoder operates as Publisher. This means that so-called Subscribers can directly "listen to" the encoder data. The procedure when generating/creating slave-to-slave communication links can be taken from the documentation of the respective configuring tool.

11

Non-Cyclic Utilities

The following parameters are supported (only reading):

Parameter No.	Significance	Data type	R/W
918	Profibus address	Unsigned16	R
922	Telegram type	Unsigned16	R
964	Device identification	Array[n] Unsigned16	R
965	Profile number	Octet String 2	R
979	Sensor format	Array[n] Unsigned32	R

More detailed information on the individual parameters can be taken from the PROFIdrive profile.

Space for your notes

Fault Signals/Diagnostics in Isochronous **12** Operation

12.1	Profibus diagnostics	
12.2	Status signals using the LEDs in the connecting cover	
12.3	Fault codes in G1_XIST2	

12.1 Profibus diagnostics

6 diagnostics bytes are output in accordance with the Profibus Standard:

Diagnostics function	Data type	Diagnostics, octet number
Station status 1 (refer to: Profibus	Octet	1
Standard)		
Station status 2 (refer to: Profibus Standard)	Octet	2
Station status 3 (refer to: Profibus	Octet	3
Standard)	Octer	5
Diagnostics, master address	Octet	4
PNO ID number	Octet	5, 6

12.2 Status signals using the LEDs in the connecting cover

Various (fault) states of the devices are displayed using the two LEDs in the connecting cover:

No.	Red LED	Green LED	Status signal/possible cause
1	Dark	Dark	Power supply missing
2	Bright	Bright	The absolute value encoder is ready, but has still not received configuration data after the power was connected. Possible causes: Incorrectly set address, bus cables incorrectly connected
3	Bright	Flashing	Parameterizing or configuration error The absolute value encoder receives configuration or parameter data with the incorrect length or inconsistent data. Possible cause: e.g. the total resolution was set too high
4	Flashing	Bright	Absolute value encoder is ready, but has still not been addressed from the master. (e.g. the incorrect address is being used)
5	Bright	Dark	Absolute value encoder does not receive any data for a long period of time (approx. 40 seconds) (e.g. the data line is interrupted)
6	Dark	Bright	Normal operation in the data exchange modus

12.3 Fault codes in G1_XIST2

Encoder faults are displayed by setting fault bits in the encoder status word (bit 15). The appropriate fault codes are output in G1_XIST2:

Error code (hex)	Significance	Description
0F01	Command not supported	The command is not supported (e.g. requested via the control word)
0F02	Master sign-of-life fault	This is set if (after the encoder has been synchronized to the master sign-of-life character) the maximum permissible number of sign-of-life character failures has been exceeded.
0F04	PLL synchronization fault	This is set, if after the synchronization to the clock cycles the maximum permissible number of clock cycle failures has been exceeded.

13

Configuring Example for Isochronous Operation – STEP 7

Reading-in the GSD file	13-84
Configuring the absolute value encoder	
Telegram selection	
Device-specific parameters	
	Reading-in the GSD file Configuring the absolute value encoder Telegram selection Parameterization Device-specific parameters Isochronous parameters

13.1 Downloading the GSD file

When used for the first time, the GSD file ("SIEM80F9.GSD") must be installed in order to include the absolute value encoder in the hardware catalog. In this case, the "Install new GSD.." item must be selected in the window "HW Config" of the SIMATIC Manager under the menu item "Options". The appropriate GSD file ("SIEM80F9.GSD") should then be selected. The GSD file can be obtained from SIEMENS.

HW Config - [SIMATIC 400 Station (Configuration) -- ENCODER_T5] _ 8 × 🗓 Station Edit Insert PLC View Options Window Help _ 8 × Customize... Ctrl+Alt+E • Profile Standard • (0) UR1 Configure Network H PROFIBUS DP PS 407 🔺 Closed-Loop Controller
 Configured Stations
 DP V0 slaves Edit Catalog Profile CPU 41 Update Catalog x DP MPVDP Install New GSD DP/AS-i XΊ Import Station GSD ENCODER ET 200c
 ET 200c
 ET 200c
 ET 200c
 ET 200is
 ET 200i
 ET 200i
 ET 200i
 ET 200i
 ET 200i
 ET 200i ₽ • ET 200U
 ET 200V
 ET 200V
 ET 200X
 Function Modules 🗲 🔿 (0) UR1 ⊡ IDENT
 ⊡ IPC
 ⊡ NC Module PS 407 10A Order number 6ES7 407-0KA01-0AA0 Firmware MPI address I address Q address Slot Comn • Image: Second Seco 3 🚺 CPU 416-3 DP 6ES7 416-3×L00-0AB0 ¥3.0 X2 DF X1 MFI/DF IF1 1638 16382 🗄 🦲 SIPOS Horices 10 11 12 13 14 15 • ₹ś PROFIBUS-DP slaves for SIMATIC S7, M7, and C7 (distributed rack) -, Installs new GSD files in the system and updates the contents of the catalog.

After the GSD file has been downloaded, the absolute value encoder appears in the hardware Catalog under "PROFIBUS-DP" - "Other field devices" - "Encoder" - "SIMODRIVE sensor isochronous".

13.2 Configuring the absolute value encoder

HW Config - [SIMATIC 400 Station (Configuration) ENCODER_TS]	
Station Edit Insert PLC View Options Window Help	×
	Profile Standard
PROFIBUS(1): DP master system (1) PROFIBUS address Module Order number Firmware Diagnostic address Comment Comment	B- DP/AS1 B- DP/ALink B- ET 2008 B- ET 2008 B- ET 2000 B- ET 2000S B- ET 2000S B- ET 200N B- ET 200N B- ET 200N B- ET 200S B- ET 200S B- ET 200V B- FT 200V B- FT 200V B- FT 200V B- FT 200V B- IDENT B- IDENT B- SIMADYN B- SIMADTN B- SIMADINVE SEX2001-5xPxx E
Press F1 to get Help.	

After the Profibus network has been configured in the hardware configurator under the menu item "Insert" – "Master system" the absolute value encoder can be selected from the hardware Catalog and inserted in the network. To do this, the "SIMODRIVE sensor isochronous" device is coupled to the bus by dragging & dropping it (or by double clicking on the module with the bus selected).

After the device has been inserted, the node address of the slave device is entered. This must match the address set in the connecting cover.

Properties - PROFIBUS interface SIMODRIVE sensor isochro	×
General Parameters	
Address:	
Transmission rate: 1.5 Mbps	
Subnet	
not networked PROFIBUS(1) 1.5 Mbps	<u>N</u> ew
	Properties
	Dejete
OK	rechen Hilfe

13.3 Telegram selection

🖳 HW Config - [SIMATIC 400 Station (Configuration) ENCODER_TS]	_ B ×
🛍 Station Edit Insert PLC View Options Window Help	X
PROFIBUS(1): DP master system (1) PROFIBUS(1): DP master system (1) Image: Provide the system (1) Image: Provide	Profile Standard PROFIBUS DP Additional Field Devices B General Drives Drives B Encoders SIMDDRIVE sensor isochron Plc B Gateway B Drives Compatible PROFIBUS DP Slaves Configured Stations B Drives DP/V0 slaves DP/PA Link B ET 2000 B EXAMPYN
Insertion possible	Chg
TISE (TOT POSSING	j. jeng

After the device was inserted, as described, in the Profibus network, the telegram can now be selected. Currently, only telegram type 81 is supported. The module is dragged and dropped at slot 1 (table in the lower section of the station [node] window).

13.4 Parameterization

13.4.1 Device-specific parameters

The dialog box "DP slave properties" is displayed by double clicking on the encoder to be parameterized. The "parameterizing" table should be selected to enter parameters.

General Parameter As:	signment Clocking	
Order Number: Family:	6FX2001-5xPxx Encoders SIMODRIVE sensor isochron	GSD file (type file): SIEM80F9.GSD
Designation:	SIMODRIVE sensor isochro	
Addresses Diagnostic <u>A</u> ddress:	16381	Node/Master System PROFIBUS
- SYNC/FREEZE Capa	abilities	
SYNC	🔽 EREEZE	☑ <u>W</u> atchdog
Comment:		

Various parameters of the device can be defined under (Device-specific parameter) (refer to 10.2).

Parameters	Value
🛛 🔄 Station parameters	
–≝ DP Interrupt Mode	DPV0
General DP parameters	
🔤 🔄 Device-specific parameters	
─	Increasing clockwise (0)
 scaling/preset/counting dir. 	Disable
 Measuring units per revolution 	4096
 Total measuring range (high) 	256
— Total measuring range (low)	0
☐ Maximum Failures Masterlifesign	1
🗄 🦲 Hex parameter assignment	

13.4.2 Isochronous parameters

Initially, the "Equidistance" function should be configured in the Profibus network (an appropriate master must be selected supports this functionality):

In the network view double click on the PROFIBUS sub-network.

Properties - DP maste	r system	×
General Group Proper	rties Group assignment	
Short Description:	DP master system	
<u>N</u> ame:	DP master system	
<u>M</u> aster System No:	1	
Subnet:	PROFIBUS(1) Properties	
Comment:		
		*
OK	Cancel	Help

After selecting the "Properties" button in the properties dialog box select the "Network settings" tab.

Select the "DP" profile and click on the "Options" button.

Properties - PROFIBUS				X
General Network Settings				1
Highest PROFIBUS Address:	126 💌	Change	Options	
Iransmission Rate:	45.45 (31.25) Kbps 93.75 Kbps 187.5 Kbps 500 Kbps 1.5 Mbps 3. Mbps	×		
Profile:	DP Standard Universal (DP/FMS) User-Defined		<u>B</u> us Parameters	
ОК			Abbrechen Hilfe	

In the subsequent dialog box, activate the control box "Activate equidistant bus cycle" and select the required equidistant (isochronous) DP cycle.

	Stations Cables	
Number of Plas/UPs/TDs on PRI Configured: 0 Iof		
Constant DP <u>C</u> ycle: minimum 1.000 ms)	Time base:	D <u>e</u> tails
Slave Synchronization Times Ti and To same for all s (otherwise: make setting in sla		
Time Ti (read in process value	es): 0.000 = ms	

Double-click on the slave to be parameterized and select the "Equidistant" tab.

Activate the control box "Synchronize DP slave to DP cycle".

Select the required times for T_1 and T_0 . In this case, please observe the minimum and maximum values as well as the rules from Section 10.3.5 and 10.3.6.

Properties - DP slave	×
General Parameter Assignment Clocking	
I	
Time Tj(read in process values): 0.125 — ∰ ms minimum 0.125 ms maximum 10.375 ms	Time base: 0.125 ms
Time To (output process values): 0.125 ≟ ms minimum 0.625 ms maximum 10.375 ms	Time base: 0.125 ms
OK	Cancel Help

After all of the slaves have been configured and parameterized, the equidistant times for the bus system should be again checked and possibly adapted.

Space for your notes

14

Technical Data

14.1	Electrical data	14-92
14.2	Mechanical data	
14.3	Ambient conditions	
14.4	Dimension drawings	14-95

14.1 Electrical data

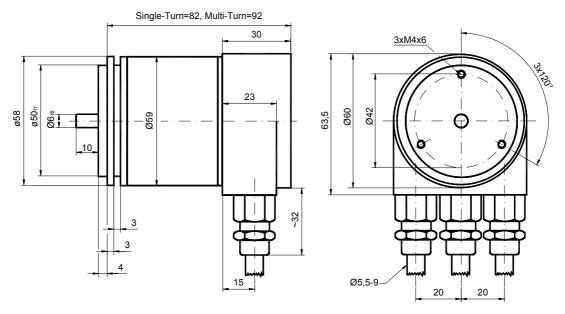
<u>.</u>	
General design	According to DIN VDE 0160
-	Protective Class III, degree of pollution 2,
	overvoltage Category II
Power supply voltage	10 - 30 V DC (absolute limit values)
Power drain	max. 2.5 watts
EMC	Noise emission according to EN 61000-6-4
	Noise immunity according to EN 61000-6-2
Bus connection	Electrically isolated through an opto coupler
Interfece	
Interface	Line driver according to RS 485
Baud rates	12 Mbaud; 6 Mbaud; 3 Mbaud; 1.5 Mbaud;
Bada fatoo	500 kbaud; 187.5 kbaud; 93.75 kbaud;
	45.45 kbaud; 19.2 kbaud; 9.6 kbaud
Desclution	
Resolution	8192 steps/revolution
Number of revolutions which	1 or 16384
are sensed	
Scale accuracy	+ ½ SB
	1 /2 200
Step frequency LSB	Max. 800 kHz
Code type	Binary
The state of life time of	10 ⁵ h
Electrical lifetime	> 10 ⁵ h
Addressing	Using a rotary switch in the connecting
	cover

Note

The absolute angular encoder may only be operated with extra low safety voltage.

14.2 Mechanical data

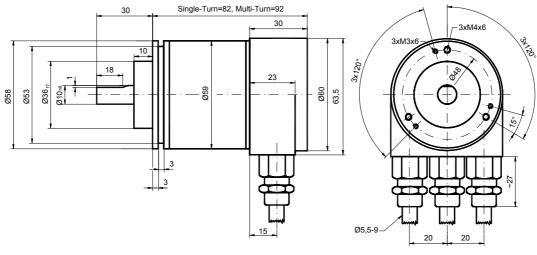
Housing	Aluminum	
Flange	Synchronous flange	Clamping flange
Diameter of the solid shaft	6 mm 10 mm	
Diameter of the hollow shaft	15 mm	
with reducing adapter	8 mm, 10 mm, 12 mm	
Shaft length	10 mm 20 mm	
Shaft loading	Axial 40 N, radial 110 N	
Friction torque	≤ 3 Ncm	
Rotor moment of inertia	$\approx 30 \text{ gcm}^2$	
Lifetime, mechanical	refer to the table	
Speed	6000 RPM (continuous operation)	
Shock immunity (EN 60068-2-27)	≤ 100 g (half sine, 6 ms)	
Continuous shock immunity (EN 60028-2-29)	≤ 10 g (half sine, 16 ms)	
Vibration immunity (EN 60068-2-6)	≤ 10 g (10 Hz 2000 Hz)	
Connection	Connecting cover with terminal strip as T distributor	
Weight (incl. connecting cover)	Single-turnApprox. 500 gMulti-turnApprox. 700 g	


Minimum mechanical lifetime

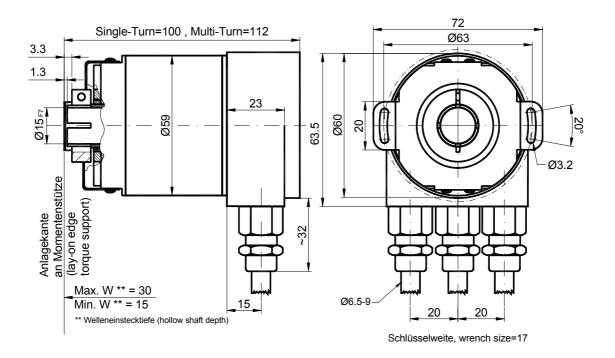
	Lifetime in 10^8 revolutions at F_a/F_r		
	40 N/60 N	40 N/80 N	40 N/110 N
Clamping flange	247	104	40
Synchronous flange	822	347	133

14.3 Ambient conditions

Operating temperature	-40 +85 °C
Storage temperature	- 40 + 85 °C
Relative air humidity	98 % (without moisture condensation)
Degree of protection (EN 60529)	
Housing/enclosure	IP 65
Shaft	IP 64


Dimension drawings 14.4

Synchronous flange


Schlüsselweite, wrench size=17

Clamping flange

Schlüsselweite, wrench size=17

14.4 Dimension drawings

Hollow shaft

Mounting instructions

The clamping ring may only be tightened onto the hollow shaft if the angular encoder is inserted on the drive element shaft.

The diameter of the hollow shaft can be reduced to 12 mm, 10 mm or 8 mm using a reducing adapter. This reducing adapter is simply inserted into the hollow shaft. We do not recommend thinner drive element shafts due to the mechanical load.

The permissible shaft motions of the drive element are listed in the table:

	Axial	Radial
Static	± 0.3 mm	± 0.5 mm
Dynamic	± 0.1 mm	± 0.2 mm

15

Appendix

	Additional encoder classes	
	Version 2.0 multi-turn	
15.1.2	Version 1.1 multi-turn	
15.1.3	Version 1.0 multi-turn	
15.2	FAQ Absolute value encoders, Profibus	
15.3	Terminology	

15.1 Additional encoder classes

15.1 Additional encoder classes

The encoder classes, listed in the following, are still supported for reasons regarding upwards compatibility. However, they should no longer be used for new projects.

15.1.1 Version 2.0 multi-turn

This version only differs from the Version 2.2 by the fact that there are fewer parameters available in the configuring tool mask.

Parameters	Value	
🗃 🤤 Station parameters		
🚽 🔄 Device-specific parameters		
—	Increasing clockwise (0)	_
 Desired Measuring units (high) 	0	_
 Desired Measuring units (low) 	4096	_
L'⊞ Commissioning mode ⊕ Hex parameter assignment	Enable	
🕀 🦲 Hex parameter assignment		

15.1.2 Version 1.1 multi-turn

This is an older version. Previously, it was unofficially designated as a so-called Class "3". It behaves just like Class 2, but in addition outputs the velocity. It is still available, if a user does not wish to make any changes; however, it should no longer be used for new systems.

15.1.3 Version 1.0 multi-turn

Position value and velocity outputs are available without the possibility of making a preset. This should no longer be used.

15.2 FAQ Absolute value encoders, Profibus

Problem

When using one of the following Profibus masters and for encoder classes higher than Class 1, problems occur when running-up the system (bus fault, encoder does not log-on):

- SIEMENS S5-95U
- Master interface SIEMENS IM 308-B
- Softing PROFIboard
- Allen Bradley 1785 PFB/B
- Mitsubishi A1SJ 71PB92D

Possible cause

Under certain circumstances, the master does not support the full number of diagnostic bytes (57 bytes) provided by the absolute value encoder.

Remedy

If possible, the maximum number of diagnostics data per slave should be increased in the master.

If this is not possible, then the absolute value encoder can either be used as Class1 device (16 diagnostic bytes) or one of the manufacturer-specific Classes is selected (Version 2.1 or 2.2) and "Reduced diagnostics" is enabled in the parameterization (refer to Section 5.1.5).

Problem

For COM PROFIBUS Version 5.0, the absolute value encoder cannot be configured together with the S5-95U.

Cause

The S5-95U does not support the full complement of diagnostics data (57 bytes).

For COM Profibus V5.0, the GSD entry "Max_Diag_Data_Len=57" is checked and it is prevented from configuring together with the S5-95U.

Remedy

Use COM Profibus Version 3.3, select one of the manufacturer-specific Classes (Version 2.1 or 2.2) and activate the shortened diagnostics (parameter).

It is only possible to use the device with COM Profibus V5.0 using a modified GSD file (the slave key "Max_Diag_Data_Len" must be modified).

Problem

PLC and master interface are switched-in, the bus is active, but the absolute value encoder does not log-on.

Remedy

To start, check the state of the LEDs in the connecting cover (refer to Section 6.3); under certain circumstances, information can be obtained about the possible fault causes.

Both LEDs dark: Check the power supply!

Both LEDs bright:

The device is not receiving parameters and configuration data. Check the address setting in the connecting cover. Check that the bus lines (cables) are correctly connected (BUS IN/BUS OUT). Check the configuring.

Red LED bright, green LED flashing:

Parameter error! Check the parameterization: e.g. total resolution (refer to 4.2.6)

Problem

Bus faults sporadically occur.

Possible cause

The terminating resistors are not correct

Remedy

Check the terminating resistors!

The 220 Ω terminating resistor must be switched-in at the beginning <u>and</u> at the end of the bus segment. Measure the resistance between the two data lines! To do this, the power supply must be powered-down and a measurement made between connections "A" and "B" in the connecting cover. The measured resistance value must be approx. 110 Ω (220 Ω parallel 220 Ω).

Possible causes

EMC problems

Remedy

Check as to whether the selected baud rate is permissible for the cable length; if required, use a lower baud rate. Check the connecting cover that it is correctly located and ensure that the cables have been correctly routed regarding EMC.

15.3 Terminology

Terminating register	Desister to adapt hus applies terminating registers are always		
Terminating resistor	Resistor to adapt bus cables; terminating resistors are always required at the end of a cable or segment.		
Address	A number, which is assigned to each node, no matter whether		
	it is a master or slave. The setting is realized in the		
	connecting cover using rotary switches so that it is non-volatile.		
Baud rate	Data transfer rate specified as the number of bits transferred per second (baud rate = bit rate).		
Bus node	Device, which can send, receive or amplify data via the bus.		
Configuring	When configuring, the master signals the angular encoder		
	how it is to behave, e.g. the number of input and output words.		
	(also refer to \rightarrow DDLM_Set_Prm).		
DDLM	Direct Data Link Mapper. Interface between Profibus-DP functions and the encoder software.		
DDLM_Data_Exchange	Operating status of the bus, for standard data transfer.		
DDLM_Set_Prm	Operating status of the bus, in which configuration data is sent.		
DDLM_Slave_Diag	Operating status of the bus, in which diagnostics data are requested from the slave (e.g. absolute value encoder).		
DP	Distributed peripherals		
Diagnostics	Identification, localization, classification, display, additional evaluation of faults, errors and messages.		
Encoder	Alternative designation for (angular) encoders or absolute value encoders		
Freeze	This is a master command to the slave. This allows the		
	master to freeze the statuses of the inputs to their instantaneous value. The input data are only updated again,		
	when the master sends the UNFREEZE command.		
GSD file	Master device data file, in which the slave-specific properties		
	and characteristics are defined. The GSD is a file, which is made available for most Profibus nodes (stations) by the		
	manufacturer. The GSD formats are unified, so that the		
	corresponding control software can access it. (also refer to \rightarrow		
	Type file).		
Master	Bus nodes, which can send data on their own initiative, and define which slave should send data. → Slave		
Octet	Data unit of 8 bits = 1 byte		
Parameterization	Transfers specific values (such as resolution per revolution,		
	direction of rotation, etc.) from the master to the slave (in this		
	case: absolute value encoder).		
Profibus	This is realized when the system runs-up. Process Fieldbus, European fieldbus standard, which is		
1 1011043	defined in the PROFIBUS Standard. This specifies functional,		
	electrical and mechanical characteristics for a bit-serial		
Slave	fieldbus system. Bus node, which essentially only sends data when instructed		
	to do so by the \rightarrow Master. Absolute value encoders are always		
	slaves.		
Type file	Similar to a GSD file – is used by older engineering/configuring tools.		
Word	Is frequently used, but not in a unified fashion, for a data unit		
-	of 2 bytes.		

Space for your notes

16

Index

Class 1 25 Class 2 25 Commissioning mode 42 Configuration 53 Connecting cover Connecting-up 18 LEDs 50 Settings 15 Connecting-up the signal and power supply cables 17 Data format 24 Device class Selecting 54 Dimension drawings 95 Direction of rotation 29 Encoder classes 23 Additional 98 Encoder profile 11 Endless axis 30 FAQ 99 GSD file 101 Reading in 52 Installation 13

Memory error 47 Node 15 Node address 15 Operating time alarm 48 Parameterization 55 Physical measuring steps 34, 36, 39 Preset function 32 Profibus User Organization 11 Reduced diagnostics 37 Required measuring steps 35 Rotary axis 30 Software limit switch 38 Starting teach-in 43 Status bits 41 STEP 7 51 Stopping teach-in 44 Terminating resistors 15 Total resolution 30 Type file 101 Validity of the documentation and references 10 Velocity Dimension units 40

Space for your notes

	Suggestions	
Siemens AG	Corrections	
A&D MC BMS	For Publication/Manual:	
Postfach 3180		
D-91050 Erlangen	SIMODRIVE sensor Absolute Value Encoder with PROFIBUS-DP	
Tel.: +49 (0)180 / 5050-222 [Hotline] Fax: +49 (0)9131 / 98-63315 [Documentation] eMail: mailto:motioncontrol.docu@siemens.com	Manufacturer Documentation	
From	User Manual	
Name:	Order No.: 6SN 1197-0AB10-0YP4 Edition: 07/05	
Company/Department	Should you come across any printing errors when reading this publication, please notify us on this sheet.	
Address:		
<u> </u>	Suggestions for improvement are also welcome.	
Telephone: /		
Telefax: /		

Suggestions and/or corrections

Siemens AG

Automation and Drive Motion Control Systems Postfach 3180, D – 91050 Erlangen Bundesrepublik Deutschland

© Siemens AG 2005 Subject to change without prior notice Order No.: 6SN1197-0AB10-0YP4

www.siemens.com/motioncontrol

Printed in the Federal Republic of Germany